
Explaining Temporal Effects in Sepsis Prediction

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 Sepsis prediction models remain opaque to clinicians which hinder clinician adoption: without understanding why a patient is flagged as high-risk, accurate predictions may be ignored, delaying critical intervention. Existing explainability
2 methods focus on feature importance and often overlook timing, thus failing to
3 capture the temporal influences inherent in time-series data. We propose Positional
4 Explanation, which separates attributions into feature content and its position to
5 highlight temporal effects, enabling clinicians to identify early warning indicators
6 and monitor for specific physiological changes at critical time windows before sepsis
7 develops. Applied to GPT-2 and Mamba models finetuned for sepsis prediction
8 on PhysioNet and MC-MED benchmarks, our method achieves higher faithfulness
9 scores and reveals temporal patterns in sepsis progression that existing techniques
10 miss, potentially enabling earlier detection and improved patient outcomes.
11
12

13 1 Introduction

14 Sepsis is a leading cause of hospital mortality, primarily because it is often detected after irreversible
15 organ damage [Seymour et al., 2016]. While deep learning models can predict its onset with high
16 accuracy, they typically only signal that the risk of sepsis is high, not why [Yuan et al., 2020, Bomrah
17 et al., 2024]. This leaves a ‘lab-to-bedside’ gap: without understanding the subtle physiological
18 patterns that precede overt signs, clinicians cannot act on predictions early enough to save lives.

19 Explainable AI (XAI) methods have the potential to bridge this gap. Beyond fostering trust, these
20 methods can turn predictive models into tools for clinical discovery [Wong et al., 2021, Shashikumar
21 et al., 2021, Adams et al., 2022]. However, existing explanation methods are fundamentally
22 misaligned with the temporal nature of diseases like sepsis.

23 Sepsis is a disease of trajectory; a patient’s physiological trend over time—the when—is often more
24 diagnostically significant than any single measurement—the what [Zhu et al., 2023]. An elevated
25 heart rate, for instance, may signal danger when it appears early and persists, yet prove benign if
26 transient. Despite this temporal criticality, existing explanation methods like LIME [Ribeiro et al.,
27 2016] and Integrated Gradients [Sundararajan et al., 2017] only quantify feature importance, leaving
28 temporal dynamics unexplained.

29 This blind spot reflects a broader challenge in machine learning. Recent studies have shown that
30 modern deep learning architectures are highly sensitive to input order; even reordering elements in
31 a sequence can substantially change a model’s output [Liu et al., 2024, Wang et al., 2024]. This
32 positional sensitivity in general sequence modeling directly parallels the temporal sensitivity in
33 time-series applications like sepsis prediction. Yet current explanation methods cannot address the
34 fundamental question underlying temporal diagnosis: “Is this feature important because of its value,
35 or because of its timing?” Based on this, we argue that to bridge the trust gap, a clinically adequate
36 explanation must be able to separate the importance of ‘what’ (the feature itself) from ‘when’ (its
37 temporal effect).

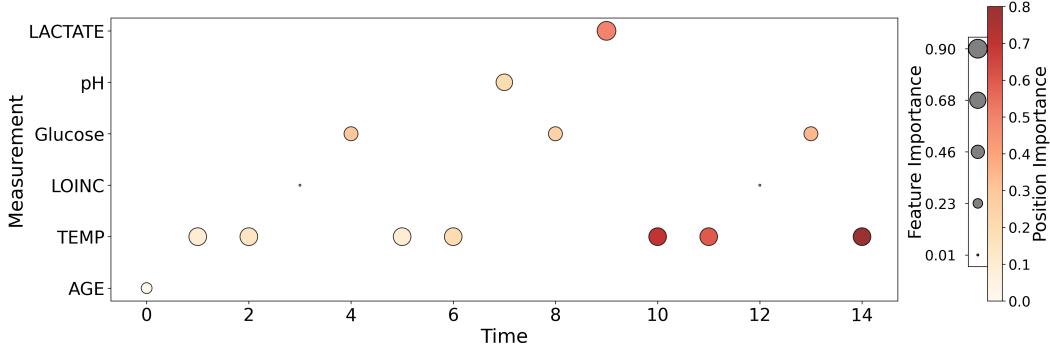


Figure 1: Feature content attribution score $\alpha^{(\text{feature})}$ and absolute position attribution score $\alpha^{(\text{position})}$ for a representative example from the PhysioNet dataset. The visualization demonstrates that feature importance and positional importance differ substantially: while TEMP measurements maintain consistent feature content attribution across time steps, their positional importance increases over time, indicating that there is a temporal effect of TEMP measurement importance for sepsis prediction.

38 To address this, we introduce **Positional Explanation**, a framework that decomposes the standard
 39 attribution score into two distinct components: (1) a **feature content score** reflecting its intrinsic
 40 clinical value, and (2) a **position score** that quantifies the importance of the temporal effect. We apply
 41 our framework to Mamba [Gu and Dao, 2024] and GPT-2 [Radford et al., 2019] models finetuned
 42 for early sepsis prediction, using the EHR data from PhysioNet [Reyna et al., 2020] and MC-MED
 43 [Kansal et al., 2025]. To summarize, our contributions are:

44 • We formalize a framework called Positional Explanation that decomposes attribution scores into
 45 feature and position effects for time-series data.
 46 • We demonstrate through quantitative experiments that our decomposition provides more faithful
 47 explanations than existing explanation methods.
 48 • We show that our framework identifies clinically relevant, time-dependent biomarkers missed by
 49 existing methods, offering more actionable insights for clinicians.

50 2 Related Work

51 The drive to deploy predictive models in high-stakes clinical settings has led to a surge in research on
 52 explainable AI (XAI) for medical time series data [Tonekaboni et al., 2019, Topol, 2019]. The primary
 53 goal is to move beyond black-box predictions and provide clinicians with transparent, trustworthy,
 54 and actionable insights, thereby fostering adoption and facilitating model auditing. This need is
 55 particularly acute in sepsis prediction, where timely and interpretable predictions can directly impact
 56 patient outcomes.

57 The dominant paradigm for explaining time-series models relies on post-hoc feature attribution
 58 methods that generate saliency maps. Foundational techniques like LIME [Ribeiro et al., 2016],
 59 SHAP [Lundberg and Lee, 2017], and Integrated Gradients [Sundararajan et al., 2017] are commonly
 60 adapted to clinical time series including sepsis prediction, assigning an importance score to each
 61 feature at each timestep [Shickel et al., 2017, Lauritsen et al., 2020]. More recent work has sought
 62 to create methods tailored specifically for time series, such as TimeSHAP [Bento et al., 2021] or
 63 Dynamask [Crabbé and van der Schaar, 2020], which aim to produce more faithful explanations
 64 by considering the temporal nature of the data. Other approaches generate explanations through
 65 counterfactuals—identifying what minimal changes to an input sequence would alter the model’s
 66 prediction [Goyal et al., 2021, Ismail and Günemann, 2021].

67 However, a critical and unaddressed limitation unites these methods: they treat each feature-timestep
 68 observation as an atomic unit. Consequently, the resulting attribution score—whether from a saliency
 69 map or a counterfactual—fundamentally conflates the importance of a feature’s content (the ‘what’)
 70 with the importance of its temporal position (the ‘when’). For instance, in sepsis prediction, a standard
 71 explanation cannot distinguish whether an elevated lactate reading is flagged because lactate is a
 72 clinically significant marker of sepsis or because the model has learned a spurious recency bias where

73 any observation in the final timestep is overweighted [Jain and Wallace, 2019, Ismail and Günnemann, 74 2021]. This entanglement prevents a deeper audit of the model’s temporal reasoning, which is crucial 75 for sepsis where the timing of physiological changes carries diagnostic significance.

