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Abstract

Sepsis prediction models remain opaque to clinicians which hinder clinician adop-1

tion: without understanding why a patient is flagged as high-risk, accurate pre-2

dictions may be ignored, delaying critical intervention. Existing explainability3

methods focus on feature importance and often overlook timing, thus failing to4

capture the temporal influences inherent in time-series data. We propose Positional5

Explanation, which separates attributions into feature content and it’s position to6

highlight temporal effects, enabling clinicians to identify early warning indicators7

and monitor for specific physiological changes at critical time windows before sep-8

sis develops. Applied to GPT-2 and Mamba models finetuned for sepsis prediction9

on PhysioNet and MC-MED benchmarks, our method achieves higher faithfulness10

scores and reveals temporal patterns in sepsis progression that existing techniques11

miss, potentially enabling earlier detection and improved patient outcomes.12

1 Introduction13

Sepsis is a leading cause of hospital mortality, primarily because it is often detected after irreversible14

organ damage [Seymour et al., 2016]. While deep learning models can predict its onset with high15

accuracy, they typically only signal that the risk of sepsis is high, not why [Yuan et al., 2020, Bomrah16

et al., 2024]. This leaves a ‘lab-to-bedside’ gap: without understanding the subtle physiological17

patterns that precede overt signs, clinicians cannot act on predictions early enough to save lives.18

Explainable AI (XAI) methods have the potential to bridge this gap. Beyond fostering trust, these19

methods can turn predictive models into tools for clinical discovery [Wong et al., 2021, Shashiku-20

mar et al., 2021, Adams et al., 2022]. However, existing explanation methods are fundamentally21

misaligned with the temporal nature of diseases like sepsis.22

Sepsis is a disease of trajectory; a patient’s physiological trend over time—the when—is often more23

diagnostically significant than any single measurement—the what [Zhu et al., 2023]. An elevated24

heart rate, for instance, may signal danger when it appears early and persists, yet prove benign if25

transient. Despite this temporal criticality, existing explanation methods like LIME [Ribeiro et al.,26

2016] and Integrated Gradients [Sundararajan et al., 2017] only quantify feature importance, leaving27

temporal dynamics unexplained.28

This blind spot reflects a broader challenge in machine learning. Recent studies have shown that29

modern deep learning architectures are highly sensitive to input order; even reordering elements in30

a sequence can substantially change a model’s output [Liu et al., 2024, Wang et al., 2024]. This31

positional sensitivity in general sequence modeling directly parallels the temporal sensitivity in32

time-series applications like sepsis prediction. Yet current explanation methods cannot address the33

fundamental question underlying temporal diagnosis: “Is this feature important because of its value,34

or because of its timing?" Based on this, we argue that to bridge the trust gap, a clinically adequate35

explanation must be able to separate the importance of ‘what’ (the feature itself) from ‘when’ (its36

temporal effect).37
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Figure 1: Feature content attribution score α(feature) and absolute position attribution score α(position)

for a representative example from the PhysioNet dataset. The visualization demonstrates that feature
importance and positional importance differ substantially: while TEMP measurements maintain
consistent feature content attribution across time steps, their positional importance increases over time,
indicating that there is a temporal effect of TEMP measurement importance for sepsis prediction.

To address this, we introduce Positional Explanation, a framework that decomposes the standard38

attribution score into two distinct components: (1) a feature content score reflecting its intrinsic39

clinical value, and (2) a position score that quantifies the importance of the temporal effect. We apply40

our framework to Mamba [Gu and Dao, 2024] and GPT-2 [Radford et al., 2019] models finetuned41

for early sepsis prediction, using the EHR data from PhysioNet [Reyna et al., 2020] and MC-MED42

[Kansal et al., 2025]. To summarize, our contributions are:43

• We formalize a framework called Positional Explanation that decomposes attribution scores into44

feature and position effects for time-series data.45

• We demonstrate through quantitative experiments that our decomposition provides more faithful46

explanations than existing explanation methods.47

• We show that our framework identifies clinically relevant, time-dependent biomarkers missed by48

existing methods, offering more actionable insights for clinicians.49

2 Related Work50

The drive to deploy predictive models in high-stakes clinical settings has led to a surge in research on51

explainable AI (XAI) for medical time series data [Tonekaboni et al., 2019, Topol, 2019]. The primary52

goal is to move beyond black-box predictions and provide clinicians with transparent, trustworthy,53

and actionable insights, thereby fostering adoption and facilitating model auditing. This need is54

particularly acute in sepsis prediction, where timely and interpretable predictions can directly impact55

patient outcomes.56

The dominant paradigm for explaining time-series models relies on post-hoc feature attribution57

methods that generate saliency maps. Foundational techniques like LIME [Ribeiro et al., 2016],58

SHAP [Lundberg and Lee, 2017], and Integrated Gradients [Sundararajan et al., 2017] are commonly59

adapted to clinical time series including sepsis prediction, assigning an importance score to each60

feature at each timestep [Shickel et al., 2017, Lauritsen et al., 2020]. More recent work has sought61

to create methods tailored specifically for time series, such as TimeSHAP [Bento et al., 2021] or62

Dynamask [Crabbé and van der Schaar, 2020], which aim to produce more faithful explanations63

by considering the temporal nature of the data. Other approaches generate explanations through64

counterfactuals—identifying what minimal changes to an input sequence would alter the model’s65

prediction [Goyal et al., 2021, Ismail and Günnemann, 2021].66

However, a critical and unaddressed limitation unites these methods: they treat each feature-timepoint67

observation as an atomic unit. Consequently, the resulting attribution score—whether from a saliency68

map or a counterfactual—fundamentally conflates the importance of a feature’s content (the ‘what’)69

with the importance of its temporal position (the ‘when’). For instance, in sepsis prediction, a standard70

explanation cannot distinguish whether an elevated lactate reading is flagged because lactate is a71

clinically significant marker of sepsis or because the model has learned a spurious recency bias where72
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any observation in the final timestep is overweighted [Jain and Wallace, 2019, Ismail and Günnemann,73

