
Language Models For Generalised PDDL Planning:
Synthesising Sound and Programmatic Policies

Dillon Z. Chen1,2,3 Johannes Zenn1 Tristan Cinquin1 Sheila A. McIlraith1,3

1Vector Institute 2LAAS-CNRS, University of Toulouse 3University of Toronto

Abstract

We study the usage of language models (LMs) for planning over world models
specified in the Planning Domain Definition Language (PDDL). We prompt LMs
to generate Python programs that serve as generalised policies for solving PDDL
problems from a given domain. Notably, our approach synthesises policies that
are provably sound relative to the PDDL domain without reliance on external ver-
ifiers. We conduct experiments on competition benchmarks which show that our
policies can solve more PDDL problems than PDDL planners and recent LM ap-
proaches within a fixed time and memory constraint. Our approach manifests in
the LMPLAN planner which can solve planning problems with several hundreds
of relevant objects. Surprisingly, we observe that LMs used in our framework
sometimes plan more effectively over PDDL problems written in meaningless
symbols in place of natural language; e.g. rewriting (at dog kitchen) as (p2

o1 o3). This finding challenges hypotheses that LMs reason over word semantics
and memorise solutions from its training corpus, and is worth further exploration.

1 Introduction

AI automated planning (AP) [GNT04, GB13] refers to the class of sequential decision-making
problems formally specified by symbolic models in specification languages such as the Plan-
ning Domain Definition Language (PDDL) [MGH+98, HLMM19], and typically solved using
heuristic search techniques. Although AP is intractable [Cha87, Byl94, ENS95], agents are of-
ten tasked with tractable families of planning problems—problems that share a common set of
actions, transition system, and typed objects, and whose structural properties can be exploited
to construct plans or policies that solve these families of problems. For example, interplane-
tary rovers must continuously explore and collect information about planets with minimal com-
munication and time for activity planning [BJMR05], while logistics companies such as UPSTM

ship and deliver packages and scale to over 20 million packages every day across 200 coun-
tries and territories in 2024 [UPS25]. In such applications, there is much need for planning
efficiently at scale to solve time-intensive problems, and automated plan synthesis to minimise
dependency on human intervention. Generalised planning (GP) exactly encapsulates this prob-
lem of automatically generating plans as programs that address families of related planning prob-
lems [Lev05, SIZ08, SIZ11, BPG09, HD11, BFG19, IM19, CSJ19, CLL21, FBG21, DSG22].

Recently, immense progress in the development of language models (LMs) [BMR+20, CND+23]
has revealed strong emergent capabilities in reasoning and problem solving [KGR+22, WWS+22].
This progress has given rise to significant advances across various areas of artificial intelli-
gence and problem solving, including algorithmic discovery [RBN+24, NVE+25], code gener-
ation [CTJ+21, NPH+23, LTY+24], competitive programming [Ope25], and embodied intelli-
gence [DXS+23, IBB+25]. However, several studies have suggested that current LMs are incapable
of solving long-horizon planning problems [VMSK23, VSK24].

RLC 2025 Workshop on Programmatic Reinforcement Learning.

PlanPlanPrompt

Value Functions
balls_carrying = 0
balls_not_at_goal = 0
for atom in atoms:
 if "carry" in atom:
 balls_carrying += 1...

Policies
in_room_a = f"at-robby rooma" in atoms
pick_actions = [a for a in actions if "pick" in a]
drop_actions = [a for a in actions if "drop" in a]
if in_room_a and len(pick_actions) > 0:
 return random.choice(pick_actions)
...

Test
PDDL Problem

Plan

PDDL Domain

LM Planner

(1) Program
Synthesis

(2) Program
Instantiation

Train
PDDL Problem 1

Train
PDDL Problem 2

...

...

Figure 1: Pipeline for planning with LM-generated value functions and policies. The architecture
is enclosed in gray. (1) A domain, 2 example PDDL problems, and a prompt is input into the LM
which outputs a Python program representing a value function or policy. (2) The program is then
used to help plan for PDDL problems from the same domain. See Section 3 for more details.

In this work, we leverage LMs to synthesise Python programs as solutions to GP problems. Sim-
ilarly to prior work in LMs for GP [SDS+24], we encode GP problems in PDDL, the de facto
specification for symbolic AP problems. We assume that the PDDL models are given but they
can be synthesised with minimal human intervention from unstructured data such as natural lan-
guage [CWF+22, LAM+23, GVSK23, OSK+24, HLC25, TZM25], images [XGT24, AKS+25],
and environment interactions [VMS21, VMS22, SCK+23, SK23, LKT+25].

We study LM-generated programs as (1) value functions following [CPS25], and (2) policies for
solving GP problems represented in PDDL. We use LMs to generate Python programs implementing
value functions to guide heuristic search, and policies as reactive controllers that specify an action
to take from a set of applicable actions in a given state. Notably, we guarantee that the synthesised
policies are sound (any returned solution is correct in relation to the PDDL domain theory) by
restricting them to predict actions that are only applicable at the input state, and furthermore to
improve search performance. Our approach manifests in an LM planner that outperforms state-of-
the-art planners on total number of problems solved within a given time and memory limit from the
recent International Planning Competition Learning Track [TAE+24]. We further study the effect of
symbolic and semantic representations of planning problems for LMs used in our framework. We
observe that surprisingly and in contrast to observations in previous works [VMH+23, SDS+24],
LMs used in our framework can sometimes match or even perform better on planning problems
encoded using meaningless symbols (e.g., o1 for dog or p2 for at). This is a provocative finding
worth further exploration since it could suggest that the LM has learned to do some form of symbolic
planning or reasoning. Our contributions are summarised as follows.

• We use LMs to generate code implementing sound policies and compare its performance to gen-
erating value functions used in heuristic search for planning, with results generally favouring the
former approach. We further use LM-generated policies to improve heuristic search performance.

• We conduct experiments demonstrating that LMs used in our framework can sometimes plan better
on PDDL problems written with only symbols in place of natural language. This observation
challenges hypotheses from previous works that LMs can only plan with languages with semantic
meaning and memorise solutions from their training corpus.

2 Preliminaries: Classical Planning, PDDL, and Generalised Planning

In this section we introduce the necessary background on AP, followed by the problem we tackle
in this paper: generalised planning. AP refers to the class of sequential decision-making problems
using models represented in formal, symbolic languages and the methodologies for solving them.
We begin by introducing the abstract classical planning problem model, a special case of AP prob-
lems where the objective is to find a sequence of actions that transitions an agent from an initial
state to a goal state under a fully-observable, deterministic transition system. Although probabilistic
extensions of planning exist [BT91, San10, MK12], we focus our attention on classical planning
for ease of presentation. Following this, we provide an informal introduction to PDDL for encod-
ing planning problems. We then introduce heuristic search as a state-of-the-art method for solving

2

Table 1: Analogies between RL and AP methodologies.
Methodology Reinforcement Learning (RL) AI Planning (AP)

Action space Policy approximation Policy synthesis (3.2.a)
State space Value function approximation Heuristic search (3.2.b)
State & action Actor-critic algorithms Heuristic search w. preferred operators (3.2.c)

planning problems and how they can be viewed analogously to value functions in reinforcement
learning (RL). For those familiar with RL, Table 1 draws analogies between common RL and AP
methodologies. We conclude this section by formalising the GP problem which is concerned with
synthesising programmatic plans for solving families of related planning problems.