76 This limitation is particularly striking given that modern sequence models, like the Transformer and 77 Mamba, explicitly separate content and position through distinct token and positional embeddings 78 [Vaswani et al., 2017, Gu and Dao, 2024]. While the model’s architecture maintains this separation—enabling it to learn both what features matter and when they matter—the explanation methods 80 used to interpret them do not. This is especially problematic for sepsis onset prediction, which is 81 fundamentally a temporal problem where understanding both the clinical markers and their temporal 82 evolution is essential for meaningful interpretation.

83 3 Positional Explanation

84 Feature attribution is the dominant paradigm for interpreting model behavior, assigning an importance 85 score to each input feature [Doshi-Velez and Kim, 2017]. Existing methods answer the question: 86 “Which features contributed most to the model’s prediction?” However, they conflate feature content 87 and positional effects, making it impossible to separate a feature’s semantic contribution from the 88 effect of its position.

89 Formally, consider a model $f : \mathcal{X} \rightarrow \mathcal{Y}$ and a single input instance $x \in \mathcal{X}$. Each component x_i of x 90 represents a specific feature of that input. An **explainer**, g , is a function that maps the model and 91 input instance to an attribution vector:

$$\alpha = g(f, x) \in \mathbb{R}^d \quad (1)$$

92 where d is the dimensionality of x . The entry α_i measures the combined influence of the i -th feature 93 content x_i and its position on the model’s prediction $f(x)$.

94 As shown in Equation (1), existing explainer g only requires f, x as input, with no positional information. 95 Consequently, existing methods cannot reveal positional effects. Perturbation-based 96 (LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee, 2017]) and gradient-based methods (Inte- 97 grated Gradients [Sundararajan et al., 2017]) attribute importance solely to feature values at fixed 98 positions, while decomposition-based approaches (FullGrad [Srinivas and Fleuret, 2019]) assign 99 relevance to features at their original locations. In all cases, attributions reflect feature influence only.

100 **Positional Explanation Framework.** We propose *Positional Explanation*, a framework to separate 101 feature content and positional contributions. It is general and compatible with any attribution method.

102 Given feature $x \in \mathcal{X}$ and position $p \in \mathcal{P}$, the framework outputs

$$\alpha = g(f, x, p) \in \mathbb{R}^{2d}, \quad (2)$$

103 which decomposes as

$$\alpha = (\alpha^{(\text{feature})}, \alpha^{(\text{position})}), \quad \alpha^{(\text{feature})} \in \mathbb{R}^d, \alpha^{(\text{position})} \in \mathbb{R}^d. \quad (3)$$

104 As shown in Equation (3), our framework explainer g requires f, x, p as input, meaning we are 105 also using p to show the positional influence for the prediction. Figure 1 shows the example of 106 highlighting $\alpha^{(\text{feature})}$ and $\alpha^{(\text{position})}$ for one example across timestamps. The interpretation of $\alpha^{(\text{feature})}$ 107 and $\alpha^{(\text{position})}$ are as follows:

- 108 1. **Feature Content Attribution** ($\alpha_i^{(\text{feature})}$): Measures the effect of perturbing x_i while keeping 109 p_i fixed. Answers: *How important is the feature content itself, given its location?*
- 110 2. **Absolute Position Attribution** ($\alpha_i^{(\text{position})}$): Measures the intrinsic value of p_i by comparing 111 contributions of x_i at its original versus random positions. Answers: *How important is this 112 location, independent of the feature content?*

113 **Positional-LIME as an Example.** To illustrate, consider LIME [Ribeiro et al., 2016]. Standard 114 LIME generates perturbed samples

$$z = m \odot x \in \mathbb{R}^d, \quad m_i \sim \text{Bernoulli}(0.5), \quad (4)$$

Table 1: Performance of GPT2 and Mamba on the MC-MED and Physionet datasets. The models achieve sufficiently high predictive performance on sepsis prediction tasks, making them suitable for subsequent analysis and explanation.

Dataset	Finetuned Model	Accuracy	F1	AUC	AUPRC
PhysioNet [Reyna et al., 2020]	GPT-2 [Radford et al., 2019]	0.8680	0.2048	0.7069	0.1802
	Mamba [Gu and Dao, 2024]	0.8930	0.0531	0.3509	0.0403
MC-MED [Kansal et al., 2025]	GPT-2 [Radford et al., 2019]	0.9490	0.1053	0.3536	0.0900
	Mamba [Gu and Dao, 2024]	0.8940	0.0536	0.3743	0.0443

115 where $m_i = 0$ zeros out x_i and $m_i = 1$ retains it. LIME then fits a weighted linear model

$$\alpha = g(f, x) = w \in \mathbb{R}^d, \quad (5)$$

116 so that each α_i reflects the local effect of x_i on $f(x)$.

117 In **Positional-LIME**, positions are treated as additional features. To avoid out-of-distribution issues
118 from zeroing positional embeddings, we instead randomize them:

$$z = m \odot (x, p) \in \mathbb{R}^{2d}, \quad m_i \sim \text{Bernoulli}(0.5), \quad (6)$$

119 where $m_i = 0$ indicates that the feature x_i is masked and the corresponding position p_i is replaced
120 with random positional embedding.

121 The resulting attributions

$$\alpha = g(f, x, p) = w \in \mathbb{R}^{2d} \quad (7)$$

122 can then be separated into feature and positional contributions:

$$\alpha = (\alpha^{(\text{feature})}, \alpha^{(\text{position})}), \quad \alpha^{(\text{feature})} \in \mathbb{R}^d, \alpha^{(\text{position})} \in \mathbb{R}^d. \quad (8)$$

123 **Generalization to Other Explainers.** More generally, this framework extends to any attribution
124 method (e.g., SHAP [Lundberg and Lee, 2017], Integrated Gradients [Sundararajan et al., 2017],
125 FullGrad [Srinivas and Fleuret, 2019], MFABA [Zhu et al., 2024]). By computing $\alpha^{(\text{feature})}$ and
126 $\alpha^{(\text{position})}$ separately, we separate feature content and positional contributions, providing a more
127 fine-grained understanding of model predictions.

128 4 Experiments

129 We evaluated GPT-2 small (124M) [Radford et al., 2019] and Mamba-130M [Gu and Dao, 2024] on
130 sepsis prediction tasks using the MC-MED [Kansal et al., 2025] and Physionet [Reyna et al., 2020]
131 datasets. For each model, we used pre-trained, fine-tuned checkpoints provided by the CareBench
132 benchmark [Choi et al., 2025] and assessed performance directly on the corresponding test sets.

133 Physionet is a widely used publicly available sepsis dataset containing only tabular EHR data, whereas
134 MC-MED provides more comprehensive information, including ECG and respiratory waveforms,
135 ventilator settings, medications, and per-minute vitals. Following the CareBench evaluation pro-
136 tocol [Choi et al., 2025], we adopted the benchmark’s sepsis labeling criteria and cohort selection
137 methodology, ensuring consistent preprocessing and evaluation conditions across both models and
138 datasets.

139 Table 1 summarizes model performance across four metrics: Accuracy (Acc), F1-score (F1), Area
140 Under the Receiver Operating Characteristic curve (AUC), and Area Under the Precision-Recall
141 Curve (AUPRC). Both models achieved strong predictive performance, establishing them as suitable
142 candidates for subsequent explanation analyses.

143 4.1 Faithfulness Test

144 We examine whether decomposing attributions into feature and positional components using our
145 *Positional Explanation* framework improves explanation faithfulness in clinical settings. This decom-
146 position enables differentiation between patients whose high risk stems from chronically abnormal
147 lab values and those whose risk arises from sudden, recent changes, supporting more targeted clinical
148 review.

