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Figure 1. Overview of the GenAD paradigm. We aim to establish a generalized video prediction paradigm for autonomous driving by
presenting the largest multimodal driving video dataset to date, OpenDV-2K, and a generative model that predicts the future given past
visual and textual input, GenAD. The strong generalization and controllability of GenAD is validated spanning a diverse spectrum of tasks,
including zero-shot domain transfer, language-conditioned prediction, action-conditioned prediction, and motion planning.

Abstract

In this paper, we introduce the first large-scale video
prediction model in the autonomous driving discipline. To
eliminate the restriction of high-cost data collection and
empower the generalization ability of our model, we ac-
quire massive data from the web and pair it with diverse
and high-quality text descriptions. The resultant dataset
accumulates over 2000 hours of driving videos, spanning
areas all over the world with diverse weather conditions
and traffic scenarios. Inheriting the merits from recent la-
tent diffusion models, our model, dubbed GenAD, handles

∗Equal contribution, ordered by coin toss. ♮Equal co-advising.
†Project lead. Primary contact: yangjiazhi@opendrivelab.com

the challenging dynamics in driving scenes with novel tem-
poral reasoning blocks. We showcase that it can general-
ize to various unseen driving datasets in a zero-shot man-
ner, surpassing general or driving-specific video prediction
counterparts. Furthermore, GenAD can be adapted into an
action-conditioned prediction model or a motion planner,
holding great potential for real-world driving applications.

1. Introduction

Autonomous driving agents, as a promising application of
high-level artificial intelligence, perceive the surrounding
environment, build internal world model representations,
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make decisions, and take actions in response [18, 113].
However, despite dedicated efforts in academia and industry
for decades, their deployment is still restricted to certain ar-
eas or scenarios, and they cannot be applied over the world
seamlessly. One critical reason is the limited generalization
ability of learned models in structured autonomous driving
systems. Typically, perception models face challenges of
generalizing to diverse environments with changes in ge-
ographical locations, sensor configurations, weather condi-
tions, open-set objects, etc.; prediction and planning models
fail to generalize to nondeterministic futures with rare sce-
narios and different driving intentions [3, 35, 135].

Motivated by how humans learn to perceive and cognize
the world [57, 58, 111], we advocate employing driving
videos as the universal interface that generalizes to diverse
environments with dynamic futures. Based on this, a driv-
ing video predictive model is preferred to fully capture the
world knowledge about driving scenarios (Fig. 1). By pre-
dicting the future, the video predictor essentially learns two
vital aspects of autonomous driving: how the world oper-
ates, and how to maneuver safely in the wild.

Recently, the community has begun to adopt video as
the interface to represent observation behavior and action
for various robot tasks [22]. For domains such as classical
video prediction and robotics, the video backgrounds are
mostly static, the movement of robots is slow, and the res-
olution of videos is low. In contrast, for the driving scenar-
ios, it struggles with outdoor environments being highly dy-
namic, agents encompassing much larger motions, and the
sensory resolution covering a large range of view. These
distinctions lead to substantial challenges for autonomous
driving applications. Fortunately, there are some prelim-
inary attempts on developing a video predictive model in
the driving domain [8, 34, 44, 48, 52, 71, 80, 104, 106].
Despite promising progress in terms of prediction qual-
ity, these attempts have not achieved desirable capability
of generalization as in classical robot tasks (e.g., manip-
ulation), being confined to either limited scenarios such
as highways with low traffic density [8] and small-scale
datasets [34, 48, 71, 104, 106], or restricted conditions that
raises difficulties to generate diverse environments [80].
How to unveil the potential of video prediction models for
driving remains seldom explored.

Motivated by the discussions above, we target at building
a video predictive model for autonomous driving, capable
of generalizing to new conditions and environments. To this
end, we have to answer the following questions: (1) What
data can be obtained in a feasible and scalable manner?
(2) How can we formulate a predictive model to capture the
complex evolution of dynamic scenarios? (3) How can we
apply the (foundation) model for downstream tasks?

Scaled Data. To achieve powerful generalization ability, a
substantial and diverse corpus of data is necessary. Inspired

by the success of learning from Internet-scale data in foun-
dation models [2, 55, 82], we construct our driving dataset
from both the web and publicly licensed datasets. Com-
pared to existing options, which are limited in scale and di-
versity due to their regulated collection processes, online
data owns great diversity in several aspects: geographic lo-
cations, terrains, weather conditions, safety-critical scenar-
ios, sensor settings, traffic elements, etc. To guarantee the
data is of high-quality and desirable for large-scale train-
ing, we exhaustively collect driving recordings on YouTube
and remove unintended corruption frames via rigorous hu-
man verification. Furthermore, videos are paired with di-
verse text-level conditions, including descriptions gener-
ated and refined with the aid of existing foundation mod-
els [62, 77], and high-level instructions inferred by a video
classifier. Through these steps, we construct OpenDV-2K,
the largest public driving dataset to date, containing more
than 2000 hours of driving videos and being 374 times
larger than the widely used nuScenes counterpart. Our
dataset is publicly available at https://github.com/
OpenDriveLab/DriveAGI.
Generalized Predictive Model. Learning a generalized
driving video predictor bears several key challenges: gen-
eration quality, training efficiency, causal reasoning, and
drastic view shift. We address these aspects by present-
ing a novel temporal generative model with two-stage learn-
ing. To capture the environment details, enhance generation
quality, and maintain training efficiency simultaneously, we
build upon the recent success of latent diffusion models
(LDMs) [79, 87]. In the first stage, we transfer the genera-
tion distribution of LDM from its pre-trained general vision
domain to the driving domain by fine-tuning it on OpenDV-
2K images. In the second stage, we interleave the proposed
temporal reasoning blocks into the original model and learn
to predict the future given past frames and conditions. Con-
trary to conventional temporal modules [8, 42] that suffer
from causal confusion and large motion, our solution con-
sists of causal temporal attention and decoupled spatial at-
tention to efficiently model the drastic spatiotemporal shift
in highly dynamic driving scenes. After sufficient training,
our Generative model for Autonomous Driving (GenAD)1

can generalize to various scenarios in a zero-shot fashion.
Extensions for Simulation and Planning. After large-
scale pre-training of video prediction, GenAD essentially
understands how the world evolves and how to drive. We
show how to adapt its learned knowledge for real-world
driving problems, i.e., simulation and planning. For sim-
ulation, we fine-tune the pre-trained model with future
ego trajectories as additional conditions, to associate future
imaginations with different ego actions. We also empower
GenAD to perform planning on challenging benchmarks by

1Note that GenAD is abbreviated from both Generative models and
Generalized capabilities.
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Dataset Duration
(hours)

Front-view
Frames

Geographic Diversity Sensor
SetupCountries Cities

✗ KITTI [30] 1.4 15k 1 1 fixed
✗ Cityscapes [21] 0.5 25k 3 50 fixed
✗ Waymo Open⋆ [98] 11 390k 1 3 fixed
✗ Argoverse 2⋆ [110] 4.2 300k 1 6 fixed

✓ nuScenes [12] 5.5 241k 2 2 fixed
✓ nuPlan⋆ [13] 120 4.0M 2 4 fixed
✓ Talk2Car [24] 4.7 - 2 2 fixed
✓ ONCE [72] 144 7M 1 - fixed
✓ Honda-HAD [51] 32 1.2M 1 - fixed
✓ Honda-HDD-Action [84] 104 1.1M 1 - fixed
✓ Honda-HDD-Cause [84] 32 - 1 - fixed

✓ OpenDV-YouTube (Ours) 1747 60.2M ≥40† ≥244† uncalibrated
- OpenDV-2K (Ours) 2059 65.1M ≥40† ≥244† uncalibrated

Table 1. OpenDV-2K comparison at a glance to existing counterparts in terms of scale
and diversity. Note that datasets with ✓ are included in OpenDV-2K (last row). ⋆Perception
subset in Waymo Open, Argoverse 2, and nuPlan. †Estimated by GPT [78] from video titles.

(b) in USA (c) in China

(a) Global Distribution7k                36M

7k                11M 9k                  3M

Figure 2. Geographic distribution of
OpenDV-2K. Our dataset covers ample
driving scenarios around the world.

using a lightweight planner to translate latent features into
the future trajectory of the ego vehicle. On account of its
pre-trained ability to predict accurate future frames, our al-
gorithm exhibits promising results in both simulation con-
sistency and planning reliability.

2. OpenDV-2K Dataset
We introduce OpenDV-2K, a large-scale multimodal dataset
for autonomous driving, to support the training of a general-
ized video prediction model. The main component is a vast
corpus of high-quality YouTube driving videos, which are
collected from all over the world, and are gathered into our
dataset after a careful curation process. We automatically
create language annotations for these videos using vision-
language models. To further improve its diversity in sensor
configurations and language expressions, we merge 7 pub-
licly licensed datasets into our OpenDV-2K, as shown in
Tab. 1. As a result, OpenDV-2K occupies a total of 2059
hours of videos paired with texts, including 1747 hours
from YouTube and 312 hours from public datasets. We use
OpenDV-YouTube and OpenDV-2K to specify the YouTube
split and the overall dataset, respectively.