2021]. This entanglement prevents a deeper audit of the model’s temporal reasoning, which is crucial74

for sepsis where the timing of physiological changes carries diagnostic significance.75

This limitation is particularly striking given that modern sequence models, like the Transformer and76

Mamba, explicitly separate content and position through distinct token and positional embeddings77

[Vaswani et al., 2017, Gu and Dao, 2024]. While the model’s architecture maintains this separa-78

tion—enabling it to learn both what features matter and when they matter—the explanation methods79

used to interpret them do not. This is especially problematic for sepsis onset prediction, which is80

fundamentally a temporal problem where understanding both the clinical markers and their temporal81

evolution is essential for meaningful interpretation.82

3 Positional Explanation83

Feature attribution is the dominant paradigm for interpreting model behavior, assigning an importance84

score to each input feature [Doshi-Velez and Kim, 2017]. Existing methods answer the question:85

“Which features contributed most to the model’s prediction?" However, they conflate feature content86

and positional effects, making it impossible to separate a feature’s semantic contribution from the87

effect of its position.88

Formally, consider a model f : X → Y and a single input instance x ∈ X . Each component xi of x89

represents a specific feature of that input. An explainer, g, is a function that maps the model and90

input instance to an attribution vector:91

α = g(f, x) ∈ Rd (1)

where d is the dimensionality of x. The entry αi measures the combined influence of the i-th feature92

content xi and its position on the model’s prediction f(x).93

As shown in Equation (1), existing explainer g only requires f, x as input, with no positional in-94

formation. Consequently, existing methods cannot reveal positional effects. Perturbation-based95

(LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee, 2017]) and gradient-based methods (Inte-96

grated Gradients [Sundararajan et al., 2017]) attribute importance solely to feature values at fixed97

positions, while decomposition-based approaches (FullGrad [Srinivas and Fleuret, 2019]) assign98

relevance to features at their original locations. In all cases, attributions reflect feature influence only.99

Positional Explanation Framework. We propose Positional Explanation, a framework to separate100

feature content and positional contributions. It is general and compatible with any attribution method.101

Given feature x ∈ X and position p ∈ P , the framework outputs102

α = g(f, x, p) ∈ R2d, (2)

which decomposes as103

α = (α(feature), α(position)), α(feature) ∈ Rd, α(position) ∈ Rd. (3)

As shown in Equation (3), our framework explainer g requires f, x, p as input, meaning we are104

also using p to show the positional influence for the prediction. Figure 1 shows the example of105

highlighting α(feature) and α(position) for one example across timestamps. The interpretation of α(feature)106

and α(position) are as follows:107

1. Feature Content Attribution (α(feature)
i ): Measures the effect of perturbing xi while keeping108

pi fixed. Answers: How important is the feature content itself, given its location?109

2. Absolute Position Attribution (α(position)
i ): Measures the intrinsic value of pi by comparing110

contributions of xi at its original versus random positions. Answers: How important is this111

location, independent of the feature content?112

Positional-LIME as an Example. To illustrate, consider LIME [Ribeiro et al., 2016]. Standard113

LIME generates perturbed samples114

z = m⊙ x ∈ Rd, mi ∼ Bernoulli(0.5), (4)
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Table 1: Performance of GPT2 and Mamba on the MC-MED and Physionet datasets. The models
achieve sufficiently high predictive performance on sepsis prediction tasks, making them suitable for
subsequent analysis and explanation.

Dataset Finetuned Model Accuracy F1 AUC AUPRC

PhysioNet [Reyna et al., 2020] GPT-2 [Radford et al., 2019] 0.8680 0.2048 0.7069 0.1802
Mamba [Gu and Dao, 2024] 0.8930 0.0531 0.3509 0.0403

MC-MED [Kansal et al., 2025] GPT-2 [Radford et al., 2019] 0.9490 0.1053 0.3536 0.0900
Mamba [Gu and Dao, 2024] 0.8940 0.0536 0.3743 0.0443

where mi = 0 zeros out xi and mi = 1 retains it. LIME then fits a weighted linear model115

α = g(f, x) = w ∈ Rd, (5)

so that each αi reflects the local effect of xi on f(x).116

In Positional-LIME, positions are treated as additional features. To avoid out-of-distribution issues117

from zeroing positional embeddings, we instead randomize them:118

z = m⊙ (x, p) ∈ R2d, mi ∼ Bernoulli(0.5), (6)

where mi = 0 indicates that the feature xi is masked and the corresponding position pi is replaced119

with random positional embedding.120

The resulting attributions121

α = g(f, x, p) = w ∈ R2d (7)
can then be seprated into feature and positional contributions:122

α = (α(feature), α(position)), α(feature) ∈ Rd, α(position) ∈ Rd. (8)

Generalization to Other Explainers. More generally, this framework extends to any attribution123

method (e.g., SHAP [Lundberg and Lee, 2017], Integrated Gradients [Sundararajan et al., 2017],124

FullGrad [Srinivas and Fleuret, 2019], MFABA [Zhu et al., 2024]). By computing α(feature) and125

α(position) separately, we separate feature content and positional contributions, providing a more126

fine-grained understanding of model predictions.127

4 Experiments128

We evaluated GPT-2 small (124M) [Radford et al., 2019] and Mamba-130M [Gu and Dao, 2024] on129

sepsis prediction tasks using the MC-MED [Kansal et al., 2025] and Physionet [Reyna et al., 2020]130

datasets. For each model, we used pre-trained, fine-tuned checkpoints provided by the CareBench131

benchmark [Choi et al., 2025] and assessed performance directly on the corresponding test sets.132