Table 2: Insertion and deletion test results on the MC-MED and PhysioNet datasets using Positional-LIME for finetuned GPT-2 and Mamba models. The table reports Area Under the Curve (AUC) averaged over all examples. Using the feature component of Positional-LIME consistently outperforms feature-only attributions, and using the positional component consistently outperforms position-only attributions. This demonstrates that separating attributions into feature and positional components with our framework produces more faithful explanations.

(a) Insertion AUC (higher is better).

Dataset	Model	Feature-only	Position-only	PE-Feature	PE-Position	PE-Full	Random
PhysioNet	GPT-2	0.354	0.323	0.419	0.396	0.465	0.214
	Mamba	0.347	0.331	0.392	0.401	0.454	0.213
MC-MED	GPT-2	0.313	0.301	0.381	0.392	0.434	0.192
	Mamba	0.319	0.311	0.393	0.403	0.442	0.201

(b) Deletion AUC (lower is better).

Dataset	Model	Feature-only	Position-only	PE-Feature	PE-Position	PE-Full	Random
PhysioNet	GPT-2	0.020	0.016	0.008	0.007	0.002	0.110
	Mamba	0.021	0.019	0.011	0.007	0.001	0.102
MC-MED	GPT-2	0.007	0.032	0.006	0.011	0.005	0.226
	Mamba	0.072	0.113	0.066	0.053	0.045	0.199

149 To evaluate faithfulness, we conduct insertion and deletion tests and report average AUC scores. We
 150 compare six conditions: feature-only baseline, position-only baseline, PE-Feature (feature component
 151 from *Positional Explanation*), PE-Position (positional component from *Positional Explanation*),
 152 PE-Combined (both components from *Positional Explanation*), and a random baseline. Detailed
 153 descriptions of each approach are provided in Appendix B.

154 **Across Datasets and Models** Across datasets and models (further details on datasets and model
 155 setups are provided in Appendix A), PE-Feature consistently achieves higher insertion scores and
 156 lower deletion scores than Feature-only, while PE-Position achieves higher insertion and lower
 157 deletion scores than Position-only. Full insertion results are reported in Table 4a, and full deletion
 158 scores are reported in Table 4b. This demonstrates that separating feature and positional components
 159 results in more faithful attributions.

160 **Across Explainability Methods** We evaluate faithfulness across several explainability methods
 161 on the MC-MED dataset with GPT-2, comparing Feature-only (traditional perturbation), Position-
 162 only (position perturbation), PE-Feature (feature component of our *Positional Explanation*), and
 163 PE-Position (positional component of our *Positional Explanation*). The methods considered include
 164 LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee, 2017], Integrated Gradients [Sundararajan
 165 et al., 2017], FullGrad [Srinivas and Fleuret, 2019], and MFABA [Zhu et al., 2024] (see Appendix A.3
 166 for details).

167 Although we show results here only for PhysioNet with GPT-2, the trend is consistent across all
 168 methods: PE-Feature achieves higher insertion and lower deletion scores than Feature-only, and PE-
 169 Position achieves higher insertion and lower deletion scores than Position-only. These results indicate
 170 that separating feature and positional components consistently produces more faithful explanations,
 171 independent of the underlying attribution method.

172 4.2 Independence Test

173 We assessed whether feature ($\alpha^{(\text{feature})}$) and positional ($\alpha^{(\text{position})}$) attributions are linearly related per
 174 measurement using the Pearson correlation coefficient. A high correlation magnitude indicates a
 175 strong linear relationship, whereas a low magnitude suggests independence. Statistical significance
 176 was evaluated using p -values, representing the likelihood that an observed correlation occurred by
 177 chance (see Appendix C.1.1 for computation details).

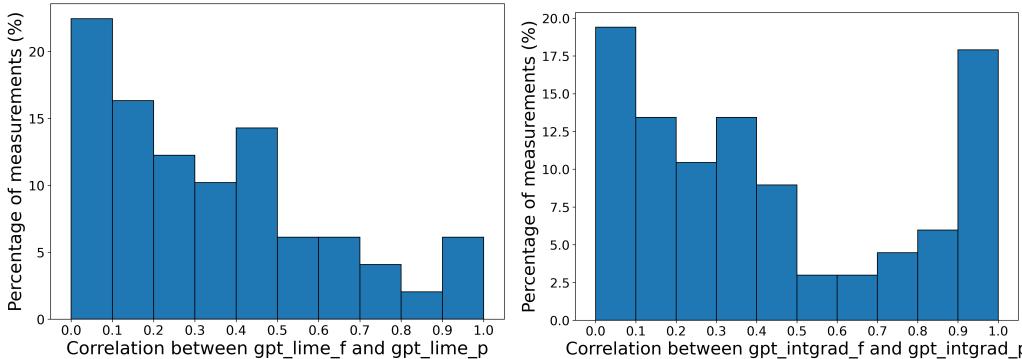
Table 3: Faithfulness comparison across explainability methods on PhysioNet using GPT-2. We report AUC for both insertion and deletion tests. Across methods, PE-Feature consistently outperforms Feature-only and PE-Position outperforms Position-only, showing that separating attributions into feature and positional components using our framework leads to more faithful explanations.

(a) Insertion AUC (higher is better).

Explanation Method	Feature-only	Position-only	PE-Feature	PE-Position
LIME [Ribeiro et al., 2016]	0.354	0.323	0.419	0.396
SHAP [Lundberg and Lee, 2017]	0.342	0.337	0.403	0.401
Integrated Gradients [Sundararajan et al., 2017]	0.361	0.346	0.427	0.412
FullGrad [Srinivas and Fleuret, 2019]	0.336	0.314	0.384	0.393
MFABA [Zhu et al., 2024]	0.351	0.325	0.417	0.402

(b) Deletion AUC (lower is better).

Explanation Method	Feature-only	Position-only	PE-Feature	PE-Position
LIME [Ribeiro et al., 2016]	0.020	0.016	0.008	0.007
SHAP [Lundberg and Lee, 2017]	0.019	0.018	0.007	0.008
Integrated Gradients [Sundararajan et al., 2017]	0.019	0.021	0.009	0.011
FullGrad [Srinivas and Fleuret, 2019]	0.017	0.019	0.010	0.010
MFABA [Zhu et al., 2024]	0.018	0.015	0.007	0.006



(a) Histogram of Correlations for measurements ap-spreading more than 5 times using LIME (b) Histogram of Correlations for measurements ap-spreading more than 5 times using Integrated Gradients

Figure 2: Histogram of absolute correlation between feature (f) and positional (p) attribution per measurement. From these two histograms of LIME and Integrated Gradients, we observe that some measurements are inherently time-correlated while others are not, and these patterns differ across explanation methods.

178 Figure 2 shows the distribution of absolute correlation values across measurements. The results
179 indicate variability in temporal dependence: some measurements strongly depend on time, while
180 others are largely independent.

181 Examples of temporal correlation analysis of measurements in the MC-MED dataset using GPT-2
182 with Position-LIME:

183 **High temporal correlation:** LABPTT, GLOBULIN, WAM DIFTYP, TEMP

184 **Low temporal correlation:** AGE, RACE, AST (SGOT), PLATELET COUNT (PLT)

185 These findings suggest that static variables (e.g., demographics, baseline labs) are generally position-
186 independent, whereas dynamic variables (e.g., coagulation tests, temperature) exhibit strong temporal
187 dependence. Full correlation values and p -values are reported in Appendix C.1.2.