2.1. Diversity over Prior Datasets

A brief comparison with other public datasets is provided in
Tab. 1. Beyond its significant scale, the proposed OpenDV-
2K represents diversity across various aspects as follows.
Globe-wise Geographic Distribution. Due to the global
nature of online videos, OpenDV-2K covers more than 40
countries and 244 cities worldwide. This is a tremendous
improvement over previous public datasets, which are typ-
ically gathered in a small number of restricted areas. We
plot the specific distribution of OpenDV-YouTube in Fig. 2.
Open-world Driving Scenarios. Our dataset provides a

huge amount of realistic driving experience in the open
world, covering rare environments like forests, extreme
weather conditions like heavy snow, and appropriate driv-
ing behaviors in response to interactive traffic situations.
These data are crucial for diversity and generalization yet
are seldom collected in existing public datasets.
Unrestricted Sensor Configurations. Current driving
datasets are confined to specific sensor configurations, in-
cluding intrinsic and extrinsic camera parameters, image,
sensor type, optics, etc., which poses great challenges for
deploying the learned models with different sensors [65].
In contrast, YouTube driving videos are recorded in various
types of vehicles with flexible camera setups, which aids in
the robustness of the trained model when deployed using a
novel camera setting.

2.2. Towards High-quality Multimodal Dataset

Driving Video Collection and Curation. Finding clean
driving videos from the vast pool of the web is a tedious and
costly task. To simplify the process, we start by selecting
certain video uploaders, i.e., YouTubers. Judging from the
average length and overall quality, we collect 43 YouTubers
with 2139 high-quality front-view driving videos. To make
sure there is no overlap between training and validation sets,
we take all videos from 3 YouTubers for validation, with the
remaining videos as the training set. To rule out non-driving
frames like video introductions and subscription reminders,
we discard a certain length of segments at the beginning and
end of each video. Each frame is then described with lan-
guage contexts using a VLM model, BLIP-2 [62]. We fur-
ther remove the black frames and transition frames, which
are not ideal for training, by manually checking if there are
certain keywords in these contexts. An illustration of the
dataset construction pipeline is in Fig. 3, and we introduce
how to generate the contexts below.

3
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Figure 3. Dataset construction of OpenDV-YouTube with qual-
ity check in the loop. We collect videos from YouTubers with
qualified driving videos, and dispose of those with inappropriate
viewpoints or involving scene transitions. Then each frame is de-
scribed with language contexts using VLM followed by keyword
checks on texts, such as “words”, “watermark”, “dark”, “blurry”,
etc. Through this process, distorted or entirely black images are
wiped out. A classifier tags videos with high-level intentions as
commands, incubating the final data corpus of high-quality video-
text pairs being 1747 hours long.

Language Annotation for YouTube Videos. To create a
predictive model that can be controlled by natural language
to simulate different futures accordingly, To make the pre-
dictive model controllable and improve the sample qual-
ity [6], it is crucial to pair the driving videos with mean-
ingful and varied language annotations. We construct two
types of texts for OpenDV-YouTube, i.e., driving commands
for ego-vehicle and frame descriptions, namely “command”
and “context”, to help the model comprehend ego actions
and open-world concepts, respectively. For commands, we
train a video classifier on Honda-HDD-Action [84] for 14
types of actions to label ego behaviors in a 4s sequence.
These categorical commands will be further mapped to mul-
tiple free-form expressions from a predefined dictionary.
For contexts, we leverage an established vision-language
model, BLIP-2 [62], to describe the main objects and sce-
narios for each frame. For more details on annotations,
please refer to Appendix C.1.2.

Enlarging Language Spectrum with Public Datasets.
Considering that BLIP-2 annotations are generated for
static frames without comprehension of dynamic driving
scenarios such as the traffic light transitions, we exploit

several public datasets that provide linguistic descriptions
for driving scenarios [12, 13, 24, 51, 72, 84]. However,
their metadata is relatively sparse with only a few words
such as “sunny road”. We further enhance their text quality
using GPT [78] to form a descriptive “context” and gen-
erate a “command” by categorizing the logged trajectory
for each video clip. Ultimately, we integrate these datasets
with OpenDV-YouTube to establish OpenDV-2K dataset, as
shown in the last row of Tab. 1.

3. GenAD Framework
In this section, we introduce the training and design of the
GenAD model. As shown in Fig. 4, GenAD is trained in two
stages, i.e., image domain transferring and video prediction
pre-training. The first stage adapts the general text-to-image
model to the driving domain (Sec. 3.1). The second stage
lifts the text-to-image model to a video prediction model
with our proposed temporal reasoning block and modified
training schemes (Sec. 3.2). In Sec. 3.3, we explore how
the predictive model can be extended to action-conditioned
prediction and planning.

3.1. Image Domain Transfer

On-board cameras capture a large field of views with abun-
dant visual contents, including the road, background build-
ings, surrounding vehicles, etc., which require strong and
robust generation capability to produce continuous and real-
istic driving scenarios. To facilitate the learning process, we
start with independent image generation in the first stage.
Concretely, we initialize our model with SDXL [79], which
is a large-scale latent diffusion model (LDM) for text-to-
image generation, to leverage its ability to synthesize high-
quality images with plenty of visual details. It is imple-
mented as a denoising UNet fθ with several stacked convo-
lution and attention blocks, which learns to synthesize im-
ages by denoising the noisy latents [87]. Specifically, given
a noisy input latent xt corrupted by the forward diffusion
process, it is trained to predict the added noise ϵ of xt via
the following objective:

Limg := Ex,ϵ∼N (0,1),c,t

[
∥ϵ− fθ(xt; c, t)∥22

]
, (1)

where x and xt are the clean and noisy latent, respectively,
t denotes the timestep for different noise scales, and c is
the text condition that guides the denoising process, which
is a concatenation of context and command. For training
efficiency, the learning process takes place in a compressed
latent space [25, 79, 87] instead of pixel space. During sam-
pling, the model generates images from standard Gaussian
noise by denoising the last-step predictions iteratively.

However, the original SDXL is trained on data in the
general domain, such as portraits and artistic paintings,
which are not concerned with autonomy systems. To adapt
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Figure 4. Framework of GenAD. (a) The two-stage learning for GenAD is composed of transferring the image domain of an image
diffusion model to the driving field (a.1 Stage one), and video prediction pre-training for modeling the temporal dependency of videos
(a.2 Stage two). (b) One transformer block in GenAD for the second stage training has interleaved temporal reasoning blocks before each
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two decoupled spatial attention (SA) layers to extract features in different axes. A query grid attends to itself as well as blue grids while
the dark gray grid is masked out in causal attention. ‘Zero init’ is appended at the end of each attention block to stabilize training.

the model to synthesize images for driving, we fine-tune
it on text-to-image generation using image-text pairs in
OpenDV-2K with the same objective as Eq. (1). Follow-
ing the original training of SDXL, all parameters θ of the
UNet are fine-tuned at this stage, whereas the CLIP text en-
coders [82] and the autoencoder [25] remain frozen.

3.2. Video Prediction Pre-training

In the second stage, with a few frames of a consecu-
tive video as past observations, GenAD is trained to rea-
son about all visual observations and predict several future
frames in plausible ways. Similar to the first stage stage,
the prediction process can also be guided by text conditions.
However, predicting the highly dynamic driving world tem-
porally is challenging due to two fundamental barriers.
1. Causal Reasoning: To predict plausible futures follow-

ing the temporal causality of the driving world, the
model needs to comprehend the intentions of all other
agents together with the ego vehicle, and understand un-
derlying traffic rules, e.g., how the traffic will change
with the transition of traffic lights.

2. Drastic View Shift: Contrary to typical video genera-
tion benchmarks which mainly have a static background
with slow motion of centered objects, the view of driving
changes drastically over time. Each pixel in every frame
may move to a distant location in the next frame.

We propose temporal reasoning blocks to address these
problems. As illustrated in Fig. 4(c), each block is com-
posed of three successive attention layers, i.e., the causal

temporal attention layer and two decoupled spatial atten-
tion layers, which are tailored for the causal reasoning and
modeling large shifts in the driving scenes, respectively.

Causal Temporal Attention. Since the model after the
stage-one training can only process each frame indepen-
dently, we leverage temporal attention to exchange infor-
mation among different video frames. The attention takes
place in the time axis and models the temporal dependency
of each grid-wise feature. However, directly adapting bidi-
rectional temporal attention here as [8, 42, 105, 124] can
hardly acquire the ability of causal reasoning, since the
predictions will be inevitably dependent on the subsequent
frames instead of past conditions. Therefore, we restrict
the attention direction by adding a causal attention mask, as
shown in the last row of Fig. 4(c), to encourage the model
to fully exploit knowledge from past observations and faith-
fully reason about the future as if in real-world driving.
We empirically found that the causality constraint greatly
regularizes the predicted frames to be coherent with past
frames. Following common practice, we also add tempo-
ral bias implemented as relative position embeddings on the
time axis [94] to distinguish different frames of a sequence
for temporal attention.

Decoupled Spatial Attention. As driving videos feature
fast perspective changes, features in a specific grid could
vary greatly in different timesteps and are hard to corre-
late and learn by temporal attention, which suffers from a
limited receptive field. In light of this, we introduce spa-

5



tial attention to propagate each grid feature in spatial axes
to aid in gathering information for temporal attention. We
implement a decoupled variant of self-attention for its effi-
ciency with linear computational complexity, compared to
quadratic full self-attention. As shown in Fig. 4(c), the two
decoupled attention layers propagate features in horizontal
and vertical axes, respectively.
Deep Interaction. Intuitively, the spatial blocks fine-tuned
in stage one refine features of each frame independently
towards photorealism, whereas the temporal blocks intro-
duced in stage two align features of all video frames towards
coherency and consistency. To further boost the spatiotem-
poral feature interaction, we interleave the proposed tempo-
ral reasoning blocks with the original Transformer blocks
in SDXL, i.e., spatial attention, cross attention, and feed-
forward network, as shown in Fig. 4(b).
Zero Initialization. Similar to the previous practices [2,
126], for each block that is newly introduced in stage two,
we initialized all parameters of its final layer as zero. This
avoids disrupting the prior knowledge of the well-trained
image generation model in the beginning and stabilizes the
training process.
Training. GenAD is trained to predict the future by jointly
denoising from the noisy latents with the guidance of past
frames and text conditions. We first project T consecutive
frames of a video clip into a batch of latents v={vm,vn},
where the leading m frame latents vm are clean, represent-
ing historical observations, and other n=T−m frame latents
vn indicate the future to be predicted. vn are then corrupted
to vn

t by the forward diffusion process, where t indexes a
randomly sampled noise scale. The model is trained to pre-
dict the noise of vn

t conditioned on observations vm and
text c. The learning objective of the video prediction model
is formulated as follows:

Lvid := Ev,ϵ∼N (0,1),c,t

[
∥ϵ− fθ,ϕ(v

n
t ;v

m, c, t)∥22
]
, (2)

where θ denotes the inherited stage-one model and ϕ rep-
resents the newly inserted temporal reasoning blocks. Fol-
lowing [8], we freeze θ and only train the temporal reason-
ing blocks to avoid perturbing the generation ability of the
image generation model and focus on learning temporal de-
pendencies in videos. Note that only the outputs from the
corrupted frames vn

t contribute to the training loss while
those from condition frames vm are ignored. Our training
recipe is also readily applicable to video interpolation with
minor modifications, i.e., switching the indices of condition
frames.