Physionet is a widely used publicly available sepsis dataset containing only tabular EHR data, whereas133

MC-MED provides more comprehensive information, including ECG and respiratory waveforms,134

ventilator settings, medications, and per-minute vitals. Following the CareBench evaluation pro-135

tocol [Choi et al., 2025], we adopted the benchmark’s sepsis labeling criteria and cohort selection136

methodology, ensuring consistent preprocessing and evaluation conditions across both models and137

datasets.138

Table 1 summarizes model performance across four metrics: Accuracy (Acc), F1-score (F1), Area139

Under the Receiver Operating Characteristic curve (AUC), and Area Under the Precision-Recall140

Curve (AUPRC). Both models achieved strong predictive performance, establishing them as suitable141

candidates for subsequent explanation analyses.142

4.1 Faithfulness Test143

We examine whether decomposing attributions into feature and positional components using our144

Positional Explanation framework improves explanation faithfulness in clinical settings. This decom-145

position enables differentiation between patients whose high risk stems from chronically abnormal146

lab values and those whose risk arises from sudden, recent changes, supporting more targeted clinical147

review.148
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Table 2: Insertion and deletion test results on the MC-MED and PhysioNet datasets using Positional-
LIME for finetuned GPT-2 and Mamba models. The table reports Area Under the Curve (AUC)
averaged over all examples. Using the feature component of Positional-LIME consistently out-
performs feature-only attributions, and using the positional component consistently outperforms
position-only attributions. This demonstrates that separating attributions into feature and positional
components with our framework produces more faithful explanations.

(a) Insertion AUC (higher is better).

Dataset Model Feature-only Position-only PE-Feature PE-Position PE-Full Random

PhysioNet GPT-2 0.354 0.323 0.419 0.396 0.465 0.214
Mamba 0.347 0.331 0.392 0.401 0.454 0.213

MC-MED GPT-2 0.313 0.301 0.381 0.392 0.434 0.192
Mamba 0.319 0.311 0.393 0.403 0.442 0.201

(b) Deletion AUC (lower is better).

Dataset Model Feature-only Position-only PE-Feature PE-Position PE-Full Random

PhysioNet GPT-2 0.020 0.016 0.008 0.007 0.002 0.110
Mamba 0.021 0.019 0.011 0.007 0.001 0.102

MC-MED GPT-2 0.007 0.032 0.006 0.011 0.005 0.226
Mamba 0.072 0.113 0.066 0.053 0.045 0.199

To evaluate faithfulness, we conduct insertion and deletion tests and report average AUC scores. We149

compare six conditions: feature-only baseline, position-only baseline, PE-Feature (feature component150

from Positional Explanation), PE-Position (positional component from Positional Explanation),151

PE-Combined (both components from Positional Explanation), and a random baseline. Detailed152

descriptions of each approach are provided in Appendix B.153

Across Datasets and Models Across datasets and models (further details on datasets and model154

setups are provided in Appendix A), PE-Feature consistently achieves higher insertion scores and155

lower deletion scores than Feature-only, while PE-Position achieves higher insertion and lower156

deletion scores than Position-only. Full insertion results are reported in Table 4a, and full deletion157

scores are reported in Table 4b. This demonstrates that separating feature and positional components158

results in more faithful attributions.159

Across Explainability Methods We evaluate faithfulness across several explainability methods160

on the MC-MED dataset with GPT-2, comparing Feature-only (traditional perturbation), Position-161

only (position perturbation), PE-Feature (feature component of our Positional Explanation), and162

PE-Position (positional component of our Positional Explanation). The methods considered include163

LIME [Ribeiro et al., 2016], SHAP [Lundberg and Lee, 2017], Integrated Gradients [Sundararajan164

et al., 2017], FullGrad [Srinivas and Fleuret, 2019], and MFABA [Zhu et al., 2024] (see Appendix A.3165

for details).166

Although we show results here only for PhysioNet with GPT-2, the trend is consistent across all167

methods: PE-Feature achieves higher insertion and lower deletion scores than Feature-only, and PE-168

Position achieves higher insertion and lower deletion scores than Position-only. These results indicate169

that separating feature and positional components consistently produces more faithful explanations,170

independent of the underlying attribution method.171

4.2 Independence Test172

We assessed whether feature (α(feature)) and positional (α(position)) attributions are linearly related per173

measurement using the Pearson correlation coefficient. A high correlation magnitude indicates a174

strong linear relationship, whereas a low magnitude suggests independence. Statistical significance175

was evaluated using p-values, representing the likelihood that an observed correlation occurred by176

chance (see Appendix C.1.1 for computation details).177
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Table 3: Faithfulness comparison across explainability methods on PhysioNet using GPT-2. We report
AUC for both insertion and deletion tests. Across methods, PE-Feature consistently outperforms
Feature-only and PE-Position outperforms Position-only, showing that separating attributions into
feature and positional components using our framework leads to more faithful explanations.

(a) Insertion AUC (higher is better).

Explanation Method Feature-only Position-only PE-Feature PE-Position

LIME [Ribeiro et al., 2016] 0.354 0.323 0.419 0.396
SHAP [Lundberg and Lee, 2017] 0.342 0.337 0.403 0.401
Integrated Gradients [Sundararajan et al., 2017] 0.361 0.346 0.427 0.412
FullGrad [Srinivas and Fleuret, 2019] 0.336 0.314 0.384 0.393
MFABA [Zhu et al., 2024] 0.351 0.325 0.417 0.402

(b) Deletion AUC (lower is better).

