
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

BoostXML: Gradient Boosting for Extreme
Multilabel Text Classification With Tail Labels

Fengzhi Li , Yuan Zuo , Hao Lin , Member, IEEE, and Junjie Wu

Abstract— Multilabel learning involving hundreds of thousands
or even millions of labels is referred to as extreme multilabel
learning (XML), in which the labels often follow a power-
law distribution with the majority occurring in very few data
points as tail labels. Recent years have witnessed the intensive
use of deep-learning methods for high-performance XML, but
they are typically optimized for the head labels with abundant
training instances and less consider the performance on tail
labels, which, however, like the needles in haystacks, are often
the focus of attention in real-life applications. In light of this,
we present BoostXML, a deep learning-based XML method
for extreme multilabel text classification, enhanced greatly by
gradient boosting. In BoostXML, we pay more attention to tail
labels in each Boosting Step by optimizing the residual mostly
from unfitted training instances with tail labels. A Corrective
Step is further proposed to avoid the mismatching between
the text encoder and weak learners during optimization, which
reduces the risk of falling into local optima and improves
model performance. A Pretraining Step is also introduced in the
initial stage of BoostXML to avoid exorbitant bias to tail labels.
Extensive experiments on five benchmark datasets with state-
of-the-art baselines demonstrate the advantage of BoostXML in
tail-label prediction.

Index Terms— Corrective step, deep learning, extreme multil-
abel learning (XML), gradient boosting, tail labels.

I. INTRODUCTION

EXTREME Multilabel Learning (XML) aims to train a
classifier that can automatically tag a new data point

with the most relevant subset of labels from an extremely
large label set. Due to the rapid growth of sheer data
volumes and the prosperity of real-world applications, XML
has attracted considerable research attention in recent years.
For instance, Wikipedia nowadays has more than one million
labels (categories), and a classifier is in great need to annotate
a new article with the most relevant Wikipedia categories
automatically. Another example is to regard billions of

Manuscript received 21 March 2022; revised 3 January 2023 and 28 May
2023; accepted 6 June 2023. The work of Yuan Zuo was supported in
part by the National Natural Science Foundation of China (NSFC) under
Grant 71901012. The work of Junjie Wu was supported in part by NSFC
under Grant 72031001 and Grant 72242101. This work was supported by
the High-Performance Computing (HPC) Resources at Beihang University.
(Corresponding authors: Yuan Zuo; Junjie Wu.)

The authors are with the Department of Information Systems, Beihang
University, Beijing 100191, China, and also with the Key Laboratory
of Data Intelligence and Management (Beihang University), Ministry of
Industry and Information Technology, Beijing 100191, China (e-mail:
lifengzhi@buaa.edu.cn; zuoyuan@buaa.edu.cn; haolin@buaa.edu.cn;
wujj@buaa.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3285294.

Digital Object Identifier 10.1109/TNNLS.2023.3285294

YouTube videos as distinct labels in a multilabel classifier and
recommend a ranked list of videos to users with personalized
preferences.

Given the extra-large scale of data labels, it is difficult
to apply traditional multilabel classification methods for the
XML task. The existing XML methods can be roughly divided
into non-deep-learning methods [1], [2], [3] and deep-learning
methods [4], [5], [6]. Non-deep-learning methods usually
take handcraft features as input, aim primarily to reduce
computational complexity, and improve training and prediction
efficiency. There are mainly three major ways to achieve this
goal, including projecting labels into a low-dimensional latent
space [1], [7], partitioning instances or labels into smaller
clusters or sets [8], [9], and leveraging sparse or sampling
methods [3], [10]. Recently, to pursue higher classification
precision, deep learning-based XML methods [4], [5] have
been studied extensively.

Although the reported performances of deep learning XML
methods seem to exceed those of non-deep learning XML
methods, we argue that the performances might be biased
to head labels that are associated with abundant training
instances. However, the labels of real-world XML datasets
usually exhibit a power-law distribution; that is, most labels
are associated with only a few instances, which are known as
tail labels. Tail-label prediction, e.g., for promoting enormous
niche items in an electronic commerce website, in many cases
is just the focal point of XML tasks. The head bias might
attribute to two reasons. From the performance evaluation
perspective, the widely adopted evaluation measures for
existing deep learning XML methods, e.g., Precision at k,
cannot well reflect the prediction performance on the tail
labels. From the model structure perspective, they do not
explicitly model the skewed label distribution and thus suffer
from the suboptimal performance on tail labels. For example,
AttentionXML [4] builds a shared classifier for all labels,
which may transfer the classification information of head
labels to tail labels mistakenly. These indeed motivate our
study.

In this work, we propose BoostXML, a novel gradient-
boosting enhanced deep learning XML model for extreme
multilabel text classification,1 which tackles the power-law
distribution problem of data labels explicitly. In general,
BoostXML has a similar architecture as the existing deep
learning XML methods, but its classifier as well as the training

1As existing multilabel learning benchmark datasets are mainly text data,
our proposed BoostXML is designed for multilabel text classification.

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8867-0070
https://orcid.org/0000-0001-8516-2567
https://orcid.org/0000-0002-1921-3036
https://orcid.org/0000-0001-7650-3657

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

process, are designed purposefully to suit gradient boosting.
Concretely, a Pretraining Step is firstly conducted in the
training process, where a pretrained primary backbone model
is utilized to initialize BoostXML. This operation can reduce
the negative impact on representation learning caused by over-
fitting the tail labels. After the Pretraining Step, each training
iteration of BoostXML is mainly composed of two steps, i.e.,
the Boosting Step and the Corrective Step. In the Boosting
Step, weak learners are trained sequentially by fitting the
residual generated by the ensemble of trained learners, most of
which is thought of as coming from unfitting training instances
with tail labels. Hence, by adding weak learners continuously,
BoostXML pays more attention to different tail labels and
attempts to correct the wrong predictions. After each Boosting
Step is a Corrective Step, in which the parameters of the whole
network are updated through back-propagation. This enables
the text encoder and weak learners to cooperate with each
other during training to avoid falling into local optima.

The main contributions of our work are summarized as
follows.

1) To our best knowledge, we are among the first to tackle
the widespread long-tail problem in XML tasks with a
deep learning-based method.

2) To enable a neural gradient boosting procedure,
a Corrective Step is introduced and executed iteratively
after each Boosting Step, which avoids the mismatching
between the encoder and earlier trained base learners
during training.

3) To boost the performance of tail labels without seriously
hurting the performance of head ones, we propose a two-
step training scheme, where an extra Pretraining Step is
introduced.

4) Extensive experiments are conducted on five benchmark
datasets with the presence of various state-of-the-
art baseline methods, and the results demonstrate the
superiority of BoostXML in tail-label prediction.

The remainder of this article is organized as follows.
In Section II, we introduce two types of deep XML methods
and gradient boosting, and define our problem. In Section III,
we propose the BoostXML method and give the training as
well as predicting processes. The experimental results and
related works are given in Sections IV and V, respectively.
We finally conclude our work in Section VI.

II. PRELIMINARY

A. Deep XML Methods and Tail Labels

With the advent of deep learning, neural network-based
methods have become prevalent in tackling XML problems.
Existing methods can be roughly divided into two categories
according to the type of their classification algorithm. One
is the one-versus-all classification method, which we call
multiple binary classifiers, and the other is the shared
binary classification method, which we call the shared binary
classifier.

As illustrated in Fig. 1, multiple binary classifiers-based
deep XML methods first obtain the instance representation,
then compute the score of each label through its corresponding

Fig. 1. Two typical types of deep XML methods.

binary classifier. On the contrary, shared binary classifier-
based deep XML methods obtain label representations first,
then compute the score of each label through a shared binary
classifier. The computation cost of calculating the scores of all
labels for each instance is intolerable and unnecessary, since
extreme multilabel datasets contain hundreds of thousands to
millions of instances and labels. By assigning millions of
labels to multiple clusters, XML methods can first select the
corresponding clusters, and then predict the scores of the
candidate labels from these clusters. With label clustering,
the number of labels needed to be predicted by the model
is reduced significantly, thus greatly improving the efficiency
of dealing with the large-scale label prediction problem.