3.3. Extensions

Relying on the well-trained video prediction capability in
driving scenarios, we further exploit the potential of the pre-
trained model in action-controlled prediction and planning,

which are important for real-world driving systems. Here,
we explore the downstream tasks on nuScenes [12] which
provides recorded poses.

Action-conditioned Prediction. To make our predictive
model controllable with exact ego actions and act as a simu-
lator [52], we fine-tune the model with the paired future tra-
jectory as an additional condition. Specifically, we map the
raw trajectory to a high-dimensional feature with Fourier
embeddings [100]. After further projection by a linear layer,
it is added to the original conditions. Thus, the ego actions
are injected into the network through the conditional cross-
attention layer in Fig. 4(b).

Planning. By learning to predict the future, GenAD ac-
quires strong representations of complex driving scenes,
which can be further exploited for planning. Specifically,
we extract spatiotemporal features of two historical frames
through the UNet encoder of the frozen GenAD, which is
nearly half the size of the entire model, and feed them to a
multi-layer perceptron (MLP) to predict future waypoints.
With the frozen GenAD encoder and a learnable MLP
layer, the training process of our planner can be sped up
by 3400 times compared to an end-to-end planning model
UniAD [47], validating the effectiveness of the learned spa-
tiotemporal feature of GenAD.

4. Experiments

4.1. Setup and Protocols

GenAD is learned in two stages on OpenDV-2K but with
different learning objectives (in Sec. 3) and input formats.
In stage one, the model takes input (image, text) pairs and
is trained on text-to-image generation. We broadcast the
command annotation, which is labeled for each 4s video
sequence, to all frames included. The model is trained for
300K iterations on 32 NVIDIA Tesla A100 GPUs with a to-
tal batch size of 256. In the second stage, GenAD is trained
to jointly denoise future latents conditioned on past latents
and texts. Its inputs are (video clip, text) pairs where each
video clip is 4s at 2Hz. The current version of GenAD is
trained on 64 GPUs for 112.5K iterations with a total batch
size of 64. The input frames are resized to 256×448 for
training in both stages, and the text condition c is dropped
at a probability of p = 0.1 to enable classifier-free guid-
ance [40] in sampling, which is commonly used in diffu-
sion models to improve sample quality. More training and
sampling details are in Appendix D.

4.2. Results of Video Prediction Pre-training

Comparison to Recent Video Generation Approaches.
We compare GenAD to recent advances on an unseen
set with geofencing from OpenDV-YouTube, Waymo [98],
KITTI [30], and Cityscapes [21] in a zero-shot generation
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Figure 5. Task on zero-shot video prediction for unseen scenarios. We show the generation results (in blue boxes) of different models
given the same starting frames. GenAD makes more robust, realistic, and reasonable future predictions on unseen datasets (scenarios).
More comparisons (Fig. 14) and visualizations (Fig. 13) are shown in Appendix.

Method Training
Dataset Pred. nuScenes

FID (↓) FVD (↓)

DriveGAN [52]
nuScenes

✓ 73.4 502
DriveDreamer∗ [104] ✓ 52.6 452
DrivingDiffuion∗ [64] ✗ 15.8 332

GenAD-nus (Ours) nuScenes ✓ 15.4 244
GenAD (Ours) OpenDV-2K ✓ 15.4 184

Table 2. Video generation quality compared to state-of-the-arts
trained on nuScenes. “Pred.”: evaluation by future prediction. ∗:
requiring 3D layout inputs.

manner. Fig. 5 depicts the qualitative results. Image-to-
video models I2VGen-XL [129] and VideoCrafter1 [15] can
not strictly follow the given frames to make predictions,
yielding poor consistency between the predicted frames and
past frames. The video prediction model DMVFN [46] that
is trained on Cityscapes suffers from the unfavorable shape
distortions in its predictions, especially on the three unseen
datasets. In contrast, GenAD exhibits remarkable zero-shot
generalization ability and visual quality although none of
these sets are included in the training.

Comparison to nuScenes Experts. We also compare
GenAD with the most recent available driving video gen-
eration models which are exclusively trained for nuScenes.

“Rain, Wait at crossroad”

“Drive slowly down at intersection, several barriers beside the road”

“Turn right, some parked cars, a parking lot”

Figure 6. Task on langauge-conditioned prediction. Given two
frames of a rainy scenario in the intersection and three high-level
text conditions, GenAD simulates reasonable futures accordingly.

Tab. 2 shows that GenAD surpasses all previous methods
in both image fidelity (FID) and video coherence (FVD).
Specifically, GenAD significantly reduces FVD by 44.5%
compared to DrivingDiffusion [64], without taking 3D fu-
ture layouts as additional inputs. For fair comparisons, we
train a model variant (GenAD-nus) on nuScenes dataset
only. We find that although GenAD-nus performs on par
with GenAD on nuScenes, it struggles to generalize to un-
seen datasets like Waymo, where the generation degrades
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Figure 7. Case study for model designs. All components help al-
leviate artifacts and improve the consistency of future predictions.

Method YouTube
FID (↓) FVD (↓) CLIPSIM (↑)

Baseline 18.32 244.44 0.8405
+ Deep Interaction 17.96 201.69 0.8409
+ Temporal Causality 16.54 207.45 0.8550
+ Decoupled Spatial Attn. 17.67 189.54 0.8652

Table 3. Ablation on model designs in GenAD. All proposed
designs contribute to the final performance.

to the nuScenes visual pattern. In contrast, GenAD trained
on OpenDV-2K exhibits strong generalization ability across
datasets as shown in Fig. 5.

We provide language-conditioned prediction samples on
nuScenes in Fig. 6, where GenAD simulates various futures
from the same start following different textual instructions.
The impressive generation quality is exhibited in the intri-
cate details of the environment, and the natural transition of
ego motion.

Ablation Study. We perform ablations by training each
variant on a subset of OpenDV-2K for 75K steps. Start-
ing from the baseline with plain temporal attentions [8, 42],
we gradually introduce our proposed components. Notably,
by interleaving the temporal blocks with the spatial blocks,
the FVD significantly improves (-17%) due to more suffi-
cient spatiotemporal interactions. Both temporal causality
and decoupled spatial attention contribute to better CLIP-
SIM, improving the temporal consistency between future
predictions and the condition frames. To be clear, the slight
increase in FID and FVD, shown in fourth and third rows
of Tab. 3 respectively, does not faithfully reflect a decline in
generation quality as discussed in [8, 10, 79]. The effective-
ness of each design is shown in Fig. 7.
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Figure 8. Task on action-conditioned prediction (simulation).
Given the same starting frames and different future trajectories
(shown in yellow dots in the first column), GenAD-act can sim-
ulate diverse futures following different ego intentions. More vi-
sualizations are in Appendix Fig. 15.

Method Condition nuScenes
Action Prediction Error (↓)

Ground truth - 0.90
GenAD text 2.54
GenAD-act text + traj. 2.02

Table 4. Task on action-conditioned prediction. Compared to
GenAD with text conditions only, GenAD-act enables more pre-
cise future predictions that follow the action condition.

4.3. Results of Extensions

Action-conditioned Prediction. We further showcase the
performance of the action-conditioned model fine-tuned on
nuScenes, GenAD-act, in Fig. 8 and Tab. 4. Given two start-
ing frames and a trajectory w composed of 6 future way-
points, GenAD-act imagines 6 future frames following the
trajectory sequence. To evaluate the consistency between
the input trajectory w and predicted frames, we establish an
inverse dynamics model (IDM) on nuScenes as the evalu-
ator, which projects a video sequence into a corresponding
ego trajectory. We leverage the IDM to translate predicted
frames into the trajectory ŵ, and calculate the L2 distance
between w and ŵ as the Action Prediction Error. Specif-
ically, GenAD-act substantially reduces the Action Predic-
tion Error by 20.4% compared to GenAD with text condi-
tion, allowing for more accurate future simulations.

Planning Results. Tab. 5 depicts the planning results on
nuScenes where ground truth poses for the ego vehicle are
available. By freezing GenAD encoder and only optimizing
an additional MLP on top of it, the model can effectively
learn to plan. Notably, by pre-extracting image features
through the UNet encoder of GenAD, the entire learning
process for planning adaptation takes only 10 minutes on
a single NVIDIA Tesla V100 device, which is 3400 times
more efficient than the training of the UniAD planner [47].
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Method # Trainable
Params.

nuScenes
ADE (↓) FDE (↓)

ST-P3∗ [45] 10.9M 2.65 3.73
UniAD∗ [47] 58.8M 1.03 1.65

GenAD (Ours) 0.8M 1.23 2.31

Table 5. Task on open-loop planning. A lightweight MLP with
frozen GenAD gets competitive planning results with 73× fewer
trainable parameters and front-view image alone. ∗: multi-view
inputs. Evaluation protocols are aligned with UniAD [47].