Explanation Method Feature-only Position-only PE-Feature PE-Position

LIME [Ribeiro et al., 2016] 0.020 0.016 0.008 0.007
SHAP [Lundberg and Lee, 2017] 0.019 0.018 0.007 0.008
Integrated Gradients [Sundararajan et al., 2017] 0.019 0.021 0.009 0.011
FullGrad [Srinivas and Fleuret, 2019] 0.017 0.019 0.010 0.010
MFABA [Zhu et al., 2024] 0.018 0.015 0.007 0.006

(a) Histogram of Correlations for measurements ap-
preading more than 5 times using LIME

(b) Histogram of Correlations for measurements ap-
preading more than 5 times using Integrated Gradients

Figure 2: Histogram of absolute correlation between feature (f ) and positional (p) attribution per
measurement. From these two histograms of LIME and Integrated Gradients, we observe that some
measurements are inherently time-correlated while others are not, and these patterns differ across
explanation methods.

Figure 2 shows the distribution of absolute correlation values across measurements. The results178

indicate variability in temporal dependence: some measurements strongly depend on time, while179

others are largely independent.180

Examples of temporal correlation analysis of measurements in the MC-MED dataset using GPT-2181

with Position-LIME:182

High temporal correlation: LABPTT, GLOBULIN, WAM DIFTYP, TEMP183

Low temporal correlation: AGE, RACE, AST (SGOT), PLATELET COUNT (PLT)184

These findings suggest that static variables (e.g., demographics, baseline labs) are generally position-185

independent, whereas dynamic variables (e.g., coagulation tests, temperature) exhibit strong temporal186

dependence. Full correlation values and p-values are reported in Appendix C.1.2.187

To validate our hypothesis that separating attribution into feature and positional components is helps188

identifying true temporal dependencies, we conduct an evaluation using a Large Language Model189
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Figure 3: LLM verification accuracy for temporal correlation detection across different correlation
bins. Our Positional Explanation (PE) framework, which correlates PE-Feature and PE-Position
scores after separation, consistently outperforms the baseline method that directly correlates feature-
only and position-only attributions. Higher verification accuracy across all bins demonstrates that
decomposing attribution signals better identifies measurements with genuine temporal dependencies,
helping clinicians distinguish between time-correlated and time-independent measurements.

(LLM) as a proxy for ground-truth verification. We compare two methods for measuring temporal190

correlations, with results presented in Figure 3.191

The baseline uses correlation between feature-only and position-only attribution. We compare it192

to correlation between PE-Feature and PE-Position using our Positional Explanation framework.193

For evaluation, we group feature-position pairs into three bins based on their computed correlation194

scores: high correlation (correlation > 0.7), moderate correlation (0.3 < correlation ≤ 0.7), and low195

correlation (correlation ≤ 0.3). Within each bin, we measure the LLM verification accuracy to assess196

how well our correlation scores align with LLM-verified temporal dependencies. The results show197

that our PE-based attribution consistently achieves higher verification rates across all correlation bins,198

demonstrating that separating the score improves the identification of features with genuine temporal199

effects and confirming the effectiveness of our method in detecting temporal correlations.200

We also show qualitative result of what the LLM output for such correlation in Appendix C201

4.3 Relevance Test202

To evaluate the quality of feature attributions, we conducted a systematic comparison between tradi-203

tional feature-only explanations and our Positional Explanation framework using LLM verification.204

We analyzed feature importance scores across clinical measurements to assess which method more205

accurately identifies clinically relevant features independent of temporal context.206

For quantitative evaluation, we computed average feature importance scores across the entire dataset207

and organized features into three bins based on their attribution scores: high influence, moderate in-208

fluence, and low influence. The top 10 most influential measurements identified using our framework209

include: INFLUENZA B, NUR1373, ALBUMIN, POC16, KETONE: URINE (UA), SARS-COV-2210

RNA, MYCOPLASMA PNEUMONIAE, POC:POTASSIUM, POC:GLUCOSE BY METER, MAGNESIUM.211

Figure 4 presents the LLM verification results comparing feature-only attributions (original explana-212

tion method that perturbs only features) against PE-Feature scores from our Positional Explanation213

framework (which perturbs both features and positions before extracting the feature component). The214

results demonstrate that our PE-Feature approach consistently achieves higher LLM verification accu-215

racy across all influence bins. This superior performance confirms that disentangling positional and216

feature effects produces more clinically meaningful feature attributions, enabling better identification217

of truly relevant measurements for clinical decision-making.218

We also show qualitative result of what the LLM output for such feature was in Appendix D219

5 Conclusion220

We introduced the Positional Explanation framework, which separates standard feature attributions221

into feature content and position effects, enabling explanations that distinguish what drives a model’s222
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Figure 4: LLM verification accuracy for feature attribution methods. Our PE-Feature scores from the
Positional Explanation framework achieve higher LLM verification accuracy compared to feature-
only attributions, demonstrating improved feature attribution quality through separation.

prediction from when it is clinically significant. Applied to Mamba and GPT-2 models finetuned223

for sepsis prediction on PhysioNet and MC-MED datasets, our approach provides more faithful,224

temporally aware explanations than existing explanation methods, and identifies clinically relevant,225

time-dependent biomarkers that are otherwise overlooked. Importantly, Positional Explanation is226

model- and method-agnostic and can be applied to any feature attribution framework for any types of227

data including image, text, and time-series.228

While these results are promising, broader clinical validation is necessary. Current evaluation229

relies primarily on LLM-based models. We will engage multiple clinicians specialized in sepsis to230

evaluate real-world interpretability, trust, and utility. To demonstrate generality, we plan to extend the231

framework to new models, develop scalable metrics for temporal effects, and integrate it into clinical232

decision support systems for timely, actionable alerts.233

Overall, Positional Explanation provides a general, flexible framework for temporally aware explain-234

ability in clinical predictive modeling, bridging the gap between accurate prediction and actionable,235

time-sensitive insight.236
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A Experimental Setup333

A.1 Dataset Description334

A.1.1 Datasets335

We utilize sepsis prediction datasets curated by CAREBench [Choi et al., 2025], which processes two336

publicly available datasets: PhysioNet 2019 [Reyna et al., 2020] and MC-MED [Kansal et al., 2025].337