Planning problem A classical planning problem is a deterministic state transition model concerned
with driving a given initial state into a goal state via a sequence of actions. Following the notation
in [GB13], a (classical) planning problem is a tuple P = ⟨S,A, f,G, sI , c⟩ where S is a set of
states, A is a set of actions, f : S × A → S ∪ {⊥} is a deterministic transition function where
f(s, a) = ⊥ represents that the action a is not applicable in the state s, G ⊆ S is a non-empty set
of goal states, sI ∈ S is the initial state, and c : S × A → R≥0 is a cost function. The set of
applicable actions of a state s is defined by A(s) = {a | f(s, a) ̸= ⊥} ⊆ A and the successors of
s is defined by {f(s, a) | a ∈ A(s)} ⊆ S. A solution or plan α for a planning problem is a finite
sequence of actions a0, . . . , an such that f(si, ai) = si+1 ̸= ⊥ for i = 0, . . . , n where s0 = sI and
sn+1 ∈ G. In this paper, we focus on satisficing planning which refers to the problem of finding
satisficing solutions for P , i.e. any plan for the problem.

Planning representations: PDDL Planning problems are often represented in a first-order formal
language, the most common being PDDL. Details of the PDDL syntax are not necessary for the
understanding of the paper but one should note that fragments of PDDL planning range from be-
ing EXPSPACE-hard [ENS95] to undecidable [Hel02]. This is because PDDL provides compact
encodings of transition models that can be exponential in the size of the input files or greater. A
planning problem is represented by a PDDL domain, providing a compact encoding of the transition
function in terms of a set of object types, predicates, numeric functions, and actions, and a PDDL
problem, specifying a finite set of objects, an initial state, and a goal condition. For example, a
package delivery domain can contain

• the types object, vehicle, location, package,
• the predicates (at ?o - object ?l - location), (in ?p - package ?l - location),
• the numeric functions (capacity ?v - vehicle), (weight ?p - package), and
• the following action schema, among others, for loading a package into a vehicle

(: action pick -up
:parameters (?v - vehicle ?l - location ?p - package)
:precondition (and (at ?v ?l) (at ?p ?l) (>= (capacity ?v) (weight ?p)))
:effect (and (not (at ?p ?l)) (in ?p ?v) (decrease (capacity ?v) (weight ?p))))

Next, a package delivery problem can consist of a truck truck2 - vehicle that is at the depot (at
truck2 depot), has a specified capacity (= (capacity truck2) 5), and is carrying some packages
(in truck2 package3) & (in truck2 package1). A PDDL goal condition consists of a conjunc-
tion of ground atoms and inequalities of expressions of numeric functions, such as (at package1

office) & (>= (capacity truck2) 7). A goal condition induces a set of goal states as a state that
satisfies a goal condition is considered a goal state.

Heuristic search Heuristic search is the main driver of current state-of-the-art planners [RW10,
SKH20], with roots dating back to early planning systems [FN71, LG95, McD96, BLG97]. A
heuristic function is a function h : S → R ∪ {∞} which estimates the cost to go from a state s to a
goal state in G, and returns the value ∞ estimating that there is no plan from s to a goal. A heuristic
is safe if h(s) = ∞ only if there is no plan from s to a goal. The optimal heuristic h∗ returns the
minimal plan cost from a state, if a plan exists, and ∞ otherwise. A heuristic function is analogous
to an approximate value function in RL which estimates the maximal reward from a state where one
views the cost of a plan as a negative reward. Thus, h∗ is the optimal value function and induces
a policy π : S → A that executes a successor state with the lowest value, breaking ties arbitrarily.
However, h∗ is intractable to compute so heuristics are instead used to guide search. The Greedy

3

Best First Search (GBFS) algorithm searches for a path over the graph induced by the transition
system of a planning problem from an initial state to a goal state, guided by a heuristic function. It
consists of a priority queue initialised with the initial state as the only element, and a main loop that
performs the following steps while the queue is non-empty:

(1) pop a state s with the lowest heuristic value (breaking ties arbitrarily) from the queue,
(2) generate the successors of s via all applicable actions, and
(3) check if a successor s′ is a goal, in which case terminate with the plan to s′, and otherwise add

s′ to the queue if it has not been seen before.

The algorithm determines a problem is unsolvable if the main loop terminates which only occurs
if there are finitely many states. GBFS is sound (any returned solution is correct) and complete (a
solution is returned if it exists) for planning problems with finite state spaces. A∗ search [HNR68]
is an optimal search algorithm when used with an admissible heuristic. We do not use it in our
experiments because LM-generated heuristics are not guaranteed to be admissible.

Problem statement: generalised planning Recall that planning problems are specified by a PDDL
domain and problem. Let D denote a PDDL domain, and P a problem associated with D, where we
say that the problem P belongs to D. A generalised planning (GP) problem is a tuple ⟨Ptrain,Ptest⟩
where Ptrain is a finite set of training problems and Ptest a (possibly infinite) set of testing problems
belonging to the same domain. A solution to a GP problem is a policy (here a program) that is
synthesised from Ptrain and can be instantiated on and solve each problem P ∈ Ptest. A key attribute
of GP problems is that problems in Ptest are larger in terms of number of objects and more difficult
than to solve than problems in Ptrain. Thus, GP is as an out-of-distribution learning task.

3 LM-Generated Python Programs for Generalised Planning

In this section we describe our approach for GP which employs LMs to generate code as programs
representing value functions and policies for use in planning. Notably, all approaches to be described
next are sound algorithms and are furthermore complete when used with complete search.

LMs for GP Our approach consists of two modules for solving a GP problem ⟨Ptrain,Ptest⟩ as
illustrated in Figure 1: (1) a program synthesis module (Section 3.1) and (2) a program instantiation
module (Section 3.2). The program synthesis module (red in Figure 1) takes as input the training
problems Ptrain, corresponding domain D, and a natural language prompt, and outputs a program
implementing a value function or policy. The program instantiation module (yellow in Figure 1),
takes as input a problem P ∈ Ptest and a program from the previous module and outputs a plan α for
P . Note that the LM is queried for a program once per domain D associated with the GP problem
while the planner module is called for every problem P in Ptest.

3.1 LMs for program generation

Both the value function and policy programs are prompted to be generated as Python classes which
extend a class containing the domain D associated with the GP problem to be solved. We follow
a setup similar to [CPS25] for generating code as programs extended to both value functions and
policies. More specifically, for any given domain, we prompt an LM for a program as a value
function or policy with the following content:

(i) instructions for generating code for a program as a value function or policy,
(ii) the domain D corresponding to the GP problem and two problems in Ptrain in PDDL,

(iii) an example PDDL file for the Gripper domain [McD00] and a Gripper problem,
(iv) an example Python class encoding a value function or policy for Gripper.

Differently to [CPS25] we only provide example files for a single domain instead of two domains
(Gripper and Logistics). Gripper is a simple PDDL domain consisting of two rooms and a set of balls
located in one room. The objective is for a robot to move all balls in one room to the other, subject
to capacity constraints. Logistics is a more complex domain than Gripper which commands a fleet
of planes and trucks for delivering packages across various cities and locations. We emphasise that
the example Gripper files and Python class (iii-iv) are used to provide in-context learning [DLD+24]
for the LM to understand the syntax of PDDL and the Python class structure, but does not provide
any information about solving the GP problem associated with D.

4

3.2 Sound planning with LM-generated programs

Next, we describe how to (a) ensure that LM-generated policies are sound when used as reactive
controllers, (b) use value functions for sound and complete planning and (c) combine both value
functions and policies together for sound and complete planning and boosting performance over (b).