5. Limitations and Discussion
We study the system-level development of GenAD, a large-
scale generalized video predictive model for autonomous
driving. We also validate the adaptation of the learned
representation of GenAD to driving tasks, i.e., learning a
“world model” and motion planning. Although we ob-
tain improved generalization to open domains, the increased
model capacity poses challenges in both training efficiency
and real-time deployment. We envision the unified video
prediction task will serve as a scalable objective for fu-
ture research on representation learning and policy learning.
Another interesting direction involves distilling the encoded
knowledge for a wider range of downstream tasks [60].
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A. Discussions
To assist a better understanding of our work, we supplement discussions on intuitive questions that one may raise.

Q1. Why do you propose the training target of the predictive model as videos?

Video is a particularly universal and scalable target given a wealth of uncalibrated driving videos. Different from BEV
representations [29, 43] that require camera extrinsic parameters and point clouds [50, 109] that are restricted by different
LiDAR configurations, video prediction can be performed in a pose-agnostic manner. This characteristic offers significant
advantages in scalability to more diverse data sources, which are key for the generalization ability of the learned model.

Q2. Why do you predict multiple frames simultaneously with historical frames as input? How about alternatively using an
auto-regressive design, i.e., predicting future frames one by one?

Indeed, auto-regressive prediction can further stabilize the prediction process by leveraging conditional dependencies
on previously generated frames, thereby enhancing consistency. Nevertheless, we still choose to employ a joint denoising
procedure for two primary reasons. To start, diffusion models are typically computationally expensive, and our model is no
exception. For videos comprised of multiple frames, predicting them auto-regressively would multiply their computational
intensity, making it inefficient for implementation and deployment.

Moreover, conducting auto-regressive predictions makes it challenging to effectively apply conditions that require signif-
icant changes. Consider the scenario of a driver making a turn, which typically takes several seconds and involves a long
sequence of frames. If the prediction duration is too short, the model may struggle to follow the given instructions, as it is
impossible to achieve substantial changes within a single frame. Instead, it might simply continue the tendency of previ-
ously determined frames and completely disregard the provided instructions. Therefore, joint prediction also allows us to
effectively apply complex controls and facilitate more coherent action generation.

Q3. What is the criterion to prove good generalization ability of your model? How much data do we need to guarantee
generalization?

Currently, it is hard to define a specific criterion to assess the generalization ability of our predictive models for the reason
that the quality judgment is subjective [68] and it is impossible to find an aligned method that is available to compare.
However, through our exhaustive exploitation of public data, we have discovered that increasing the scale of the data is
advantageous for zero-shot generation on existing datasets. It is also important to note that our method is easily scalable,
offering opportunities to continuously enhance its generalization ability by leveraging vast amounts of unlabeled data.

Q4. Why not evaluate models using typical video prediction metrics? What are the appropriate metrics to evaluate the
performance of the driving video prediction model with multiple conditions?

Common practices in the task of video prediction use Structural Similarity Index Measure (SSIM) [108] and a perceptual
metric LPIPS [128] for quantitative evaluation. These two metrics calculate frame-wise similarities between predicted frames
and corresponding ground truth frames. They are designed to assess the model’s ability to exactly follow the recorded events.
Consequently, models optimized for these metrics tend to copy certain patterns and could overfit the small datasets adopted,
thereby restricting their potential for diverse future generations. This limitation is particularly problematic for predictive
models in driving scenarios, where multiple futures may occur and proactive preparation is essential for each of these cases.

We sought to use the distribution-based metrics, including FVD [101] and CLIPSIM which are widely adopted by
diffusion-based generation approaches [8, 105, 124]. However, for the image-to-video generation models [15, 129] in our
comparison, they do not directly compose the input image as any specific video frames they generate, mainly preserving
semantics and contents from input images. Thus, it becomes challenging to align the comparison settings with ours for met-
rics like FVD, which measures the distribution distance of consecutive frames, or CLIPSIM, which can be used to evaluate
the semantic similarity between the conditional frame and generated frames. Moreover, these metrics are not perfect. For
instance, FVD could be blind to unrealistic repetition and prefer small-scale motion, as discussed in [8, 10].

In short, from the existing metrics, it is hard to quantitatively evaluate the prediction abilities of a generalized model for
real-world driving, which encompasses multi-modal conditions and requires temporal consistency. There still needs to be
effort made to design an appropriate metric that can effectively evaluate such models.

Q5. Broader impact. What are potential applications and future directions with the provided large-scale OpenDV-2K data
and the GenAD model, for both academia and industry?
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To the best of our knowledge, OpenDV-2K is the largest available data corpus that we can collect from public sources.
It significantly enhances the quantity and diversity of driving video footage in multiple dimensions, providing the research
community with a massive high-quality resource for exploring open avenues in autonomous driving. In addition to video
prediction, we hope our dataset can also benefit the community to enable broader applications [22, 83, 92, 103, 119].

In this work, we have demonstrated that the strong representation of GenAD can be beneficial for planning. Similarly, it
is also promising to adapt it to a broader range of downstream tasks such as perception [131]. To improve the flexibility and
efficiency for deployment, transferring the knowledge of generative models via distillation [60] is also worth investigating.
Except for its powerful representations, the prediction futures conditioned on actions also open the opportunities for model-
predictive control [34, 57] and inverse dynamics model [1, 5, 22] to enable trajectory planning, which are beyond the scope of
this paper. Note that our model will be made publicly available to benefit the community and it is flexible to further fine-tune
it on in-house data for the industry.

Q6. Limitations. What are the issues with current designs, and corresponding preliminary solutions?

It is known that the captions used for training have a great impact on generation quality [7, 16]. Currently, the context
description of OpenDV-2K is automatically annotated by BLIP-2 [62]. However, we empirically find that the generated
captions have two main limitations. First, the BLIP-2 captions tend to be short and plain, lacking enough details about the
complicated driving scenes and becoming indistinguishable from one another. Second, the alignment between the image
and caption still needs to be improved. The BLIP-2 captions are mostly centric on a single object and thus fail to include
the majority of important content in the scene. In addition, affected by its fine-tuning samples [66], BLIP-2 is unaware of
the state of the image observer itself. Hence, it fails to infer ego intentions, which may lead to conflicts with high-level
commands. To overcome these limitations, it is promising to utilize more advanced vision-language models that have a more
comprehensive understanding and text-rich description of the whole scene [27, 67, 77], and have temporal awareness [59].

We opt for SDXL [79] as our starting point to inherit its merits in high quality of visual details, large capacity of model
size, and better rendering abilities of text encoders. On the other hand, we have noticed that SDXL is slow to sample and
computationally expensive. Our model does suffer from that as well. However, as a pioneering work exploring how to
build a generalized predictive model on internet-scale driving data, the main focus of this work is the generalization ability
to diverse unseen driving scenarios instead of computation overhead. Future works may include trying faster sampling
methods [73, 89, 130] and transferring our general recipe to more efficient diffusion models [87].

While there is not a silver bullet yet we hope that future work takes a deep and grounded look at these discussions,
identifying what more downstream applications could be applied - and more importantly, why they work or fail. Our hope is
that GenAD serves as a starting point, as the main paper argues, a generalized video pre-trained paradigm that is built on top
of the largest available driving videos and excels at a wide spectrum of autonomous driving tasks.

B. Related Work
Related work is introduced below due to the limited space in the main paper.

B.1. Driving Scene Generation

Over the past few years, scene generation has gained increasing popularity due to its importance for safety-critical domains
like autonomous driving. One family of works [19, 116, 120, 121] perform 3D-aware rendering for sensor simulation.
In particular, GeoSim [19] augments the existing images by borrowing objects from other scenes and rendering them at
novel poses. UniSim [120] creates digital twins of driving logs with manipulable foreground objects to enable close-loop
simulation. However, these methods can only manipulate objects from the collected assets, and novel objects cannot be
created unless further collected. Recent advancements [17, 28, 53, 64, 99, 104, 118] use diffusion models to synthesize
scenes with novel content beyond the collected data. As a dual task of perception, several works simulate realistic sensor data
controlled by input layouts such as 2D bounding boxes [17] and bird’s-eye view (BEV) segmentation maps [53, 99, 118].
More recent works [28, 64, 104] choose 3D bounding boxes for better geometry control. These methods also have potential
to serve as data engine [17, 28, 64, 99, 118, 120], i.e., the simulated data can be further adopted as augmented samples to
boost the performance of existing perception models. However, their control abilities are acquired from manually annotated
datasets, preventing them from scaling to more unlabelled data and increasing both diversity and generalization.

Besides layout-controlled sensor simulation, another thread of progresses [29, 43, 44, 52, 104] focuses on simulating the
temporal dynamics of the driving scenarios. Specifically, MILE [43] firstly introduces a model of the world incorporating
the BEV representation. By imagining the world within the designed space, the world dynamics can be implicitly encoded
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and the behaviors of vehicles can be interpretably decoded. This opens the opportunity for executing planning policies
without having access to real observations. Differently, inspired by the advances in video generation, DriveDreamer [104]
and GAIA-1 [44] propose to build a realistic world model in the form of video frames. Particularly, GAIA-1 is scaled up to
about 10B model parameters on 4700 hours of in-house videos, showing highly appealing results. However, the diversity of
their generation is still limited by the datasets they adopt. To be specific, the nuScenes [12] used by DriveDreamer is collected
in Singapore and Boston, while GAIA-1’s driving logs are recorded within London. Both of them use fixed or similar camera
settings. The distribution of their data sources limits their generalization abilities to unseen scenarios, different camera poses,
and other settings. Moreover, how to utilize the learned knowledge for downstream applications, e.g., planning, is still rarely
mentioned and explored.