The labels of real-world XML datasets tend to exhibit
a power-law distribution, i.e., most labels are associated with
only a few instances. These labels, also known as tail labels,
cannot be well approximated by any linear low-dimensional
basis owing to the paucity of instances. When multiple binary
classifiers are adopted in a deep XML method, no explicit
relations are considered between these classifiers. Therefore,
classifiers of tail labels cannot be sufficiently trained because
too few instances are seen during the training, which results in
poor prediction performance in the testing phase. As to shared
binary classifier-based XML methods, a shared classifier is
trained for both tail labels and head labels, which alleviates the
insufficient training of the classifier problem mentioned before.
However, the shared classifier is not designed purposefully for
predicting tail labels. Therefore, there is still a great need
in developing a new deep-learning method that is capable
of explicitly tackling XML with tail labels. In Section II-B,
we briefly introduce gradient boosting and elaborate more on
why it has the potential to improve the share binary classifier
for tail labels.

B. Gradient Boosting

Boosting, as one of the branches of ensemble learning
algorithms, is well-known for its good prediction performance.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BoostXML: GRADIENT BOOSTING FOR EXTREME MULTILABEL TEXT CLASSIFICATION WITH TAIL LABELS 3

In the family of boosting algorithms, gradient boosting is one
of the most commonly used. Like other boosting algorithms,
given the input x, gradient boosting is built with an additive
expansion and is formally defined as follows:

Ft (x) = Ft−1(x) + ρt ft (x) (1)

where Ft (x) is an ensemble of t functions, and ρt is the weight
of the t th function ft (x). The whole model is constructed step-
wise in the sense that at each step a new model ft is built
without modifying any of the previously created models in
Ft−1(x). Given a training dataset D = {(xi , yi)}

N
i=1 with N

instances, the goal of t th gradient boosting step is to minimize
the following objective function:

(ρt , ft (x)) = argmin
ρ, f

N∑
i=1

L(yi , Ft−1(xi) + ρ f (xi)). (2)

Instead of training on the raw D, gradient boosting’s target is
to fit the “residual.” Specifically, each model ft is trained on
a new dataset D̂ = {(xi , rti)}

N
i=1, where the pseudo-residual rti

is the negative gradient at Ft−1(x), and is formally defined as
follows:

rti = −
∂L(yi , Ft−1(xi))

∂ Ft−1(xi)
. (3)

Gradient boosting takes the negative gradient as the
measurement of the mistakes made by Ft (x) after the t th
step, and corrects them by fitting the negative gradient with
the newly added weak learner in the next round. We argue
that this learning mechanism is suitable for tail labels because
they are more likely to be wrongly classified than head labels.
Thus, tail labels’ negative gradients are usually larger and tend
to receive more attention from the gradient-boosting method
during training. In this regard, the gradient boosting method
has the potential to be utilized in tackling XML with tail labels.

C. Problem Definition

In XML, the labels are the same as those in traditional
multilabel classification, which can be written as Y =

{1, 2, . . . , L}. The difference is that L is extremely large and
the dataset D = {(xi , yi)}

N
i=1 consists of instances and labels.

Each instance x matches a label subset of Y , which can also
be written as a binary vector y ∈ {0, 1}

L , with the lth element
y(l) representing the presence or absence of label l. So the
target of the XML task is to learn a function F : x → {0, 1}

L

that maps an instance to a subset of large-scale labels.
In this study, we focus on taking advantage of gradient

boosting to help the deep XML method perform better on tail
labels. Moreover, the shared binary classifier is adopted for
two main reasons. First, a shared classifier has the potential
to help the XML method perform better on the prediction of
tail labels since it can utilize the information of head labels to
help the classification of tail ones. The results of two typical
methods from two types of deep XML methods confirm our
above thought, which can be found in Section IV-B. Second,
in practice, the base classifier used in the gradient boosting
method usually needs to be a weak one due to its better
diversity between base classifiers. In contrast, the multiple

binary classifiers are not weak as a whole. Besides, the
extra memory and computation cost brought by the multiple
classifiers are unbearable given such a large number of labels.

III. BOOSTXML
In this section, we introduce BoostXML for XML with tail

labels. The proposed framework is presented in Fig. 2.

A. Boosting Step
As a universal ensemble framework, gradient boosting

can be theoretically conducted on any base learner, such
as logistic regression, support vector machine (SVM), and
multilayer perceptron. In practice, simple and weak base
learners usually produce better performance due to the greater
diversity among them. To get better prediction results on the
XML task, deep-learning methods use powerful text encoders
and fully connected layers for text representation and label
classification, respectively. Therefore, the direct application of
gradient boosting on a deep XML model will not only fail
to improve its performance due to strong base learners but
also greatly suffer from the calculation and storage cost of the
whole model.

To avoid the above problems, BoostXML only takes the
shared binary classifier (described in Section II-A) as the
base learner, which is indeed a multilayer perceptron and is a
natural choice of base learner for it serves as the output layer
of a deep learning-based classification method. Applying MLP
as the base learner makes sure our model can be trained with
gradient descent algorithms in an end-to-end manner. To keep
the input of each base learner consistent, BoostXML applies a
shared encoder to get label representations. Besides, to carry
out better feature transformation before label classification,
there are usually multiple fully connected hidden layers in
the shared classifier and many neurons in its hidden layers.
To maintain the simplicity and weakness of the base learners,
BoostXML restricts the number of hidden layers as well as the
number of neurons in hidden layers of the shared classifier.2

Meanwhile, to increase the diversity among the base learners,
we randomly initialize each base learner and train them in
only a few epochs to guarantee they are as weak as possible.
We call the training process of each weak learner as Boosting
Step.

In each Boosting Step, a new base learner is trained from
scratch and then added to the ensemble model. The target of
training the new base learner in gradient boosting is to fit
the “residual” from the prediction of the current ensemble
model. Given the input xi of the i th instance, L label-
specific representations are obtained. Each representation is
a combination of hidden vectors of tokens, which is formally
defined as follows:

vil =

J∑
j=1

al(xi)
(j)φe(xi)

(j) (4)

where φe(xi) ∈ RJ×H is an intermediate representation
function and can be implemented as a text encoder such as

2More details about how to restrict an MLP’s (base learner) number of
hidden layers and the number of neurons in each layer can be found in the
implementation details of Section IV-A.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Overview of the proposed BoostXML.

long short-term memory (LSTM) [11] or transformer [12],
which produces J representations, one for each token xi j . J is
the length of text, and H is the dimension of hidden vectors.
al(·) is the weight score function for label l, which meets the
constraint of

∑J
j=1 al(xi)

(j)
= 1. Specifically, al(·) in our work

is an attention3 computed between the embedding of label l
and representations of J tokens.

With the label representation vil of label l in i th instance, the
objective function of t th base learner ft (·) is formally defined
as follows:

L(t)
mse =

1
N L

N∑
i=1

L∑
l=1

(rtil − ρt ft (vil))
2 (5)

where L(t)
mse is the mean squared error, N and L are the number

of instances and labels, respectively, ρt is the weight (also
known as the boosting rate) of base learner ft (·), and rtil is the
residual. For different learning tasks, the form of residual rtil

will change according to the different choices of loss functions
for the task. Note that, different from traditional gradient
boosting, the input label representation of base learners in
BoostXML is varying with different Boosting Steps since
the text encoder is trained together with base learners. This
will invalidate previously trained base learners. We will show
how to fix this problem in Section III-B. As each label has
its own representation, a shared binary classifier is adopted
for all labels. To simplify the calculation, we assume the
label yil ∈ {−1,+1}, and use the logistic loss for binary
classification, which is formally given as follows:

L(t)
log =

1
N L

N∑
i=1

L∑
l=1

ln
(
1 + e−2yil Ft−1(vil)

)
. (6)

Given the loss function, according to (3) and (6), the residual
rtil can be written as follows:

rtil = −gil =
2yil

1 + e2yil Ft−1(vil)
(7)

where gil is the first-order gradient of L(t)
log.