Algorithm 1: Greedy Best First Search (GBFS)
with a value function and policy (3.2.c)
Input: Planning problem P = ⟨S,A, f,G, sI , c⟩,

value function h, and policy π.
Output: A plan α or failure if no plan exists.

1 if sI ∈ G then return ∅
2 qH ← [sI]; qP ← []; visited ← {sI} ; popH ← ⊤
3 while qH or qP is not empty do
4 if popH = ⊤ then s← argmins∈qH

h(s)

5 else s← argmins∈qP
h(s)

6 popH ← !popH ; qP .push(π(s))
7 for a ∈ A(s) do
8 s′ ← f(s, a)
9 if s′ ∈ visited then continue

10 if s′ ∈ G then return extract plan to s′

11 visited .insert(s′); q .push(s′)
12 return failure

(3.2.a) Sound policies as reactive controllers
Given a planning problem P = ⟨S,A, f,G, sI , c⟩,
the policy program πLM is instantiated on P to
represent a policy π : S → A that takes as in-
put a state s and its applicable actions A(s) and
outputs an action π(s) ∈ A(s). We furthermore
have wrapper code around πLM such that if due
to an error or mistake in the generated code and
π(s) /∈ A(s), we choose a random action from
A(s) instead. We use the policy program in the
usual way for a policy via rollout. Specifically,
we repeatedly apply the operation s = f(s, π(s))
starting from the initial state s = sI of a planning
problem until either a goal is reached (i.e. s ∈ G)
or no applicable actions exist. Notably, this ap-
proach is sound, meaning that any plan returned
by this procedure is valid.
Theorem 1. Approach (3.2.a) is sound with re-
spect to an input planning problem P .

Proof sketch. This is because all predicted actions are applicable at their current state. Thus any
sequence of actions generated by the policy is applicable from the initial state. Furthermore, a plan
is only returned when the goal is reached so any returned action sequence reaches the goal.

(3.2.b) Sound and complete value functions in search Equivalently to [CPS25], the value function
program V LM consists of a method representing a heuristic function h : S → R ∪ {∞} that takes
as input a state s from P and outputs a value h(s) used in GBFS described in Section 2. To ensure
the output heuristic is safe, we have wrapper code that converts ∞ outputs to a large constant value.
Thus, we have the following property that this approach is sound and complete.
Theorem 2. Approach (3.2.b) is sound with respect to an input planning problem P and complete
if the state space of P is finite.

Proof sketch. This follows from the fact that GBFS is sound and complete for finite state spaces
when used with a safe heuristic, and that the generated value function program used as a heuristic is
ensured to be safe by disallowing ∞ values.

(3.2.c) Sound and complete value functions and policies in search We now describe how to
combine LM-generated policies and value functions with search. The main idea is that GBFS can
be extended to two queues from which nodes are popped in a round robin fashion: one each for
a value function V LM and policy πLM. Indeed, the usage of multiple queues have been explored
in previous work with multiple heuristics [RH10] or preferred operators, actions that are deemed
useful for achieving the goal within the computation of a heuristic function [HN01]. The algorithm
is summarised in Algorithm 1, which begins by checking if the problem is trivially solvable (Line 1)
before initialising the two queues qH and qP representing a queue containing successors of any
expanded states, and a state predicted by the policy π, respectively (Line 2). The main loop alternates
between popping states from the two queues, followed by pushing the state predicted by the policy
into the qP queue (Lines 3 to 6), and the remainder of the original GBFS algorithm for the qH queue
(Lines 7 to 11) described in Section 2. This approach is also sound and complete.
Theorem 3. Approach (3.2.c) is sound with respect to an input planning problem P and complete
if the state space of P is finite.

Proof sketch. Extending GBFS with multiple queues preserves the same soundness and complete-
ness properties of GBFS as the search is still exhaustive for finite state spaces.

5

4 Experiments

We conduct experiments to address the following questions.

(1) Q: Which of LM-generated value functions used for search or policies used as is solve more
planning problems within a fixed time limit, and how do they compare to PDDL planners?
A: Policies are faster for simpler problems, while search with value functions solve more com-
plex problems. LM programs are competitive with PDDL planners on easy domains.

(2) Q: How important is soundness and completeness for planning performance?
A: Soundness is important but completeness is not always necessary.

(3) Q: Are LMs planning over word semantics or logical symbols?
A: LMs are shown to be capable to reason over PDDL planning problems represented in either
semantic or symbolic text, but more experimentation is required to draw conclusive results.

Bl Ch Fe Fl Mi Ro Sa So Sp Tr
101

103

Validation Test

Figure 2: Number of objects (log
y-axis) of validation and test prob-
lems across domains.

Domains We evaluate the effectiveness of LM-generated value
functions and policies on 10 standard PDDL planning domains
(Blocksworld, Childsnack, Ferry, Floortile, Miconic, Rovers,
Satellite, Sokoban, Spanner, Transport) with validation and
testing problems (of increasing difficulty in terms of number
of objects) taken from the Learning Track of the 2023 Interna-
tional Planning Competition [TAE+24]. Figure 2 summarises
the ranges of problem sizes across the domains, noting that
the testing sizes are up to two orders of magnitude larger than
validation problems.

Implementation For our experiments, we implement a planner from scratch, namely LMPLAN,
which prompts LMs for programs and both (a) uses value functions for heuristic search and (b)
executes policies as reactive controllers. LMPLAN also implements the search using both value
functions and policies introduced in Algorithm 1. The implementation consists of a combination of
Python for heuristic evaluation and C++ for data structure representations of planning components.
We use the SQLite library [Hip20] to compute actions applicable for a state in Line 7, as planning
states can be viewed as databases and applicable action generation as database queries [CPHF20].

Validation for selecting LM-generated programs With regards to LMs, we experiment with
DeepSeek-R1 [DGY+25], Gemini 2.0 Flash, and Gemini 2.5 Flash Preview 04-17 [GTGBW+23].
Similarly to [CPS25], we perform a validation procedure to select the best value function and pol-
icy for each domain out of several generated programs. Each LM is called 10 times to generate a
value function and policy program for each domain. For each domain, the best value function (resp.
policy) is then selected by taking the best average score of the program when used for search (resp.
rollout) on 10 small, training problems. We choose a scoring function that favours models that solve
the training problems quickly, as the time to generate a solution is a major performance metric for
satisficing planning. Specifically, the validation score for each problem and program is given by
(1 + log(t+ 1))−1 if the program used for search or rollout solves a given problem in t seconds for
t < 60 seconds, and 0 otherwise. Appendix A lists prompting costs, Appendix B shows LMs that
generated the selected program, and Appendix C reports the corresponding generation times.

Approaches We evaluate our proposed approaches using LM-generated programs in the LMPLAN
planner (•) and compare them to traditional PDDL planners (◦) listed as follows:

◦ hFF: GBFS with the FF heuristic [HN01],
◦ CPS25: reported results for LM-generated programs for heuristic search by [CPS25],
◦ WLGOOSE: GBFS with state-of-the-art value functions learned with the Weisfeiler-Leman graph

kernel for generating features from planning tasks [CTT24b] and Gaussian process regression for
computing linear model weights,

◦ LAMA: a state-of-the-art, general-purpose planner that uses multiple heuristics, queues and sev-
eral optimisation techniques [RW10].

• V LM: GBFS using an LM-generated program as a value function,
• πLM: rollout of an LM-generated program as a policy,
• πLM ⊕ V LM: GBFS with two queues associated with V LM and πLM,
• πLM ⊗ V LM: a choice between πLM and πLM ⊕ V LM depending on whether πLM or V LM by

themselves respectively achieves the higher average validation score.