188 To validate our hypothesis that separating attribution into feature and positional components is helps
189 identifying true temporal dependencies, we conduct an evaluation using a Large Language Model

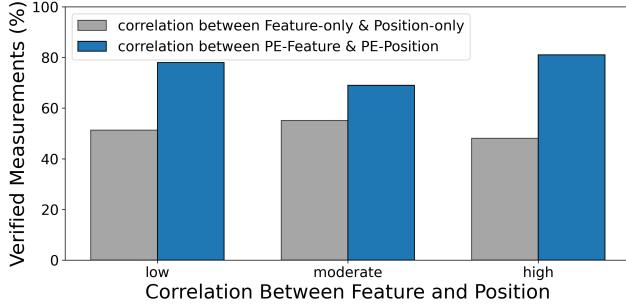


Figure 3: LLM verification accuracy for temporal correlation detection across different correlation bins. Our Positional Explanation (PE) framework, which correlates PE-Feature and PE-Position scores after separation, consistently outperforms the baseline method that directly correlates feature-only and position-only attributions. Higher verification accuracy across all bins demonstrates that decomposing attribution signals better identifies measurements with genuine temporal dependencies, helping clinicians distinguish between time-correlated and time-independent measurements.

190 (LLM) as a proxy for ground-truth verification. We compare two methods for measuring temporal
 191 correlations, with results presented in Figure 3.

192 The baseline uses correlation between feature-only and position-only attribution. We compare it
 193 to correlation between PE-Feature and PE-Position using our Positional Explanation framework.
 194 For evaluation, we group feature-position pairs into three bins based on their computed correlation
 195 scores: high correlation (correlation > 0.7), moderate correlation ($0.3 < \text{correlation} \leq 0.7$), and low
 196 correlation (correlation ≤ 0.3). Within each bin, we measure the LLM verification accuracy to assess
 197 how well our correlation scores align with LLM-verified temporal dependencies. The results show
 198 that our PE-based attribution consistently achieves higher verification rates across all correlation bins,
 199 demonstrating that separating the score improves the identification of features with genuine temporal
 200 effects and confirming the effectiveness of our method in detecting temporal correlations.

201 We also show qualitative result of what the LLM output for such correlation in Appendix C

202 4.3 Relevance Test

203 To evaluate the quality of feature attributions, we conducted a systematic comparison between traditional
 204 feature-only explanations and our Positional Explanation framework using LLM verification.
 205 We analyzed feature importance scores across clinical measurements to assess which method more
 206 accurately identifies clinically relevant features independent of temporal context.

207 For quantitative evaluation, we computed average feature importance scores across the entire dataset
 208 and organized features into three bins based on their attribution scores: high influence, moderate in-
 209 fluence, and low influence. The top 10 most influential measurements identified using our framework
 210 include: INFLUENZA B, NUR1373, ALBUMIN, POC16, KETONE: URINE (UA), SARS-COV-2
 211 RNA, MYCOPLASMA PNEUMONIAE, POC:POTASSIUM, POC:GLUCOSE BY METER, MAGNESIUM.

212 Figure 4 presents the LLM verification results comparing feature-only attributions (original expla-
 213 nation method that perturbs only features) against PE-Feature scores from our Positional Explanation
 214 framework (which perturbs both features and positions before extracting the feature component). The
 215 results demonstrate that our PE-Feature approach consistently achieves higher LLM verification accu-
 216 racy across all influence bins. This superior performance confirms that disentangling positional and
 217 feature effects produces more clinically meaningful feature attributions, enabling better identification
 218 of truly relevant measurements for clinical decision-making.

219 We also show qualitative result of what the LLM output for such feature was in Appendix D

220 5 Conclusion

221 We introduced the *Positional Explanation* framework, which separates standard feature attributions
 222 into *feature content* and *position* effects, enabling explanations that distinguish *what* drives a model’s

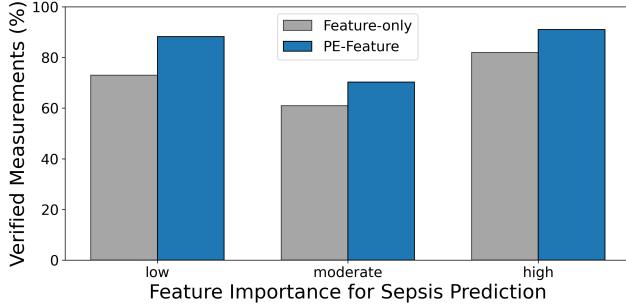


Figure 4: LLM verification accuracy for feature attribution methods. Our PE-Feature scores from the Positional Explanation framework achieve higher LLM verification accuracy compared to feature-only attributions, demonstrating improved feature attribution quality through separation.

223 prediction from *when* it is clinically significant. Applied to Mamba and GPT-2 models finetuned
 224 for sepsis prediction on PhysioNet and MC-MED datasets, our approach provides more faithful,
 225 temporally aware explanations than existing explanation methods, and identifies clinically relevant,
 226 time-dependent biomarkers that are otherwise overlooked. Importantly, Positional Explanation is
 227 model- and method-agnostic and can be applied to any feature attribution framework for any types of
 228 data including image, text, and time-series.

229 While these results are promising, broader clinical validation is necessary. Current evaluation
 230 relies primarily on LLM-based models. We will engage multiple clinicians specialized in sepsis to
 231 evaluate real-world interpretability, trust, and utility. To demonstrate generality, we plan to extend the
 232 framework to new models, develop scalable metrics for temporal effects, and integrate it into clinical
 233 decision support systems for timely, actionable alerts.

234 Overall, Positional Explanation provides a general, flexible framework for temporally aware explain-
 235 ability in clinical predictive modeling, bridging the gap between accurate prediction and actionable,
 236 time-sensitive insight.

237 References

238 Roy Adams, Kevin E. Henry, Anoop Sridharan, Heather Soleimani, Karandeep A. Zell, Chuan
 239 S. L. Tan, Jenna N. Wiens, Craig E. V. Barton, and Karandeep A. Singh. Prospective, multi-site
 240 study of a deep learning model for early detection of sepsis. *Nature Medicine*, 28(8):1649–1654,
 241 2022. doi: 10.1038/s41591-022-01894-0.

242 João Bento, Pedro Saleiro, Pedro Bizarro, and Mário A T Oliveira. Timeshap: Explaining recurrent
 243 models through time. In *2021 International Conference on Data Mining Workshops (ICDMW)*,
 244 pages 336–345. IEEE, 2021.

245 Sherali Bomrah, Mohy Uddin, Umashankar Upadhyay, Jyoti Priya, Eshita Dhar, Shih-Chang Hsu,
 246 and Shabir Syed-Abdul. A scoping review of machine learning for sepsis prediction- feature
 247 engineering strategies and model performance: a step towards explainability. *Critical Care*, 28:
 248 180, 2024.

249 Seewon Choi, Mayank Keoliya, Rajeev Alur, Mayur Naik, and Eric Wong. Carebench: Stable
 250 prediction of adverse events in medical time-series data, 2025.

251 Jonathan Crabbé and Mihaela van der Schaar. Explaining time series predictions with dy-
 252 namic masks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, edi-
 253 tors, *Advances in Neural Information Processing Systems*, volume 33, pages 1236–1247. Cur-
 254 ran Associates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/file/084a0c2053618953a0a65261394338d3-Paper.pdf>.

256 Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning,
 257 2017.

258 Yash Goyal, Been Kim Wu, and Joachim Ernst. Counterfactual explanations for time-series mod-
259 els. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, edi-
260 tors, *Advances in Neural Information Processing Systems*, volume 34, pages 1496–1508. Cur-
261 ran Associates, Inc., 2021. URL <https://proceedings.neurips.cc/paper/2021/file/0e64a7b12e34720385965191838b08cd-Paper.pdf>.

263 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
264 URL <https://arxiv.org/abs/2312.00752>.

