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Abstract

Test-time scaling (TTS) has proven effective in enhancing the reasoning capa-
bilities of large language models (LLMs). Verification plays a key role in TTS,
simultaneously influencing (1) reasoning performance and (2) compute efficiency,
due to the quality and computational cost of verification. In this work, we chal-
lenge the conventional paradigms of verification, and make the first attempt toward
systematically investigating the impact of verification granularity—that is, how
frequently the verifier is invoked during generation, beyond verifying only the final
output or individual generation steps. To this end, we introduce Variable Granu-
larity Search (VG-Search), a unified algorithm that generalizes beam search and
Best-of-N sampling via a tunable granularity parameter g. Extensive experiments
with VG-Search under varying compute budgets, generator-verifier configurations,
and task attributes reveal that dynamically selecting g can improve the compute
efficiency and scaling behavior. Building on these findings, we propose adaptive
VG-Search strategies that achieve accuracy gains of up to 3.1% over Beam Search
and 3.6% over Best-of-N, while reducing FLOPs by over 52%. Our code is avaiblae
at github.com/hmarkc/VG-Search.

1 Introduction

The past few years have witnessed the rapid advancement of large language models (LLMs), driven
by scaling of model size and training data [6, 17, 28]. However, further training-time scaling is
increasingly constrained by prohibitive computational costs and the limited availability of high-quality
human-generated data [34]. Test-time scaling (TTS) [33, 5, 32] offers a promising alternative by
enhancing performance through additional compute at inference time. TTS techniques generally
fall into two categories: internal scaling [33, 25], which focuses on optimizing a single generation
trajectory, and sampling-based scaling [5, 32, 35], which improves performance by exploring multiple
candidate generations. These two approaches are orthogonal and can be combined to achieve higher
performance [22]. Sampling-based methods are typically training-free and easy to integrate with
internal scaling approaches in a plug-and-play manner.

Verification, commonly implemented as a learned reward model or scoring function, plays a key
role in both TTS paradigms. State-of-the-art (SOTA) sampling-based methods, such as Diverse
Verifier Tree Search (DVTS) [4] and verifier-guided Beam Search [32], leverage a separate verifier
LLM to guide the generation of a generator LLM, improving sampling efficiency and accuracy. In
these methods, a generation step is typically defined as a chunk of text delimited by special tokens
(e.g., newline characters), which serves as the atomic unit of verification. However, this verification
granularity choice is heuristic [32, 22] and remains static [36], with no guarantee of optimality. As
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Figure 1: Motivations for Optimizing Verification Granularity g. (a) Small PRM score deltas
(LLaMA3.1-8B-PRM) across generation steps indicate redundant verification. (b) Verification
incurs notable latency overheads. (c) Increasing verification granularity lowers the latency of both
Proposer and Verifier. (d) Optimizing g improves the accuracy-compute tradeoff over fixed-granularity
baselines (Qwen2.5-Math-7B as generator, Skywork-o1-1.5B as verifier).

shown in Figure 1a, our profiling results show that verifier scores often remain stable across multiple
generation steps (e.g., over 50% of 2-step score differences are below 1% of score range), suggesting
redundancy in the current verification granularity. This inefficiency causes verification to account for
an increasingly large proportion of the overall inference latency, as illustrated in Figure 1b. These
insights and observations motivate us to explore the following two research questions (RQs):

• RQ1. Is the conventional verification granularity optimal for the accuracy–compute scaling?

• RQ2. If not, how can we optimize it to achieve a better accuracy–compute frontier?

To explore RQ1, we introduce Variable Granularity Search (VG-Search), a unified algorithm that
generalizes verifier-guided Beam Search and Best-of-N methods. VG-Search employs a granular-
ity parameter g that controls the verification granularity (Section 2). Our hardware performance
profiling (Figure 1c) shows that g has a significant impact on the latency contributions of both the
generator LLM and the verifier. To further investigate the accuracy–compute trade-off under varying
g, we conduct extensive experiments with VG-Search across different values of g, models, compute
budget, and datasets (Section 4). Building on top of the insights from RQ1, we propose an adaptive
VG-Search approach which dynamically adjusts the verification granularity based on the compute
budget and task attributes (Section 5) to further address RQ2. As shown in Figure 1d, our results
demonstrate better performance–compute frontiers than previous sampling-based TTS methods.
Overall, our main contributions are:

• We propose Variable Granularity Search (VG-Search), enabling systematic analysis of how verifica-
tion granularity affects performance and compute scaling.

• Through extensive experiments, we show that the conventional static verification granularity is
sub-optimal, limiting the performance scaling of verifier-guided search methods.

• We develop adaptive VG-Search strategies that dynamically tune granularity, achieving up to 3.1%
higher accuracy than Beam Search, 3.6% over Best-of-N, with over 52% compute reduction.

2 Exploring Verification Granularity for Reasoning

2.1 Verification Granularity in Verifier-Guided Search

In verifier-guided search, a generator model proposes candidate steps and a verifier model evaluates
them to guide the search process. The task of generating a correct solution can be framed as a
collaboration between two components:
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Figure 2: Variable-Granularity Search (VG-Search). VG-Search unifies verifier-guided Beam
Search and Best-of-N via the granularity parameter g. At each step, B1 ×B2 candidates are verified
and B1 = 2 candidates are selected. B2 = 2 continuations are generated per selected path. Only the
B1 selected candidates proceed to the Extend Step, reducing proposer FLOPs by pruning early.

• Generator (Proposer) G: A probabilistic model, typically an LLM, responsible for generating a
partial or complete candidate sequence st:t+g , where g denotes the number of the generation steps.
The generation process is governed by the distribution P (st:t+g | G).