6

Table 2: Coverage (↑) of existing planners (top) and LMPLAN approaches introduced in this paper
(bottom), see Approaches for details. The S/C column represents if an approach is sound/complete.
Best values in each column are highlighted, where 90 is the best achievable score per domain.

S C Bl Ch Fe Fl Mi Ro Sa So Sp Tr Σ

hFF ✓ ✓ 28 26 68 12 90 34 65 36 30 41 430
CPS25 ✓ ✓ 66 22 – 4 90 32 – 30 70 59 ∗373
WLGOOSE ✓ ✓ 75 29 76 2 90 37 53 38 73 29 502
LAMA ✓ ✓ 61 35 68 11 90 67 89 40 30 66 557

V LM ✓ ✓ 33 15 59 2 63 32 60 32 46 55 397
πLM ✓ ✗ 90 11 90 0 90 12 90 0 90 90 563
πLM ⊕ V LM ✓ ✓ 36 19 66 2 72 35 62 34 47 51 424
πLM ⊗ V LM ✓ ✗ 90 19 90 2 90 35 90 34 90 90 630
∗ Note that CPS25 does not support the Ch and Sa domains, indicated by –, such that

∑
is not representative

of its best performance.

There are 90 testing problems in each of the 10 domains for a total of 900 testing problems. Each
approach is run on Intel Xeon Platinum 8268 cores for 1800 seconds and with a memory budget
of 8GB for each problem. An exception is CPS25 where we report results from the original paper
using AMD EPYC 7742 cores as their code is not yet publicly available. We report the coverage
metric in Table 2, the number of problems solved within the given computational budgets.

(1) Do value functions for search or policies generated by LMs solve planning problems faster?
We note from Table 2 that policies πLM vastly outperform value functions V LM for more domains
but otherwise both are complementary overall. More specifically execution of the policy πLM solves
all problems for 6 domains (Blocksworld, Ferry, Miconic, Satellite, Spanner and Transport), but
struggles to solve problems from the remaining domains. Regardless, πLM already outperforms
a state-of-the-art planner, LAMA, in overall coverage (563 against 557) as well as in number of
domains (6 against 4). On the other hand, search with the value function V LM is complete and
hence provides more well-rounded performance across domains by solving at least 30 problems
from each domain except Childsnack and Floortile, but has a lower overall cumulative coverage.
A similar statement can be made by the baseline planners which all employ heuristic search with
value functions. However, the validation procedure correctly identifies when a policy or search is
performs better, resulting in the strong portfolio planner, πLM ⊗ V LM, with a total coverage of 630.
As to be discussed in the next question, πLM ⊗ V LM takes advantage of the πLM ⊕ V LM setting
which improves upon the domains where πLM struggle, and also upon V LM for search.

(2) How important is soundness and completeness for planning performance? Recall that search
with value functions is both sound and complete, while execution of our LM-generated policies is
sound but not complete. We note that soundness is an important property: previous works show that
LM prompting of plans, which is neither sound nor complete, achieve low coverage on planning
problems which are trivial to solve for symbolic planning systems [VMSK23, VSK24]. In this
work, all approaches are sound so we study the impact of complete algorithms. We recall from the
previous question that πLM and πLM ⊗ V LM are incomplete but achieve better overall performance
over complete approaches. However, as also noted previously, the performance of policies on some
domains are very poor when the LM did not understand how to solve these tasks.

However, we observe that combining the policies into (complete) search with value functions as
done in πLM⊕V LM always matches or improves upon pure search with V LM. Indeed, adding policy
generated states into a queue strictly improves search in 8 out of 10 domains, including domains on
which the policy πLM by itself struggles, and improves the overall coverage of V LM from 397 to 424.
Furthermore, the validation procedure correctly identifies when to use search or policy execution
which suggests that combining the best of complete and incomplete algorithms while maintaining
soundness is a promising approach. We refer to Appendix D for a statistical analysis of a positive
correlation between validation and test performance that supports this validation procedure.

(3) Are LMs planning over word semantics or logical symbols? In order to address this question,
we perform the ablation introduced by [SDS+24] by replacing all type, predicate, function, schema
and object names in all PDDL files with nondescriptive symbols; e.g. predicates are renamed to p1,

7

p2, . . . , actions to a1, a2, . . . , objects to o1, o2, . . . , etc. Table 3 illustrates the coverage results of
LM-generated value functions for search (V LM) and policies for rollout (πLM) on PDDL input files
with and without semantic names.

Table 3: Coverage (↑) with (sem) and without
(sym) semantic names. Green/red cells indicate
where sym solves at least 3 problems more/fewer
problems than its sem counterpart for a domain.

Bl Ch Fe Fl Mi Ro Sa So Sp Tr Σ

Vsem 33 15 59 2 63 32 60 32 46 55 397
Vsym 33 24 61 1 70 34 48 30 63 42 406

πsem 90 11 90 0 90 12 90 0 90 90 563
πsym 1 12 90 0 90 46 6 0 90 89 424

Surprisingly and contrary to previous works
performing similar experiments [VMH+23,
SDS+24], we observe that in multiple settings,
LM-generated programs perform better without
than with semantic names in the PDDL inputs.
LM-generated value functions perform better
by at least 3 problems without semantic names
on 3 domains and worse on 2 (see green and red
cells in Table 3). The case for policies is per-
forming better on 1 domain and worse on 2 do-
mains. Specifically, removing semantic names
often improves performance for value function
generation but decreases for policy generation. However, there are still 3 domains for which policies
can solve all problems even without semantic names in PDDL inputs (Fe, Mi, Sp). It is unclear
exactly why this may be the case but the results mirror related work studying whether LMs can rea-
son without comprehensible natural language inputs. Indeed, [PMB24] showed that removing word
semantics from reasoning tokens in LMs, instead of the input reasoning problem as in our work,
has minor impact to reasoning performance, while [SVG+25] showed that intermediate reasoning
tokens may not reflect human-like or algorithm-interpretable trace semantics.

Limitations

Although our proposed approaches, specifically πLM and πLM⊗V LM in Table 2, achieve the highest
total coverage, they are not necessarily the best performing planners across all domains and metrics.
This fact may change with the improvement of LMs over time as they understand how to solve more
complex planning problems which are still tractable to solve satisficingly, such as the Childsnack,
Floortile and Rovers domains.

Another limitation of the synthesised policies is that they have no completeness or termination guar-
antee. Although it is possible to guarantee such properties by combining them with search or by
using them as an epsilon-greedy policy in the case of domains with reversible actions, the latter
approach comes at a cost of extremely poor plan quality.

Indeed, we have yet to discuss plan quality. Figure 3 compares the solution qualities of various
approaches. We direct the reader to the 2nd plot (πLM compared against LAMA) and note that the
LM-generated policy returns inferior plans on the Blocksworld and Transport domains, sometimes
up to 100 times worse for several Transport problems. When analysing the plans and generated
code, the policy sometimes randomly selects unnecessary actions that undo previous actions. On
the other hand, LM-generated value functions perform similarly to PDDL planners in terms of plan
quality (1st plot: V LM compared against LAMA). Similarly, the effect of input representation on
plan quality of LM-generated value functions is neglible (3rd plot: Vsem compared against Vsym).
However, there is more variance for the case of policies, especially Rovers where although πsym

solves more problems, it achieves significantly worse plans (4th plot: πsem compared against πsym).