265 Aaqib Ismail and Stephan Günnemann. Benchmarking deep learning interpretability in time series
266 predictions. *Advances in Neural Information Processing Systems*, 34:23605–23618, 2021.

267 Sarthak Jain and Byron C. Wallace. Attention is not explanation, 2019. URL <https://arxiv.org/abs/1902.10186>.

269 Anshul Kansal, Eric Chen, Billy T. Jin, et al. MC-MED, multimodal clinical monitoring in the
270 emergency department. *Scientific Data*, 12:1094, 2025. doi: 10.1038/s41597-025-05419-5.

271 Simon Meyer Lauritsen, Martin Kristensen, Mads Vincent Olsen, and Michael Stig Larsen. Explain-
272 able artificial intelligence model to predict acute critical illness from electronic health records.
273 *Nature Communications*, 11(1):3852, 2020.

274 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
275 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the
276 Association for Computational Linguistics*, 12:157–173, 2024. doi: 10.1162/tacl_a_00638.

277 Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In
278 *Proceedings of the 31st International Conference on Neural Information Processing Systems
(NIPS)*, pages 4768–4777, 2017.

280 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
281 models are unsupervised multitask learners. 2019.

282 Matthew A. Reyna, Christopher S. Josef, Russell Jeter, Supreeth P. Shashikumar, M. Brandon
283 Westover, Shamim Nemati, Gari D. Clifford, and Ashish Sharma. Early prediction of sepsis from
284 clinical data: the physionet/computing in cardiology challenge 2019. *Critical Care Medicine*, 48
285 (2):210–217, 2020.

286 Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust You?": Explaining the
287 Predictions of Any Classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference
288 on Knowledge Discovery and Data Mining*, pages 1135–1144, 2016.

289 Christopher W Seymour, Vincent X Liu, Theodore J Iwashyna, Frank M Brunkhorst, Thomas D
290 Rea, André Scherag, Gordon Rubenfeld, Jeremy M Kahn, Manu Shankar-Hari, Mervyn Singer,
291 Clifford S Deutschman, Gabriel J Escobar, and Derek C Angus. Assessment of clinical criteria
292 for sepsis: For the third international consensus definitions for sepsis and septic shock (sepsis-3).
293 *JAMA*, 315(8):762–774, 2016. doi: 10.1001/jama.2016.0288.

294 Supreeth P. Shashikumar, Gabriel Wardi, Atul Malhotra, and Shamim Nemati. Artificial intelligence
295 sepsis prediction algorithm learns to say "i don't know". *npj Digital Medicine*, 4(1):134, 2021.
296 doi: 10.1038/s41746-021-00504-6.

297 Benjamin Shickel, Patrick J Tighe, Azra Bihorac, and Parisa Rashidi. Deep ehr: A survey of recent
298 advances in deep learning for electronic health records. In *IEEE journal of biomedical and health
299 informatics*, volume 22, pages 1589–1604. IEEE, 2017.

300 Suraj Srinivas and François Fleuret. Full-gradient representation for neural network visualization. In
301 *Advances in Neural Information Processing Systems* 32, 2019.

302 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
303 *Proceedings of the 34th International Conference on Machine Learning (ICML)*, pages 3319–3328,
304 2017.

305 Sana Tonekaboni, Shalmali Joshi, Michael D McCradden, and Anna Goldenberg. What clinicians
306 want: a survey of explainable ai needs for clinical decision support. In *Proceedings of the 2019*
307 *CHI Conference on Human Factors in Computing Systems*, pages 1–13, 2019.

308 Eric J Topol. High-performance medicine: the convergence of human and artificial intelligence.
309 *Nature medicine*, 25(1):44–56, 2019.

310 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
311 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information*
312 *processing systems*, pages 5998–6008, 2017.

313 Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng Kong,
314 Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators. In Lun-
315 Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Proceedings of the 62nd Annual Meeting*
316 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 9440–9450.
317 Association for Computational Linguistics, 2024. doi: 10.18653/v1/2024.acl-long.511.

318 Andrew Wong, Erkin Otles, John P. Donnelly, Andrew Krumm, J. Michael McCullough, Olivia
319 DeTroyer-Cooley, Jennifer Pestru, M. Elizabeth Phillips, Justin Konye, Patrick J. Schulte, Mihir
320 A. Kora, Dmitriy A. Dligach, and Majid Afshar. External validation of a widely implemented
321 commercial sepsis prediction model in hospitalized patients. *JAMA Internal Medicine*, 181(8):
322 1065–1070, 2021. doi: 10.1001/jamainternmed.2021.2626.

323 Kuo-Ching Yuan, Lung-Wen Tsai, Ko-Han Lee, Yi-Wei Cheng, Shou-Chieh Hsu, Yu-Sheng Lo, and
324 Ray-Jade Chen. The development an artificial intelligence algorithm for early sepsis diagnosis in
325 the intensive care unit. *International Journal of Medical Informatics*, 141:104176, 2020.

326 Jia-Liang Zhu, Shi-Qi Yuan, Tao Huang, Lu-Ming Zhang, Xiao-Mei Xu, Hai-Yan Yin, Jian-Rui Wei,
327 and Jun Lyu. Influence of systolic blood pressure trajectory on in-hospital mortality in patients
328 with sepsis. *BMC Infectious Diseases*, 23(1):90, 2023.

329 Zhiyu Zhu, Huaming Chen, Jiayu Zhang, Xinyi Wang, Zhibo Jin, Minhui Xue, Dongxiao Zhu, and
330 Kim-Kwang Raymond Choo. Mfaba: A more faithful and accelerated boundary-based attribution
331 method for deep neural networks. *Proceedings of the AAAI Conference on Artificial Intelligence*,
332 38(15):17228–17236, 2024. doi: 10.1609/aaai.v38i15.29669.

333 A Experimental Setup

334 A.1 Dataset Description

335 A.1.1 Datasets

336 We utilize sepsis prediction datasets curated by CAREBench [Choi et al., 2025], which processes two
337 publicly available datasets: PhysioNet 2019 [Reyna et al., 2020] and MC-MED [Kansal et al., 2025].

338 **PhysioNet 2019** comprises over 40,000 ICU patients with up to 40 clinical variables recorded hourly,
339 totaling 2.5 million hourly time windows. The dataset includes vital signs, laboratory values, and
340 demographics in tabular format without physiological waveforms.

341 **MC-MED** contains 118,385 emergency department visits from 70,545 unique patients (2020–2022).
342 This dataset uniquely combines minute-level vital signs and continuous physiological waveforms
343 (ECG, photoplethysmogram, respiration) with comprehensive clinical data including demographics,
344 medical histories, medications, and laboratory results.

345 A.1.2 Sepsis Prediction Task Curation

346 CAREBench adapted the curation methodology to each dataset’s clinical setting and available data.

347 **PhysioNet 2019:** Sepsis labels were pre-defined using Sepsis-3 criteria, requiring both clinical
348 suspicion of infection (blood culture or IV antibiotic orders) and a two-point SOFA score change.