Although using the first-order gradient as the measure of
residual rtil is enough for the gradient boosting algorithm

3We apply the same attention mechanism of AttentionXML [4] to compute
label-specific representations.

to converge, the second-order gradient is often introduced to
the training process of gradient boosting due to its excellent
properties. One of the most important differences between
the popular XGBoost [13] and traditional gradient boosting
decision trees (GBDTs) [14] is the introduction of the second-
order gradient based on Taylor expansion, which helps the
algorithm find the optimal or local optimal solution more
quickly and accurately. Therefore, instead of just using the
first-order gradient, BoostXML leverages the information
of both first- and second-order gradients. The second-order
gradient hil and the residual rtil are given as follows:

hil =
4y2

ile
2yil Ft−1(vil)(

1 + e2yil Ft−1(vil)
)2 (8)

rtil = −gil/hil =
1
2

yil
(
1 + e−2yil Ft−1(vil)

)
. (9)

Due to the very limited number of positive instances, the
classification of tail labels faces a severe imbalance problem.
Even the shared binary classifier tends to ignore the very few
amounts of positive instances of a tail label and classifies
them as negative instances. Therefore, for a wrongly classified
positive instance, its predicted label and ground truth label are
−1 and +1, respectively, then the factor −2yil Ft−1(vil) will
be a positive value. According to (9), the magnitude of the
residual rtil is magnified exponentially with the above factor,
which leads to the further amplification of the MSE loss L(t)

mse.
Such magnified loss function can be considered as a variant of
the reweighting methods, which helps the classifier pay more
attention to the wrongly classified tail labels. Reweighting
has proved to be effective for imbalanced classification in
many methods, and extensive experiments in this study also
prove that BoostXML can improve the model’s classification
performance on tail labels.

B. Corrective Step

In a traditional boosting framework, the inputs are usually
fixed, e.g., structured data of numeric type or text data
encoded by term frequency-inverse document frequency (TF-
IDF). During the training of the model, each weak learner
is greedily learned which means that only the parameters
of t th weak learner are updated at boosting step t where
all the parameters of previous t − 1 weak learners remain

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BoostXML: GRADIENT BOOSTING FOR EXTREME MULTILABEL TEXT CLASSIFICATION WITH TAIL LABELS 5

unchanged. However, there are two major problems with this
training paradigm in BoostXML. First, to improve the model’s
performance, representation learning needs to be performed
by deep-learning methods on the original inputs. If we use
TF-IDF or pretraining language models to obtain fixed text
representations, the performance of the model will be greatly
limited. Second, as the training goes on, the previously trained
fixed classifier will have a deviation from the constantly
updated encoder, which will reduce the overall performance
of the whole model.

Therefore, we implement a Corrective Step to address the
above problems. Instead of fixing the encoder and previous
t − 1 weak learners, we update the parameters of the whole
network through back-propagation after the t th weak learner
is trained and added to the whole network. Unlike in Boosting
Step, where each weak learner has its own output and loss,
the output of the Corrective Step is the ensemble output of all
trained weak learners. The objective function of the Corrective
Step is the Binary Cross Entropy Lbce, which is formally given
as follows:

L(t)
bce

= −
1

N L

N∑
i=1

L∑
l=1

(
yil ln σ(Ft (vil))+(1−yil) ln(1−σ(Ft (vil)))

)
(10)

where σ is the sigmoid function. Note that if we let the label
yil ∈ {0, 1}, the Lbce is actually equivalent to Llog [in (6)]
with label yil ∈ {−1, 1}. We use BCE loss for the Corrective
Step and use the logistic loss for the Boosting Step to keep
consistent with the literature on gradient boosting and deep
learning, respectively.

Corrective Step enables the encoder to update parameters
to obtain better representation ability, and at the same time
enables each weak classifier to adapt to the change of the
encoder. Corrective Step also helps the model to avoid getting
stuck in local minima, and further improve the performance
of the whole model. In addition, in a traditional boosting
framework, the weight ρt , or the so-called boosting rate,
needs to be specifically updated and fixed after the boosting
operation. We incorporate it into the parameters of the model
and update it automatically through the Corrective Step.

C. Training and Prediction

In the training process, we alternatively carry out the
Boosting Step and the Corrective Step. The Boosting Step
trains a new weak learner, while the Corrective Step updates
the parameters of the whole network. Successive execution
of a Boosting Step and a Corrective Step can be considered
a complete iteration. At the beginning of each iteration,
a new weak learner is randomly initialized and updated in the
Boosting Step, while the encoder and the other learners are
fixed. In our implementation, to reduce the computation cost
and graphics processing unit (GPU) memory consumption,
we apply the same encoder as AttentionXML, which is
composed of LSTM and Multilabel Attention. After the
training of the weak learner, we update the entire network
in the Corrective Step. The iterations continue until the

Algorithm 1 Training Procedure of BoostXML
Input:

1: Training dataset D = {(xi , yi)}
N
i=1;

Output:
2: Trained model;

▷ Pretraining Step
3: Pretrain the backbone network with all instances;
4: Initialize weights of the encoder model φe with weights

of the encoder part of backbone network;
5: for t = 1 to T do

▷ Boosting Step
6: Randomly initialize the weak learner ft ;
7: for b = 1 to Bs do
8: Draw s instances Xb and Yb from D;
9: Get label representations v by φe(Xb);

10: Calculate each residual rtil according to Eq. (9);
11: Generate label scores of the single learner by ft (v);
12: Compute the loss according to Eq. (5) and update

the parameters of ft ;
13: end for

▷ Corrective Step
14: Get the ensemble model Ft by adding ft to Ft−1;
15: for b = 1 to Bs do
16: Draw s instances Xb and Yb from D;
17: Get label representations v by φe(Xb);
18: Generate label scores of the ensemble model by

Ft (v);
19: Compute the loss according to Eq. (10) and update

the parameters of Ft and φe;
20: end for
21: end forreturn the trained model.

number of weak learners reaches a predefined value. For large-
scale datasets, following AttentionXML, BoostXML trains
a single deep model for each level of a probabilistic label
tree (PLT) [2] in a top-down manner. Readers interested in
the implementation details of the label-specific encoder and
PLT please refer to the article of AttentionXML [4].

Except for the above-described Boosting Step and Cor-
rective Step, we further introduce a Pretraining Step and
a resulting two-stage training scheme, which is inspired
by Kang et al.’s work [15]. Specifically, they demonstrate
that a model trained without strategies such as class-
balanced sampling or loss reweighting learns more generalized
representations, for those strategies lead to a decrease in
the generalization of the representations due to the close
attention to tail labels, which makes the model perform
less well on head labels. Therefore, they propose a two-
stage training scheme for imbalanced data classification,
where the representation learning stage (i.e., the first stage)
performs end-to-end network training with regular cross-
entropy loss, and classifier adaption stage (i.e., the second
stage) is conducted with encoder fixed. We also adopt this
two-stage training scheme to alleviate the problem of paying
too much attention to tail labels caused by the Boosting
Step. Specifically, in the first stage (i.e., Pretraining Step),

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I
DETAILED DATASETS STATISTICS AND PARAMETERS SETTINGS. NTRAIN AND NTEST ARE THE NUMBER OF TRAINING OR TEST INSTANCES,

RESPECTIVELY, DBOW IS THE DIMENSION OF BOW FEATURES, L IS THE NUMBER OF LABELS, L IS THE AVERAGE NUMBER OF LABELS
PER INSTANCE, L̂ IS THE AVERAGE NUMBER OF INSTANCES PER LABEL, W TRAIN AND W TEST ARE THE AVERAGE NUMBER OF WORDS

PER TRAINING INSTANCE AND TEST INSTANCE, RESPECTIVELY, E IS THE NUMBER OF EPOCHS, T IS THE NUMBER OF WEAK
LEARNERS, AND dh IS THE NUMBER OF NEURONS IN THE HIDDEN LAYER OF EACH WEAK LEARNER (TWO NUMBERS

INDICATE TWO HIDDEN LAYERS)

BoostXML conducts representation learning via the training
procedure of AttentionXML, whose instance representation
learning module is called the backbone network. In the
second stage, the parameters of the encoder are initialized
with the encoder of the model obtained in the first stage.
Different from [15], in the second stage, all the weak learners
and the encoder are jointly fine-tuned with the Corrective
Step rather than being fixed, which helps BoostXML boost
the performance of tail labels without seriously hurting the
performance of head labels too much.