Lastly, although replacing semantic names with arbitrary symbols in our PDDL encodings does
not degrade the performance of value function generation, doing so significantly decreases the per-
formance of generated policies on 2 domains (Blocksworld and Satellite). Furthermore, it is not
obvious why the performance of LM-generated value functions improves when semantic names are
removed which warrants further investigation.

5 Related Work

LMs for PDDL Planning Previous works have shown that querying LMs directly to output
plans [VMSK23, VSK24] or using LMs themselves as value functions [KKSS24] result in poor
planning performance and LM efficiency. Instead, LMs have shown more success in hybrid sys-
tems [KVG+24] such as those which generate or leverage PDDL models from natural language to

8

100 101 102 103 104 105

V LM

100

101

102

103

104

105

L
A

M
A

100 101 102 103 104 105

πLM

100

101

102

103

104

105

L
A

M
A

100 101 102 103 104 105

Vsem

100

101

102

103

104

105

V s
ym

100 101 102 103 104 105

πsem

100

101

102

103

104

105

π s
ym

Blocksworld
Childsnack

Ferry
Floortile

Miconic
Rovers

Satellite
Sokoban

Spanner
Transport

Figure 3: Returned plan cost (↓) of planners labelled in the x and y-axes in log scale. Problems that
were not solved by one planner has their respective metric set to the axis limit. Points on the top left
triangle favour the x-axis planner while points on the bottom right triangle favour the y-axis planner.

be solved by or with the aid of PDDL planning technology [CWF+22, LAM+23, XYZ+23, LJZ+23,
GVSK23, OSK+24, LPL+25]. The closest related works to ours that study generalised planning via
LM-generated programs [SDS+24] and via LM-generated value functions [TVS25, CPS25] pro-
vide significantly stronger planning performance than standalone LM planners. In the former work
by [SDS+24], LMs are queried to generate code which aims to directly synthesise a plan for a
PDDL planning problem of a given domain. Although external verifiers are used to improve the
code in a validation stage, the approach is not sound for test problems. The latter works by [TVS25]
and [CPS25] query LMs to generate a value function for use in heuristic search by leveraging the
PDDL input structure and existing planners. [TVS25] generate a value function for each new PDDL
problem, whereas we and [CPS25] only use one value function for all PDDL problems within the
same PDDL domain. Our work differs from these two works as we also synthesise sound policies
via LMs as opposed to value functions for search or unsound programs. We further perform an
ablation study that shows the LMs used in our framework do not suffer from performance when
replacing semantic words in PDDL problem inputs with meaningless symbols.

Learning Reusable Value Functions and Policies AI planning researchers have been study-
ing representations and approaches for learning reusable value functions and policies for PDDL
planning which can generalise to unseen problems of arbitrary numbers of objects [CdlRF+12,
IM19, CSJ19]. This is analogous to reinforcement learning whose approaches can be cate-
gorised into value function learning [WD92, MKS+13, MKS+15, vHGS16], policy gradient meth-
ods [Wil92, SLA+15, SWD+17], and actor-critic methods which combine value function and policy
learning [KT99, SMSM99, MBM+16, LHP+16]. Recent works in machine learning for PDDL plan-
ning involve learning value functions [STT20, KS21, GAC+22, CTT24a, CTT24b, HTT+24, CT24]
and policies [TTTX18, TTTX20, SBG22, WT24]. Our work is one of the few in this body of work
which learns to evaluate both states and actions [WT25].

Generalised Planning Generalised planning (GP) aims to compute programs that can solve fami-
lies of related planning problems. GP stemmed from synthesising programs containing conditionals
and loops [Lev05, SIZ08, SCJ24] from which researchers found various approaches for representing
programs such as with memoryless finite-state controllers [BPG09, BPG10, HD11, AJJ18] or poli-
cies derived from lifted rules [Kha99, MG04, SZIG11, IM19, FCGP19, YSC+22, DSG22, HG24].
Key attributes of symbolic GP approaches include guarantees of soundness, completeness, and ter-
mination of policies, some or all of which are usually not guaranteed by LM or deep learning archi-
tectures. Our work studies the effect of soundness and completeness for LMs for GP.

6 Conclusion

We introduce a language model (LM) planner, LMPLAN, that generates Python programs as value
functions and sound policies for PDDL planning. Conducted experiments show that LMPLAN
achieves strong planning performance relative to state-of-the-art planners and recent LM approaches.
We also identify that, surprisingly, LMPLAN sometimes show better planning performance over
purely symbolic representations of planning problems. This observation challenges previous hy-
potheses that LMs cannot reason over meaningless symbols and is worth much further exploration.

9

Acknowledgements

This work was carried out when all three authors were research interns at the Vector Institute for AI,
Toronto, Canada. We gratefully acknowledge funding from the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Canada CIFAR AI Chairs Program. Resources used
in preparing this research were provided, in part, by the Province of Ontario, the Government of
Canada through CIFAR, and companies sponsoring the Vector Institute. We thank Felix Dangel for
feedback on the figures in the paper. Finally, the first three authors acknowledge the Nando’s team
on Bay Street for the copious amounts of Extra Hot chicken that helped fuel this work.

References

[AJJ18] Javier Segovia Aguas, Sergio Jiménez, and Anders Jonsson. Computing hierarchical
finite state controllers with classical planning. J. Artif. Intell. Res., 62:755–797,
2018.

[AKS+25] Ashay Athalye, Nishanth Kumar, Tom Silver, Yichao Liang, Tomás Lozano-Pérez,
and Leslie Pack Kaelbling. Predicate invention from pixels via pretrained vision-
language models. CoRR, abs/2501.00296, 2025.

[BFG19] Blai Bonet, Guillem Francès, and Hector Geffner. Learning features and abstract
actions for computing generalized plans. In AAAI, 2019.

[BJMR05] John L. Bresina, Ari K. Jónsson, Paul H. Morris, and Kanna Rajan. Activity plan-
ning for the mars exploration rovers. In ICAPS, 2005.

[BLG97] Blai Bonet, Gábor Loerincs, and Hector Geffner. A robust and fast action selection
mechanism for planning. In AAAI, 1997.

[BMR+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

[BPG09] Blai Bonet, Héctor Palacios, and Hector Geffner. Automatic derivation of memory-
less policies and finite-state controllers using classical planners. In ICAPS, 2009.

[BPG10] Blai Bonet, Héctor Palacios, and Hector Geffner. Automatic derivation of finite-
state machines for behavior control. In AAAI, 2010.

[BT91] Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path
problems. Math. Oper. Res., 16:580–595, 1991.

[Byl94] Tom Bylander. The computational complexity of propositional STRIPS planning.
Artif. Intell., 69(1-2):165–204, 1994.

[CdlRF+12] Sergio Jiménez Celorrio, Tomás de la Rosa, Susana Fernández, Fernando
Fernández, and Daniel Borrajo. A review of machine learning for automated plan-
ning. Knowl. Eng. Rev., 27:433–467, 2012.

[Cha87] David Chapman. Planning for conjunctive goals. Artif. Intell., 32(3):333–377, 1987.

[CLL21] Zhenhe Cui, Yongmei Liu, and Kailun Luo. A uniform abstraction framework for
generalized planning. In IJCAI, 2021.

[CND+23] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, San-
jay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra,
Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeon-
taek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani

10

Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai,
Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov,
Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan
Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean,
Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. J.
Mach. Learn. Res., 24:240:1–240:113, 2023.

[CPHF20] Augusto B. Corrêa, Florian Pommerening, Malte Helmert, and Guillem Francès.
Lifted successor generation using query optimization techniques. In ICAPS, 2020.

