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ABSTRACT
We consider the problem of diffusion control via interventions

that change network topologies. We study this problem for gen-

eral weighted networks and present an iterative algorithm, Frank-

Wolfe-EdgeCentrality, to reduce the spread of a diffusion process

by shrinking the network’s top singular values. Given an edge-

weight reduction budget, our algorithm identifies the near-optimal

edge-weight reduction strategy to minimize the sum of the largest 𝑟

eigenvalues of𝑊 ⊤𝑊 , where𝑊 is the network weight matrix. Our

algorithm provably converges to the optimum at a rate of𝑂 (𝑡−1) af-
ter 𝑡 iterations; each iteration only requires a nearly-linear runtime

in the number of edges.

We perform a detailed empirical study of our algorithm on a wide

range of weighted networks. In particular, we apply our approach

to reduce edge weights on mobility networks (between points of

interest and census block groups), which have been used to model

the spread of COVID-19. In SEIR model simulations, our algorithm

reduces the number of infections by 25.70% more than existing

approaches, averaged over three weighted graphs and eight mobil-

ity networks. Meanwhile, the largest singular value of the weight

matrix𝑊 decreases by 25.48% more than existing approaches on

these networks. An extension of our algorithm to temporal mobil-

ity networks also shows an effective reduction in the number of

infected nodes.
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1 INTRODUCTION
Network diffusion processes such as disease spread and information

dissemination are ubiquitous in our increasingly well-connected

society. In many applications, one would like to control the out-

come of network diffusion processes by “designing the network

connections.” For example, a classical problem in this domain is in-

fluence maximization (Chen et al., 2010, Kempe et al., 2003), where

the goal is to identify a small set of nodes to maximize the spread

of a diffusion process such as for the adoption of a new product

(Singer, 2012). In other settings, such as disease control, the goal is
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instead to design a network-based immunization strategy to slow

down the disease spread (Ganesh et al., 2005, Wang et al., 2003).

The problem of diffusion control has gained recent interest in

identifying non-pharmaceutical interventions such as lockdown to

slow the spread of the SARS-CoV-2 virus. For example, Chang et al.

(2021a) and Chang et al. (2021b) introduce mobility-based modeling

to study the spread of the COVID-19 pandemic. Their approach

consists of two major components. First, mobility networks that

describe the movement of people from neighborhoods to points

of interest are constructed based on mobility records. Second, a

metapopulation Susceptible-Exposed-Infectious-Recovered (SEIR)

model is overlayed on the mobility network. A major finding of

Chang et al. (2021a) is that mobility network models can accurately

fit the reported COVID-19 case counts. Based on this finding, they

simulate various interventions such as capping the maximum occu-

pancy of places to understand their effect on reducing infection.

We study network-based interventions to reduce the number of

infected nodes in general weighted and directed networks. Suppose

there is an epidemic spreading on the network. How can we slow

down the spread of the epidemic in the network, subject to reducing

the edge weights by a limited amount, due to budget constraints?

For example, the weight of an edge from a census block group

to a place in a mobility network represents the amount of traffic

between them. Reducing the weight of this edge corresponds to

mobility reduction.

The spreading rate of a diffusion process is closely related to

the spectral properties of a network. An important result from the

epidemics literature is that the epidemic threshold–below which

a diffusion process will die out quickly–scales linearly with the

largest (in module) eigenvalue (denoted as _1) of the adjacency

matrix of the network (Chakrabarti et al., 2008). As Prakash et al.

(2012) proved, this result generalizes to various epidemic models.

Thus, a natural strategy for slowing down a diffusion process is to

remove nodes or edges to reduce _1 of a network’s adjacency ma-

trix. However, minimizing _1 subject to removing a fixed number

of nodes or edges is NP-hard via a reduction to the independent set

problem (Chen et al., 2015, Karp, 1972). Therefore, various heuris-

tics are proposed to solve this problem in practice. For example,

Chen et al. (2015) show that by choosing nodes with the highest

node centrality scores (i.e., a node’s value in the eigenvector corre-

sponding to the largest eigenvalue) in a greedy approach, one can

reduce the largest eigenvalue and achieve notable reductions in the

number of infected nodes. Tong et al. (2012) have likewise shown

that choosing edges with the highest edge centrality scores (i.e., the

product of the node centrality scores from both endpoints of an

edge) in a greedy algorithm is a scalable and effective approach.

Chen et al. (2018) further quantified the approximation ratio of

these greedy approaches by using techniques from submodular op-

timization. In light of these works, one natural approach to solving
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(a) Number of infections from SEIR model simulations.
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(b) Largest singular value of modified network weight matrix.

