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ABSTRACT

A challenge in genomics research involves identifying functionally relevant genes
associated with diseases. We present GeneDAE, a sparse denoising autoencoder
that extracts gene representations from large-scale population-level genotype data,
which can then be used to identify gene-to-disease associations. The GeneDAE
encoder and decoder connections are modeled on a bipartite biological knowledge
graph that connects individual variants (single nucleotide polymorphisms; SNPs)
to their nearby genes, enabling each node in the hidden layer to be used as an in-
terpretable, multi-purpose gene embedding derived using information only from
variants in close proximity that are most likely to impact gene function. We use
the UK Biobank dataset and focus on the major histone compatibility complex
(MHC) region of the genome, which is critical to immune function and autoim-
mune disease pathophysiology. Using GeneDAE, we extracted 239 MHC gene
embeddings and identified novel gene-to-disease associations.

1 INTRODUCTION

An ongoing area of investigation in genomics involves identifying the most important genes func-
tionally associated with a given disease. Genome-wide association studies (GWAS) have been in-
strumental for identifying important genomic variants (i.e., genotypes, single nucleotide polymor-
phisms; SNPs) associated with a disease of interest. While some variants are located within gene
coding regions and are thus clearly associated with the gene, more than 90% of variants are lo-
cated outside coding regions (Cano-Gamez & Trynka, 2020), making it challenging to identify the
genes associated with those variants that contribute towards a given trait or disease. To address this
challenge, we present GeneDAE, a sparse denoising autoencoder designed to extract gene repre-
sentations from large-scale population-level genotype data. Our approach uses an adjacency matrix
to constrain the connectivity of the encoding and decoding layers based on variant-to-gene annota-
tions connecting variants to nearby genes. This enables extraction of interpretable gene embeddings,
whereby information going into each hidden node only contains data from variants located in close
proximity to the gene, more likely to be functionally relevant. These gene embeddings can then be
used in downstream tasks for disease or trait prediction and to discover gene-to-disease associations.

Our work builds on previous work by |Ma et al.| (2018) (DCell), which first introduced the notion of
using biological knowledge graphs to constrain the connectivity of a neural network by pruning its
weights based on known biological connections between concepts. The work on DCell showed that
forcing sparsity in this way enables hidden nodes in a neural network to be interpreted in terms of the
biological concepts they represent in the knowledge graph, while maintaining similar performance
to that of a fully connected network. DCell was used to predict yeast cell growth, and GenNet
(van Hilten et al., [2021) explored this framework in the context of human population genomics.
Unlike previous work, GeneDAE utilizes these concepts in an autoencoder to extract multi-purpose
embeddings of genes that can then be used in downstream applications, alone or in combination with
other data modalities. Since genotype data can be extremely high-dimensional, sometimes with
millions of features, a limitation of existing work involves the extensive computational resources
needed for model training. GeneDAE enables gene embeddings to be derived independently for each
gene or gene set of interest and decouples the feature extraction and downstream tasks, allowing for
greater flexibility in training at a lower compute cost.
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Table 1: Examples of significant MHC gene-to-disease associations for select autoimmune diseases

Disease | AUC | Sig. Genes | Top 2 Genes P-Values

T1D 0.55 60 HLA-DQBI-ASI | 3.32x 10®
(0.01) HSPAIB 6.39x 1077

PSO 059 |78 PSORSICI 1.07 x 100
(0.01) TNF 424 x 1018

2 METHODS

We can define the variant-to-gene bipartite knowledge graph G, with the adjacency matrix A €
{0,1}™ > " where m is the number of variants and n is the number of genes. Each row of A is
duplicated to reflect the structure of the input space (two features per variant), resulting in updated
adjacency matrix A’ € {0,1}?™* " We define = € {0,1}*™ as the input and introduce a noise
vector z ~ N(0,1) € R?>™ to distort the input by a factor of v such that ¢’ = = + yz. We define
GeneDAE below, such that g € R is the hidden layer with n gene embedding values, W; and W5
are the encoder and decoder weight matrices, b and c¢ are bias vectors, and & is the output. The
objective was to minimize the binary cross entropy loss L(&, x) over all training examples.

g=ReLU(W; 0 A)x' +b) and &=0c(Wy0 A'")g+c) (1)

We created an adjacency matrix using variant-to-gene annotations for the major histone compatibil-
ity (MHC) genome region using ANNOVAR |Yang & Wang| (2015)), where m = 8,817, n = 239.