[CPS25] Augusto B. Corrêa, André Grahl Pereira, and Jendrik Seipp. Classical planning with
llm-generated heuristics: Challenging the state of the art with python code. CoRR,
abs/2503.18809, 2025.

[CSJ19] Sergio Jiménez Celorrio, Javier Segovia-Aguas, and Anders Jonsson. A review of
generalized planning. Knowl. Eng. Rev., 34:e5, 2019.

[CT24] Dillon Z. Chen and Sylvie Thiébaux. Graph learning for numeric planning. In
NeurIPS, 2024.

[CTJ+21] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy
Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert,
Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code. CoRR, abs/2107.03374, 2021.

[CTT24a] Dillon Z. Chen, Sylvie Thiébaux, and Felipe Trevizan. Learning domain-
independent heuristics for grounded and lifted planning. In AAAI, 2024.

[CTT24b] Dillon Z. Chen, Felipe W. Trevizan, and Sylvie Thiébaux. Return to tradition:
Learning reliable heuristics with classical machine learning. In ICAPS, 2024.

[CWF+22] Katherine M. Collins, Catherine Wong, Jiahai Feng, Megan Wei, and Josh Tenen-
baum. Structured, flexible, and robust: benchmarking and improving large language
models towards more human-like behavior in out-of-distribution reasoning tasks. In
CogSci, 2022.

[DGY+25] DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu
Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao,
Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guant-
ing Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei
Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni,
Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang,
Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang,
Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng
Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S.
Li. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learn-
ing. CoRR, abs/2501.12948, 2025.

11

[DLD+24] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia,
Jingjing Xu, Zhiyong Wu, Baobao Chang, Xu Sun, Lei Li, and Zhifang Sui. A
survey on in-context learning. In EMNLP, 2024.

[DSG22] Dominik Drexler, Jendrik Seipp, and Hector Geffner. Learning sketches for decom-
posing planning problems into subproblems of bounded width. In ICAPS, 2022.
Code accessed from commit 7a7ea6 in https://github.com/drexlerd/sket
ch-learner.

[DXS+23] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery,
Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong
Huang, Yevgen Chebotar, Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vin-
cent Vanhoucke, Karol Hausman, Marc Toussaint, Klaus Greff, Andy Zeng, Igor
Mordatch, and Pete Florence. Palm-e: An embodied multimodal language model.
In ICML, 2023.

[ENS95] Kutluhan Erol, Dana S. Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent planning. Artif. Intell., 76:75–88,
1995.

[FBG21] Guillem Francès, Blai Bonet, and Hector Geffner. Learning general planning poli-
cies from small examples without supervision. In AAAI, 2021.

[FCGP19] Guillem Francès, Augusto B. Corrêa, Cedric Geissmann, and Florian Pommerening.
Generalized potential heuristics for classical planning. In IJCAI, 2019.

[FN71] Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artif. Intell., 2:189–208, 1971.

[GAC+22] Clement Gehring, Masataro Asai, Rohan Chitnis, Tom Silver, Leslie Pack Kael-
bling, Shirin Sohrabi, and Michael Katz. Reinforcement learning for classical plan-
ning: Viewing heuristics as dense reward generators. In ICAPS, 2022.

[GB13] Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods for
Automated Planning. Morgan & Claypool Publishers, 2013.

[GNT04] Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated planning - theory and
practice. Elsevier, 2004.

[GTGBW+23] Rohan Anil Gemini Team Google, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M. Dai,
Anja Hauth, Katie Millican, David Silver, Slav Petrov, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler, Tim-
othy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Is-
ard, Paul Ronald Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm
Reynolds, Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens Meyer, Eliza Ruther-
ford, Erica Moreira, Kareem Ayoub, Megha Goel, George Tucker, Enrique Piqueras,
Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo Danihelka, Becca Roelofs, Anaı̈s
White, Anders Andreassen, Tamara von Glehn, Lakshman Yagati, Mehran Kazemi,
Lucas Gonzalez, Misha Khalman, Jakub Sygnowski, and et al. Gemini: A family
of highly capable multimodal models. CoRR, abs/2312.11805, 2023.

[GVSK23] Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati.
Leveraging pre-trained large language models to construct and utilize world models
for model-based task planning. In NeurIPS, 2023.

[HD11] Yuxiao Hu and Giuseppe De Giacomo. Generalized planning: Synthesizing plans
that work for multiple environments. In IJCAI, 2011.

[Hel02] Malte Helmert. Decidability and undecidability results for planning with numerical
state variables. In AIPS, 2002.

[HG24] Till Hofmann and Hector Geffner. Learning generalized policies for fully observ-
able non-deterministic planning domains. In IJCAI, 2024.

[Hip20] Dwayne Richard Hipp. Sqlite, 2020. Accessed from https://www.sqlite.org
/index.html.

[HLC25] Sukai Huang, Nir Lipovetzky, and Trevor Cohn. Planning in the dark: Llm-symbolic
planning pipeline without experts. In AAAI, 2025.

12

https://github.com/drexlerd/sketch-learner
https://github.com/drexlerd/sketch-learner
https://www.sqlite.org/index.html
https://www.sqlite.org/index.html

[HLMM19] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise. An In-
troduction to the Planning Domain Definition Language. Morgan & Claypool Pub-
lishers, 2019.

[HN01] Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. J. Artif. Intell. Res., 14:253–302, 2001.

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern., 4(2):100–
107, 1968.

[HTT+24] Mingyu Hao, Felipe Trevizan, Sylvie Thiébaux, Patrick Ferber, and Jörg Hoffmann.
Guiding GBFS through learned pairwise rankings. In IJCAI, 2024.

[IBB+25] Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dha-
balia, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Manuel Y. Galliker, Dibya Ghosh, Lachy Groom, Karol Hausman, Brian Ichter,
Szymon Jakubczak, Tim Jones, Liyiming Ke, Devin LeBlanc, Sergey Levine,
Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Allen Z. Ren, Lucy Xi-
aoyang Shi, Laura Smith, Jost Tobias Springenberg, Kyle Stachowicz, James Tan-
ner, Quan Vuong, Homer Walke, Anna Walling, Haohuan Wang, Lili Yu, and Ury
Zhilinsky. π0.5: a vision-language-action model with open-world generalization.
CoRR, abs/2504.16054, 2025.

[IM19] León Illanes and Sheila A. McIlraith. Generalized planning via abstraction: Arbi-
trary numbers of objects. In AAAI, 2019.

[KGR+22] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. Large language models are zero-shot reasoners. CoRR, abs/2205.11916,
2022.

[Kha99] Roni Khardon. Learning action strategies for planning domains. Artif. Intell.,
113:125–148, 1999.

[KKSS24] Michael Katz, Harsha Kokel, Kavitha Srinivas, and Shirin Sohrabi. Thought of
search: Planning with language models through the lens of efficiency. In NeurIPS,
2024.

[KS21] Rushang Karia and Siddharth Srivastava. Learning generalized relational heuristic
networks for model-agnostic planning. In AAAI, 2021.

[KT99] Vijay R. Konda and John N. Tsitsiklis. Actor-critic algorithms. In NIPS, 1999.
[KVG+24] Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya

Stechly, Siddhant Bhambri, Lucas Saldyt, and Anil Murthy. Position: Llms can’t
plan, but can help planning in llm-modulo frameworks. In ICML, 2024.

[LAM+23] Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg.
Text2motion: from natural language instructions to feasible plans. Auton. Robots,
47(8):1345–1365, 2023.