Figure 1: Comparison of Frank-Wolfe-EC, K-EdgeSelection, edge weighted reduction, and max occupancy capping in different
weighted mobility networks. Notice that Frank-Wolfe-EC reduces the number of infections and the largest singular value
more significantly than previous approaches on all networks. For details, see Section 4.

the intervention problem is minimizing the top eigenvalue(s) using

edge-weight reduction, and the following questions arise. Does this

approach perform well (e.g., compared to greedy algorithms)? Can

this problem be solved efficiently in polynomial time? This work

provides affirmative answers to these questions by developing an

iterative algorithm that provably converges to the optimum of the

minimization problem on weighted networks. See Figure 1 for an

illustration of our results.

1.1 Our Contributions
We begin by showing that the edge centrality measures from Tong

et al. (2012) are equal to the gradient of the largest eigenvalue

_1 (𝑊 ⊤𝑊 ) (up to scaling), where𝑊 is the network weight matrix.

We validate that reducing the edge weights of the highest edge

centrality scores effectively reduces the number of infected nodes

in a weighted network.

Then, we develop a new algorithm, Frank-Wolfe Edge Centrality
minimization, or Frank-Wolfe-EC, tominimize the sum of the largest

𝑟 eigenvalues of𝑊 ⊤𝑊 , subject to an edge-weight reduction budget.

At every iteration, our algorithm finds a descent direction that

correlates the least with the edge centrality scores, given their

gradient interpretation above. A naive approach to finding the

descent direction requires solving a linear program (LP). Instead,

we present a nearly-linear time algorithm (in the number of edges)

by characterizing the LP’s optimum as a greedy selection of edges

with the highest edge centrality scores. Additionally, we prove

that Frank-Wolfe-EC converges to the global minimum at a rate of

𝑂 (𝑡−1) after 𝑡 iterations.
We evaluate our algorithm by simulating an epidemic model on

publicly available weighted graphs and mobility networks. First, on

three weighted graphs, our approach achieves on average 10.46%
improvement over baselines during SEIR model simulations. Mean-

while, the largest singular value decreases by an average of 11.42%
more than the baselines. Second, we apply our approach to re-

duce edge weights on mobility networks. Our algorithm reduces

the infected populations by 30.17% and the largest singular value

by 30.75% more than prior approaches on average. Finally, we

extend our algorithm to tackle temporal networks by allocating

the weight-reduction budget proportionally to a network’s largest

singular value. We find that on sequences of temporal mobility

networks, this strategy reduces infections by 39.82% more than

other heuristics.

Summary of contributions.We summarize our results below.

• We revisit the notion of edge centrality and provide a new inter-

pretation as the gradient of the largest eigenvalue of𝑊 ⊤𝑊 . The

connection implies a generalization of edge centrality measures

as the gradient of the sum of the largest 𝑟 eigenvalues of𝑊 ⊤𝑊 .

• Wedevelop an algorithm to reduce the number of infections in an

epidemic spreading process by minimizing the sum of the largest

𝑟 eigenvalues of 𝑊 ⊤𝑊 , subject to an edge-weight reduction

budget. Our algorithm runs a linear-time greedy selection step

in an inner loop and provably converges to the global minimum.

• Our algorithm reduces the number of infections and the largest

singular value of𝑊 more than various baselines on an extensive

collection of weighted networks, including mobility networks.

2 PRELIMINARIES
We review the SEIR model and its metapopulation extension. Then,

we formulate a constrained optimization problem as our approach

to mitigate an epidemic spreading process on weighted networks.

2.1 Epidemic Models
A widely used model of epidemic spread is the SEIR compartmental

model (Durrett, 2007, Easley et al., 2010). An SEIR model uses four

compartments to capture a spreading process: Susceptible (S), Ex-

posed (E), Infected (I), and Recovered (R). Every node must belong

to one of the four states during the process. At every time 𝑡 ,

• 𝑆 (𝑡 ) denotes the set of susceptible nodes at time 𝑡 . A nodemay get

exposed if its incoming neighbors are infectious. The probability

depends on the edge weights and the virus transmission rate.

• 𝐸 (𝑡 ) denotes the nodes who have been exposed to the virus but

who are not infectious at time 𝑡 . In expectation, a node remains

exposed for 𝛿𝐸 periods.

• 𝐼 (𝑡 ) denotes the nodes who are infectious at time 𝑡 . Each node

remains infectious for 𝛿𝐼 periods in expectation.