B.2. Video Generation and Prediction

Video generation and prediction are effective ways to model the real world. Several practices [34, 46, 122] have been made
to synthesize future driving videos. With the renaissance of diffusion models [41, 96], recent progresses [76, 85, 87, 88]
have demonstrated that diffusion models show a great advantage over other generative methods [31, 54, 86] in both fidelity
and diversity. These advantages have also been extended to the temporal domain by numerous works in video generation [8,
33, 38, 63, 105]. Among them, many works [8, 36, 70, 102] include public driving datasets [12, 21, 30] as touchstones for
their evaluation. However, none of these methods have proposed effective designs that are specialized for driving scenarios,
which are known to be more complex and challenging [34] as we discussed in the main paper. In addition, due to their
exclusive training strategy, the model capability is greatly limited by each small and simple dataset [12, 21, 30], hindering
the generalization ability to diverse driving scenes in the real world. In contrast, we explore the first practice of building a
generalized prediction model via training on large-scale driving videos in a joint manner.

B.3. Learning from Web Driving Videos

Learning the general capabilities from large-scale data has been well studied in the field of both vision and language [11, 82,
91]. It is also promising to exploit the internet-scale videos for autonomous driving. However, due to the unlabeled nature of
the web data, there exist great challenges and there are only a few methods that leverage this idea to driving tasks for different
purposes. SelfD [125] learns driving policies via semi-supervised learning on YouTube videos. The policy network is pre-
trained with pseudo trajectories and then transferred to the target datasets via fine-tuning. Instead of directly pre-training the
policy, ACO [127] introduces an action contrastive learning method to obtain action-related representations for downstream
tasks. However, both SelfD and ACO rely on pseudo-labeling of trajectories or actions on vast amounts of driving videos.
This could be highly sensitive to domain changes, thus compromising their reliability. More recently, PPGeo [112] proposes
a fully self-supervised learning pipeline to learn a motion-aware encoder through geometric reconstruction. The encoder can
be further fine-tuned to benefit downstream tasks. However, their pipeline requires separating each component into different
training stages. Instead, our method directly conducts self-supervised learning via future prediction, which is more intuitive
and flexible. This allows us to easily apply it to such massive and diverse uncalibrated driving videos for the first time. In
addition, our predictions generate interpretable visual outputs that implicitly perform the planning process and seamlessly
serve as a real-world driving simulator.

B.4. Video Datasets from the Internet

Large-scale datasets have been proven to be a core component for generalizable foundation models [82, 91]. For video
tasks, collecting data in laboratories or through crowd-sourcing is a common strategy for specific tasks, such as robotics [9]
and ego-centric perception [32]. However, the collection and annotation process is costly and hard to scale. Therefore,
researchers have sought YouTube or similar websites as video sources as they cover diverse topics and environments, and
support academic usage licenses. For example, some pioneering works manually annotate YouTube videos for action classi-
fications [49, 81, 97], action descriptions or captions [23, 133], and hand-object intersections [26, 93]. Recently, researchers
have begun to leverage alt-text [4], automatic speech recognition [74, 117, 123], original image captions [75], or paired
subtitles [74, 90] to enlarge the annotation scale for video captions. With the development of foundation models, Wang et
al. [107] employ image captioning models and language models to generate video captions. These video-text pairs have
demonstrated great help for general-domain video-language pre-training. ACO [127] and SelfD [125] are the only two that
collect 120 and 100 hours of driving videos from YouTube, respectively, to pre-train an encoder for policy learning (Details
in Appendix B.3). In contrast, we exhaustively mine driving videos from YouTube and construct the largest driving video
datasets publicly available, accumulating over 1700 hours. Besides, our videos are paired with descriptions and command
labels which can be used for broader applications such as language-guided autonomous driving [18, 61, 95, 134].
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C. OpenDV-2K Dataset
Our data suite, OpenDV-2K, the largest public driving dataset to date, contains 2059 hours of driving video along with
diverse text conditions, including contexts and commands. In this section, we detail the YouTube video collection process
(Appendix C.1.1), language annotation method (Appendix C.1.2 for OpenDV-YouTube and Appendix C.2 for other public
datasets), more examples and analysis to illustrate the diversity of OpenDV-2K (Appendix C.1.3 and Appendix C.1.4).

C.1. OpenDV-YouTube

C.1.1 Data Collection

Data Acquisition. We first search for videos of driving tours on YouTube and select 43 video uploaders worldwide, i.e.,
YouTubers, who continuously post high-quality driving videos. We further check the quality of videos from these YouTubers
in terms of resolution, frame rate, scene transition frequency, etc., resulting in 2139 high-quality front-view driving videos.
We take all videos from 3 selected YouTubers as the validation set, including Pete Drives USA, KenoVelicanstveni,
and Driving Experience, while the other videos are used for training. We illustrate the diversity of the OpenDV-YouTube
in Fig. 9.

Format Conversion. To simplify the data usage for training both image and video models, We pre-process all videos into
sets of consecutive frames in image format using decord and opencv packages. We sample videos with resolutions no less
than 720p (e.g., 1280×720 for 16 : 9 videos) at 10Hz.

Data Cleaning. To ensure the quality of our dataset, we exclude non-driving frames which are commonly shown in each
video and introduce unwanted noise. Specifically, we discard the first 90 seconds and the last 30 seconds for most videos to
remove the channel introduction at the beginning and the subscription reminder at the end. For YouTubers with longer video
introductions, we discard the first 180 or 300 seconds from their videos. We further detect and remove black frames and
transition frames with the help of vision-language models. We first search for frames with phrases like words, watermark,

dark night, dark street, and blur in their BLIP-2 [62] -generated contexts, followed by the manual quality check to
determine their removal. For details on BLIP-2 descriptions, please refer to Appendix C.1.2.

C.1.2 Language Annotation

Our OpenDV-YouTube possesses two types of annotations, frame descriptions (contexts) and ego-driver commands. The
context aims to benefit text-to-image learning, helping the model understand the concepts of open-world objects and scenar-
ios, whereas the command is designed to correlate the future predictions with ego actions and further enables the language
as control signals. We show some examples in Fig. 10 and introduce the annotation method below.

Frame Descriptions (Contexts). We leverage the established BLIP-2 [62] to describe the main objects or scenarios in each
frame with the following prompt. The language annotations are also used in data cleaning, as mentioned in Appendix C.1.1.

Prompt = "Question: Describe the image of a driving scenario concisely. Answer: "

Table 6. BLIP-2 Prompt for generating context of each frame.

Driver Commands. Similar to the conventional behavior planning approach [84], we classify the commands
for ego vehicle into 13 categories, i.e., {forward, intersection passing, left turn, right turn, left

lane change, right lane change, left lane branch, right lane branch, crosswalk passing, rail

passing, merge, U-Turn, stop/decelerate, deviate}. We train an action model based on optical flow to annotate
the command for the unlabeled YouTube dataset. Specifically, we leverage the pre-trained GMFlow [114, 115] to extract
optical flow between adjacent frames of a driving video sequence. Taking as input both the optical flow and its distance
map [132], we train a ResNet-18 [37] to classify the action of each 4s video clip. The training is conducted on the merged
dataset of Honda-HDD-Action and Honda-HDD-Cause [84], which provides specified action annotations. For each type of
action, we match it with multiple expressions to enrich language understanding. During training, we randomly select one
text from the matched caption set for each action. The dictionary for paraphrasing is shown in Tab. 8 below.
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Figure 9. Diverse video samples in OpenDV-YouTube. We only showcase certain frames from videos due to space limits. OpenDV-
YouTube covers a wide spectrum of diversity in multiple axes, including geographic locations, traffic scenarios, time periods, weather
conditions, etc. We strictly construct the Train/Val split from different YouTubers for zero-shot evaluation.
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Decelerate.

A person walking on a 
beach at sunset.

YouTube

Keep the direction.

Rain, cross bridge, truck. 
Move into the same lane 
as the Jeep.

nuScenes
Talk2Car

Make a left turn.

Following lane with slow 
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nuPlan

Turn right.
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from its original path to 
avoid the parked car. 

HDD

YouTube

BLIP-2

Video Classifier

GPT refine

Traj. to cmd.
OpenDV-2K

Public Datasets

Figure 10. Examples of language annotations for different data sources in OpenDV-2K. We unify the paired text as command and
context for all data sources after careful pre-processing. The command represents the action of the ego vehicle, whereas the context covers
various aspects of information in the driving scenario. For details on how to merge public driving datasets, please refer to Appendix C.2.

command caption dict = {

0: [ "Move forward.", "Move steady.", "Go forward.",
"Go straight.", "Proceed.", "Drive forward.",
"Drive straight.", "Drive steady.", "Keep the direction.",
"Maintain the direction." ],

1: [ "Pass the intersection.", "Cross the intersection.", "Traverse the intersection.",
"Drive through the intersection.", "Move past the intersection.", "Pass the junction.",
"Cross the junction.", "Traverse the junction.", "Drive through the junction.",
"Move past the junction.", "Pass the crossroad.", "Cross the crossroad.",
"Traverse the crossroad.", "Drive through the crossroad.", "Move past the crossroad." ],

2: [ "Turn left.", "Turn to the left.", "Make a left turn.",
"Take a left turn.", "Turn to the left.", "Left turn.",
"Steer left.", "Steer to the left." ],

3: [ "Turn right.", "Turn to the right.", "Make a right turn.",
"Take a right turn.", "Turn to the right.", "Right turn.",
"Steer right.", "Steer to the right." ],

4: [ "Make a left lane change.", "Change to the left lane.", "Switch to the left lane.",
"Shift to the left lane.", "Move to the left lane." ],