In the prediction process, the representation of each label is
first obtained through the feedforward process of the encoder.
Then the output of each learner is obtained based on the
representations, and these outputs are summed up with the
boosting rates as the weights to get the final output. To better
illustrate the training process of BoostXML, especially the
execution order of three core steps namely the Pretraining
Step, Boosting Step, and Corrective Step, we summarize the
whole training procedure in Algorithm 1, where T is the
number of weak learners, and Bs is the number of batches
sampled for training each weak learner.

IV. EXPERIMENTS

A. Experimental Setup

1) Dataset Description: We consider five popular XML
benchmark datasets with raw texts, including three small-scale
datasets namely EUR-Lex, Wiki10-31K, and AmazonCat-13K,
whose number of labels ranges from thousands to tens of
thousands, and two large-scale datasets namely Wiki-500K and
Amazon-3M, whose number of labels ranges from hundreds of
thousands to millions. We show the detailed statistics of the
datasets in Table I. We keep the splitting of training and test
sets the same as the repository page [16].

2) Evaluation Metrics: Precision @k denoted as P @k is
widely used to evaluate the performance of XML methods.
However, it fails to evaluate prediction performance on tail
labels. To better validate the precision of tail labels, we choose
the propensity-scored variant of P @k named PSP @k [9] as
the evaluation metric, which is defined as follows:

PSP @k :=
1
k

∑
l∈rankk (ŷ)

yl

pl
(11)

where ŷ is the predicted scores of labels given the instance x ,
rankk(ŷ) denotes the set of top k scored labels, and yl equals to
1 if the label l is predicted correctly or equals to 0 otherwise,
pl is the propensity score for label l, and is formally defined
as follows:

pl =
1

1 + Ce−A log(Nl+B)
(12)

where Nl is the number of data points annotated with label
l in the observed ground truth dataset, A and B are data
specific parameters, and C = (log N − 1)(B + 1)A. With this
formulation, pl ≈ 1 for head labels and pl ≪ 1 for tail labels.
For the five datasets used in the article, we set A = 0.55,
B = 1.5 as in PfastreXML [9].

3) Baseline Methods: We compare BoostXML with eight
state-of-the-art (SOTA) methods on five benchmark datasets
described above. The baseline methods can be divided into
non-deep-learning methods and deep-learning methods, where
non-deep-learning methods can be further divided into three
main categories, according to their ways of tackling the XML
problem as follows.

a) Embedding-based methods: Embed labels into a lower
dimensional vector space. Due to the low-rank assumption,
these methods perform poorly on heavily skewed data.

1) AnnexML [1]: AnnexML is the SOTA embedding-
based method, which considers label information in the
partition stage, and improves the performance on tail-
label prediction.

b) Tree-based methods: Divide the original large-scale
problem into a sequence of small-scale sub-problems for more
efficient training and prediction.

1) FastXML [8]: FastXML learns the hierarchy by
optimizing the ranking loss function nDCG, which helps
in predicting relevant labels.

2) PfastreXML [9]: PfastreXML is built upon FastXML,
which can handle missing and tail labels by replacing
the original loss function with the propensity-scored one.

c) One-versus-all methods: Train a binary classifier for
each label independently. To overcome the problems of high-
computation cost and slow prediction, these methods often rely
on sparse models, label trees, or negative sampling.

1) DiSMEC [10]: DiSMEC presents a sparse model with
a parameter threshold strategy and employs a double
layer of parallelization to scale one-versus-all methods
for XML.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BoostXML: GRADIENT BOOSTING FOR EXTREME MULTILABEL TEXT CLASSIFICATION WITH TAIL LABELS 7

TABLE II
PSP AT k COMPARISONS OF BOOSTXML AND OTHER COMPETING METHODS OVER FIVE BENCHMARKS. FOR NON-DEEP-LEARNING METHODS,

MOST RESULTS ARE OBTAINED FROM THE EXTREME CLASSIFICATION REPOSITORY [16] OR ATTENTIONXML DIRECTLY. TO MAKE UP
FOR THE MISSING RESULTS, WE RAN FASTXML ON EUR-LEX AND WIKI-500K WITH DEFAULT PARAMETERS. ALL RESULTS FOR

DEEP-LEARNING METHODS ARE REEXECUTED USING THE AUTHOR’S SOURCE CODE. THE BEST RESULTS ARE IN BOLD, THE
SECOND-BEST ONES ARE UNDERLINED, AND THE UNAVAILABLE ONES THAT CANNOT BE REEXECUTED ARE MARKED

AS “-”. THE LAST ROW IS THE RANKING RESULT OF THE FRIEDMAN TEST, AND THE PART MARKED BY “-” IS
CALCULATED WITH 0

2) Parabel [17]: Parabel dramatically reduces training time
by learning balanced binary label trees based on an
efficient and informative label representation.

3) Bonsai [18]: Bonsai reduces the error propagation with
a shallow k-way label tree structure.

d) Deep-learning methods: Learn distributed representations
of labels or instances and project them into the high-
dimensional label space by nonlinear transformation.

1) AttentionXML [12]: AttentionXML leverages an atten-
tion mechanism to capture the important tokens for each
label. A shared classifier is applied to obtain the label
ranking score. For extremely large datasets, models are
trained to level by level given the PLT [2]. It is a typical
example of deep XML methods with the shared binary
classifier.

2) LightXML [5]: LightXML is the SOTA deep-learning
method, which uses a transformer to encode each input
text and assigns each label a classifier to get its score
related to the text. For extremely large datasets, the
candidate labels are sampled dynamically based on a
two-level PLT. It’s a typical example of deep XML
methods with multiple binary classifiers.

4) Implementation Details: We use PyTorch to implement
BoostXML and perform experiments on Tesla V100 GPUs.
Models are trained by mini-batch gradient descent with
Adam [19]. A small number of the training instances are
reserved as the validation set for hyperparameter tuning. There
are two key parameters for the model, i.e., the number of weak
learners T and the number of neurons dh in each hidden layer
of each weak learner, which are analyzed in Section IV-D.
BoostXML uses the same text encoder as AttentionXML,
so the hyperparameters of BoostXML’s encoder are consistent
with those of AttentionXML. The batch size of our method

and the baseline methods is adjusted for each dataset for faster
training and prediction.

The default settings of T and dh are presented in Table I.
For different datasets, the setting of the numbers of neurons
dh in the hidden layers is related to the number of training
instances Ntrain and the dimensionality of input representations
H of the base learner, and the setting of the number of weak
learners T is related to dh , which indicates the weakness of a
base learner. Specifically, for datasets with a smaller number
of instances, such as EUR-Lex and Wiki10-31K, we set H to
256. As to datasets with a larger number of instances, we set H
to 512 to ensure the expressiveness of the base learner’s input
representations. With a larger H and Ntrain, the base learner
needs to be slightly strengthened by setting a larger dh , due
to a great number of higher dimensional inputs. For instance,
we allow the base learner to have two hidden layers when
H = 512. As to the setting of the number of weak learners T ,
we set a smaller T when dh is larger. In other words, we need
fewer base learners when they are not so weak.