• 𝑅 (𝑡 ) denotes the nodes who have recovered at time 𝑡 .
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A metapopulation SEIR model is introduced in the mobility-based

modeling approach of Chang et al. (2021a). The metapopulation

SEIR model is launched on mobility networks. Mobility networks

are bipartite graphs to model the traffic between population groups

and locations. One part of the graph includes census block groups

(CBGs), which involve a population of individuals in each group.

The other part of the graph includes points of interest (POIs), which

map to locations. Since there is a population of individuals in each

CBG, one SEIR model is instantiated for each CBG. One of their

key findings is that fitting the above metapopulation dynamics on

mobility traffic data results in a surprisingly accurate prediction of

the reported number of infected cases.

2.2 Optimization of Spectral Properties
Given a spreading process on a weighted graph, we are interested

in designing algorithms to reduce the number of infected nodes.

We focus on edge-weight reduction algorithms. As a motivating

example, reducing the weight of an edge between a group and a

location in mobility networks corresponds to restricting mobility.

Eigenvalue minimization is an approach to mitigate the spread

of an epidemic process by removing edges (Tong et al., 2012). Let

G = (V, E) be a weighted and possibly directed graph. LetV be

the set of vertices and E be the set of edges. We use𝑊 to denote a

non-negative weight matrix over the edges. Let𝑊𝑖, 𝑗 be the (𝑖, 𝑗)-th
entry of𝑊 . We extend the eigenvalue minimization approach to

weighted networks as follows.

Problem statement. Given an edge weight reduction budget 𝐵,

how can we modify the weight matrix𝑊 , so that the sum of the top-

𝑟 eigenvalues of𝑊 ⊤𝑊 is minimized? We will state a mathematical

optimization formulation of this problem. Let _𝑖 (𝑊 ) be the 𝑖-th
largest singular value of𝑊 , for 𝑖 from 1 to 𝑟 . Notice that the square

of _𝑖 (𝑊 ), denoted as _2
𝑖
(𝑀), is equal to the 𝑖-th largest eigenvalue

of𝑀⊤𝑀 . Thus, there is a one-to-one mapping between the singular

values of𝑀 and the eigenvalues of𝑀⊤𝑀 , and they can be deduced

from each other. Given a rank parameter 𝑟 , we can formally state

our problem as follows:

𝑓 OPT ← min

𝑀 ∈R𝑛×𝑚
𝑓 (𝑀) :=

𝑟∑
𝑘=1

_2
𝑘
(𝑀) (1)

s.t.

∑
(𝑖, 𝑗) ∈E

(
𝑊𝑖, 𝑗 −𝑀𝑖, 𝑗

)
≤ 𝐵

0 ≤ 𝑀𝑖, 𝑗 ≤𝑊𝑖, 𝑗 , for any (𝑖, 𝑗) ∈ E
𝑀𝑖, 𝑗 = 0, for any (𝑖, 𝑗) ∉ E .

The input-output behavior of problem (1) is specified below:

• Input: A weighted graph G = (V, E) with a weight matrix𝑊 ;

An edge-weight reduction budget 𝐵 > 0.

• Output: A modified 𝑛 by𝑚 weight matrix 𝑀 that creates the

largest decrease in the largest eigenvalue(s) of𝑊 ⊤𝑊 , subject to:

– Feasibility constraint: 0 ≤ 𝑀𝑖, 𝑗 ≤𝑊𝑖, 𝑗 , for all (𝑖, 𝑗) ∈ E.
– Budget constraint:

∑
(𝑖, 𝑗) ∈E

(
𝑊𝑖, 𝑗 −𝑀𝑖, 𝑗

)
≤ 𝐵.

Notice that our objective in equation (1) differs from Tong et al.

(2012) in that we include the top-𝑟 eigenvalues. When 𝑟 = 1, the

optimization objective reduces to the eigen-optimization problem
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Figure 2: (L) Largest four singular values of eight mobil-
ity networks. (R) Illustration of the connection between de-
creased largest singular values and decreased number of in-
fections for various transmission rates (𝛽) simulated on a
mobility network.

studied in Tong et al. (2012). Later in Section 4.3, we give an ablation

study to justify our design choice.

Illustration. The largest singular value _1 is known to determine

the epidemic threshold of graphs (Chakrabarti et al., 2008, Prakash

et al., 2012). In Figure 2, we illustrate the connection between the

largest singular value _1 and a SEIR diffusion process’s spreading

rate. As we scale down the graph’s weight matrix, the number of

infected nodes reduces. See Section 4.1 for the network dataset’s

description.