3 RESULTS

Gene-Disease Associations After training, to explore the relevance of each gene embedding for
select autoimmune diseases, we extracted G € R® * ™ for s samples and ran t-tests comparing mean
gene values between cases and controls for each disease with Bonferroni correction (o = 0.01).
Examples of our findings for Type 1 Diabetes (T1D) and Psoriasis (PSO) are described in Table (TJ).
Not only did we validate existing research on established associations between genes and diseases,
as in the case of PSORSIC1 and TNF for PSO or HLA-DQBI-AS1 for T1D, we also provide some
evidence that our approach may enable discovery of new gene-disease associations. For example,
HSPAIB is a gene encoding a heat shock protein that was previously associated with type 2 diabetes
(Buraczynska et al.,|2009), but there is no literature supporting the role of this gene in T1D. While
other studies have suggested that heat shock proteins play a role in T1D etiology (Moin et al.,
2021)), our study is the first-ever to suggest a significant association between this gene and T1D. We
also visualized the overlap in significant genes between the diseases (Appendix [A.2). For example,
HLA-DQA? is significant for both multiple sclerosis (MS) and PSO, and LY6G5B. This suggests that
GeneDAE gene embeddings might be used to explore similarities between diseases in terms of their
gene-to-disease associations.

Disease Prediction Performance We then used the gene embeddings to run multivariate binary
classification tasks to predict autoimmune disease risk. The test AUCs ranged from 0.55-0.61 (Table
[2in Appendix [A.2). This is a significant result given that only 0.25% of the genome was used,
suggesting potential for better performance if we to adapt GeneDAE to genome-wide data beyond
the MHC region. The test AUCs and standard error values for T1D and PSO are shown in Table[I]

4 CONCLUSION

In conclusion, we demonstrated that GeneDAE extracts interpretable gene embeddings from
population-level genotype variant data, offering a potentially useful tool for the discovery or anal-
ysis of gene-to-disease associations in genomics research. In future work, we can expand the gene
embedding dimensionality to 2 or 3 nodes per gene to enable the embeddings to capture more infor-
mation in each embedding. We also plan to further validate our approach through more extensive
analyses of gene-to-disease association results for additional diseases.
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A APPENDIX

A.1 METHODS - ADDITIONAL DETAILS
A.1.1 GENEDAE MODEL ARCHITECTURE AND IMPLEMENTATION DETAILS

The objective for training GeneDAE was to minimize the binary cross entropy loss L(&, ) over all
training examples s.

11 . .
Loss = o Z Z(wi’j log(&; ;) + (1 — x; ;) log(l — @ ;)) ()

GeneDAE was trained using a 70/20/10 train/val/test split with Adam optimizer using a learning
rate of 0.0001. We used v = 0.3 as the noise factor. Neither dropout nor regularization were used
due to the already-sparse architecture. The model converged within 60 epochs. Because GeneDAE
is modeled based on a bipartite variant-to-gene knowledge graph with many-to-many connections,
it can be used independently for individual genes or gene sets. In our example, we used 8,817
variants and 239 genes in the MHC region, but the GeneDAE framework enables the flexibility to
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select just one of those genes in the graph and model the neural network from just the variant-to-
gene connections for that gene (see Appendix [A.2). This enables the flexibility to train the model
sequentially on individual genes even in the absence of extensive computational resources. Likewise,
it also allows for the flexibility to expand the feature space and learn embeddings for larger gene sets
at once.