B. Experimental Results

The results of PSP @k on five benchmark datasets
are reported in Table II. The final predictions are the
ensemble (or voting) of three runs, which is inconsistent
with AttentionXML. Different from traditional multiclass and
multilabel classification tasks, the statistical characteristics of
the datasets can affect the model performance to some extent.
Therefore, to facilitate the discussion of the results, we group
the datasets according to the scale of the number of instances
and labels. Specifically, we name three groups of datasets as
follows:

1) small-scale instances and Small-scale labels
(SS datasets): EUR-Lex and Wiki10-31K;

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III
PSP AT k RESULTS OF DEEP-LEARNING METHODS ON THREE PARTS. THE BEST RESULTS ARE IN BOLD

2) large-scale instances and Large-scale labels (LL
datasets): Wiki-500K and Amazon-3M; and

3) large-scale instances and Small-scale labels (LS
datasets): AmazonCat-13K.

When leaving out PfastreXML, we can find that BoostXML
consistently outperforms non-deep baseline methods on all five
datasets, except for the PSP @1 of DiSMEC on AmazonCat-
13K. The promising results indicate that our method can
handle XML with skewed label distribution. Interestingly, the
comparison results between deep methods and PfastreXML
are counter-intuitive. Specifically, PfastreXML outperforms
deep methods on two datasets with large-scale instances.
It is well-known that deep methods tend to outperform non-
deep methods when data is sufficient. However, these results
indicate that deep methods for XML have to consider the
fitting problem of tail labels, even when the number of
training instances is large. Although BoostXML has narrowed
the performance gap between PfastreXML on AmazonCat-
13K and Amazon-3M to a certain extent, it is still worth
trying to further improve the deep-learning methods against
tail labels. Note that, on the remaining dataset that has
large-scale instances, i.e., Wiki-500K, BoostXML outperforms
PfastreXML significantly. This might be owing to the texts of
Wikipedia being much longer than those of Amazon, and deep-
learning methods can handle the long-range dependencies of
these texts more effectively with representation learning. The
above discussion illustrates the advantages and disadvantages
of deep-learning methods in tackling XML with tail labels,
which validates the necessity of our study. As to deep-
learning methods, BoostXML outperforms AttentionXML and
LightXML on all SS and LL datasets, except for PSP @3 on
Wiki-500K. On LS dataset AmazonCat-13K, AttentionXML
has a slightly better PSP @1, and LightXML has a slightly
better PSP @3.

We further conduct statistical tests on the results in Table II.
Specifically, we conduct the Freidman test on all methods and
reject the Null hypothesis (H0) with a p-value of 0.00000,

yielding the ranking results in the last row of Table II. It can
be seen from the ranking results that BoostXML significantly
outperforms the rest of the baselines. We also conduct the
Wilcoxon test for pairwise comparison between BoostXML
and the other baselines. We significantly reject H0 (p-value <

0.01) when comparing BoostXML with other baselines, except
for the comparison with PfastreXML where H0 is accepted
with a p-value of 0.39425. This is because as mentioned
earlier, BoostXML is inferior to PfastreXML on AmazonCat-
13K and Amazon-3M. If we ignore the above-mentioned
two datasets, then we can reject H0 with a p-value of
0.00769 when comparing with PfastreXML. Overall speaking,
our method achieves significantly better results than state-of-
the-art methods.

However, as described in Section IV-A2, PSP @k is not
designed purposefully to evaluate prediction performance on
tail labels, therefore, these close PSP @k results might not
be enough to compare the deep-learning methods thoroughly.
To investigate the performance of deep-learning methods on
predicting tail labels, we conduct the following supplementary
experiment. Specifically, we divide the labels of each dataset
into three parts. Labels are sorted in reverse order according
to the number of related instances, and then divided top-down
according to the ratio below:

1) many-shot part: 0%–10%;
2) few-shot part: 10%–90%; and
3) one-shot part: 90%-100%.
Table III shows the average number of instances per label

L̂ and PSP @k results of deep-learning methods on the three
parts. For SS and LL datasets, the average number of
instances of each part has a similar distribution. For the
many-shot part, L̂ is around 100, which is sufficient for
the classification task. Hence LightXML performs better on
this part because of the encoder of transformer [12]. As to
the few-shot part, L̂ ranges from a few to a dozen, which
is obviously inadequate. Therefore, BoostXML outperforms
other methods on SS and LL datasets because of the boosting

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BoostXML: GRADIENT BOOSTING FOR EXTREME MULTILABEL TEXT CLASSIFICATION WITH TAIL LABELS 9

Fig. 3. PSP at k results of different ablation operations on Wiki10-31K and Wiki-500K, and w/o means “without” the corresponding component.
(a) Wiki10-31K. (b) Wiki-500K.

manner, except for the Wiki-500K, where BoostXML performs
comparably with LightXML. As to the LS dataset, the result is
interesting that BoostXML is outperformed by AttentionXML
on the few-shot part according to PSP @1 and PSP @3. This
phenomenon might be due to the large L̂ on the few-shot part
of AmazonCat-13K. This less severe imbalance on the few-
shot part might reduce the benefits of the model and make it
performs slightly worse than AttentionXML. Due to the small
L̂ of the one-shot part, in which one label usually has only
one instance, it is often impossible for most existing methods
to learn an accurate classifier. However, BoostXML achieves
significant improvement on all datasets except for Wiki-500K.

C. Ablation Study

We investigate the effectiveness of the main modules in
BoostXML via this ablation study. The results of PSP @k on
the small-scale dataset Wiki10-31K and the large-scale dataset
Wiki-500K are illustrated in Fig. 3.

1) Effectiveness of the Boosting Step: For the operation
of removing Boosting Step, if we simply remove all of
the modules mentioned in Section III-A, BoostXML will
degenerate into the original AttentionXML. However, what
we are concerned about more is the advantages brought
by the characteristic of “residual” optimization. Therefore,
we only remove the residual-based optimization part but
retain the operation of adding multiple weak learners one
by one for training and ensemble. As we can see from the
results, the optimization of residual indeed improves the model
performance on tail labels.

2) Effectiveness of the Corrective Step: We fix the
parameters of the encoder and previously trained weak
learners. From the results, we observe a significant decline
in the performance of the entire model. For Wiki-500K,
the model performance is even slightly worse than that of
AttentionXML. This is because the fixed text representations
can no longer adapt to the continuous addition of weak
learners, which limits the performance of the whole model.

3) Effectiveness of the Pretraining Step: As demonstrated
in [20], although rebalancing methods improve the perfor-
mance of the model for unbalanced classification, they will
unexpectedly damage its ability to learn text representations.
As mentioned in Section III, BoostXML is also a reweighting
method, therefore, it is susceptible to the above issue. The
results confirm that training without a pretrained model
can greatly reduce its performance, indicating that text
representation and pretraining are very important parts of
deep-learning methods.

D. Parameter Sensitivity

In BoostXML, the key parameters are the number of
neurons dh in the hidden layer of each weak learner
and the number of weak learners T . The parameter dh

affects the weakness of base learners explicitly, and T
affects the weak learner implicitly by varying its training
degree. To reduce contingency, we investigate the influence of
these two parameters on the small-scale dataset Wiki10-31K
and the large-scale dataset Wiki-500K.

1) Impact of the Number of Neurons dh: As mentioned
earlier, the base learners in boosting methods should be weak
ones. The number of neurons dh in the hidden layer of each
weak learner explicitly controls its weakness. The smaller dh

is, the weaker the learner is. In this experiment, we vary dh

from 24
= 16 to 27

= 128 for Wiki10-31K and from 24,

23
= 16, 8 to 27, 26

= 128, 64 for Wiki-500K, while
maintaining default settings for other parameters. Results
are shown in Fig. 4(a) and (b). We can observe from the
results that the value of dh needs to be in an appropriate
range since both too large or too small values hinder the
performance of the model. A learner with a larger dh has
stronger representation ability and performs better under the
same training conditions. However, this may reduce the
diversity between learners, which in turn degrades the overall
performance of the boosting method. In contrast, when dh is
smaller, the training of each learner is so insufficient that
it becomes useless for the entire model to achieve better

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. PSP at 5 results with varying dh and T on (a) and (c) Wiki10-31K and (b) and (d) Wiki-500K.

performance with the limited number of learners. Thus, we set
a smaller dh = 25

= 32 as default for Wiki10-31K with more
learners and a relatively larger dh = 26, 25

= 64, 32 for Wiki-
500K with fewer learners.