3 METHOD
We present a new algorithm to optimize problem (1) efficiently. To

motivate our approach, we start by observing that the gradient of

𝑓 (𝑀) is equivalent to the “edge centrality scores”. Then, we develop
an iterative algorithm with an inner loop that reduces edges with

the highest edge centrality. We prove that our algorithm converges

to the global optimum 𝑓 OPT, with a nearly-linear runtime in |E |
per-iteration.

3.1 Edge Centrality
To motivate our approach, we begin by reviewing the algorithm of

Tong et al. (2012), which considers controlling network diffusion by

adding or removing edges. A central notion behind their approach is

edge centrality, defined as the product of the eigenvector scores from
both endpoints of an edge. More precisely, let 𝑋 be any matrix. Let

®𝑢1 and ®𝑣1 be the left and right singular vector of 𝑋 , corresponding

to _1 (𝑋 ). Then, for any edge (𝑖, 𝑗) ∈ E, the edge centrality score

of this edge is given by ®𝑢1 (𝑖) · ®𝑣1 ( 𝑗), where ®𝑢1 (𝑖) denotes the 𝑖-th
coordinate of ®𝑢1 and ®𝑣1 ( 𝑗) denotes the 𝑗-th coordinate of ®𝑣1.

The edge-weight reduction can be viewed as a “continuous relax-

ation” of edge removal since the weight of an edge can be reduced

by a fraction. Interestingly, we show that the edge centrality scores

are equal to the gradient of the largest eigenvalue of𝑊 ⊤𝑊 (up to

scaling), _2
1
(𝑊 ), over decreasing the edge weights. A more general

statement holds for a generalized notion of edge centrality scores,

including the largest-𝑘 singular values of𝑊 .

Lemma 1 (Interpreting edge centrality as the gradient of

largest eigenvalues). Assume that the singular values of 𝑋 are
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all distinct. Then, the partial derivative of _2
1
(𝑋 ) w.r.t. 𝑋𝑖, 𝑗 satisfies

𝜕_2
1
(𝑋 )

𝜕𝑋𝑖, 𝑗
= 2_1 (𝑋 ) · ®𝑢1 (𝑖) · ®𝑣1 ( 𝑗) . (2)

More generally, for any 𝑟 ≥ 1, we have

𝜕

( ∑𝑟
𝑘=1

_2
𝑘
(𝑋 )

)
𝜕𝑋𝑖, 𝑗

= 2

𝑟∑
𝑘=1

_𝑘 (𝑋 ) · ®𝑢𝑘 (𝑖) · ®𝑣𝑘 ( 𝑗). (3)

Proof. Consider a singular value _𝑘 of 𝑋 , for any 𝑘 . Let ®𝑢𝑘 and

®𝑣𝑘 be the left and right singular vectors of 𝑋 corresponding to _𝑘 ,

respectively. By the chain rule, it suffices to show that
𝜕_𝑘 (𝑋 )
𝜕𝑋𝑖,𝑗

=

®𝑢𝑘 (𝑖) · ®𝑣𝑘 ( 𝑗). First, we have ®𝑢⊤𝑘 𝑋 = _𝑘 ®𝑣⊤𝑘 . We differentiate over 𝑋

on both sides of the above equation:

d(®𝑢⊤
𝑘
)𝑋 + ®𝑢⊤

𝑘
d(𝑋 ) = d(_𝑘 )®𝑣⊤𝑘 + _𝑘 d(®𝑣

⊤
𝑘
). (4)

Since ®𝑣𝑘 is a unit length vector,

d(∥®𝑣𝑘 ∥2) = 2⟨®𝑣𝑘 , d(®𝑣𝑘 )⟩ = 2 d(®𝑣⊤
𝑘
)®𝑣𝑘 = 0. (5)