PhysioNet 2019 comprises over 40,000 ICU patients with up to 40 clinical variables recorded hourly,338

totaling 2.5 million hourly time windows. The dataset includes vital signs, laboratory values, and339

demographics in tabular format without physiological waveforms.340

MC-MED contains 118,385 emergency department visits from 70,545 unique patients (2020–2022).341

This dataset uniquely combines minute-level vital signs and continuous physiological waveforms342

(ECG, photoplethysmogram, respiration) with comprehensive clinical data including demographics,343

medical histories, medications, and laboratory results.344

A.1.2 Sepsis Prediction Task Curation345

CAREBench adapted the curation methodology to each dataset’s clinical setting and available data.346

PhysioNet 2019: Sepsis labels were pre-defined using Sepsis-3 criteria, requiring both clinical347

suspicion of infection (blood culture or IV antibiotic orders) and a two-point SOFA score change.348

MC-MED: CAREBench implemented a two-stage process:349
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1. At-Risk Cohort Selection – Patients meeting all criteria:350

• Admission source of ED351

• Temperature < 36◦C or > 38.5◦C within 24 hours of admission (Temp_time)352

• At least one of the following within 24 hours of admission:353

◦ WBC Count > 12K or < 4K/µL (WBC_time)354

◦ HR > 90 bpm (HR_time)355

◦ RR > 20 (RR_time)356

• At least 1 of the WBC_time, HR_time, RR_time within 12 hours of Temp_time357

• No intravenous antibiotic at or before the time of the first criteria met358

2. Sepsis Labeling – Adapted Sepsis-3 definition for ED settings with h = 1.5 hour prediction359

horizon. Positive labels assigned when emergency SOFA (eSOFA) criteria met:360

• Presumed serious infection:361

◦ Blood culture obtained (regardless of the results)362

◦ ≥ 4 QADs starting within ± 2 days of blood_culture_day363

• Any 1 of below within ± 2 days of blood_culture_day (acute organ dysfunction):364

◦ Vasopressor initiation365

◦ Initiation of mechanical ventilation366

◦ Doubling in serum creatinine level or decrease by ≥ 50% of eGFR (excluding patients367

with end-stage kidney disease [585.6])368

◦ Total bilirubin level ≥ 2.0mg/dL and doubling369

◦ Platelet count < 100 cells/µL and ≥ 50% decline from baseline (excluding baseline <370

100 cells/µL)371

◦ Serum lactate ≥ 2.0 mmol/L372

A.2 Model Description373

We employed GPT-2 (124M parameters) [Radford et al., 2019] and Mamba-130M [Gu and Dao,374

2024], pre-trained language models fine-tuned for sepsis prediction using the CAREBench-curated375

datasets.376

A.2.1 Model Architectures377

GPT-2 Small: A 124M parameter decoder-only transformer with 12 layers, 768 hidden dimensions,378

and 12 attention heads. Its autoregressive architecture with causal self-attention naturally captures379

temporal dependencies in patient trajectories, leveraging pre-trained sequential representations for380

modeling physiological progression patterns.381

Mamba-130M: A 130M parameter state-space model addressing transformer limitations in long-382

sequence processing. Its selective state-space mechanism achieves linear complexity with sequence383

length, enabling efficient processing of extended patient histories. The architecture’s continuous-time384

formulation aligns naturally with physiological processes, offering advantageous inductive biases for385

modeling sepsis dynamics.386

A.2.2 Training Configuration387

Following CAREBench methodology:388

• Custom Tokenization: Dataset-specific tokenizers handle hospital-specific medical codes and389

limited vocabulary390

• Training Duration: 100 epochs ensuring convergence on limited medical data391

• Hyperparameter Selection: Learning rate ∈ {1× 10−5, 5× 10−5, 1× 10−4} via validation392

performance393

This configuration enables effective adaptation from general language understanding to domain-394

specific temporal patterns and medical terminology in sepsis prediction.395
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A.3 Explanation Methods396

This section briefly describes the explanation methods employed in conjunction with our Positional397

Explanation approach.398

• LIME (Local Interpretable Model-agnostic Explanations) [Ribeiro et al., 2016] generates399

local explanations for individual predictions by fitting an interpretable surrogate model (typically400

linear) within the neighborhood of the target instance. The method creates perturbations around401

the input sample and trains the surrogate model on these variations, with samples weighted by402

their proximity to the original instance.403

• SHAP (SHapley Additive exPlanations) [Lundberg and Lee, 2017] computes feature impor-404

tance scores based on cooperative game theory principles. Each feature receives an attribution405

value representing its marginal contribution to the prediction relative to a baseline, with the406

property that all attribution values sum to the difference between the model’s output and the407

baseline prediction.408

• Integrated Gradients (IntGrad) [Sundararajan et al., 2017] computes feature attributions by409

integrating gradients along a linear path from a baseline input to the target input. This path410

integral approach ensures satisfaction of fundamental attribution axioms, including sensitivity411

and implementation invariance.412

• FullGrad [Srinivas and Fleuret, 2019] extends standard gradient-based attribution by incorpo-413

rating gradient information from all network layers. The method aggregates input gradients with414

bias gradients across all intermediate representations, providing more comprehensive attribution415

maps that capture multi-layer feature interactions.416

• MFABA (More Faithful and Accelerated Boundary-based Attribution) [Zhu et al., 2024]417

computes attributions by constructing paths from input samples to adversarial examples that418

cross the model’s decision boundary. The method employs second-order Taylor approximations419

to better model loss function changes during gradient ascent optimization.420

B Additional Faithfulness Test Results421

This section presents comprehensive results from our insertion and deletion experiments across all422

experimental configurations. We systematically evaluate faithfulness across two datasets (PhysioNet423

and MC-MED), two transformer architectures (GPT-2 and Mamba), and five explanation methods424