• Verifier V : A scoring function V(st:t+g) → R that assigns a scalar score to each partial or complete
candidate sequence st:t+g. The verifier is invoked after every g generation steps. This score is
intended to correlate with the expected quality or correctness of the sequence prefix.

The goal of the search process is to generate a correct or high-quality solution s∗1:T of length T via
interaction between the generator and verifier. A key hyperparameter in this process is the verification
granularity g, which controls how frequently the verifier can intervene and guide the generator. To
illustrate the impact of g, we link the verifier-guided search to an edge case, the Infinite Monkey
Theorem (IMT) [38], where a random generator (monkey) tries to reproduce a target sequence
(e.g., Shakespeare’s work) under a perfect verifier invoked every g characters. When verification is
infrequent (large g), the expected number of attempts grows exponentially as E[Ag], making success
computationally infeasible. In contrast, with frequent verification, early error pruning reduces the
expected cost E[Ag], at the expense of higher verification overhead. This toy setting underscores
a fundamental trade-off between verification cost and exploration efficiency. Optimizing g is thus
critical for effective collaboration between generator G and verifier V under compute constraints.

The most common approach to defining g relies on heuristics and remains static. However, this
convention might be neither consistent nor optimal: the model distribution varies widely—some
generators are more verbose, others more structured—and the number of tokens required to concep-
tualize a coherent "thinking step" can differ significantly across tasks. This motivates a systematic
study of how performance scales with different granularity g.

2.2 Variable-Granularity Search

Beam Search [5] and Best-of-N sampling [32] are two prevalent methods for scaling large language
model (LLM) performance at test-time by leveraging additional computation. These methods
represent two opposing extremes within the spectrum of verifier-guided search, primarily differing in
the frequency with which the verifier V checks the outputs from the proposer G. In Beam Search,
verification is highly fine-grained: V actively guides candidate selection at each generation step,
enabling the early pruning of less promising paths. Conversely, Best-of-N sampling employs a coarse-
grained approach, where the verification is performed on an entire candidate solution. While this
allows for broader exploration, it lacks the intermediate guidance provided by frequent verification.

To bridge this gap and enable a continuous exploration of verification granularity, we introduce
Variable-Granularity Search (VG-Search). VG-Search unifies Beam Search and Best-of-N sam-
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pling through the concept of verification granularity (g). By varying g, VG-Search allows for
continuous control over the trade-off between fine-grained guidance and broad exploration. Key
hyperparameters of VG-Search include:

• Beam Width (B1): The number of top-scoring candidate sequences (beams) retained after
verification and selection.

• Branch-Out Factor (B2): The number of alternative continuations generated by G from
each of the B1 retained beams before the next verification phase.

• Verification Granularity (g): The number of generation steps evaluated per verifica-
tion—i.e., the interval between verifier (V) calls.

As illustrated in Figure 2, a single cycle of VG-Search advances the search from a candidate length t
to t+ g. The full algorithm proceeds as follows:

1. Start: Initialize with B1 ×B2 candidates from the initial prompt.
2. Verify & Select: Evaluate B1 ×B2 candidates using V , and retain the top B1 beams.
3. Extend: For each of the B1 selected beams, produce g − 1 generation steps using G.
4. Branch: For each extended beam, produce B2 single-generation-step continuations using G.
5. Repeat: Go back to Step 2 and iterate until termination criteria are met.

Omitting Step 3 (Extend) or setting g = 1 reduces VG-Search to standard Beam Search. At the
other extreme, when g = L (the number of generation steps in a full solution), VG-Search becomes
equivalent to Best-of-N sampling. One alternative design is to produce g − 1 generation steps in
Branch, mimicking Beam Search but with variable verification granularity. However, prior work [32]
shows that rolling out multiple future tokens, as in LookAhead Search, does not yield the best
performance. We therefore adopt a simpler, more compute-efficient design: Branch generates just
one step per candidate, and early pruning via the verifier occurs before Extend. As a result, only
the top B1 candidates continue in Extend, instead of the full B1 ×B2 set used in Beam Search or
Best-of-N—leading to significantly lower proposer FLOPs. Larger g further amplifies savings for
both verifier and proposer. We validate this design in Section 4.1. A case study of VG-Search is
illustrated in Appendix A.8.

2.3 Compute Cost Model for Generator and Verifier

To analyze and optimize g, we define a compute cost model in FLOPs with the following parameters:
(1) L: average solution length in generation steps, (2) Pg , Pv: parameter counts of the generator and
verifier, (3) Fg: FLOPs per generation step, (4) Fv: FLOPs per verifier call. The number of VG-Search
cycles is approximately Ncycles = L/g. Following prior work [31], we approximate Fg ≈ 2TPg,
where T is the average number of tokens per generation step. Similarly, Fv ≈ 2αPv, where α is a
verifier-specific variable.

The total compute for generation, CG , includes extending the B1 primary beams and generating B2

branches across all cycles:

CG = B1 ·

 g − 1︸ ︷︷ ︸
Extending

+ B2︸︷︷︸
Branching

 ·Ncycles · Fg = 2 · T ·B1 · (g − 1 +B2) ·
L

g
· Pg (1)

The total compute for verification, CV , accounts for scoring B1 ·B2 candidates across all cycles:

CV = B1 ·B2 ·Ncycles · Fv = 2 · α ·B1 ·B2 ·
L

g
· Pv (2)

The total compute cost Ctotal becomes:

Ctotal = CG + CV = 2 ·B1 ·
L

g
· [T · (g − 1 +B2) · Pg + α ·B2 · Pv] (3)

We adopt the proposed cost model to study the scaling behavior of VG-Search (Section 4), which
provides a reliable proxy for measured inference latency as demonstrated in Figure 1c.
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3 Experiment Setup

To investigate the optimality of the conventional verification granularity mentioned in RQ1, we
conduct experiments on mathematical reasoning benchmarks.