Thus, by multiplying both sides of equation (4) with ®𝑣𝑘 , we get

d(®𝑢⊤
𝑘
)𝑋 ®𝑣𝑘 + ®𝑢⊤𝑘 d(𝑋 )®𝑣𝑘 = d(_𝑘 )®𝑣⊤𝑘 ®𝑣𝑘 + _𝑘 d(®𝑣

⊤
𝑘
)®𝑣𝑘 , (6)

which is equal to d(_𝑘 ) since equation (5) holds and 𝑣𝑘 is a unit

length vector. Looking at equation (6), we observe

d(®𝑢⊤
𝑘
)𝑋 ®𝑣𝑘 = d(®𝑢⊤

𝑘
)_𝑘 ®𝑢𝑘 = _𝑘 d(®𝑢⊤𝑘 ) ®𝑢𝑘 = 0, (7)

where the last step follows similarly to equation (5), since ®𝑢𝑘 is

also a unit length vector. In summary, we have shown ®𝑢⊤
𝑘
d(𝑋 )®𝑣𝑘 =

d(_𝑘 ). This implies that the derivative of _𝑘 over 𝑋𝑖, 𝑗 is equal to

®𝑢𝑘 (𝑖) · ®𝑣𝑘 ( 𝑗). Since this holds for any 𝑘 , we thus conclude that

equations (2) and (3) are both true. □

Given a weight matrix𝑊 of a network, we compute the edge

centrality scores via the best rank-𝑟 approximation of𝑊 as �̃�𝑟 =

𝑈𝑟𝐷𝑟𝑉
⊤
𝑟 . More precisely, 𝐷𝑟 is an 𝑟 by 𝑟 square matrix, containing

the largest 𝑟 singular values of𝑊 ;𝑈𝑟 is an 𝑛 by 𝑟 matrix, containing

the left singular vectors corresponding to𝐷𝑟 ;𝑉
⊤
𝑟 is an 𝑟 by𝑚matrix,

containing the right singular vectors corresponding to𝐷𝑟 . For every

edge (𝑖, 𝑗) ∈ E, let �̃�𝑟 (𝑖, 𝑗) be the edge centrality score of this edge.

3.2 Iterative Edge Centrality Minimization
We now develop the Frank-Wolfe-EdgeCentrality minimization algo-

rithm, or Frank-Wolfe-EC, specified in Algorithm 1. The high-level

idea is iteratively applying a greedy selection of edges with the

highest edge centrality scores while recomputing the scores. The

input-output behavior of Frank-Wolfe-EC is as follows:

• Input: The primary inputs are graph G, budgeted reduction

amount 𝐵, and rank-𝑟 in the objective 𝑓 (𝑀) (cf. equation (1)).

• Output: A weight matrix𝑀 with reduced edge weights.

The algorithm also requires two parameters, the number of iter-

ations 𝑇 and a range of learning rates 𝐻 . At every iteration 𝑡 from

1 to 𝑇 , let𝑀𝑡 ∈ R𝑛×𝑚 be the currently modified weight matrix. Let

∇𝑓 (𝑀𝑡 ) be the gradient of 𝑓 (𝑀𝑡 ). We will apply the Frank-Wolfe al-

gorithm (Frank and Wolfe, 1956, Nocedal and Wright, 2006), which

is an iterative approach for constrained minimization problems.

The Frank-Wolfe algorithm computes a descent direction𝐺𝑡 for𝑀𝑡 ,

that minimizes the following matrix inner product

⟨∇𝑓 (𝑀𝑡 ),𝐺𝑡 ⟩ = Tr

[
∇𝑓 (𝑀𝑡 )⊤𝐺𝑡

]
,

subject to the same set of constraints as problem (1):

𝐺★
𝑡 ← argmin

𝑋
⟨𝑋,∇𝑓 (𝑀𝑡 )⟩ (8)

s.t.

∑
(𝑖, 𝑗) ∈E

(
𝑊𝑖, 𝑗 − 𝑋𝑖, 𝑗

)
≤ 𝐵

0 ≤ 𝑋𝑖, 𝑗 ≤𝑊𝑖, 𝑗 , for any (𝑖, 𝑗) ∈ E
𝑋𝑖, 𝑗 = 0, for any (𝑖, 𝑗) ∉ E .

Thus, problem (8) minimizes the matrix inner product between𝐺𝑡

and ∇𝑓 (𝑀𝑡 ), subject to the same set of constraints as problem (1).

Greedy selection. The core of our approach is to show that the

optimal descent direction, 𝐺★
𝑡 , is given by a greedy selection of

edges based on their edge centrality scores. This procedure, Top-

K-EdgeCentrality, or Top-K-EC, is specified as part of Algorithm

1. Let �̃�
(𝑡 )
𝑟 be the best rank-𝑟 approximation of 𝑀𝑡 for every 𝑡 .

Let (𝑖1, 𝑗1), (𝑖2, 𝑗2), . . . , (𝑖𝑚, 𝑗𝑚) be the edges in descending order of

their edge centrality scores �̃�
(𝑡 )
𝑟 , where𝑚 = |E | is the number of

edges. Consider the first 𝑘 edges whose total weight exceeds the

reduction budget 𝐵:

𝑘−1∑
𝑙=1

𝑊𝑖𝑙 , 𝑗𝑙 < 𝐵 and

𝑘∑
𝑙=1

𝑊𝑖𝑙 , 𝑗𝑙 ≥ 𝐵. (9)

Then, the weight of the first 𝑘 − 1 edges is reduced to zero. The

weight of the last edge decreases by

∑𝑘
𝑙=1

𝑊𝑖𝑙 , 𝑗𝑙 − 𝐵. The following
result proves that the above greedy selection yields an optimal

solution of the inner optimization problem (8).