(LIME, SHAP, Integrated Gradients, FullGrad, MFABA).425

B.1 Faithfulness Test Experimental Setup426

For each explanation method, we compare five attribution approaches:427

• Feature-only: Traditional perturbation-based explanations428

• Position-only: Positional explanation perturbing only position429

• PE-Feature: Feature component of our Positional Explanation framework430

• PE-Position: Position component of our Positional Explanation framework431

• PE-Full: Both feature and position components of our Positional Explanation framework432

• Random: Baseline for comparison433

We employ two complementary faithfulness metrics: insertion tests (where higher AUC indicates434

better faithfulness) and deletion tests (where lower AUC indicates better faithfulness).435

B.2 Key Findings436

The results demonstrate consistent improvements in explanation faithfulness when separating posi-437

tional and feature components:438

Insertion Test Performance. Our positional explanation components (PE-Feature and PE-Position)439

consistently outperform their traditional counterparts (Feature-only and Position-only) across all440

experimental configurations. PE-Feature achieves higher AUC scores than Feature-only, while441

PE-Position surpasses Position-only, indicating more faithful identification of important features.442
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Deletion Test Performance. The superiority of our approach is further confirmed in deletion443

tests, where PE-Feature consistently achieves lower AUC scores than Feature-only, and PE-Position444

outperforms Position-only. Lower scores in deletion tests indicate that removing highly-attributed445

features causes greater performance degradation, confirming these features are indeed more important446

for model predictions.447

Cross-Architecture and Cross-Method Consistency. The improvements hold across both GPT-448

2 and Mamba architectures, as well as different explanation methods including gradient-based449

attribution, attention-based explanations, and perturbation-based approaches, demonstrating the broad450

generalizability of our positional explanation approach.451

B.3 Detailed Results452

Tables 4a and 4b present the complete faithfulness evaluation results across all experimental configu-453

rations. The insertion test results demonstrate the ability of each method to identify truly important454

features, while the deletion test results show how effectively each method identifies features whose455

removal significantly impacts model performance. These comprehensive results validate our theoreti-456

cal framework and demonstrate the practical benefits of separating positional and feature attributions457

in transformer explanations.458

C Additional Independence Test Results459

C.1 Independence Test Analysis460

This section presents the complete results from our independence test analysis, expanding on the461

verification scores reported in Section 4.2.462

C.1.1 Measurements463

The correlation was measured using the Pearson correlation coefficient:464

r =

∑n
i=1(α

(feature)
i − α(feature))(α

(position)
i − α(position))√∑n

i=1(α
(feature)
i − α(feature))2

√∑n
i=1(α

(position)
i − α(position))2

, (9)

where r ∈ [−1, 1], α(feature) is the mean feature attribution, and α(position) is the mean positional465

attribution. Values of r close to 1 or −1 indicate strong positive or negative correlation, while values466

near 0 suggest little to no linear relationship.467

To assess statistical significance, we tested the null hypothesis:468

H0 : r = 0 (feature and positional attributions are uncorrelated).

The corresponding p-value quantifies the probability of observing a correlation at least as extreme as469

the measured r under H0. At the α = 0.05 significance level,470

• If p < 0.05: we reject H0, concluding significant correlation.471

• If p ≥ 0.05: we fail to reject H0, finding no clear evidence of correlation.472

C.1.2 Temporal Correlation Patterns473

Our analysis identified distinct patterns in temporal correlation across different medical measurements:474

Examples of independent features (low correlation, high p-value) using Positional-LIME on the475

MC-MED dataset with GPT-2 included:476

• AGE: correlation = 0.0244, p = 0.9020477

• RACE: correlation = -0.0330, p = 0.8675478

• AST (SGOT): correlation = -0.0082, p = 0.9668479

• PLATELET COUNT (PLT): correlation = 0.0301, p = 0.8888480

Examples of independent features (low correlation, high p-value) using Positional-LIME on the481

MC-MED dataset with GPT-2 included:482
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Table 4: Our Positional Explanation (PE) framework consistently outperforms traditional attribution
methods. PE-Feature and PE-Position achieve higher insertion AUC and lower deletion AUC
than their Feature-only and Position-only counterparts, confirming more faithful identification of
important features. The improvements hold across both GPT-2 and Mamba architectures and multiple
explanation methods. PE = Positional Explanation, Feat = Feature, Pos = Position.

(a) Insertion test results (AUC). Higher values indicate more faithful performance.

Dataset Model Explanation Feat-only Pos-only PE-Feat PE-Pos PE-Full Random

PhysioNet

GPT-2

LIME 0.354 0.323 0.419 0.396 0.465 0.214
SHAP 0.342 0.337 0.403 0.401 0.452 0.209

IntGrad 0.361 0.346 0.427 0.412 0.478 0.221
FullGrad 0.336 0.314 0.384 0.393 0.443 0.215
MFABA 0.351 0.325 0.417 0.402 0.461 0.208

Mamba

LIME 0.347 0.331 0.392 0.401 0.454 0.213
SHAP 0.352 0.323 0.415 0.395 0.463 0.207

IntGrad 0.364 0.348 0.431 0.416 0.472 0.226
FullGrad 0.338 0.312 0.393 0.382 0.445 0.218
MFABA 0.353 0.334 0.422 0.404 0.460 0.202

MC-MED

GPT-2

LIME 0.313 0.301 0.381 0.392 0.434 0.192
SHAP 0.321 0.314 0.392 0.403 0.446 0.207

IntGrad 0.332 0.322 0.413 0.421 0.461 0.215
FullGrad 0.303 0.296 0.375 0.384 0.421 0.194
MFABA 0.324 0.312 0.401 0.395 0.452 0.203

Mamba

LIME 0.319 0.311 0.393 0.403 0.442 0.201
SHAP 0.331 0.322 0.414 0.411 0.451 0.214

IntGrad 0.339 0.336 0.421 0.432 0.463 0.223
FullGrad 0.312 0.303 0.382 0.391 0.433 0.208
MFABA 0.330 0.321 0.412 0.410 0.450 0.212

(b) Deletion test results (AUC). Lower values indicate more faithful performance.