Task and Datasets. We evaluate on the MATH-500 [21] and AIME [2] datasets. MATH-500 samples
500 problems from the MATH [16] benchmark, with difficulty levels labelled. AIME comprises 90
advanced high school mathematics problems from the past three years (AIME24, AIME23, AIME22).
Additionally, we sample 250 problems from the MATH [16] benchmark as a validation set for
Section 5, referred to as MATH-250. It consists of 50 problems per difficulty level.

Policy and Reward Models. For Proposer, we use both general-purpose model (Llama-3.2-3B-
Instruct [15]) and models with internal scaling ability, fine-tuned to generate Chain-of-Thought
(CoT) for math tasks, Qwen2.5-Math-7B and Qwen2.5-Math-1.5B [40]. All models are prompted
to generate step-by-step solutions. For the Llama models, we use the same prompt template as the
official evaluation, which explicitly states the response template. For the Qwen models, it is suggested
to use a simple prompt template. Following the community convention and prior work [22, 32, 4], we
use \n\n to delimit each generation step, which serves as the smallest unit of verification granularity.
For Verifier, we employ discriminative Process Reward Models (PRMs), including Skywork-o1-1.5B1

and Skywork-o1-7B2 [27], as verifiers. Following [4], we use Last (final) scores for selection. Details
of FLOPs calculation are in Appendix A.2.

4 Understanding the Limits of the Verification Granularity Convention

4.1 Test-Time Scaling Law with Verification Granularity

In this section, we aim to answer RQ1, investigating how the optimal verification granularity g
varies with both the compute budget and the capabilities of the Proposer-Verifier pair. To explore
different operating points on the accuracy-compute trade-off curve (Figure 3), we vary g and adjust
the number of generations n to modulate the total compute budget. We analyze three representative
generator (G)–verifier (V) pairs, specifically chosen to probe the interplay between model capability
and compute allocation:

1. Strong G (Qwen2.5-Math-7B) with a Small V (Skywork-o1-1.5B),

2. Weak G (Llama-3.2-3B-Instruct, not math-finetuned) with a Small V (Skywork-o1-1.5B),

3. Medium G (Qwen2.5-Math-1.5B) with a Large V (Skywork-o1-7B).

Our findings in Figure 3 indicate that the optimal verification granularity g depends on both the
generator’s capability and the available compute budget:

Strong Generators Prefer Sparse Verification, while weak ones need frequent checks. For the
strong Qwen2.5-Math-7B generator paired with a small verifier, while standard Beam Search (g = 1)
is effective at lower compute costs, sparser verification (g ∈ {2, 3, 4}) achieves superior accuracy at
medium to high compute budgets, as shown in the first column of Figure 3. Notably, g = 3 reaches the
highest peak accuracy, outperforming g = 1 by approximately 4% on MATH-500. This suggests that
a strong generator can reliably produce longer correct partial solutions, making frequent verification
less critical and allowing compute to be reallocated (e.g., to wider beams via B1) for better overall
performance. As shown in the second column of Figure 3, moderately strong Qwen2.5-Math-1.5B,
when paired with a large verifier, also benefits from sparser verification, with g = 2 consistently
outperforming g = 1 from mid-to-high compute and achieving the best peak accuracy. However,
excessively sparse verification (g = 4) becomes detrimental, indicating an optimal balance point. In
contrast, as shown in the last column of Figure 3, the non-specialized Llama-3B generator has peak
performance with frequent verification (g = 1) on MATH-500 and MATH-250, implying that weaker
or less task-aligned generators require continuous guidance. Interestingly, on the more challenging
AIME dataset, all Proposer-Verifier pairs show a tendency for sparser verification (g > 1, sometimes
even g = 4) to outperform g = 1 at medium and high compute budgets. This might be because
AIME problems benefit more from the broader exploration encouraged by sparser verification (which

1Skywork/Skywork-o1-Open-PRM-Qwen-2.5-1.5B
2Skywork/Skywork-o1-Open-PRM-Qwen-2.5-7B
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Figure 3: Accuracy vs. compute (FLOPs) across different verification granularities g.

makes the search resemble Best-of-N), or the PRM’s step-wise utility is less consistently high on
AIME, reducing the benefit of frequent checks.

Optimal Granularity Varies with Compute Budget. Across most models and datasets, sparser
verification (g > 1) tends to become more competitive as the total compute budget increases. At
very low compute budgets, the aggressive pruning of standard Beam Search (g = 1) often provides
a more robust performance baseline. This aligns with the intuition that investing in more extended
generation phases between verifications is more viable when more overall compute is available to
support wider exploration or more candidate paths.

Optimal Granularity Saves Computation Significantly. A key advantage of using sparser verifi-
cation (g > 1) is the potential for substantial FLOPs savings while maintaining—or even improv-
ing—performance. For example, in the Strong G, Small V setting on MATH-500, setting g = 3
achieves approximately 88% accuracy at ∼ 213 FLOPs, whereas g = 1 requires ∼ 215 FLOPs to
reach a slightly lower accuracy of around 87.5%. Similarly, on AIME, g = 4 attains comparable
peak accuracy to g = 1, but with noticeably lower FLOPs cost across several configurations. This
efficiency gain arises from fewer verifier invocations and reduced branching operations overall, as
detailed in our cost model (Section 2.3). Moreover, the reduction in FLOPs effectively translates into
decreased latency, as shown in Figure 1c.