5: [ "Make a right lane change.", "Change to the right lane.", "Switch to the right lane.",
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"Shift to the right lane.", "Move to the right lane." ],

6: [ "Go to the left lane branch.", "Take the left lane branch.", "Move into the left lane branch.",
"Follow the left lane branch.", "Follow the left side road." ],

7: [ "Go to the right lane branch.", Take the right lane branch.", "Move into the right lane branch.",
"Follow the right lane branch.", "Follow the right side road." ],

8: [ "Pass the crosswalk.", "Cross the crosswalk.", "Traverse the crosswalk.",
"Drive through the crosswalk.", "Move past the crosswalk.", "Pass the crossing area.",
"Cross the crossing area.", "Traverse the crossing area.", "Drive through the crossing area.",
"Move past the crossing area." ],

9: [ "Pass the railroad.", "Cross the railroad.", "Traverse the railroad.",
"Drive through the railroad.", "Move past the railroad.", "Pass the railway.",
"Cross the railway.", "Traverse the railway.", "Drive through the railway.",
"Move past the railway." ],

10: [ "Merge.", "Merge traffic.", "Merge into traffic.",
"Merge into the traffic.", "Join the traffic.", "Merge into the traffic flow.",
"Join the traffic flow.", "Merge into the traffic stream.", "Join the traffic stream.",
"Merge into the lane.", ],

11: [ "Make a U-turn.", "Make a 180-degree turn.", "Turn 180 degree.",
"Turn around.", "Drive in a U-turn." ],

12: [ "Stop.", "Halt.", "Decelerate.",
"Slow down.", "Brake." ],

13: [ "Deviate.", "Deviate from the path.", "Deviate from the lane.",
"Change the direction.", "Shift the direction." ]

}

Table 8. Paraphrasing dictionary for command generation. Each index corresponds to one of the 13 actions inferred by the classifier.

C.1.3 Analyses Methods

In this section, we elaborate on the means of data analysis for OpenDV-YouTube. The analysis results are reported in the
main paper and Appendix C.1.4.

Geographic Diversity Analysis. We take GPT-3.5-turbo [78] to infer the geographic information of each video from its
title. We also apply handmade rules to post-process the results from GPT-3.5-turbo to deal with multiple aliases of one city
or one country. The prompts are shown in Tab. 9 where title denotes the video title to be inferred. For simplicity, we
assume that all clips of a video are taken in the same place. For videos with multiple inferred locations, we assume that all
clips included in that video are uniformly distributed in these locations. For a video composed of M clips with N inferred
locations, we assume there are M

N clips taken in each site.

Messages = [

{ "role": "system", "content": f""" You are a helpful assistant, who is a geography expert and is also good at recog-
nizing different languages. """ },

{ "role": "user", "content": f""" Try to infer in which city or state a video is taken from its title. Please answer the
city name, the state name, and the country name in English respectively and briefly, in the following form: \

“Country: {{the name of the country}}
State: {{the name of the state or the province}}

22



City: {{the name of the city}}”. \

If something cannot be inferred, fill the corresponding blank with “N/A”. If there is more than one city in the video, first check if
all the answers are valid, i.e. the name of cities, instead of the names of districts or towns. If there are multiple cities after checking
the validity, use “,” to separate different cities. \

You should also try to infer the state or province where the cities belong and fill the answer into the blank of “State”. Note that
you must infer the country where the video might be taken. Moreover, please discard meaningless words like “city”, “country”,
“province” or “state” when filling in the blanks. \

The title of the video is as follows: {title}"""}]

Table 9. Prompt for geographic inference of videos.

Scenario Diversity Analysis. For scene analysis, we visualize the frequency of different scenes in frame descriptions
generated in Appendix C.1.2. For analyses on weather and time period, we observe that some language hints such as “foggy”
and “night” are often present in videos’ titles, thus we prompt GPT-3.5-turbo [78] to infer the weather and photographed
period of the video from its title. The prompt is shown in Tab. 10 where title denotes the video title to be inferred.

Messages = [

{ "role": "system", "content": f" You are a helpful assistant, who has a good command of multiple languages. "},

{ "role": "user", "content": f""" Try to infer in which weather and period a video is taken from its title. Please answer
the weather and period in English respectively and briefly, in the following form: \

“Weather: {{the weather}}
Period: {{the period}}”. \

If something cannot be inferred, fill the corresponding blank with “N/A”. The weather must be one of the following: “sunny”,
“rainy”, “foggy”, “snowy”, “cloudy”, “storm”. The period must be one of the following: “daytime”, “dusk”, “dawn”, “nighttime”.
\

The title of the video is as follows: {title}"""}]

Table 10. Prompt for weather and time period inference of videos.

C.1.4 Diversity Highlights

Geographic Distribution. As indicated by the human-refined GPT inference results, YouTube videos are taken from over
244 cities in more than 40 countries, covering considerably more areas than any existing public driving datasets, as shown
in Tab. 1 and Fig. 2 in the main paper. Note that the result is still underestimated since the geographic information may not
be included in the title for some videos and cannot be inferred. Taking the two most popular areas as an example, OpenDV-
YouTube contains 36.4M clips in the US, covering 40 out of 50 states, and 12.9M clips in China, covering 26 out of 34
provinces. Moreover, to test the zero-shot performance of a model in its unseen locations, our YouTube-Val subset contains
videos from 3 countries that are not included in YouTube-Train, i.e., Bosna i Hercegovina, Denmark, and Hungary.
There are also videos from 1 state of the US unseen in YouTube-Train, i.e., Maine.

Camera Settings. Considering that the online videos are sourced from different YouTubers around the globe, our dataset
enjoys high diversity in photography equipment, leading to plentiful color settings, camera intrinsic parameters, and camera
poses. For instance, a front-view video on a double-deck bus (see the second left picture in the last row of Fig. 9) is provided
in our YouTube-Val subset while no similar cases are included in the YouTube-Train subset.
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Figure 11. Word cloud of frame descriptions for
OpenDV-2K. Only the top 500 most frequently mentioned
objects, agents, or scenarios are included in the word cloud.

Driver
Action Forward Stop Left

Turn
Right
Turn U-Turn Lane

Change
Intersection

Passing

Estimated
Proportion 81.39% 8.85% 1.89% 1.81% 0.27% 0.30% 5.49%

Table 11. Driver action distribution of OpenDV-YouTube.

Period Daytime Dawn Dusk Nighttime

Estimated
Frame Count 54M 425K 2M 4M

Table 12. Time period distribution of OpenDV-YouTube.

Weather Normal Rainy Cloudy Foggy Snowy Storm

Estimated
Frame Count 58M 690K 503K 284K 503K 117K

Table 13. Weather distribution of OpenDV-YouTube.

Scenarios. We claim that there is sufficient data of diverse driver actions, weather conditions, photographed periods, and
scenes in our OpenDV-YouTube. Results are shown in Tab. 11, Tab. 13, Tab. 12, and Fig. 11, respectively. Note that according
to the analysis process in Appendix C.1.3, the diversity of scenarios in our dataset is estimated values since not all videos
provide weather and filming periods in their titles.

Corner Cases. YouTube videos also contain corner cases and safety-critical cases. Several special cases from OpenDV-
YouTube are given in Fig. 9, e.g., dark tunnels with limited lighting (the leftmost and the rightmost in the 2nd row from
bottom), intersections crowded with numerous pedestrians during nighttime (the 2nd right in the 3rd row from bottom),
beaches at sunset (the 2nd left in the 5th row from bottom), rooftop (the leftmost in the last row), and videos captured with
raindrops on the camera lens (the rightmost in the 5th row from top).

C.2. Merged Public Datasets

Though the annotations in the OpenDV-YouTube are on a large scale, annotations are subject to limited patterns. Contexts
from BLIP-2 follow certain syntax while commands are generated by the paraphrase dictionary. To provide more diverse
expressions of contexts and commands, we merge annotations and sensor data from existing public datasets after converting
their labels into complete sentences with correct grammar and format.

C.2.1 Contexts Generation

nuScenes & nuPlan. Contexts are directly inherited from the scenario description of its belonging scenario in nuScenes [12]
or nuPlan [13].
ONCE. In the metadata of ONCE [72], weather condition and filming time period are provided. These annotations are
directly inherited in OpenDV-ONCE as contexts.
Honda-HAD. Diverse contexts are generated by refining and paraphrasing driving events provided by Honda-HAD [51].
The prompt for refinement and paraphrasing is as follows.

Messages = [

{ "role": "system", "content": f""" You are a helpful assistant. """ },

{ "role": "user", "content": f"""Generate {NUM GEN} descriptions with exactly the same meanings as the following
reference sentence, REF: {current caption}. \

Please write these sentences concisely in diverse ways, and try to use common and simple words if possible. \

Each generated sentence denotes a short description of noteworthy elements (e.g. pedestrians, traffic lights, cars) in this driving
scenario. \
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There might be some typos, grammar errors, or unnatural expressions in the REF sentence, and you might need to correct these
issues in the generated sentences. Each generated sentence should be correct in grammar and spelling, easy to understand, in
natural and smooth expression. All sentences have the same meaning with the reference sentence REF, and the only difference is
the wording. \

Your complete response is only a python list including {NUM GEN} strings (No other text needed), each one is an example sentence
with an identifier ‘\n’ in the end. """}]

Table 14. Prompt for paraphrasing contexts in Honda-HAD dataset.

C.2.2 Commands Annotation

nuScenes & nuPlan. Since vehicle trajectory is given in nuScenes [12] and nuPlan [13], ego-vehicle commands can be
easily calculated from trajectories by mathematical methods. After commands are generated, we can refer to Tab. 8 to
provide diverse expressions of driver commands.