A.1.2 GENOTYPE DATA AND PRE-PROCESSING, AND VARIANT-TO-GENE ANNOTATIONS

We used the UK Biobank dataset (Bycroft et al.| 2018)), which comprises population-level genotype
and phenotype data on over 502,000 middle aged individuals. The genotype dataset was obtained
using the UK Biobank Axiom array chip, and 8,817 variants were available in the MHC region on
chromosome 6, spanning nearly 5 million base pairs ranging from position 28,477,797 to position
33,448,355. Each genotype variant originally had an ordinal encoding as 0, 1, and 2 for each indi-
vidual based on the number of copies of the reference allele. This was then mapped into a binary
encoding comprising two features per variant, where [0,0], [1,1], and [1,0] represent having zero,
two, or one copies respectively. This resulted in a total of 17,634 input features. We filtered indi-
viduals by including just one ancestry group, as is commonly done in genomic studies, for a total of
around 470,000 individuals.

To obtain adjacency matrices, we used the genomic annotation software ANNOVAR (Yang & Wang,
2015) to identify genes located close to each of the 8,817 MHC variants of interest. For each variant,
we identified any genes for which the variant was exonic (in a coding region of the gene), intronic (in
a non-coding region of the gene), splicing (intronic but within 2 base pairs of a splicing junction in
the gene), in the 5’ or 3’ untranslated regions (UTRs), within 1k base pairs upstream or downstream
of the transcription start or stop sites, respectively, or located in an intergenic region but relatively
close to the gene. We also included variants in transcribed but non-coding RNAs (ncRNAs). A
17,634 x 239 binary adjacency matrix was then created using these connections, whereby each row
in the matrix was duplicated to reflect the binary encoding of the 8,817 input genotypes. Based on
these annotations, any given variant can be mapped to one or more genes, and any given gene can be
mapped to one or variants, resulting in a complex bipartite graph structure in the adjacency matrix.
The number and distribution of MHC variants associated with each gene based on the annotations is
provided in Figure 2 in Appendix

A.1.3 BINARY CLASSIFICATION TASKS IMPLEMENTATION DETAILS

For classification tasks, we used Python scikit-learn logistic regression with the ‘1bfgs’ solver and no
regularization. Weighted binary cross-entropy loss was used to correct for class imbalance. Case-
control labels for each disease were obtained from diagnostic ICD-10 codes. We used a 70/30
train/test split and ran 10 trials for each analysis. The features were min-max scaled prior to training.

A.2 RESULTS - ADDITIONAL DETAILS

The GeneDAE binary cross entropy log loss trajectory for train and validation is in Figure 1. The
histogram depicting the connectivity of the variant-to-gene adjacency matrix is shown in Figure 2.
A visualization of the variant-to-gene connectivity and flexibility of the GeneDAE architecture is
shown in Figure 3. The diseases evaluated for binary classification tasks in Table [2] included Type
1 Diabetes (T1D), Psoriasis (PSO), Multiple Sclerosis (MS), and Ankylosing Spondylitis (AS). The
most significant gene-to-disease association results from the t-test analysis between gene embed-
dings and case-control status for three autoimmune diseases (T1D, PSO, and MS) are displayed in
the heatmap in Figure 4, where it is clear that some highly significant genes overlap between dif-
ferent autoimmune diseases. For example HLA-DQA? is significantly associated with both MS and
PSO, and LY6GS5B is significant for all three of the autoimmune diseases.
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Table 2: Summary of binary classification task results for autoimmune disease risk prediction
DISEASE CASES CONTROLS PREVALENCE (%) TEST AUC (95%CI)

T1D 6,936 424,174 1.64% 0.55 (0.01)
PSO 11,589 419,521 2.76% 0.59 (0.01)
MS 2,070 429,040 1.64% 0.61 (0.02)
AS 3,504 427,606 0.82% 0.59 (0.01)

—e— Train Loss
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BCE Loss (log)

Epoch

Figure 1: Epochs vs. log binary cross entropy (BCE) loss for GeneDAE training for 60 epochs.

Number of Genes
= = ~ ~ w w
5] G S ] S i

v

0 100 200 300 400 500
SNPs per Gene

Figure 2: Histogram of SNPs per gene in GeneDAE adjacency matrix.
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Figure 3: Example visualization of GeneDAE model flexibility enabling independent setup and
training to derive gene embeddings for individual genes or gene sets.
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Figure 4: Gene to disease association p-values from t-tests.
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