Rethinking the Optimal "Thinking Step". The observation that increasing g (sparser verification)
can improve accuracy while reducing compute budget is significant. This challenges the conventional
verification granularity (g = 1), where verification typically occurs at arbitrary delimiter boundaries
(e.g., newlines), which may not always align with meaningful reasoning steps. First, as shown
in Figure 1a, consecutive PRM score differences are often negligible, indicating that the current
definition of a “thinking step” is overly fine-grained. Second, a larger g can be interpreted as defining a
more substantial and semantically coherent "thinking step". Delaying verification and branching until
the end of these extended segments may avoid injecting noise by evaluating incomplete reasoning
fragments, thus enabling more effective search. Thus, in response to RQ1, we conclude that the
current convention for verification granularity is sub-optimal, motivating a more flexible definition of
verification granularity—beyond fixed token-level delimiters—and highlighting the need for a more
sophisticated approach to optimizing g (Section 5).
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Figure 4: Ablation on verifier quality and model sizes.

4.2 Ablation Studies on Verifier Quality and Model Scale

We conducted two ablation studies to investigate the impact of verifier quality and model scale on the
optimal granularity, with results shown in Figure 4. To simulate a worst-case scenario for verifier
quality, we replaced the standard verifier with a maximally noisy PRM that assigned a random score
to each generation step. As hypothesized, when the verifier provides no useful signal, the optimal
strategy consistently shifts to sparser verification (g > 1), as frequent but unreliable guidance
degrades search performance (Figure 4).

We validated our findings at different model scales by pairing various generators from the Qwen-2.5
series with Skywork-PRM verifiers of different sizes. The results (Figure 4) confirm that the optimal
verification granularity remains dynamic across all tested scales.

4.3 Trade-offs: Granularity, Verifier Parameter, and Branching

This section further explores how g interacts with other key hyper-parameters: the verifier’s model
parameter and the branch-out factor B2 to optimize compute allocation under fixed total compute
budgets. All experiments in this section utilize Qwen2.5-Math-7B as the generator.

Granularity vs. Verifier Parameter. We investigate whether it is more beneficial to use a strong
verifier sparsely (larger g, larger verifier model) or a weaker verifier frequently (smaller g, smaller
verifier model). Figure 5a compares two configurations: (1) g = 1 (frequent verification) with a Small
Verifier (Skywork-o1-1.5B), and (2) g = 2 (sparser verification) with a Large Verifier (Skywork-
o1-7B). As shown in Figure 5a, at lower compute budgets, sparse verification with a larger verifier
yields low accuracy. However, as the compute budget increases, employing a larger verifier more
sparsely achieves higher peak accuracy. This suggests a clear preference for leveraging stronger,
more discerning verifiers less frequently when sufficient computational resources are available.

Granularity vs. Branch-Out Factor Next, we explore the trade-off between the verification
granularity g and the branch-out factor B2, at matched total compute FLOPs. Increasing g means
fewer verification calls and longer generation segments, while increasing B2 means exploring
more alternatives at each verification point. The verifier used in this experiment is Skywork-o1-1.5B.
Figure 5b shows that configurations with a small granularity (g = 1, B2 = 2) with low branching tend
to outperform other configurations at low or mid-range compute budgets. However, all configurations
converge at very high compute. Comparing the above findings, a clear pattern emerges: investing the
saved compute in the verifier parameter appears to be a more effective scaling strategy than simply
increasing the number of branches.

4.4 Optimal Verification Granularity vs. Task Difficulty and Number of Samples

To assess the practical limits of sparse verification, we define the largest effective g as the maximum
verification granularity that retains at least 95% of the accuracy achieved at g=1. We also analyze the
accuracy gain of g=2 over g=1 across varying sample budgets and task difficulty levels. Figure 5d,
5e show that the optimal g is strongly influenced by both difficulty and sampling budget.
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Figure 5: (a) shows g = 2 with a strong verifier outperforms g = 1 with a weak verifier at high
compute budget. (b) demonstrates limited performance gain from increasing branch factor B2. (c)
plots the largest effective g across difficulty levels for different generators. (d),(e) show the accuracy
gain of sparser verification with a stronger verifier across difficulty levels and number of generations.

Increased Task Difficulty Demands Denser Verification. Across all models and compute budgets,
we observe a consistent trend: as task difficulty increases, the largest effective g decreases. For
the hardest problems (Levels 4–5), g=1 or g=2 is often required to maintain performance at lower
compute budget. Likewise, the advantage of g=2 over g=1 diminishes with difficulty, likely because
harder tasks involve more reasoning errors, necessitating more frequent verifier intervention to stay
on track.

Higher Number of Samples Tolerates Sparser Verification. In general, larger sample budgets
allow for sparser verification, especially on easy to moderately difficult tasks. Higher budgets also
amplify the performance gain of g=2 over g=1, as the generator can explore a wider search space,
increasing the likelihood of finding a correct path despite less frequent verification.

5 Towards Adaptive Redefinition of the Verification Granularity

5.1 Adaptive Granularity Strategies

Our results (Figures 3, 5) show that the optimal g in VG-Search depends on task difficulty, compute
budget, and model capability. This motivates a more systematic approach to defining the search step,
addressing RQ2. We formulate an optimization dual for selecting verification granularity: minimizing
compute for a target accuracy vs. maximizing accuracy under a compute budget. For each, we
propose a corresponding adaptive granularity strategy:

Strategy 1: Compute Minimization with Performance Parity (CM-g) CM-g finds the largest g∗
that maintains accuracy within a tolerance ϵ of g = 1, reducing compute. Given generator, difficulty
d, and number of generations n: 1. Compute baseline accuracy Acc(g=1, d, n). 2. Increase g while
Acc(g, d, n) ≥ Acc(g=1, d, n)− ϵ; return the largest g∗ satisfying the accuracy constraint.