[Lev05] H. J. Levesque. Planning with loops. In IJCAI, 2005.
[LG95] Philippe Laborie and Malik Ghallab. Planning with sharable resource constraints.

In IJCAI, 1995.
[LHP+16] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. In ICLR, 2016.

[LJZ+23] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas,
and Peter Stone. LLM+P: empowering large language models with optimal plan-
ning proficiency. CoRR, abs/2304.11477, 2023.

[LKT+25] Yichao Liang, Nishanth Kumar, Hao Tang, Adrian Weller, Joshua B. Tenenbaum,
Tom Silver, João F. Henriques, and Kevin Ellis. Visualpredicator: Learning abstract
world models with neuro-symbolic predicates for robot planning. In ICLR, 2025.

[LPL+25] Xiaotian Liu, Ali Pesaranghader, Hanze Li, Punyaphat Sukcharoenchaikul, Jaehong
Kim, Tanmana Sadhu, Hyejeong Jeon, and Scott Sanner. Open-world planning via
lifted regression with llm-inferred affordances for embodied agents. In ACL, 2025.

13

[LTY+24] Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao
Lu, and Qingfu Zhang. Evolution of heuristics: Towards efficient automatic algo-
rithm design using large language model. In ICML, 2024.

[MBM+16] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous
methods for deep reinforcement learning. In ICML, 2016.

[McD96] Drew V. McDermott. A heuristic estimator for means-ends analysis in planning. In
AIPS, 1996.

[McD00] Drew V. McDermott. The 1998 AI planning systems competition. AI Mag.,
21(2):35–55, 2000.

[MG04] Mario Martı́n and Hector Geffner. Learning generalized policies from planning
examples using concept languages. Appl. Intell., 20:9–19, 2004.

[MGH+98] Drew McDermott, Malik Ghallab, Adele E. Howe, Craig A. Knoblock, Ashwin
Ram, Manuela M. Veloso, Daniel S. Weld, and David E. Wilkins. PDDL-the plan-
ning domain definition language. Technical report, 1998.

[MK12] Mausam and Andrey Kolobov. Planning with Markov Decision Processes: An AI
Perspective. Morgan & Claypool Publishers, 2012.

[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. Playing atari with deep
reinforcement learning. CoRR, abs/1312.5602, 2013.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nat., 518(7540):529–
533, 2015.

[NPH+23] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Sil-
vio Savarese, and Caiming Xiong. Codegen: An open large language model for
code with multi-turn program synthesis. In ICLR, 2023.

[NVE+25] Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen
Huang, Adam Zsolt Wagner, Sergey Shirobokov, Borislav Kozlovskii, Francisco
J. R. Ruiz, Abbas Mehrabian, M. Pawan Kumar, Abigail See, Swarat Chaudhuri,
George Holland, Alex Davies, Sebastian Nowozin, Pushmeet Kohli, and Matej Ba-
log. Alphaevolve: A gemini-powered coding agent for designing advanced algo-
rithms, 2025. Accessed from https://deepmind.google/discover/blog/al
phaevolve-a-gemini-powered-coding-agent-for-designing-advance
d-algorithms/.

[Ope25] Open AI. Introducing openai o3 and o4-mini, 2025. Accessed from https://op
enai.com/index/introducing-o3-and-o4-mini.

[OSK+24] James T. Oswald, Kavitha Srinivas, Harsha Kokel, Junkyu Lee, Michael Katz, and
Shirin Sohrabi. Large language models as planning domain generators. In ICAPS,
2024.

[PMB24] Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hid-
den computation in transformer language models. In COLM, 2024.

[RBN+24] Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov,
Matej Balog, M. Pawan Kumar, Emilien Dupont, Francisco J. R. Ruiz, Jordan S.
Ellenberg, Pengming Wang, Omar Fawzi, Pushmeet Kohli, and Alhussein Fawzi.
Mathematical discoveries from program search with large language models. Nat.,
625(7995):468–475, 2024.

[RH10] Gabriele Röger and Malte Helmert. The more, the merrier: Combining heuristic
estimators for satisficing planning. In ICAPS, 2010.

[RW10] Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based
anytime planning with landmarks. J. Artif. Intell. Res., 39:127–177, 2010.

14

https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms/
https://openai.com/index/introducing-o3-and-o4-mini
https://openai.com/index/introducing-o3-and-o4-mini

[San10] Scott Sanner. Relational dynamic influence diagram language (rddl): Language
description. Technical report, 2010.

[SBG22] Simon Ståhlberg, Blai Bonet, and Hector Geffner. Learning general optimal policies
with graph neural networks: Expressive power, transparency, and limits. In ICAPS,
2022.

[SCJ24] Javier Segovia-Aguas, Sergio Jiménez Celorrio, and Anders Jonsson. Generalized
planning as heuristic search: A new planning search-space that leverages pointers
over objects. Artif. Intell., 330:104097, 2024.

[SCK+23] Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie McClinton, Tomás Lozano-
Pérez, Leslie Pack Kaelbling, and Joshua B. Tenenbaum. Predicate invention for
bilevel planning. In AAAI, 2023.

[SDS+24] Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B. Tenenbaum, Leslie Kaelbling,
and Michael Katz. Generalized planning in PDDL domains with pretrained large
language models. In AAAI, 2024.

[SIZ08] Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. Learning general-
ized plans using abstract counting. In AAAI, 2008.

[SIZ11] Siddharth Srivastava, Neil Immerman, and Shlomo Zilberstein. A new representa-
tion and associated algorithms for generalized planning. Artif. Intell., 175(2):615–
647, 2011.

[SK23] Sarath Sreedharan and Michael Katz. Optimistic exploration in reinforcement learn-
ing using symbolic model estimates. In NeurIPS, 2023.

[SKH20] Jendrik Seipp, Thomas Keller, and Malte Helmert. Saturated cost partitioning for
optimal classical planning. J. Artif. Intell. Res., 67:129–167, 2020.

[SLA+15] John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp
Moritz. Trust region policy optimization. In ICML, 2015.

[SMSM99] Richard S. Sutton, David A. McAllester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation. In
NeurIPS, 1999.

[STT20] William Shen, Felipe Trevizan, and Sylvie Thiébaux. Learning Domain-
Independent Planning Heuristics with Hypergraph Networks. In ICAPS, 2020.

[SVG+25] Kaya Stechly, Karthik Valmeekam, Atharva Gundawar, Vardhan Palod, and Sub-
barao Kambhampati. Beyond semantics: The unreasonable effectiveness of reason-
less intermediate tokens. CoRR, abs/2505.13775, 2025.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[SZIG11] Siddharth Srivastava, Shlomo Zilberstein, Neil Immerman, and Hector Geffner.
Qualitative numeric planning. In AAAI, 2011.

[TAE+24] Ayal Taitler, Ron Alford, Joan Espasa, Gregor Behnke, Daniel Fiser, Michael
Gimelfarb, Florian Pommerening, Scott Sanner, Enrico Scala, Dominik Schreiber,
Javier Segovia-Aguas, and Jendrik Seipp. The 2023 international planning compe-
tition. AI Mag., 45:280–296, 2024.

[TTTX18] Sam Toyer, Felipe W. Trevizan, Sylvie Thiébaux, and Lexing Xie. Action schema
networks: Generalised policies with deep learning. In AAAI, 2018.

[TTTX20] Sam Toyer, Sylvie Thiébaux, Felipe Trevizan, and Lexing Xie. Asnets: Deep learn-
ing for generalised planning. J. Artif. Intell. Res., 68:1–68, 2020.