Dataset Model Explanation Feat-only Pos-only PE-Feat PE-Pos PE-Full Random

PhysioNet

GPT-2

LIME 0.020 0.016 0.008 0.007 0.002 0.110
SHAP 0.019 0.018 0.007 0.008 0.003 0.102

IntGrad 0.019 0.021 0.009 0.011 0.005 0.112
FullGrad 0.017 0.019 0.010 0.010 0.004 0.111
MFABA 0.018 0.015 0.007 0.006 0.002 0.109

Mamba

LIME 0.021 0.019 0.011 0.007 0.001 0.102
SHAP 0.021 0.018 0.012 0.007 0.002 0.103

IntGrad 0.011 0.011 0.008 0.009 0.003 0.111
FullGrad 0.010 0.012 0.007 0.008 0.001 0.113
MFABA 0.020 0.017 0.010 0.006 0.001 0.100

MC-MED

GPT-2

LIME 0.007 0.032 0.006 0.011 0.005 0.226
SHAP 0.011 0.024 0.010 0.013 0.006 0.228

IntGrad 0.053 0.103 0.037 0.077 0.035 0.218
FullGrad 0.049 0.098 0.036 0.064 0.032 0.220
MFABA 0.022 0.030 0.014 0.012 0.015 0.225

Mamba

LIME 0.072 0.113 0.066 0.053 0.045 0.199
SHAP 0.085 0.116 0.058 0.056 0.046 0.201

IntGrad 0.089 0.102 0.047 0.057 0.033 0.204
FullGrad 0.086 0.098 0.046 0.055 0.031 0.206
MFABA 0.071 0.111 0.065 0.052 0.044 0.200

• LABPTT: correlation = 0.9080, p = 1.11e-04483

• GLOBULIN: correlation = 0.9061, p = 3.90e-05484

• WAM DIFTYP: correlation = 0.8447, p = 2.15e-03485

• TEMP: correlation = 0.6659, p = 3.55e-02486
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Gemini 2.5 pro

Measurements with High Temporal Correlation
• LABPTT: This is a measure of blood clotting time, often monitored frequently for patients on anti-

coagulant therapy (like heparin). The value at time t is highly predictive of the value at t+∆t because
therapeutic adjustments are made based on current levels, creating a continuous, closely tracked time-
series.

• GLOBULIN: Globulin levels in the blood change in response to underlying physiological processes
(e.g., inflammation, liver function) that evolve over hours to days. This creates a relatively smooth,
slow-moving signal where consecutive measurements are strongly related.

• WAM DIFTYP: This probably refers to a component of the white blood cell count. These counts rise
and fall in response to events like infection. The biological process is not instantaneous, leading to strong
temporal dependence in measurements taken hours or days apart.

• TEMP: Body temperature is a classic example of a high-frequency physiological signal. It has inherent
patterns (circadian rhythm) and responds dynamically to illness (fever). A measurement at one moment
is a very strong predictor of the temperature a few minutes or even an hour later.

Measurements with Low Temporal Correlation
• AGE: Age is a static or near-static feature within the context of most data collection periods (e.g., a

hospital stay). Since it doesn’t change, it has no dynamic temporal pattern for a model to learn from.
From a signal processing standpoint, a constant signal has perfect autocorrelation, but from a feature
importance perspective, its lack of change means it offers no evolving temporal information. Thus,
classifying it as "low" makes sense in this context.

• RACE: This is a static demographic feature. It is constant for an individual and has no temporal
variability.

• AST (SGOT): AST is a liver enzyme that changes in response to liver injury or stress. These changes
typically occur over hours to days, creating a clinically meaningful trend. While it doesn’t fluctuate as
rapidly as temperature, a measurement today is certainly informative for predicting the measurement
tomorrow. It’s not a static value and its trend is often a critical diagnostic signal.

• PLATELET COUNT (PLT): Platelet levels are dynamic and change over days in response to bleeding,
infection, or bone marrow conditions. The trajectory of platelet counts is a crucial clinical indicator. The
value is not static and exhibits significant temporal dependence, even if it’s less “high-frequency" than
vital signs.

Figure 5: Feature temporal correlation analysis for sepsis prediction using Gemini 2.5 pro. Features
are categorized into High, Moderate, and Low time-correlated groups, reflecting progression markers,
intermediate trends, and condition markers, respectively, as verified using the prompt shown in fig. 9.

These findings suggest that certain static variables (e.g., demographics, baseline labs) remain position-487

independent, while dynamic variables (e.g., coagulation tests, temperature) exhibit strong temporal488

dependence.489

C.2 LLM Verification Results490

To validate our independence test findings, we employed large language models for additional491

verification. The detailed outputs from both Gemini and GPT models are presented below.492

LLM Analysis. Figures 5 and 6 show the comprehensive LLM evaluation results for feature493

independence assessment.494

D Additional Relevance Test Results495

We analyzed which clinical measurements contribute most to model predictions, independent of496

temporal context. For each measurement, we computed the average feature importance across the497

entire dataset and identified the top 10 most influential features:498

INFLUENZA B, NUR1373, ALBUMIN, POC16, KETONE: URINE (UA), SARS-COV-2 RNA,499

MYCOPLASMA PNEUMONIAE, POC:POTASSIUM, POC:GLUCOSE BY METER, MAGNESIUM.500

LLM Analysis. We show the llm outputs for feature relevance test in Figure 7 and 8.501
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GPT-5

Measurements with High Temporal Correlation
• LABPTT: Typically shows continuous adjustment (e.g., heparin titration), so strong serial dependence.
• GLOBULIN: Usually slow drift, limited short-term serial structure.
• WAM DIFTYP: Infections/inflammation often produce evolving patterns (neutrophil/lymphocyte shifts)

rather than single jumps.
• TEMP: Shows smooth-ish rises/falls and circadian/fever cycles.