Strategy 2: Accuracy Maximization with Budget Constraint (AM-g) AM-g selects g∗ that
maximizes accuracy under a fixed compute budget (as in number of generations): g∗ =
argmaxg∈{1,...,gmax} Acc(g, d, n).
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n Metric
Adaptive VG-Search Beam DVTS Best-of-NOracle Val Search

CM-g AM-g CM-g AM-g

64 Acc. 89.2 90.1 88.6 90.1 87.0 89.2 89.5
FLOPs 5393 5844 5543 6145 12010 12010 11952

128 Acc. 90.5 90.6 89.9 90.1 89.3 89.7 89.3
FLOPs 15899 16200 11086 12290 24021 24021 23904

256 Acc. 90.7 90.8 90.4 90.4 88.8 89.5 89.2
FLOPs 21572 22775 28189 28189 48042 48042 47808

Table 1: Performance of adaptive granularity strategies (CM-g, AM-g) vs. baselines on MATH-500,
using Qwen2.5-Math-7B as the proposer and Skywork-o1-1.5B as the verifier. Best accuracy and
Lowest FLOPs are bold underlined. n is the number of generations per question.

Budget Strategy 0 samples 5 samples 100 samples 200 samples

n = 64
CM-g 87.03% 88.57% 88.57% 88.57%
AM-g 87.03% 88.57% 89.19% 90.09%

n = 256
CM-g 88.76% 90.37% 90.37% 90.43%
AM-g 88.76% 90.37% 90.37% 90.43%

Table 2: Test accuracy on MATH-500 vs. number of validation samples used to select g∗. Performance
converges rapidly for both medium (n = 64) and high (n = 256) compute budgets.

We compare against Beam Search, DVTS, and Best-of-N baselines on the MATH-500 test set. "val"
indicates g was tuned on a validation set MATH-250, while strategies under "oracle" use oracle g
selected on the test set. We set ϵ = 0 for CM-g. Table 1 shows that both AM-g and CM-g improve
performance and efficiency. AM-g consistently achieves higher accuracy, with gains up to 3.1%
over Beam Search, while CM-g provides substantial FLOPs savings, reducing compute by over
50% at n = 64 and n = 256 while maintaining or improving accuracy. For instance, CM-g (val)
at n = 128 achieves 89.9% accuracy using just 11086 FLOPs—only 46% of the baseline budget.
Although oracle-tuned variants perform slightly better, validation-tuned versions (CM-g (val), AM-g
(val)) still outperform fixed-g methods, demonstrating strong generalization and practicality. Under
our cost model, CG dominates, so most FLOPs savings come from pruning candidate paths during
the Extend Step (Section 2.2). In summary, adapting verification granularity g to task difficulty
and compute budget offers a simple yet effective way, enabling more efficient and performant LLM
reasoning.

5.2 Practicality and Convergence of Optimal Granularity Search

A key practical consideration is the overhead of finding the optimal granularity g∗. We analyzed
its sample efficiency by selecting g∗ on validation subsets of increasing size and evaluating the
performance on the MATH-500 test set. The results, shown in Table 2, demonstrate that the search
converges rapidly. For both high (n = 256) and medium (n = 64) compute budgets, using just 5
validation samples achieves most of the possible accuracy gains over the baseline, confirming the
minimal overhead of our adaptive approach.

This search constitutes a negligible, one-time cost that is amortized over all subsequent uses, ensuring
our FLOPs comparisons are fair. The practical guideline is to reuse a pre-computed g∗ for a given
model, task, and budget, and recompute it only when a core component, like the generator model,
changes. For tasks with distinct subsets (e.g., varying difficulty levels), different g∗ values can be
pre-computed and selected at inference time, making this a practical and effective alternative to the
fixed-granularity convention.
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6 Related Work

Test-Time Scaling (TTS). Recent work on scaling test-time compute can be broadly categorized into
two approaches [43, 19]: i) Internal scaling and ii) sampling-based TTS. Internal scaling methods
enable models to scale their test-time compute by adapting their parameters through Supervised
Fine-tuning (SFT) [42, 24] or Reinforcement Learning (RL) [33, 23, 41]. However, without explicit
compute budget control [1, 3], these approaches often result in unnecessarily long CoT, even for
simple queries, leading to inefficient inference costs. Sampling-based TTS, by contrast, dynamically
allocates test-time computation during deployment, without requiring additional tuning to modify
the model’s parameters offline. Sampling-based TTS [10, 32, 29, 9], orthogonal to internal scaling
approaches, allows for more fine-grained control over compute usage and can further improve
algorithmic performance. As noted by [32, 22], multi-step lookahead approaches, such as Monte Carlo
Tree Search (MCTS) [14], adaptive thought rollback [8], and hierarchical multi-step verification [36],
incur substantial sampling overhead during inference, we do not consider such methods in this work.