[TVS25] Alexander Tuisov, Yonatan Vernik, and Alexander Shleyfman. Llm-generated
heuristics for AI planning: Do we even need domain-independence anymore?
CoRR, abs/2501.18784, 2025.

[TZM25] Marcus Tantakoun, Xiaodan Zhu, and Christian Muise. Llms as planning modelers:
A survey for leveraging large language models to construct automated planning
models. CoRR, abs/2503.18971, 2025.

15

[UPS25] UPS. Global reporting initiative. Accessed from https://about.ups.com/cont
ent/dam/upsstories/images/our-impact/reporting/2024-UPS-GRI-R
eport.pdf, 2025.

[vHGS16] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. In AAAI, 2016.

[VMH+23] Karthik Valmeekam, Matthew Marquez, Alberto Olmo Hernandez, Sarath Sreedha-
ran, and Subbarao Kambhampati. Planbench: An extensible benchmark for evalu-
ating large language models on planning and reasoning about change. In NeurIPS,
2023.

[VMS21] Pulkit Verma, Shashank Rao Marpally, and Siddharth Srivastava. Asking the Right
Questions: Learning Interpretable Action Models Through Query Answering. In
AAAI, 2021.

[VMS22] Pulkit Verma, Shashank Rao Marpally, and Siddharth Srivastava. Discovering user-
interpretable capabilities of black-box planning agents. In KR, 2022.

[VMSK23] Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kamb-
hampati. On the planning abilities of large language models - A critical investiga-
tion. In NeurIPS, 2023.

[VSK24] Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t
plan; can lrms? A preliminary evaluation of openai’s o1 on planbench. CoRR,
abs/2409.13373, 2024.

[WD92] Christopher J.C.H. Watkins and Peter Dayan. Q-learning. Mach. Learn., 8:279–292,
1992.

[Wil92] Ronald J. Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Mach. Learn., 8:229–256, 1992.

[WT24] Ryan X. Wang and Sylvie Thiébaux. Learning generalised policies for numeric
planning. In ICAPS, 2024.

[WT25] Ryan X. Wang and Felipe Trevizan. Leveraging action relational structures for
integrated learning and planning. In ICAPS, 2025.

[WWS+22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. CoRR, abs/2201.11903, 2022.

[XGT24] Kai Xi, Stephen Gould, and Sylvie Thiébaux. Neuro-symbolic learning of lifted
action models from visual traces. In ICAPS, 2024.

[XYZ+23] Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Trans-
lating natural language to planning goals with large-language models. CoRR,
abs/2302.05128, 2023.

[YSC+22] Ryan Yang, Tom Silver, Aidan Curtis, Tomás Lozano-Pérez, and Leslie Pack Kael-
bling. PG3: policy-guided planning for generalized policy generation. In IJCAI,
2022.

16

https://about.ups.com/content/dam/upsstories/images/our-impact/reporting/2024-UPS-GRI-Report.pdf
https://about.ups.com/content/dam/upsstories/images/our-impact/reporting/2024-UPS-GRI-Report.pdf
https://about.ups.com/content/dam/upsstories/images/our-impact/reporting/2024-UPS-GRI-Report.pdf

A Money Usage Estimate

Table 4: Money usage estimate from calling LM APIs for all experiments; 400 API calls were made
per model: 200 for PDDL files with semantic names, and 200 for without semantic names.

Model Average $USD per query Total $USD

DeepSeek-R1 0.00655 2.62
Gemini 2.0 Flash 0 0
Gemini 2.5 Flash Preview 04-17 0 0

B Best LM Generated Programs Chosen by Validation

Table 5: Best LM-generated program chosen by the validation procedure described in Section 4
for experiments of PDDL files with (semantic) and without (symbolic) semantic names. The LM
models used in the experiments are DeepSeek-R1 (DS-R1), Gemini 2.0 Flash (Gem2.0), and Gemini
2.5 Flash Preview 04-17 (Gem2.5).

Value Functions Policies
Domain semantic symbolic semantic symbolic

Blocksworld Gem2.5 Gem2.5 Gem2.5 Gem2.0
Childsnack DS-R1 Gem2.5 DS-R1 DS-R1
Ferry DS-R1 DS-R1 Gem2.5 Gem2.5
Floortile Gem2.5 Gem2.5 DS-R1 DS-R1
Miconic Gem2.0 DS-R1 Gem2.0 Gem2.5
Rovers Gem2.5 DS-R1 Gem2.5 Gem2.0
Satellite Gem2.5 Gem2.5 Gem2.5 Gem2.5
Sokoban Gem2.5 Gem2.5 DS-R1 Gem2.5
Spanner Gem2.0 DS-R1 Gem2.0 Gem2.5
Transport DS-R1 Gem2.5 Gem2.0 DS-R1

C LM Program Generation Times

Table 6: Time taken in seconds for LMs in Table 5 to generate a program.

Value Functions Policies
Domain semantic symbolic semantic symbolic

Blocksworld 78.0 108.2 107.4 3.4
Childsnack 329.8 119.7 260.2 277.3
Ferry 310.6 419.2 42.6 168.5
Floortile 118.4 104.5 528.2 474.2
Miconic 1.5 375.6 4.8 98.2
Rovers 50.8 331.0 98.6 3.0
Satellite 93.7 102.1 109.8 151.0
Sokoban 65.7 152.3 527.7 33.0
Spanner 2.9 477.3 2.2 60.3
Transport 434.2 113.7 3.6 394.7

17

D Correlation Between Validation and Test Performance

We perform a statistical correlation analysis between the validation score on validation problems and
coverage on testing problems. Specifically, for each benchmark domain and LM model, we have
multiple V LM/πLM programs which we run heuristic search/policy execution on 11 small planning
problems (every 9th problem in the training split) and 10 testing problems (every 9th problem in the
testing split). These experiments were performed after the aforementioned experiments to prevent
overfitting to the test set. Figure 4 illustrates the results.

Interestingly, for both value functions and policies, there is a statistically significant (p < 0.05)
positive Pearson correlation (ρ ≃ 1) between the validation metric and test performance, which
suggests that validation sets provide a useful proxy for estimating testing performance. However,
the correlation is not perfect as we noted that the programs with the best validation scores did not
provide the best overall coverage. The correlation remains high when conditioning on individual
domains for where enough unique samples were provided, with an exception being Childsnack
policies. We lastly note that performing the validation procedure for the πLM ⊗ V LM configuration
correctly identifies whether value functions or policies perform better on each domain, a priori to
running the test-time experiments.

Figure 4: Left: correlation coefficients conditioned on domain. Right: average coverage (y-axis) vs.
validation score (x-axis) for LM-generated programs.

Bl Ch Fe Fl Mi Ro Sa So Sp Tr

V LM 1.0 0.8 1.0 – 1.0 1.0 1.0 1.0 1.0 1.0
πLM 1.0 0.4 1.0 – 1.0 0.8 0.9 – 1.0 1.0

Cells with – values indicate that there were fewer than 2 unique
datapoints for each domain. 0 1

0

1

Value Function

0 1

Policy

Linear Regression Prediction Interval Data

18

	Introduction
	Preliminaries: Classical Planning, PDDL, and Generalised Planning
	LM-Generated Python Programs for Generalised Planning
	LMs for program generation
	Sound planning with LM-generated programs

	Experiments
	Related Work
	Conclusion
	Money Usage Estimate
	Best LM Generated Programs Chosen by Validation
	LM Program Generation Times
	Correlation Between Validation and Test Performance