Talk2Car. Talk2Car [24] provides texts of possible human intentions for each scene in nuScenes. These annotations are
inherited after they are refined by GPT-3.5-turbo to be grammatically correct and in appropriate formats. The prompt used
for refinement is as follows.

Messages = [

{ "role": "system", "content": f""" You are a helpful assistant. """ },

{ "role": "user", "content": f""" Please correct the capitalization and punctuation issues in this sentence:
“{current caption}”. The original characters and words should be exactly the same without any changes. Do not add quotation
marks. """}]

Table 15. Prompt for refining texts in Talk2Car dataset.

ONCE. Behaviours of the ego-vehicle can be obtained from the change in camera pose provided in ONCE [72]. They are
further converted to natural language using Tab. 8.

Honda-HAD. Since driver behaviours are not directly provided in Honda-HAD [51], we implement the video classifier
trained in Appendix C.1.2 and refer to Tab. 8 to generate ego-vehicle behaviours. Moreover, Honda-HAD does provide
sufficient driving advice for each scene. We use GPT-3.5-turbo to refine and paraphrase these annotations so that diverse
expressions are contained in our OpenDV-2K. Prompts for GPT-3.5-turbo are as follows.

Messages = [

{ "role": "system", "content": f""" You are a helpful assistant. """ },

{ "role": "user", "content": f"""Generate {NUM GEN} driving commands with exactly the same meanings as the fol-
lowing sentence: {current caption}. \

Please write these sentences concisely in diverse ways, and try to use common and simple words if possible. Remember all
sentences have the same meaning, which is an instruction or intention for the planning of the ego vehicle. \

Your complete response is only a python list including {NUM GEN} strings (No other text needed), each one is an example sentence
with an identifier ‘\n’ in the end. """}]

Table 16. Prompt for paraphrasing command annotations from driving advice in Honda-HAD dataset.

Honda-HDD-Action. Honda-HDD-Action [84] contains 104 hours of videos with corresponding labels of driving com-
mands. Since some clips begin with transitions from a completely green frame, we remove the first 30 frames from all
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clips. Moreover, driving events in videos with a duration too long might be inconsistent with human-annotated behaviors.
Therefore, we have to discard all video clips longer than 20 seconds. Meanwhile, since in the training stage, our model takes
videos no shorter than 4 seconds as input, we also remove all videos shorter than 4 seconds. Only 32 hours of videos are left
after this cleaning process. For the remaining clips, we directly use the labels as driver commands and use Tab. 8 to generate
command texts.

Honda-HDD-Cause. There are 12 hours of videos in Honda-HDD-Cause [84], as well as corresponding human-annotated
driving behaviors and human explanations. Similar to Honda-HDD-Action, we apply the same cleaning process on Honda-
HDD-Cause, with about 1 hour of cleaned driving videos preserved. To align with OpenDV-YouTube, we convert these
videos into frame sets by sampling the sensor videos at 10Hz. For command annotations, causal explanations in the form
of phrases in the original dataset are inherited after refining and paraphrasing by GPT-3.5-turbo. The prompts used are as
follows.

elements= "sign, congestion, traffic light, pedestrian, parked car"

Messages = [

{ "role": "system", "content": f""" You are a helpful AI driving assistant, who gives commands to the ego vehicle in
natural language for safe driving. \

You are provided with one of the following elements of the driving scenario, namely, {elements}. Based on the given element,
produce a driving command indicating either ‘stop’ or ‘deviate’ to the ego vehicle. Specifically, sign, congestion, traffic light,
crossing vehicle, and pedestrian simulates a ‘stop’ command, and only the parked car leads to a ‘deviate’ command. \

You should write {NUM GEN} fluent, concise, and diverse sentences for each command, using common and simple words. Half of
these sentences are descriptions of the action of the ego vehicle (or driver), and the other half should be imperative sentences. All
sentences should have the same meaning, and the only difference is the wording. """ },

{ "role": "user", "content": current caption}]

Table 17. Prompt for refining driving commands in Honda-HDD-Cause dataset.

D. Implementation Details of GenAD
D.1. Model Design

D.1.1 GenAD

GenAD is built upon 2.7B SDXL [79], which is a large-scale text-to-image generation model. We first fine-tune it in the first
stage to transfer its domain knowledge to driving view synthesis. After that, we freeze the original blocks in the denoising
UNet, and interleave them with our proposed temporal reasoning blocks, in total 2.5B, to allow for modeling on video
sequences in video prediction pre-training. Following the original SDXL, the language conditions are encoded by two frozen
CLIP variants with 817M parameters, namely, CLIP ViT-L [82] and OpenCLIP ViT-bigG [20], and the projection between
the pixel space and latent space is performed by a pre-trained autoencoder with 83.7M parameters. As a result, GenAD has
5.9B parameters in total. The computational complexity is 5.27 TFLOPs.

D.1.2 Extension on Action-condition Prediction

Besides the text conditions and past-frame conditions, we introduce the future trajectory of the ego vehicle as an additional
condition signal to guide the denoising and therefore control the future imagination. We implement it by transforming the low-
dimensional future waypoints into high-dimensional continuous embeddings [100], then projecting it with a zero-initialized
linear layer into the same dimension with the text conditions c. With zero initialization, the knowledge of future trajectory
could be gradually injected into the model through the conditional cross-attention layer alongside c, avoiding disturbing the
learned prior on other conditions in the first place. It further controls the future simulation to be consistent with the ego
intentions. Here the conditional future trajectory includes 6 waypoints at 2Hz.
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D.1.3 Extension on Planning

Since GenAD is capable of predicting reasonable futures given past observations, it encodes past frames in a meaningful way
to guide the denoising of future frames. Therefore, we take the pre-trained GenAD as a strong feature extractor to obtain the
spatiotemporal representations from past frames for downstream policy learning. We only utilize the encoder part of GenAD’s
denoising UNet to extract intermediate semantic features rather than acquiring the noise from the decoder part. Specifically,
given the past two frames and a high-level command generated in the same way as in [45, 47], the frozen GenAD encoder
extracts the spatiotemporal features, which are passed to a randomly initialized multi-layer perceptron (MLP) to project them
into the future trajectory of ego vehicle. The MLP is composed of 6 linear layers and 5 ReLU activations, containing only
0.8M parameters in total. The first two linear layers downsample the features channel-wise, then the features of two frames
are concatenated in channel dimension and further downsampled by the third linear layer. After that, the features are average-
pooled in spatial dimensions, and the resulting vector is projected to the future trajectory, which is composed of 6 waypoints
at 2Hz (3s), by the last two linear layers of the MLP.

D.2. Training Details

GenAD is trained in two phases, i.e., image domain transfer and video prediction pre-training. In the first stage, we fine-tune
the pre-trained SDXL on per-image denoising with 2.7B trainable parameters of its denoising UNet. It is trained on 65.1M
image-text pairs of OpenDV-2K. Each text condition is unified as “command, context”. For some commands and contexts
that are originally labeled for video sequences rather than static images, we simply associate them with all image frames
included in that video sequence. We train the model for 300K iterations on 32 GPUs with a total batch size of 256 with
AdamW [69]. We linearly warm up the learning rate for 104 steps in the beginning then keep it constant at 1.25× 10−6. The
default GPUs in most of our experiments are NVIDIA Tesla A100 devices unless otherwise specified.

In the second stage, we train the model on video-level denoising using video-text pairs lifting it to predict the future
iteratively during inference. For compute efficiency, we freeze all blocks of the fine-tuned image model and only optimize
our introduced temporal reasoning blocks, resulting in 2.5B trainable parameters in this stage. To maximize the data efficiency
for constructing video clips, we take each frame of a 10Hz YouTube video as a starting frame to form a 4s training sequence
at 2Hz, resulting in 65M video sequences for training. For each sequence with 8 frames at 2Hz, we randomly take the leading
m ∈ {1, 2} frames as conditional frames and the remaining n ∈ {7, 6} frames to be corrupted for video denoising, with
probabilities p∈{0.1, 0.9}, respectively. We do not add noise on conditional frames since there is no need to generate past
observations. The text condition is structured in the same way as the first stage, and we acquire the context from the middle
frame of the sequence. GenAD is trained on 64 GPUs for 112.5K iterations with a total batch size of 64. The learning rate is
set as 1.25× 10−5 after 104 warm-up steps.

In both stages, the input frames are resized to 256 × 448, and the text condition c is dropped at a probability of p = 0.1
to enable classifier-free guidance [40] in sampling. Both CLIP text encoders and the autoencoder are kept frozen throughout
our experiments.

For extensions on action-conditioned prediction, we fine-tune the pre-trained GenAD as well as the linear projection layer
for trajectory conditions on nuScenes. We conduct training on 16 GPUs for 100K steps with a total batch size of 16. Other
training protocols such as the learning rate are the same with video prediction pre-training. For extensions on planning, we
adapt a lightweight MLP to project the spatiotemporal features from frozen GenAD to future trajectory. We only optimize
the MLP with 0.8M trainable parameters to adapt to planning. The MLP is trained for 12 epochs with a batch size of 16 and
a learning rate of 5× 10−4, taking only 10 minutes to converge on a single NVIDIA Tesla V100 device.

D.3. Sampling Details

Given two types of conditions including the past two frames and text, GenAD simulates 6 future frames accordingly via
iteratively denoising its input latent, which starts from random Gaussian noises. The image resolution is 256 × 448 and the
video sequence is at 2Hz. The sampling process is performed by Denoising Diffusion Implicit Models (DDIM) [96]. We use
100 sampling steps and set the scale of classifier-free guidance to 7.5. The sampling speed is 539.41 ms/step.