Verification-Guided Search. Verifying the quality of generated outputs to guide sampling-based TTS
has been shown to significantly improve the efficiency of test-time computation [22, 32, 4]. Based on
the granularity of verification, existing approaches can be broadly classified into two categories: (i)
outcome verification and (ii) process verification. Outcome verification [10] evaluates the entire
response after the generation of a complete sample. This approach is widely used in sampling-based
TTS, such as Best-of-N strategy [9], where a verifier selects the most promising answer from a set of
full samples. While simple and effective, outcome verification provides no intermediate feedback,
which can lead to wasted computation on low-quality completions. Process verification [21, 44],
often implemented as a process reward model (PRM), evaluates intermediate reasoning steps during
generation. These models assign scores to partial outputs, allowing the inference process to be guided.
PRMs have been shown to improve sample efficiency and enable early pruning of unpromising token
paths, leading to more compute-efficient search. Despite their promise, both outcome and process
verification methods treat the verifier as a fixed component and typically apply it at a pre-defined
granularity. In contrast, our work introduces an adaptive approach that dynamically optimizes
verification granularity to maximize performance. Due to the verification inefficiency of Generative
PRMs [44] under matched compute budgets [31], we leave their investigation to future work.

Compute Optimal Scaling. Previous research [32] indicates that the optimal choice between Best-
of-N and Beam Search often depends on factors such as the available compute budget and the
problem characteristics. Yet, restricting selection to these two discrete options limits flexibility and
expressiveness in identifying an optimal compute scaling strategy. By introducing variable granularity
(g), VG-Search spans a continuous spectrum of search behaviors between these extremes, offering
potentially greater expressiveness for the optimal TTS strategy.

Prior work has investigated how test-time strategies, compute budgets, and problem difficulty interact,
showing that optimal allocation of inference-time compute can be more effective than merely scaling
model parameters [32]. Scaling the number of verification attempts per candidate has been shown
to improve verification accuracy and overall task performance [30]. Recent work [31] also explores
compute-optimal strategies for deciding when to generate new solutions versus verifying existing
ones, taking into account the number of verification and output samples. [20] demonstrates that
employing multiple diverse verifiers can enhance performance, as different verifiers are likely to
detect different types of errors. [7] proposes a consistency-based model switching method that
leverages multiple generator models to efficiently scale test-time compute, showing that a diverse
generator pool can more effectively explore the solution space. [8] introduces adaptive thought
rollback, but does not consider verification granularity. Despite the progress, optimally adapting the
verifier’s invocation frequency during test-time scaling remains a key unanswered question.

7 Conclusion

This paper investigates the critical role of the verification granularity g in verifier-guided test-time
scaling, introducing VG-Search to facilitate exploration. Our experiments show that the optimal
verification granularity is highly dynamic—depending on generator capability, task difficulty, and
compute budget. Building on these insights, we challenge the current convention and propose adaptive
strategies for selecting g to optimize efficiency and performance. This work motivates future research
that explores more advanced approaches in optimizing the verification granularity g.
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A Appendix

A.1 Optimal Compute Allocation between Proposer and Verifier

Optimizing the allocation of computational resources between proposers and verifiers is crucial for
maximizing overall system performance. While previous work [31] under a fixed compute budget has
primarily focused on varying the ratio of samples generated by the proposer to those evaluated by the
verifier, the impact of asymmetric model capabilities—specifically, how distributing model parameters
differently between the proposer and verifier affects performance—has remained largely unexplored.
This section addresses this gap by investigating the optimal allocation of model parameters between
these components, while adhering to a constant total compute budget, to determine how performance
scales with their relative complexities.

We evaluate two configurations: Small Proposer, Large Verifier (S-P, L-V) and Large Proposer, Small
Verifier (L-P, S-V), using DVTS and Beam Search. Performance is measured by accuracy against the
number of samples (n) on tasks of varying difficulty (Level 1, Level 5) and averaged (Figure 6).
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Figure 6: Comparison of Proposer-Verifier configurations under (a) DVTS and (b) Beam Search
strategies. Accuracy (%) is plotted against the number of samples (n) for Level 1, Level 5, and
Average Accuracy. Blue line: Small Proposer, Large Verifier (S-P, L-V). Orange line: Large Proposer,
Small Verifier (L-P, S-V).

Key observations include:

Verifier Quality Dictates Scaling: With both DVTS and beam search (Figure 6), L-P, S-V starts
strong on easier tasks but scales poorly with more samples (n), especially on harder tasks, suggesting
that more samples without effective verification is counterproductive.. S-P, L-V shows more robust
scaling, indicating a strong verifier better utilizes increased compute for broader exploration. A weak
verifier bottlenecks the scaling.
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Strategy Determines Optimal Configuration: The best Proposer-Verifier pairing is strategy-
dependent. For DVTS, S-P, L-V generally achieves higher peak performance or scales better for
complex tasks. For Beam Search (Figure 6b), L-P, S-V consistently and significantly outperforms.
DVTS’s diverse exploration of the solution space benefits more from a strong verifier, making a
simpler proposer adequate.

Task Difficulty Modulates Preference: On easier tasks (Level 1), S-P, L-V can be competitive,
probably because the proposer’s performance is not a bottleneck for easier tasks. However, for harder
tasks (Level 5), a strong proposer becomes more critical for beam search.

These results highlight that optimal compute allocation between proposer and verifier is not fixed but
depends on the search strategy, task complexity, and available budget. The observation motivates
more advanced compute allocation between verifiers and proposers.

A.2 FLOPs Calculation using the Cost Model

Following prior work [31], for discriminative PRMs, we assume that CV = 2Pv, since the verifier
outputs a single score per evaluation. Under this assumption, Equation 3 simplifies to:

Ctotal = 2 ·B1 ·
L

g
· [T · (g − 1 +B2) · Pg +B2 · Pv] , (4)

where L is the average solution length in generation steps, T is the average number of tokens per
generation step. To simplify compute tracking across experiments, we define a normalized compute
proxy:

C(g,B1, B2) =
λ ·B1 · (g − 1 +B2) +B1 ·B2

g
, (5)

where λ =
T ·Pg

Pv
captures the relative cost of generation versus verification. This proxy is proportional

to the actual total compute budget and is used throughout all experiments in the paper.