2) Impact of the Number of Weak Learners T : The number
of weak learners T is also a key parameter for BoostXML, but
unlike dh’s explicit control of the weakness of the learner, T
implicitly controls the weakness of the learner by influencing
its training degree. To ensure the representation capability of
the text encoder remains unchanged, we keep the number of
training epochs of the model unchanged and only tune the
number of learners, which indicates one learner might be
trained for several epochs or several learners might be trained
within one epoch. Results are shown in Fig. 4(c) and (d),
which show that T also needs to be set in the right range given
the total number of training epochs. When T is small, each
learner will be trained more thoroughly and performs better,
but the reduced number and diversity of learners, in turn, limit
the performance of the entire model. When T is large, each
learner is not trained sufficiently and is too weak for the model
to achieve a satisfactory ensemble effect. Besides, too many
learners will greatly increase the computation cost. According
to our experience, training one extra learner per epoch is a
suitable choice.

E. Case Study

In this section, we further study how BoostXML learns to
classify tail labels. As mentioned in Section III-A, BoostXML
utilizes “residual” optimization from boosting methods to
pay more attention to tail labels that are more likely to be
misclassified. To verify that BoostXML indeed focuses on
tail labels during training, we record the training process
of BoostXML on Wiki10-31K. At the end of each epoch,
we make predictions for the training and the testing sets
and save the predicted results. We apply the same partition
threshold as described in Section IV-B to divide labels into
many-shot, few-shot, and one-shot parts, and calculate the
precision of prediction results saved in each epoch of the
many-shot and few-shot part, respectively. The experimental
results are shown in Fig. 5.

Let us first look into the variation of prediction precision
on the training set. We can find that after the first epoch of
training, the model has reached a good precision for many-
shot labels because the text encoder is pretrained and only a
weak learner is trained from scratch. However, the precision
of the few-shot labels is unsatisfactory, for they are dominated
by the many-shot labels, which is the problem that is ignored

by all current deep-learning methods. As the training goes
on, the model performance on the few-shot labels improves,
along with degradation on the many-shot labels. This indicates
that the model keeps paying more attention to tail labels,
thus improving the prediction precision of tail labels. How
to improve the performance of the few-shot labels without
sacrificing the performance of the many-shot labels is an
interesting problem, which we leave for future work. For
the testing set, the variation trend of prediction precision is
basically the same as that of the training set, although there
is a certain degree of fluctuation.

The precision trend reflects an overall picture of BoostXML
for two parts of labels, but it can not reveal the fine-grained
learning manner of each label. To further study the influence of
BoostXML on specific tail labels during training, we randomly
sample a subset of instances from the training set and record
the “residual” trends of their tail labels. We observe the
residual trends of these tail labels and summarize the frequent
trends of labels. The experimental results are shown in Fig. 6.

There are four types of frequent residual trends in Fig. 6,
which represent different learning processes of tail labels.
Fig. 6(a) and (b) show that the two tail labels catch the
model’s attention at several starting epochs of the training and
are gradually modified in the subsequent epochs. However,
as the training continues, the model could make wrong
predictions again. Specifically, in Fig. 6(b), the label is
predicted incorrectly due to the addition of the 15th weak
learner, but it was quickly fixed. This indicates that BoostXML
pays more attention to wrongly predicted tail labels and tries to
correct them based on the residuals. Different from the residual
trends in Fig. 6(a) and (b), the residuals in Fig. 6(c) and (d) are
corrected after the first epoch. The residual trend in Fig. 6(d) is
a more ideal one as compared with the trend in Fig. 6(c) since
it is correctly predicted after the first epoch and will never be
wrongly predicted again. This kind of label may be a relatively
easy example in tail labels, which does not need much tuning.
The small variations of residuals in Fig. 6(c) reflect the
BoostXML’s capacity of resisting disturbance, which improves
our method’s robustness and generalization ability.

F. Computation Time and Model Size

To make deep-learning methods suitable to the XML task,
their computation cost must be controlled within an acceptable
range. Therefore, in this section, we discuss the time and space
complexity of BoostXML. As BoostXML and AttentionXML

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BoostXML: GRADIENT BOOSTING FOR EXTREME MULTILABEL TEXT CLASSIFICATION WITH TAIL LABELS 11

Fig. 5. PSP at 5 comparisons of many and few-shot parts on the training and testing part of Wiki10-31K. (a) Training and (b) testing dataset.

Fig. 6. Four main “residual” evolving types on tail labels recorded in the training process of Wiki10-31K. (a) Instance:10487 label:5219. (b) Instance:13577
label:26807. (c) Instance:6914 label:20319. (d) Instance:4164 label:29278.

TABLE IV
COMPUTATION TIME AND MODEL SIZE. TTRAIN IS THE OVERALL
TRAINING HOURS. STEST IS THE AVERAGE TIME REQUIRED TO

PREDICT EACH INSTANCE. THE UNIT OF STEST IS MILLISECONDS
PER INSTANCE (ms/INSTANCE). M IS THE MODEL SIZE IN GB

use the same text encoder, we compare the time4 and
space complexity of their single model named BoostXML-1
and AttentionXML-1, respectively, i.e., we do not compare
the ensemble model of three runs. The training process of
BoostXML mainly differs from that of AttentionXML in the
extra Boosting Step and extra weak learners in the Corrective
Step. In Boosting Step, the backpropagation is only conducted
on several weak learners, while the text encoder is only used in
the feedforward process. Therefore, the additional computation
time cost of Boosting Step is mainly the inference time of
text representations plus the training time of weak learners,
which is much less than the end-to-end training of both the
encoder and classifiers. The additional time cost of tuning
extra weak learners during the Corrective Step is negligible
as compared with the overall time cost of the Corrective Step,
which is nearly the same as AttentionXML’s training time cost.

4Note that we do not include the pretrain step of BoostXML into the training
time comparison, for it is practically omitted given the trained AttentionXML.

Therefore, the number of weak learners T is one of the most
important factors that influence the extra training time cost of
BoostXML as compared with that of AttentionXML.

To facilitate the comparison of the two models’ testing time,
we assume the weak learners are MLPs with only one hidden
layer, and the number of neurons in its hidden layer is dh . For
a dataset with a label space size of L , the time complexity
of obtaining a label’s prediction score with T above MLPs
is O(T dh L). In AttentionXML-1, T = 1 but dh is large,
while in BoostXML-1, T > 1 but dh is small. Therefore,
for different datasets and different parameter settings (i.e.,
T and dh), BoostXML might have larger or smaller time and
space complexities as compared with AttentionXML.

Apart from the above analysis, to compare the actual
time and memory consumption empirically, we conduct
experiments on the small-scale dataset Wiki10-31K and the
large-scale dataset Wiki-500K respectively under the same
hardware environment, and the results are shown in Table IV.
For Wiki10-31K, BoostXML takes more time to train and
predict than AttentionXML, because the number of labels
(L = 30 938) needs to predict on Wiki10-31K is not small
due to the absence of the Label Clustering stage. Therefore the
training time cost of each weak learner is not small. Besides,
there are more weak learners (i.e., T = 20 on Wiki10-31K
than on large-scale datasets. Thus, although the dh of
BoostXML has been reduced, the computation cost brought by
large T and L has greatly improved its computational time.
However, for large-scale datasets, such as Wiki-500K, since
the size of the label space has been broken down to smaller
values with PLT in the Label Clustering stage, i.e., L0 =

8192 and L1 = 930, and T = 5 is also small. Therefore, the
computation cost on Wiki-500K for BoostXML-1’s classifier is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

smaller than for AttentionXML-1’s classifier and BoostXML-1
predicts faster than AttentionXML-1. As can be seen from
BoostXML’s predicting time on Wiki-500K, the additional
computation cost of BoostXML’s Boosting Step is not
significant indeed. Although BoostXML has non-negligible
additional computation costs on small-scale datasets such as
Wiki10-31K, this has limited practical influence for its original
computation cost is not large. As to the space complexity of the
model, since the MLP itself has a small number of parameters,
the overall size of the model will not change much, therefore,
boosting brings no additional storage burden to the model.