349 **MC-MED:** CAREBench implemented a two-stage process:

350 1. **At-Risk Cohort Selection** – Patients meeting all criteria:

351 • Admission source of ED

352 • Temperature $< 36^{\circ}\text{C}$ or $> 38.5^{\circ}\text{C}$ within 24 hours of admission (Temp_time)

353 • At least one of the following within 24 hours of admission:

354 ◦ WBC Count $> 12K$ or $< 4K/\mu\text{L}$ (WBC_time)

355 ◦ HR > 90 bpm (HR_time)

356 ◦ RR > 20 (RR_time)

357 • At least 1 of the WBC_time, HR_time, RR_time within 12 hours of Temp_time

358 • No intravenous antibiotic at or before the time of the first criteria met

359 2. **Sepsis Labeling** – Adapted Sepsis-3 definition for ED settings with $h = 1.5$ hour prediction

360 horizon. Positive labels assigned when emergency SOFA (eSOFA) criteria met:

361 • Presumed serious infection:

362 ◦ Blood culture obtained (regardless of the results)

363 ◦ ≥ 4 QADs starting within ± 2 days of blood_culture_day

364 • Any 1 of below within ± 2 days of blood_culture_day (acute organ dysfunction):

365 ◦ Vasopressor initiation

366 ◦ Initiation of mechanical ventilation

367 ◦ Doubling in serum creatinine level or decrease by $\geq 50\%$ of eGFR (excluding patients

368 with end-stage kidney disease [585.6])

369 ◦ Total bilirubin level $\geq 2.0\text{mg/dL}$ and doubling

370 ◦ Platelet count $< 100\text{ cells}/\mu\text{L}$ and $\geq 50\%$ decline from baseline (excluding baseline $<$

371 $100\text{ cells}/\mu\text{L}$)

372 ◦ Serum lactate $\geq 2.0\text{ mmol/L}$

373 **A.2 Model Description**

374 We employed GPT-2 (124M parameters) [Radford et al., 2019] and Mamba-130M [Gu and Dao,

375 2024], pre-trained language models fine-tuned for sepsis prediction using the CAREBench-curated

376 datasets.

377 **A.2.1 Model Architectures**

378 **GPT-2 Small:** A 124M parameter decoder-only transformer with 12 layers, 768 hidden dimensions,

379 and 12 attention heads. Its autoregressive architecture with causal self-attention naturally captures

380 temporal dependencies in patient trajectories, leveraging pre-trained sequential representations for

381 modeling physiological progression patterns.

382 **Mamba-130M:** A 130M parameter state-space model addressing transformer limitations in long-

383 sequence processing. Its selective state-space mechanism achieves linear complexity with sequence

384 length, enabling efficient processing of extended patient histories. The architecture’s continuous-time

385 formulation aligns naturally with physiological processes, offering advantageous inductive biases for

386 modeling sepsis dynamics.

387 **A.2.2 Training Configuration**

388 Following CAREBench methodology:

- 389 • **Custom Tokenization:** Dataset-specific tokenizers handle hospital-specific medical codes and
- 390 limited vocabulary
- 391 • **Training Duration:** 100 epochs ensuring convergence on limited medical data
- 392 • **Hyperparameter Selection:** Learning rate $\in \{1 \times 10^{-5}, 5 \times 10^{-5}, 1 \times 10^{-4}\}$ via validation
- 393 performance

394 This configuration enables effective adaptation from general language understanding to domain-

395 specific temporal patterns and medical terminology in sepsis prediction.

396 **A.3 Explanation Methods**

397 This section briefly describes the explanation methods employed in conjunction with our Positional
398 Explanation approach.

- 399 • **LIME (Local Interpretable Model-agnostic Explanations)** [Ribeiro et al., 2016] generates
400 local explanations for individual predictions by fitting an interpretable surrogate model (typically
401 linear) within the neighborhood of the target instance. The method creates perturbations around
402 the input sample and trains the surrogate model on these variations, with samples weighted by
403 their proximity to the original instance.
- 404 • **SHAP (SHapley Additive exPlanations)** [Lundberg and Lee, 2017] computes feature import-
405 tance scores based on cooperative game theory principles. Each feature receives an attribution
406 value representing its marginal contribution to the prediction relative to a baseline, with the
407 property that all attribution values sum to the difference between the model’s output and the
408 baseline prediction.
- 409 • **Integrated Gradients (IntGrad)** [Sundararajan et al., 2017] computes feature attributions by
410 integrating gradients along a linear path from a baseline input to the target input. This path
411 integral approach ensures satisfaction of fundamental attribution axioms, including sensitivity
412 and implementation invariance.
- 413 • **FullGrad** [Srinivas and Fleuret, 2019] extends standard gradient-based attribution by incorpo-
414 rating gradient information from all network layers. The method aggregates input gradients with
415 bias gradients across all intermediate representations, providing more comprehensive attribution
416 maps that capture multi-layer feature interactions.
- 417 • **MFABA (More Faithful and Accelerated Boundary-based Attribution)** [Zhu et al., 2024]
418 computes attributions by constructing paths from input samples to adversarial examples that
419 cross the model’s decision boundary. The method employs second-order Taylor approximations
420 to better model loss function changes during gradient ascent optimization.

421 **B Additional Faithfulness Test Results**

422 This section presents comprehensive results from our insertion and deletion experiments across all
423 experimental configurations. We systematically evaluate faithfulness across two datasets (PhysioNet
424 and MC-MED), two transformer architectures (GPT-2 and Mamba), and five explanation methods
425 (LIME, SHAP, Integrated Gradients, FullGrad, MFABA).

426 **B.1 Faithfulness Test Experimental Setup**

427 For each explanation method, we compare five attribution approaches:

- 428 • **Feature-only**: Traditional perturbation-based explanations
- 429 • **Position-only**: Positional explanation perturbing only position
- 430 • **PE-Feature**: Feature component of our *Positional Explanation* framework
- 431 • **PE-Position**: Position component of our *Positional Explanation* framework
- 432 • **PE-Full**: Both feature and position components of our *Positional Explanation* framework
- 433 • **Random**: Baseline for comparison

434 We employ two complementary faithfulness metrics: insertion tests (where higher AUC indicates
435 better faithfulness) and deletion tests (where lower AUC indicates better faithfulness).

436 **B.2 Key Findings**

437 The results demonstrate consistent improvements in explanation faithfulness when separating posi-
438 tional and feature components:

439 **Insertion Test Performance.** Our positional explanation components (PE-Feature and PE-Position)
440 consistently outperform their traditional counterparts (Feature-only and Position-only) across all
441 experimental configurations. PE-Feature achieves higher AUC scores than Feature-only, while
442 PE-Position surpasses Position-only, indicating more faithful identification of important features.

443 **Deletion Test Performance.** The superiority of our approach is further confirmed in deletion
 444 tests, where PE-Feature consistently achieves lower AUC scores than Feature-only, and PE-Position
 445 outperforms Position-only. Lower scores in deletion tests indicate that removing highly-attributed
 446 features causes greater performance degradation, confirming these features are indeed more important
 447 for model predictions.

448 **Cross-Architecture and Cross-Method Consistency.** The improvements hold across both GPT-
 449 2 and Mamba architectures, as well as different explanation methods including gradient-based
 450 attribution, attention-based explanations, and perturbation-based approaches, demonstrating the broad
 451 generalizability of our positional explanation approach.

452 **B.3 Detailed Results**

453 Tables 4a and 4b present the complete faithfulness evaluation results across all experimental configu-
 454 rations. The insertion test results demonstrate the ability of each method to identify truly important
 455 features, while the deletion test results show how effectively each method identifies features whose
 456 removal significantly impacts model performance. These comprehensive results validate our theoreti-
 457 cal framework and demonstrate the practical benefits of separating positional and feature attributions
 458 in transformer explanations.

459 **C Additional Independence Test Results**

460 **C.1 Independence Test Analysis**

461 This section presents the complete results from our independence test analysis, expanding on the
 462 verification scores reported in Section 4.2.