A.3 Experiment Details for VG-Search

Experiment Setup. To investigate the optimal g for a given difficulty level and computational budget,
we conduct experiments assessing both the oracle and the validation-tuned accuracies for the CM-g
and AM-g strategies. We use Qwen2.5-Math-7B [40] as proposer, and Skywork-o1-1.5B [27] as
verifier. The number of generations is set to n ∈ {4, 16, 64, 128, 256}, with a Branch-Out Factor
B2 = 4, temperature 0.8, and Top-p 1.0. For each generation step, the maximum token number is set
to 2, 048, employing Last scoring and majority voting. The number of iterations I corresponds to g:
for g ∈ {1, 2, 3, 4}, we set I ∈ {12, 6, 4, 3} to ensure equal compute budget. The prompt template
from Qwen [40] is adopted. DVTS, Best-of-N (BoN), and Beam Search are used as baselines,
configured with the same parameters as VG-Search.

Prompt Template for Qwen:
{question}
Please reason step by step, and put your final answer within \boxed{}

For ideal accuracy, we search for optimal g in test dataset for every combination of number of genera-
tions and difficulty level, and compute two accuracies for each number of generation: unweighted
and weighted, the former corresponds to the dataset having equal number of questions in different
difficulty levels, and the latter corresponds to actual difficulty distribution in the dataset. For the
searched accuracy, the only difference is that we search g in the validation dataset, and obtain the
accuracy in the test dataset for searched g.

Baselines and Voting Methods. Our codebase is based on HuggingFace’s search-and-learn [4].
We adopt three mainstream TTS strategies: Best-of-N [5], Beam Search [32], and DVTS [4]. For
all strategies we explore the number of samples of 4, 16, 64, 128, and 256. For Beam Search and
DVTS, we use a fixed Branch-Out Factor B2 = 4 following [32]. For all strategies, we use majority
voting [37]. Temperature is set to 0.8 for all problems following HuggingFace’s setup.
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Hardware and Frameworks. We conduct our experiments on NVIDIA H100 [12] and A100 [11]
GPUs, using CUDA 12.8 on Ubuntu 22.04. The vLLM library (v0.6.3) [18] is employed for model
execution. The experiments for VG-Search on MATH-500 take from 1 to 5 hours, depending
on the candidate number. To obtain accurate system-level runtime measurements, we use Nsight
Systems [26] and employ the NVIDIA NVTX [13] extension to categorize execution time across
different models. For the latency measurement in Figure 1c, we use Qwen2.5-Math-1.5B as generator,
while using RLHFlow/Llama3.1-8B-PRM-Deepseek-Data as the verifier.

A.4 Evaluation with an Ensemble Verifier

To broaden the scope of our evaluation, we conducted additional experiments using a multi-verifier
ensemble. This approach can enhance verification quality by aggregating signals from diverse models
[20]. For these experiments, we used Qwen-2.5-Math-1.5B as the generator. The verifier was an
ensemble of two different Process Reward Models (PRMs): Skywork-1.5B [27] and RLHFlow’s
Llama3.1-8B-PRM [39]. The final verification score for each reasoning step was computed by
averaging the scores from these two models.

The results, presented in Table 3, align with and reinforce the main conclusion of our paper. We
observe that the optimal verification granularity (g) is dynamic and highly dependent on the compute
budget (i.e., the number of generations, n). While dense verification (g = 1) is sometimes preferable
at low sample counts, sparser verification (g > 1) consistently achieves the highest accuracy on both
the MATH-500 and AIME datasets as the compute budget increases. This confirms that our findings
on adaptive verification granularity generalize even when using a stronger, ensembled verifier.

n MATH-500 (%) AIME (%)
g=1 g=2 g=3 g=4 g=1 g=2 g=3 g=4

4 76.0 73.2 71.6 69.6 12.22 8.89 11.11 13.33
16 80.0 77.4 76.4 78.4 13.33 13.33 16.67 14.44
64 79.4 80.4 80.8 81.0 16.67 16.67 16.67 18.89

128 80.8 82.2 82.2 80.8 15.56 24.44 23.33 18.89
256 80.2 80.0 80.2 81.2 23.33 23.33 23.33 23.33

Table 3: Accuracy of VG-Search with an ensemble verifier across MATH-500 and AIME datasets.
For each number of generations (n), the highest accuracy in each row is bolded, indicating the
performance achieved at the optimal granularity g.

A.5 Applicability to Tasks with Outcome-Level Feedback

VG-Search is applicable to tasks with outcome-level feedback, provided a PRM can be trained on
intermediate generation steps. In such scenarios, the core search algorithm remains unchanged.
However, for open-ended generation tasks like code synthesis where outputs are diverse, standard
majority voting is not feasible for final answer selection. A practical alternative is to select the single
candidate trajectory with the highest cumulative or final PRM score.

To demonstrate this, we evaluated VG-Search on the HumanEval benchmark using LLaMA-3.2-
1B as the generator and Skywork-o1-1.5B-PRM as the verifier. We used newline characters to
delimit generation steps. The results, reported as pass@1 scores in Table 4, show that sparser
verification (g > 1) can outperform dense verification (g = 1), particularly as the compute budget
(n) increases. This confirms that our central conclusion—that the optimal verification granularity is
dynamic—generalizes to open-ended generation tasks.