Measurements with Low Temporal Correlation
• AGE: Static.
• RACE: Static.
• AST (SGOT): Often flat until an insult, then spikes—step-like, so low smooth serial correlation.
• PLATELET COUNT (PLT): Frequently stable then precipitous drop; jumpy/change-point behavior.

Low smooth correlation.

Figure 6: Feature temporal correlation analysis for sepsis prediction using GPT 5. Features are
categorized into High, Moderate, and Low time-correlated groups, reflecting progression markers,
intermediate trends, and condition markers, respectively, as verified using the prompt shown in fig. 9.

Gemini 2.5 pro

Pathogens and Infectious Triggers Sepsis is fundamentally a dysregulated host response to an infection.
Therefore, identifying the causative pathogen is a powerful predictor.
• SARS-COV-2 RNA, INFLUENZA B, and MYCOPLASMA PNEUMONIAE: These directly identify

the infectious agent. Severe viral infections (like COVID-19 and Influenza) can lead to viral sepsis or
predispose a patient to a secondary bacterial infection. Atypical bacteria like Mycoplasma pneumoniae
are common causes of pneumonia, which is a leading trigger for sepsis.

Core Biomarkers of Systemic Illness These lab values reflect the widespread physiological chaos caused
by the septic response, such as inflammation, metabolic derangement, and organ dysfunction.
• ALBUMIN: Low albumin (hypoalbuminemia) is a classic and very strong predictor of poor outcomes

in sepsis. It reflects the severity of the systemic inflammatory response and a state of negative protein
balance.

• POC:GLUCOSE BY METER: High glucose (stress hyperglycemia) is extremely common in critically
ill patients. It’s a result of the body’s stress response and is associated with worse outcomes in sepsis.

• POC:POTASSIUM and MAGNESIUM: Electrolyte abnormalities are hallmarks of organ dysfunction
in sepsis, particularly Acute Kidney Injury (AKI).

• KETONE: URINE (UA): The presence of ketones can indicate metabolic acidosis, a sign of severe
metabolic stress and shock.

Figure 7: Feature influence analysis on sepsis prediction using Gemini 2.5 Pro. Features are
categorized into High, Moderate, and Low influence based on their impact on model predictions, as
verified using the prompt shown in fig. 10.

E Prompt502

We provide the prompts used to verify our model analyses using large language models (LLMs),503

specifically Gemini 2.5 Pro and GPT-5 Mini.504

Independence Test Prompt. This prompt is designed to verify the results of the independence test,505

assessing whether features are statistically independent. The full prompt is shown in fig. 9.506

Relevance Test Prompt. This prompt is used to verify the results regarding the influence of each507

feature, evaluating their impact on the model’s predictions. The full prompt is shown in fig. 10.508
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GPT-5 mini

Features with Established Importance
• Influenza B: While specific studies on Influenza B’s role in sepsis prediction are limited, respiratory

viral infections, including influenza, have been associated with sepsis. Differentiating between influenza
and Mycoplasma pneumoniae infections using peripheral blood routine parameters has shown diagnostic
value, with an AUC of 0.845.

• Albumin: Hypoalbuminemia is a recognized marker of systemic inflammation and poor nutritional
status, both relevant in sepsis. Low albumin levels have been linked to increased mortality in sepsis
patients.

• SARS-CoV-2 RNA: COVID-19 has been associated with sepsis in some patients. Laboratory abnormal-
ities in COVID-19 patients, particularly in coagulation function, have been related to the occurrence of
sepsis.

• Mycoplasma pneumoniae: This pathogen can cause respiratory infections that may progress to sepsis.
Studies differentiating influenza and Mycoplasma pneumoniae infections show its diagnostic relevance.

• POC: Potassium: Electrolyte imbalances, including abnormal potassium levels, are common in sepsis
and can impact cardiac and muscular function.

• POC: Glucose by Meter: Hyperglycemia is frequently observed in sepsis and is associated with worse
outcomes. Elevated blood glucose levels are primary risk factors for poor outcomes in various conditions.

• Magnesium: Hypomagnesemia has been linked to increased mortality in sepsis patients, suggesting its
potential role as a prognostic marker.

Features with Limited or Unclear Importance
• Ketone: Urine (UA): While ketonuria can indicate metabolic disturbances such as diabetic ketoacidosis,

its role in sepsis prediction is not well-established in the literature.

Figure 8: Feature influence analysis on sepsis prediction using ChatGPT-5 Mini. Features are
categorized into High, Moderate, and Low influence based on their impact on model predictions, as
verified using the prompt shown in fig. 10.

Prompt

You will be provided with results from our explainability method, which categorizes features based on
their temporal correlation into three groups: High Time-Correlated Features, Moderate Time-Correlated
Features, and Low Time-Correlated Features.
For each feature:
• Indicate whether you agree that the feature belongs in its assigned temporal correlation group.
• Briefly justify your agreement or disagreement based on reasoning about temporal patterns.
Here are the feature groups:

Figure 9: Prompt template for verifying feature temporal correlation group assignment.

Prompt

You are an expert in sepsis prediction. We have categorized features based on their impact on sepsis
prediction into High, Moderate, and Low influence.
For each feature:
• Indicate whether you agree with the feature’s assigned impact group.
• Briefly justify your agreement or disagreement based on reasoning about its role in sepsis prediction.
Here are the features:

Figure 10: Prompt template for verifying feature influence on sepsis prediction.
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