463 **C.1.1 Measurements**

464 The correlation was measured using the Pearson correlation coefficient:

$$r = \frac{\sum_{i=1}^n (\alpha_i^{(\text{feature})} - \bar{\alpha}^{(\text{feature})})(\alpha_i^{(\text{position})} - \bar{\alpha}^{(\text{position})})}{\sqrt{\sum_{i=1}^n (\alpha_i^{(\text{feature})} - \bar{\alpha}^{(\text{feature})})^2} \sqrt{\sum_{i=1}^n (\alpha_i^{(\text{position})} - \bar{\alpha}^{(\text{position})})^2}}, \quad (9)$$

465 where $r \in [-1, 1]$, $\bar{\alpha}^{(\text{feature})}$ is the mean feature attribution, and $\bar{\alpha}^{(\text{position})}$ is the mean positional
 466 attribution. Values of r close to 1 or -1 indicate strong positive or negative correlation, while values
 467 near 0 suggest little to no linear relationship.

468 To assess statistical significance, we tested the null hypothesis:

$$H_0 : r = 0 \quad (\text{feature and positional attributions are uncorrelated}).$$

469 The corresponding p -value quantifies the probability of observing a correlation at least as extreme as
 470 the measured r under H_0 . At the $\alpha = 0.05$ significance level,

- 471 • If $p < 0.05$: we reject H_0 , concluding significant correlation.
- 472 • If $p \geq 0.05$: we fail to reject H_0 , finding no clear evidence of correlation.

473 **C.1.2 Temporal Correlation Patterns**

474 Our analysis identified distinct patterns in temporal correlation across different medical measurements:

475 **Examples of independent features** (low correlation, high p -value) using Positional-LIME on the
 476 MC-MED dataset with GPT-2 included:

- 477 • AGE: correlation = 0.0244, $p = 0.9020$
- 478 • RACE: correlation = -0.0330, $p = 0.8675$
- 479 • AST (SGOT): correlation = -0.0082, $p = 0.9668$
- 480 • PLATELET COUNT (PLT): correlation = 0.0301, $p = 0.8888$

481 **Examples of independent features** (low correlation, high p -value) using Positional-LIME on the
 482 MC-MED dataset with GPT-2 included:

Table 4: Our Positional Explanation (PE) framework consistently outperforms traditional attribution methods. PE-Feature and PE-Position achieve higher insertion AUC and lower deletion AUC than their Feature-only and Position-only counterparts, confirming more faithful identification of important features. The improvements hold across both GPT-2 and Mamba architectures and multiple explanation methods. PE = Positional Explanation, Feat = Feature, Pos = Position.

(a) Insertion test results (AUC). Higher values indicate more faithful performance.

Dataset	Model	Explanation	Feat-only	Pos-only	PE-Feat	PE-Pos	PE-Full	Random
PhysioNet	GPT-2	LIME	0.354	0.323	0.419	0.396	0.465	0.214
		SHAP	0.342	0.337	0.403	0.401	0.452	0.209
		IntGrad	0.361	0.346	0.427	0.412	0.478	0.221
		FullGrad	0.336	0.314	0.384	0.393	0.443	0.215
		MFABA	0.351	0.325	0.417	0.402	0.461	0.208
	Mamba	LIME	0.347	0.331	0.392	0.401	0.454	0.213
		SHAP	0.352	0.323	0.415	0.395	0.463	0.207
		IntGrad	0.364	0.348	0.431	0.416	0.472	0.226
		FullGrad	0.338	0.312	0.393	0.382	0.445	0.218
		MFABA	0.353	0.334	0.422	0.404	0.460	0.202
MC-MED	GPT-2	LIME	0.313	0.301	0.381	0.392	0.434	0.192
		SHAP	0.321	0.314	0.392	0.403	0.446	0.207
		IntGrad	0.332	0.322	0.413	0.421	0.461	0.215
		FullGrad	0.303	0.296	0.375	0.384	0.421	0.194
		MFABA	0.324	0.312	0.401	0.395	0.452	0.203
	Mamba	LIME	0.319	0.311	0.393	0.403	0.442	0.201
		SHAP	0.331	0.322	0.414	0.411	0.451	0.214
		IntGrad	0.339	0.336	0.421	0.432	0.463	0.223
		FullGrad	0.312	0.303	0.382	0.391	0.433	0.208
		MFABA	0.330	0.321	0.412	0.410	0.450	0.212

(b) Deletion test results (AUC). Lower values indicate more faithful performance.

Dataset	Model	Explanation	Feat-only	Pos-only	PE-Feat	PE-Pos	PE-Full	Random
PhysioNet	GPT-2	LIME	0.020	0.016	0.008	0.007	0.002	0.110
		SHAP	0.019	0.018	0.007	0.008	0.003	0.102
		IntGrad	0.019	0.021	0.009	0.011	0.005	0.112
		FullGrad	0.017	0.019	0.010	0.010	0.004	0.111
		MFABA	0.018	0.015	0.007	0.006	0.002	0.109
	Mamba	LIME	0.021	0.019	0.011	0.007	0.001	0.102
		SHAP	0.021	0.018	0.012	0.007	0.002	0.103
		IntGrad	0.011	0.011	0.008	0.009	0.003	0.111
		FullGrad	0.010	0.012	0.007	0.008	0.001	0.113
		MFABA	0.020	0.017	0.010	0.006	0.001	0.100
MC-MED	GPT-2	LIME	0.007	0.032	0.006	0.011	0.005	0.226
		SHAP	0.011	0.024	0.010	0.013	0.006	0.228
		IntGrad	0.053	0.103	0.037	0.077	0.035	0.218
		FullGrad	0.049	0.098	0.036	0.064	0.032	0.220
		MFABA	0.022	0.030	0.014	0.012	0.015	0.225
	Mamba	LIME	0.072	0.113	0.066	0.053	0.045	0.199
		SHAP	0.085	0.116	0.058	0.056	0.046	0.201
		IntGrad	0.089	0.102	0.047	0.057	0.033	0.204
		FullGrad	0.086	0.098	0.046	0.055	0.031	0.206
		MFABA	0.071	0.111	0.065	0.052	0.044	0.200

483 • LABPTT: correlation = 0.9080, $p = 1.11\text{e-}04$
484 • GLOBULIN: correlation = 0.9061, $p = 3.90\text{e-}05$
485 • WAM DIFTYP: correlation = 0.8447, $p = 2.15\text{e-}03$
486 • TEMP: correlation = 0.6659, $p = 3.55\text{e-}02$

Gemini 2.5 pro

Measurements with High Temporal Correlation

- **LABPTT:** This is a measure of blood clotting time, often monitored frequently for patients on anti-coagulant therapy (like heparin). The value at time t is highly predictive of the value at $t+\Delta t$ because therapeutic adjustments are made based on current levels, creating a continuous, closely tracked time-series.
- **GLOBULIN:** Globulin levels in the blood change in response to underlying physiological processes (e.g., inflammation, liver function) that evolve over hours to days. This creates a relatively smooth, slow-moving signal where consecutive measurements are strongly related.
- **WAM DIFTYP:** This probably refers to a component of the white blood cell count. These counts rise and fall in response to events like infection. The biological process is not instantaneous, leading to strong temporal dependence in measurements taken hours or days apart.
- **TEMP:** Body temperature is a classic example of a high-frequency physiological signal. It has inherent patterns (circadian rhythm) and responds dynamically to illness (fever). A measurement at one moment is a very strong predictor of the temperature a few minutes or even an hour later.

Measurements with Low Temporal Correlation

- **AGE:** Age is a static or near-static feature within the context of most data collection periods (e.g., a hospital stay). Since it doesn't change, it has no dynamic temporal pattern for a model to learn from. From a signal processing standpoint, a constant signal has perfect autocorrelation, but from a feature importance perspective, its lack of change means it offers no evolving temporal information. Thus, classifying it as "low" makes sense in this context.
- **RACE:** This is a static demographic feature. It is constant for an individual and has no temporal variability.
- **AST (SGOT):** AST is a liver enzyme that changes in response to liver injury or stress. These changes typically occur over hours to days, creating a clinically meaningful trend. While it doesn't fluctuate as rapidly as temperature, a measurement today is certainly informative for predicting the measurement tomorrow. It's not a static value and its trend is often a critical diagnostic signal.
- **PLATELET COUNT (PLT):** Platelet levels are dynamic and change over days in response to bleeding, infection, or bone marrow conditions. The trajectory of platelet counts is a crucial clinical indicator. The value is not static and exhibits significant temporal dependence, even if it's less "high-frequency" than vital signs.