A.6 Standard Deviation with Multiple Trials

To evaluate the robustness of our results, we conducted experiments over multiple trials using
different random seeds. This analysis provides a more rigorous assessment of variance and confirms
the stability of our conclusions. The following results were generated using the Qwen-Math-7B
generator and the Skywork-o1-1.5B PRM on the MATH-500 dataset, averaged over three distinct
runs.
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n g=1 g=2 g=3 g=4
4 0.250 0.274 0.238 0.220

16 0.335 0.305 0.268 0.311
64 0.256 0.335 0.274 0.305

Table 4: Pass@1 scores on HumanEval using VG-Search, selecting the highest-scoring candidate.
The best performance for each compute budget (n) is bolded.

Table 5 shows the mean accuracy and standard deviation for this experiment. The results from
multiple trials are consistent with our original findings, demonstrating the stability of the observed
trends. The low standard deviations across all configurations reinforce this conclusion. While
dense verification (g = 1) performs well at smaller compute budgets, sparser verification (g > 1)
consistently achieves higher accuracy as the number of samples increases (n ≥ 64).

n g=1 g=2 g=3 g=4
4 84.13 ± 0.50 82.27 ± 0.24 81.73 ± 0.39 80.40 ± 0.43
16 86.80 ± 0.28 86.13 ± 0.22 86.13 ± 0.25 86.40 ± 0.16
64 86.20 ± 0.33 87.27 ± 0.15 88.27 ± 0.34 87.87 ± 0.19

128 86.67 ± 0.19 87.60 ± 0.57 88.27 ± 0.21 88.47 ± 0.32
256 86.67 ± 0.19 87.93 ± 0.34 89.13 ± 0.27 88.73 ± 0.19

Table 5: Mean accuracy ± standard deviation over 3 runs with different seeds on MATH-500. The
highest mean accuracy for each sample count (n) is bolded.

A.7 Limitations

While our proposed adaptive strategies to optimize the verification granularity g based on overall
problem characteristics like difficulty and compute budget, a key limitation is that the chosen g
remains fixed throughout the generation process for a single problem instance. This approach does
not account for potential variations in reasoning complexity or generator confidence within different
stages of solving a single problem. A more sophisticated approach, potentially offering further
efficiency gains, would involve dynamically adjusting the granularity g on a step-by-step basis during
inference, adapting verification frequency based on real-time signals. Developing such fine-grained,
intra-problem adaptive granularity remains an important direction for future research.
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A.8 Case Study of VG-Search

Question: 

Compute: .

To compute the sum

, we can
group the terms in pairs.
Notice that the sequence can
be rewritten as:
48 tokens score: 0.9942

To compute the sum

, we can
observe the pattern and

group the terms in pairs. The

series can be rewritten as:
50 tokens score: 0.9949

To solve the problem

, we can observe
the pattern and break it down into
smaller, more manageable parts.
47 tokens score: 0.9894

To compute the sum

, we can
observe the pattern in the

series. The series alternates
between adding and

subtracting consecutive
integers. We can group the

terms in pairs to simplify the

calculation:
64 tokens score: 0.9965

36 tokens

Each pair 
for 
simplifies to . Therefore,
the sum of the series is:
51 tokens

Each pair of consecutive
terms sums to . Let's
determine how many such
pairs there are in the series.
Since the series starts at 1
and ends at 100, and each
pair consists of two terms,
the number of pairs is:
54 tokens

23 tokens score: 0.9776
17 tokens score: 0.9996

17 tokens score: 0.9996
(duplicated)

31 tokens score: 0.9813

Therefore, the sum of the
series is:
11 tokens

This is equivalent to:
7 tokens

16 tokens 16 tokens

So, the value of the sum

 is .

41 tokens score: 0.9991

So, the value of the sum

 is .

41 tokens score: 0.9991

Thus, the value of the sum is:
11 tokens score: 0.9950

Thus, the value of the sum

 is .

41 tokens score: 0.9963

11 tokens score: 0.9966

36 tokens

Answer: 

Figure 7: A case study of VG-Search. B1 = 4, B2 = 2, g = 3
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction accurately reflect the paper’s contributions,
evidenced by the following sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Appendix A.7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided our code as the supplementary material, as well as experi-
ment details and instructions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have provided our code as the supplementary material, as well as experi-
ment details and instructions.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided our code as the supplementary material, as well as experi-
ment details and instructions. We also describe experiment details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our main results do not contain randomness as we fixed the seed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

22

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have made the citations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: They are well documented.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs for method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Exploring Verification Granularity for Reasoning
	Verification Granularity in Verifier-Guided Search
	Variable-Granularity Search
	Compute Cost Model for Generator and Verifier

	Experiment Setup
	Understanding the Limits of the Verification Granularity Convention
	Test-Time Scaling Law with Verification Granularity
	Ablation Studies on Verifier Quality and Model Scale
	Trade-offs: Granularity, Verifier Parameter, and Branching
	Optimal Verification Granularity vs. Task Difficulty and Number of Samples

	Towards Adaptive Redefinition of the Verification Granularity
	Adaptive Granularity Strategies
	Practicality and Convergence of Optimal Granularity Search

	Related Work
	Conclusion
	Appendix
	Optimal Compute Allocation between Proposer and Verifier
	FLOPs Calculation using the Cost Model
	Experiment Details for VG-Search
	Evaluation with an Ensemble Verifier
	Applicability to Tasks with Outcome-Level Feedback
	Standard Deviation with Multiple Trials
	Limitations
	Case Study of VG-Search