V. RELATED WORK

A. Extreme Multilabel Classification

In recent years, various methods have been proposed to
tackle the problem of the huge computation cost in the XML
task. These methods typically use handcraft features as model
inputs, and can generally be considered traditional methods.
With the development of deep learning in recent years, more
and more methods use more advanced encoders to perform
representation learning on the raw data. These methods greatly
improve the model performance on XML.

1) Traditional Methods: Usually aims to reduce the cost
of learning classifiers in the extremely large label space.
These methods can be roughly divided into embedding-based
methods, tree-based methods, and one-versus-all methods.
Most embedding-based methods reduce the effective number
of labels with the low-rank label matrix assumption. Generally,
they assume the label can be represented with a low-
dimensional vector named embedding. In order to obtain
better label and feature embeddings, methods such as sparse
local embeddings for extreme classification (SLEEC) [7],
AnnexML [1], adaptive extreme Feature agglomeration
(DEFRAG) [21], and ExMLDS [22] are proposed. K-nearest
neighbors (KNN) graph, clustering, and a few other techniques
are applied to reduce the computation cost. Tree-based
methods such as FastXML [8], PfastreXML [2], and
SwiftXML [23] aim for faster prediction by recursively
partitioning the feature space and controlling the number of
active labels in each region of feature space. In addition,
PLT [2] is used to partition labels for large-scale datasets
in deep-learning methods due to its low computation cost
and good performance. One-versus-all methods are one of
the most popular strategies for multilabel classification, but
they cannot be directly applied to XML due to their huge
computation cost. To solve this problem, some methods
like DiSMEC [10] or ProXML [24] use a sparse model or
l1-regularized Hamming loss to reduce the computation cost.
Other methods like Parabel [17] and Slice [3] use additional
tree structures or sampling methods to further reduce the
training and prediction time of one-versus-all methods.

2) Deep-Learning Methods: Become more and more
popular in recent years due to the powerful representation
learning ability and the state-of-the-art performance in many
real-world multilabel applications. As mentioned before, most
deep-learning methods can be summarized into two types
according to their classifiers. Basically, XML-CNN [25],

X-transformer [26], and LightXML [5] all apply multiple
binary classifiers, with differences in detail of label clustering
and the encoder that obtains instance representations. As a
representative method that applies the shared binary classifier,
AttentionXML [4] has some implicit optimization for tail
labels, due to its sharing a classifier for all labels. There are
also a few exceptions. For example, ASTEC [6] uses a negative
sampling method to reduce computation cost and takes BOW
as input, which is different from most deep-learning methods.
This method can not be classified into any one of the two
paradigms.

B. Boosting Methods

The idea of boosting derives from the probably approx-
imately correct (PAC) learning model, where Kearns and
Valiant showed that the learning ability of weak learners
is equivalent to that of strong learners [27]. Based on this
idea, AdaBoost [28] is proposed, which takes advantage of
weak learners and gets rid of the dependence on the prior
knowledge of weak learners. Recent studies [29], [30] have
improved Adaboost to alleviate the problem that it increases
the weights of wrongly classified instances in a training
process and apply Adaboost to scenarios such as transaction
fraud detection. To further improve the usability of Adaboost,
Gradient Boosting Machine [14] is proposed, whose idea is
to optimize the cost function with the direction of negative
gradient in function space. When the decision trees are used
as the weak learners, the classical GBDT [14] algorithm
is derived. Although GBDT enhances the performance of
Adaboost, it still has several limitations. Its variants, such
as XGboost [13], LightGBM [31], and CatBoost [32] are
proposed to address these problems and further improve the
calculation speed and accuracy. Sigrist [33] further investigates
the relationship between gradient descent and second-order
Newton updates, and experimentally shows that Newton
boosting outperforms gradient and hybrid gradient-Newton
boosting.

Although decision trees are usually used as weak learners
of boosting methods, they cannot be trained in an end-
to-end manner, and are not suited for visual or text data.
Therefore, combining boosting methods with neural networks
has attracted much attention. Schwenk and Bengio [34] are
among the first to try to combine Adaboost with neural
networks, which achieves better performance than Adaboost
with decision trees. Recently, AdaNet [35] is proposed to build
neural networks layer by layer for the image classification task.
AdaBoost-CNN [36] integrates the capability of AdaBoost
with CNN, which can deal with large imbalanced datasets with
high accuracy. Different from them, GrowNet [37] takes neural
networks as weak learners of gradient boosting and proposes
a Corrective Step to improve the performance of the model.
Different from GrowNet, our Corrective Step not only updates
the parameters of weak learners but also the parameters of the
text encoder, which greatly improves the application scope of
boosting methods. Compared to emerging methods along this
line [38], [39], [40], we highlight that our boosting method
can help deep-learning methods achieve better performance
on tail-label prediction for the XML task.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

LI et al.: BoostXML: GRADIENT BOOSTING FOR EXTREME MULTILABEL TEXT CLASSIFICATION WITH TAIL LABELS 13

VI. CONCLUSION

In this article, we propose a novel deep-learning method
named BoostXML to alleviate the problem of tail labels in
the XML task, which combines gradient boosting and neural
networks. BoostXML follows the boost-style learning scheme.
During the training of each weak learner, the “residual” is
optimized to help the model pay more attention to correct
the prediction errors from tail labels, which improves the
model performance on tail labels. BoostXML also exploits a
Corrective Step to update the entire network in an end-to-end
manner so that the representations of the text encoder adapt
to subsequent weak learners. Experiments on five benchmark
datasets demonstrate the improvements of BoostXML in
predicting tail labels.

ACKNOWLEDGMENT

The authors thank Yunhui Liu from Tsinghua University,
Beijing, China, for his valuable contributions to the experi-
ments and language polishing in this article.

REFERENCES

[1] Y. Tagami, “AnnexML: Approximate nearest neighbor search for
extreme multi-label classification,” in Proc. 23rd ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Aug. 2017, pp. 455–464.

[2] K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt,
T. Klerx, and E. Hullermeier, “Extreme F-measure maximization using
sparse probability estimates,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 1435–1444.

[3] H. Jain, V. Balasubramanian, B. Chunduri, and M. Varma, “Slice:
Scalable linear extreme classifiers trained on 100 million labels for
related searches,” in Proc. 12th ACM Int. Conf. Web Search Data Mining,
Jan. 2019, pp. 528–536.

[4] R. You, Z. Zhang, Z. Wang, S. Dai, H. Mamitsuka, and S. Zhu,
“AttentionXML: Label tree-based attention-aware deep model for high-
performance extreme multi-label text classification,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 32, 2019, pp. 5820–5830.

[5] T. Jiang, D. Wang, L. Sun, H. Yang, Z. Zhao, and F. Zhuang,
“LightXML: Transformer with dynamic negative sampling for high-
performance extreme multi-label text classification,” in Proc. AAAI Conf.
Artif. Intell., 2021, vol. 35, no. 9, pp. 7987–7994.

[6] K. Dahiya et al., “DeepXML: A deep extreme multi-label learning
framework applied to short text documents,” in Proc. 14th ACM Int.
Conf. Web Search Data Mining, Mar. 2021, pp. 31–39.

[7] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain, “Sparse local
embeddings for extreme multi-label classification,” in Proc. NIPS,
vol. 29, 2015, pp. 730–738.