Figure 5: Feature temporal correlation analysis for sepsis prediction using Gemini 2.5 pro. Features are categorized into High, Moderate, and Low time-correlated groups, reflecting progression markers, intermediate trends, and condition markers, respectively, as verified using the prompt shown in fig. 9.

487 These findings suggest that certain static variables (e.g., demographics, baseline labs) remain position-
488 independent, while dynamic variables (e.g., coagulation tests, temperature) exhibit strong temporal
489 dependence.

490 C.2 LLM Verification Results

491 To validate our independence test findings, we employed large language models for additional
492 verification. The detailed outputs from both Gemini and GPT models are presented below.

493 **LLM Analysis.** Figures 5 and 6 show the comprehensive LLM evaluation results for feature
494 independence assessment.

495 D Additional Relevance Test Results

496 We analyzed which clinical measurements contribute most to model predictions, independent of
497 temporal context. For each measurement, we computed the average feature importance across the
498 entire dataset and identified the top 10 most influential features:

499 **INFLUENZA B, NUR1373, ALBUMIN, POC16, KETONE: URINE (UA), SARS-COV-2 RNA,**
500 **MYCOPLASMA PNEUMONIAE, POC:KETONE, POC:GLUCOSE BY METER, MAGNESIUM.**

501 **LLM Analysis.** We show the llm outputs for feature relevance test in Figure 7 and 8.

GPT-5

Measurements with High Temporal Correlation

- **LABPTT:** Typically shows continuous adjustment (e.g., heparin titration), so strong serial dependence.
- **GLOBULIN:** Usually slow drift, limited short-term serial structure.
- **WAM DIFTYP:** Infections/inflammation often produce evolving patterns (neutrophil/lymphocyte shifts) rather than single jumps.
- **TEMP:** Shows smooth-ish rises/falls and circadian/fever cycles.

Measurements with Low Temporal Correlation

- **AGE:** Static.
- **RACE:** Static.
- **AST (SGOT):** Often flat until an insult, then spikes—step-like, so low smooth serial correlation.
- **PLATELET COUNT (PLT):** Frequently stable then precipitous drop; jumpy/change-point behavior. Low smooth correlation.

Figure 6: Feature temporal correlation analysis for sepsis prediction using GPT 5. Features are categorized into High, Moderate, and Low time-correlated groups, reflecting progression markers, intermediate trends, and condition markers, respectively, as verified using the prompt shown in fig. 9.

Gemini 2.5 pro

Pathogens and Infectious Triggers Sepsis is fundamentally a dysregulated host response to an infection. Therefore, identifying the causative pathogen is a powerful predictor.

- **SARS-COV-2 RNA, INFLUENZA B, and MYCOPLASMA PNEUMONIAE:** These directly identify the infectious agent. Severe viral infections (like COVID-19 and Influenza) can lead to viral sepsis or predispose a patient to a secondary bacterial infection. Atypical bacteria like *Mycoplasma pneumoniae* are common causes of pneumonia, which is a leading trigger for sepsis.

Core Biomarkers of Systemic Illness These lab values reflect the widespread physiological chaos caused by the septic response, such as inflammation, metabolic derangement, and organ dysfunction.

- **ALBUMIN:** Low albumin (hypoalbuminemia) is a classic and very strong predictor of poor outcomes in sepsis. It reflects the severity of the systemic inflammatory response and a state of negative protein balance.
- **POC:GLUCOSE BY METER:** High glucose (stress hyperglycemia) is extremely common in critically ill patients. It's a result of the body's stress response and is associated with worse outcomes in sepsis.
- **POC:POTASSIUM and MAGNESIUM:** Electrolyte abnormalities are hallmarks of organ dysfunction in sepsis, particularly Acute Kidney Injury (AKI).
- **KETONE: URINE (UA):** The presence of ketones can indicate metabolic acidosis, a sign of severe metabolic stress and shock.

Figure 7: Feature influence analysis on sepsis prediction using Gemini 2.5 Pro. Features are categorized into High, Moderate, and Low influence based on their impact on model predictions, as verified using the prompt shown in fig. 10.

502 E Prompt

503 We provide the prompts used to verify our model analyses using large language models (LLMs),
504 specifically Gemini 2.5 Pro and GPT-5 Mini.

505 **Independence Test Prompt.** This prompt is designed to verify the results of the independence test,
506 assessing whether features are statistically independent. The full prompt is shown in fig. 9.

507 **Relevance Test Prompt.** This prompt is used to verify the results regarding the influence of each
508 feature, evaluating their impact on the model's predictions. The full prompt is shown in fig. 10.

GPT-5 mini

Features with Established Importance

- **Influenza B:** While specific studies on Influenza B's role in sepsis prediction are limited, respiratory viral infections, including influenza, have been associated with sepsis. Differentiating between influenza and *Mycoplasma pneumoniae* infections using peripheral blood routine parameters has shown diagnostic value, with an AUC of 0.845.
- **Albumin:** Hypoalbuminemia is a recognized marker of systemic inflammation and poor nutritional status, both relevant in sepsis. Low albumin levels have been linked to increased mortality in sepsis patients.
- **SARS-CoV-2 RNA:** COVID-19 has been associated with sepsis in some patients. Laboratory abnormalities in COVID-19 patients, particularly in coagulation function, have been related to the occurrence of sepsis.
- **Mycoplasma pneumoniae:** This pathogen can cause respiratory infections that may progress to sepsis. Studies differentiating influenza and *Mycoplasma pneumoniae* infections show its diagnostic relevance.
- **POC: Potassium:** Electrolyte imbalances, including abnormal potassium levels, are common in sepsis and can impact cardiac and muscular function.
- **POC: Glucose by Meter:** Hyperglycemia is frequently observed in sepsis and is associated with worse outcomes. Elevated blood glucose levels are primary risk factors for poor outcomes in various conditions.
- **Magnesium:** Hypomagnesemia has been linked to increased mortality in sepsis patients, suggesting its potential role as a prognostic marker.

Features with Limited or Unclear Importance

- **Ketone: Urine (UA):** While ketonuria can indicate metabolic disturbances such as diabetic ketoacidosis, its role in sepsis prediction is not well-established in the literature.

Figure 8: Feature influence analysis on sepsis prediction using ChatGPT-5 Mini. Features are categorized into High, Moderate, and Low influence based on their impact on model predictions, as verified using the prompt shown in fig. 10.

Prompt

You will be provided with results from our explainability method, which categorizes features based on their temporal correlation into three groups: High Time-Correlated Features, Moderate Time-Correlated Features, and Low Time-Correlated Features.

For each feature:

- Indicate whether you agree that the feature belongs in its assigned temporal correlation group.
- Briefly justify your agreement or disagreement based on reasoning about temporal patterns.

Here are the feature groups:

Figure 9: Prompt template for verifying feature temporal correlation group assignment.

Prompt

You are an expert in sepsis prediction. We have categorized features based on their impact on sepsis prediction into High, Moderate, and Low influence.

For each feature:

- Indicate whether you agree with the feature's assigned impact group.
- Briefly justify your agreement or disagreement based on reasoning about its role in sepsis prediction.

Here are the features:

Figure 10: Prompt template for verifying feature influence on sepsis prediction.