E. Experimental Setup
E.1. Data Preparation

We conduct extensive experiments on multiple datasets to evaluate the performance of our method. Specifically, the
experiments of zero-shot transfer (Appendix F.2) are conducted on OpenDV-YouTube, Waymo [98], KITTI [30] and
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Cityscapes [21]. Experiments of action-condition prediction (Appendix F.3) and motion planning (Main Sec. 4.3) are es-
tablished on nuScenes [12]. The results of text-to-image generation (Appendix F.1) are shown in OpenDV-YouTube. As for
failure case studies (Appendix F.4, Fig. 16), there are three cases in OpenDV-YouTube (a, b, d) and one case in Waymo (c).
All results are reported in the validation set, which is completely unseen in the training of GenAD. All images and video
frames are resized to 256× 448 before being fed into GenAD. For tasks based on video prediction, we construct 2 frames in
1s at 2Hz as conditional frames. Each video sequence is paired with text conditions composed of command and context. For
zero-shot datasets, the command and context are generated by the BLIP-2 model and video classifier respectively, following
the preparation of training data. For nuScenes, we generate the command from logged trajectory following [45, 47] and
map them to language using dictionary in Tab. 8, and we take the scenario descriptions as the context, which are officially
provided in the dataset.

E.2. Metrics

We use various metrics in multiple aspects for quantitative evaluation. These metrics include Fréchet Inception Distance
(FID) [39] , Fréchet Video Distance (FVD) [101], CLIP-Similarity (CLIPSIM), Action Prediction Error, Average Displace-
ment Error (ADE) and Final Displacement Error (FDE). For video prediction tasks, all predicted future frames are at 2Hz.
We refer readers for discussions on metrics in Appendix A (Q4).

FID: It evaluates the generation quality of images, which are video frames in our experiments, by measuring the distribution
distance of features between the predictions and original frames in the dataset. The features are extracted by a pre-trained
Inception model. For quantitative comparison on nuScenes, FID is evaluated on 6019 generated frames and ground-truth
frames. For experiments on YouTube, FID is calculated on 18000 frames from both generation and the dataset.

FVD: It measures the semantic similarity between real and synthesized videos with a pre-trained I3D action classification
model [14] as the feature extractor. We evaluate 4369 video clips for the nuScenes comparison experiment, and 3000 video
clips for YouTube.

CLIPSIM: We use the CLIP ViT-L/14 [82] to evaluate the consistency and coherence of the predicted video by computing
the average similarity score of CLIP features between 6 generated frames and the first conditional frame. We take 3000 video
sequences for evaluation.

Action Prediction Error: For experiments of action-condition prediction on nuScenes, it measures the consistency between
the input trajectory w and predicted future frames of GenAD. We transform the future frames into trajectory ŵ using an
inverse dynamics model (IDM), which is trained on nuScenes to project a video sequence into a trajectory following the
design in [56]. This metric is then calculated as the mean L2 distance between all corresponding waypoints of w and ŵ.
Here both w and ŵ include 6 waypoints in 2 Hz, and w is generated from the logged trajectory in ego coordinate.

ADE/FDE: To evaluate the performance of planning on nuScenes, we calculate the ADE and FDE between the predicted
trajectory and ground-truth trajectory in an open-loop setting. Here, ADE is the mean L2 distance between all waypoints of
these two trajectories, and FDE is the L2 distance between the final waypoints of them.

F. More Visualizations

F.1. Image Generation in Driving Domain

After image domain transferring, the fine-tuned image model now focuses on synthesizing images in realistic driving views.
Given text prompts in Tab. 18, the corresponding generated images are shown in Fig. 12 where the generated samples greatly
reflect the abundant visual details in complex and driving scenes. The ability of high-quality driving-view generation laid the
foundation for simulating a realistic futuristic driving world, which is learned through video prediction pre-training.
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Figure 12. Generated images by the fine-tuned image model. Corresponding text prompts are listed in Tab. 18.
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1. Take a left turn. A city at night with a lot of lights.
2. Move steady. A car driving down a highway with a view of the sky.
3. Move steady. A car driving through a tunnel.
4. Drive steady. A city street at night with cars and taxis.
5. Keep the direction. A city street with a crosswalk and tall buildings.
6. Go straight. A car driving down a mountain road.
7. Maintain the direction. A city street with parked cars.
8. Turn to the left. A car driving down a city street.
9. Steer right. A car driving on a mountain road.
10. Make a right turn. A car driving down a mountain road.
11. Drive steady. A car driving down a city street.
12. Move steady. A car driving down a road in a small village.
13. Proceed. A car driving on a highway with a sun in the sky.
14. Drive steady. A car driving down a snowy road.
15. Take a left turn. A car driving down a hill with houses on the side.
16. Drive through the junction. A red car is driving down a street in Boston.
17. Brake. A city street with cars and tall buildings.
18. Proceed. A car is driving down a hill with parked cars on the side.
19. Decelerate. A car is driving on a highway with cars behind it.
20. Drive straight.
21. Move forward.
22. Move forward. A car driving on a mountain road.
23. Keep the direction. A red double decker bus driving down a city street.
24. Stop. A car driving on a busy street.
25. Drive straight. A tram on a street at night.
26. Drive forward. A city street with a crosswalk.
27. Proceed. A green light on a street with cars and pedestrians.
28. Move steady. A view of a highway with a city in the background.
29. Maintain the direction. A view of a city street with buildings and mountains in the background.
30. Drive straight. A city street with a lot of cars and buildings.
31. Steer right. A car driving down a cobblestone street in a city.
32. Drive forward. A car driving on a dark road at night.
33. Move forward. A car driving down a busy street at night.
34. Proceed. A car driving through a tunnel.
35. Drive straight. A white van driving down a city street.
36. Maintain the direction. A city street at night with a ferris wheel.

Table 18. Prompts for image generation in Fig. 12, in the sequential order (from left to right and top to bottom).

F.2. Zero-shot Transfer

With a strong capability on video prediction, the pre-trained GenAD can generalize to multiple unseen datasets in a zero-shot
manner. In Fig. 13, we showcase multiple zero-shot video prediction results on OpenDV-YouTube. In Fig. 14, we illustrate
the superiority of our method by comparing it to the previous state-of-the-arts on 4 datasets, including OpenDV-YouTube,
Waymo [98], Cityscapes [21] and KITTI [30].

F.3. Action-conditioned Prediction

By introducing an additional trajectory condition, the fine-tuned GenAD-act can be controlled to simulate different futures
according to the input trajectory. We show four groups of action-conditioned prediction in Fig. 15. Both the input trajectory
conditions (shown in the left bird’s-eye view map) and imagined future frames are in 3s at 2Hz.

F.4. Failure Cases

We showcase four failure cases generated by our model in Fig. 16. The model is sometimes disturbed by misleading contexts
and is not strong enough to produce high-quality human details, as discussed in the Appendix A Q6. In some cases, the
motion is not smooth enough. Meanwhile, the model fails to keep up with out-of-distribution camera height for 3s, even
though succeeds in the first 2 seconds. These cases are worth future explorations.
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Figure 13. Zero-shot video prediction on OpenDV-YouTube (the YouTube-Val subset from different YouTubers with strict geofence).
The corresponding text conditions from top to bottom are as follows. 1. “Move steady. A car driving down a highway with cars behind
it.”, 2. “Turn to the left. A car is driving on a roof.”, 3. “Maintain the direction. A taxi driving on a city street at night.”, 4. “Drive forward.
A car driving down a city street.”, 5. “Proceed. A car driving on a bridge at night.”, 6. “Steer left. A car driving on a road with trees
and a blue sky.”, 7. “Slow down. A street in a city with buildings and cars.”, 8. “Go straight. A blue car driving down a city street.”, 9.
“Decelerate. A car driving on a city street.”, 10. “Keep the direction. A view of a city street from the driver’s seat.”, 11. “Brake. A car
driving down a street with trees and buses.”, 12. “Proceed. A car driving on a city street at night.”, 13. “Move forward. A car driving down
a road near a river.”, 14. “Drive straight. A van is driving down a highway with tall buildings in the background.”.
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Figure 14. Zero-shot video prediction on public datasets compared with state-of-the-art video generation/prediction models. Videos
generated by I2VGen-XL are inconsistent with the condition frame. VideoCrafter1 appears to generate static scenarios. DMVFN suffers
from huge image distortions. Meanwhile, all the other 3 models fail to generate videos when the ego vehicle should turn to the left and
follow the lane (see the rightmost case in the last row). Our model manages to succeed in predictive video generation with great consistency
with the conditional frames. We only show the first, third, and fifth frames from 6 predicted frames of our model due to space limits.
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BEV Traj. Observed Imagined T

Figure 15. Action-conditioned prediction on nuScenes. We show four groups of video predictions for comparison, where each group is
conditioned on the same two starting frames and different trajectories. In each group, the results in the first and second row are conditioned
on the blue and green trajectories shown in the leftmost bird’s-eye view, respectively.

(a) Negative context effects (b) Sudden speed-up

(c) Losses of human details (d) Failure in long-term maintainence of O.O.D. camera settings

Keep the direction. A city at night with a ferris wheel.

Pass the intersection. A yellow bus is driving down a street in a city.Move steady. A woman is walking in a parking lot.

Move forward. A car is parked at a gas station.

Figure 16. Examples of failure cases. Examples (a, b, d) are from OpenDV-YouTube, and example (c) is from Waymo. We notice
that sometimes contexts exert negative impacts on generated videos since the model tends to sacrifice temporal consistency to explicitly
generate the object in the context under some circumstances (see example (a)). In examples (b) and (c), the model faces challenges in
generating smooth motion and human details, respectively. In example (d), the model succeeds in holding on to the out-of-distribution
camera setting, i.e., on a double-deck bus, for the first 4 frames. But the camera height gradually falls down as normal in the last 2 frames.
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