[8] Y. Prabhu and M. Varma, “FastXML: A fast, accurate and stable tree-
classifier for extreme multi-label learning,” in Proc. 20th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, Aug. 2014, pp. 263–272.

[9] H. Jain, Y. Prabhu, and M. Varma, “Extreme multi-label loss
functions for recommendation, tagging, ranking & other missing label
applications,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2016, pp. 935–944.

[10] R. Babbar and B. Schölkopf, “DiSMEC: Distributed sparse machines for
extreme multi-label classification,” in Proc. 10th ACM Int. Conf. Web
Search Data Mining, Feb. 2017, pp. 721–729.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[12] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[13] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794.

[14] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, no. 5, pp. 1189–1232, Oct. 2001.

[15] B. Kang et al., “Decoupling representation and classifier for long-
tailed recognition,” in Proc. Int. Conf. Learn. Represent., 2019,
pp. 1–16.

[16] K. Bhatia et al., “The extreme classification repository:
Multi-label datasets and code,” 2016. [Online]. Available:
http://manikvarma.org/downloads/XC/XMLRepository.html

[17] Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma, “Parabel:
Partitioned label trees for extreme classification with application to
dynamic search advertising,” in Proc. World Wide Web Conf. World Wide
Web, 2018, pp. 993–1002.

[18] S. Khandagale, H. Xiao, and R. Babbar, “Bonsai: Diverse and shallow
trees for extreme multi-label classification,” Mach. Learn., vol. 109,
no. 11, pp. 2099–2119, Nov. 2020.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[20] B. Zhou, Q. Cui, X. Wei, and Z. Chen, “BBN: Bilateral-branch network
with cumulative learning for long-tailed visual recognition,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 9716–9725.

[21] A. Jalan and P. Kar, “Accelerating extreme classification via adaptive
feature agglomeration,” 2019, arXiv:1905.11769.

[22] V. Gupta, R. Wadbude, N. Natarajan, H. Karnick, P. Jain, and P. Rai,
“Distributional semantics meets multi-label learning,” in Proc. AAAI
Conf. Artif. Intell., vol. 33, 2019, pp. 3747–3754.

[23] Y. Prabhu et al., “Extreme multi-label learning with label features for
warm-start tagging, ranking & recommendation,” in Proc. 11th ACM
Int. Conf. Web Search Data Mining, Feb. 2018, pp. 441–449.

[24] R. Babbar and B. Schölkopf, “Data scarcity, robustness and
extreme multi-label classification,” Mach. Learn., vol. 108, nos. 8–9,
pp. 1329–1351, Sep. 2019.

[25] J. Liu, W.-C. Chang, Y. Wu, and Y. Yang, “Deep learning for extreme
multi-label text classification,” in Proc. 40th Int. ACM SIGIR Conf. Res.
Develop. Inf. Retr., Aug. 2017, pp. 115–124.

[26] W.-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, and I. S. Dhillon, “Taming
pretrained transformers for extreme multi-label text classification,” in
Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2020, pp. 3163–3171.

[27] M. Kearns, “Learning Boolean formulae or finite automata is as hard as
factoring,” Aikem Comput. Lab., Harvard Univ., Cambridge, MA, USA,
Tech. Rep. TR-14-88, 1988.

[28] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 119–139, Aug. 1997.

[29] L. Zheng, G. Liu, C. Yan, C. Jiang, M. Zhou, and M. Li, “Improved
TrAdaBoost and its application to transaction fraud detection,” IEEE
Trans. Computat. Social Syst., vol. 7, no. 5, pp. 1304–1316, Oct. 2020.

[30] C. Yang, G. Liu, C. Yan, and C. Jiang, “A clustering-based flexible
weighting method in AdaBoost and its application to transaction fraud
detection,” Sci. China Inf. Sci., vol. 64, no. 12, pp. 1–11, Dec. 2021.

[31] G. Ke et al., “LightGBM: A highly efficient gradient boosting
decision tree,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017,
pp. 3146–3154.

[32] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and
A. Gulin, “CatBoost: Unbiased boosting with categorical features,” 2017,
arXiv:1706.09516.

[33] F. Sigrist, “Gradient and Newton boosting for classification and
regression,” Exp. Syst. Appl., vol. 167, Apr. 2021, Art. no. 114080.

[34] H. Schwenk and Y. Bengio, “Boosting neural networks,” Neural
Comput., vol. 12, no. 8, pp. 1869–1887, Aug. 2000.

[35] C. Cortes, X. Gonzalvo, V. Kuznetsov, M. Mohri, and S. Yang, “AdaNet:
Adaptive structural learning of artificial neural networks,” in Proc. Int.
Conf. Mach. Learn., 2017, pp. 874–883.

[36] A. Taherkhani, G. Cosma, and T. M. McGinnity, “AdaBoost-CNN:
An adaptive boosting algorithm for convolutional neural networks
to classify multi-class imbalanced datasets using transfer learning,”
Neurocomputing, vol. 404, pp. 351–366, Sep. 2020.

[37] S. Badirli, X. Liu, Z. Xing, A. Bhowmik, K. Doan, and
S. S. Keerthi, “Gradient boosting neural networks: GrowNet,” 2020,
arXiv:2002.07971.

[38] M. Moghimi, S. J. Belongie, M. J. Saberian, J. Yang, N. Vasconcelos,
and L.-J. Li, “Boosted convolutional neural networks,” in Proc. BMVC,
vol. 5, 2016, pp. 1–13.

[39] S. Emami and G. Martínez-Muñoz, “Sequential training of neural
networks with gradient boosting,” 2019, arXiv:1909.12098.

[40] S. Ivanov and L. Prokhorenkova, “Boost then convolve: Gradient
boosting meets graph neural networks,” 2021, arXiv:2101.08543.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fengzhi Li received the bachelor’s degree from
Beihang University, Beijing, China, in 2018, where
he is currently pursuing the Ph.D. degree with the
School of Economics and Management.

His research interests include multilabel learning
and dynamic graph representation learning.

Yuan Zuo received the Ph.D. degree from Beihang
University, Beijing, China, in 2017.

He is currently an Associate Professor with
the Information Systems Department, Beihang
University. He is also a member of the MIIT
Key Laboratory of Data Intelligence and Man-
agement (DIG). His work has been published
in refereed journals and conference proceedings,
including IEEE TRANSACTIONS ON KNOWLEDGE
AND DATA ENGINEERING, ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining

(SIGKDD), and IEEE International Conference on Data Mining (ICDM). His
research interests generally lie in the areas of data mining and machine
learning, with special interests in learning representations, information
extraction, and explainable recommendation.

Hao Lin (Member, IEEE) received the B.S. and
Ph.D. degrees from Beihang University, Beijing,
China, in 2013 and 2020, respectively.

He was a Post-Doctoral Researcher with the
Technical University of Munich, Munich, Germany.
He is currently an Assistant Professor with the
School of Economics and Management, Beihang
University. He is also a member of the MIIT Key
Laboratory of Data Intelligence and Management
(DIG). His work has been published in refereed
journals and conference proceedings, including

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, ACM
Transactions on Information Systems, and AAAI Conference on Artificial
Intelligence (AAAI). His research interests generally lie in the areas of data
mining and machine learning, with special interests in temporal data analysis,
heterogeneous data fusion, and anomaly detection.

Junjie Wu received the Ph.D. degree in man-
agement science and engineering from Tsinghua
University, Beijing, China, in 2007.

He is currently a Full Professor with the School
of Economics and Management, Beihang University,
Beijing. He is also the Director of the MIIT Key
Laboratory of Data Intelligence and Management
(DIG) and the Institute of Artificial Intelligence for
Management (AIM). His general area of research is
machine learning with applications in social, urban,
and financial areas.

Dr. Wu was a recipient of various nationwide academic awards including
NSFC Distinguished Young Scholars and the National Excellent Doctoral
Dissertation.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on October 31,2023 at 05:11:26 UTC from IEEE Xplore. Restrictions apply.