Theorem 2 (Optimal descent direction is given by greedy

selection). The optimal solution of Problem 8, 𝐺★
𝑡 , is given by the

output of Top-K-EdgeCentrality(𝑊, 𝐵;𝑀𝑡 ) (cf. Algorithm 1).

Proof. By Lemma 1, for every edge (𝑖, 𝑗) ∈ E, the gradient of
𝑓 (𝑀𝑡 ) over this edge is given by the edge centrality scores. Since

𝑋𝑖, 𝑗 = 0 for any (𝑖, 𝑗) ∉ E, the optimization objective is:

⟨𝑋,∇𝑓 (𝑀)⟩ =
∑
(𝑖, 𝑗) ∈E

2𝑋𝑖, 𝑗

( 𝑟∑
𝑘=1

_𝑘 · ®𝑢𝑘 (𝑖) · ®𝑣𝑘 ( 𝑗)
)
. (10)

Above, each variable 𝑋𝑖, 𝑗 is multiplied precisely by the edge cen-

trality of the edge (𝑖, 𝑗) (cf. line (16)).
Consider minimizing the equivalent objective (10) with the con-

strains of Problem (8). The minimizer, 𝐺★
𝑡 , is achieved by reducing

the weight of the edges with the highest edge centrality to zero

until the budget 𝐵 gets exhausted. This is precisely the procedure of

Top-K-EC from lines (16)-(19). Thus, we have proved this result. □

After finding the descent direction𝐺★
𝑡 , the next step of the Frank-

Wolfe algorithm is setting a learning rate by minimizing 𝑓
(
(1 −

[𝑡 )𝑀𝑡 +[𝑡𝐺𝑡

)
, for [𝑡 in a range𝐻 between 0 and 1. Then, we update

the weight matrix accordingly.

To conclude, each iteration of Frank-Wolfe-EC computes a trun-

cated rank-𝑟 SVD of a sparse matrix with at most𝑚 nonzeros and

sorts an array of size𝑚. The former requires a runtime complexity
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Algorithm 1 Iterative Edge Centrality Minimization

Input: A graph G = (V, E) with weight matrix𝑊 ; Budget 𝐵.

Output: A weight matrix𝑀 modified from𝑊 .

Parameters: Rank 𝑟 ; Number of iterations 𝑇 ; Range of learning

rate 𝐻 .

1: procedure Frank-Wolfe-EdgeCentrality(𝑊, 𝐵;𝑇,𝐻 )

2: Let𝑀0 =𝑊

3: for 𝑡 = 0, 1, . . . ,𝑇 − 1 do
4: 𝐺★

𝑡 = Top-k-EdgeCentrality(𝑊, 𝐵;𝑀𝑡 )

5: Set [𝑡 by minimizing 𝑓
(
(1 − [𝑡 )𝑀𝑡 + [𝑡𝐺★

𝑡

)
for [𝑡 ∈ 𝐻

6: 𝑀𝑡+1 = (1 − [𝑡 ) ·𝑀𝑡 + [𝑡 ·𝐺★
𝑡

7: end for
8: if there is unused budget in𝑀𝑇 then
9: 𝐵′ = 𝐵 − sum(𝑊 −𝑀𝑇 )
10: 𝑀★

= Top-k-EdgeCentrality(𝑀𝑇 , 𝐵
′
;𝑀𝑇 )

11: end if
12: return𝑀★

13: end procedure
14:

15: procedure Top-k-EdgeCentrality(𝑊, 𝐵;𝑀)

16: Let �̃�𝑟 be the best rank-𝑟 approximation of𝑀

17: Sort the edges in E by their edge centrality scores from �̃�𝑟

18: Let 𝑘 be the number of edges by Equation 9 with weight

matrix W

19: Reduce the first 𝑘 − 1 edges’ weight to zero and the last

edge’s weight by the remaining budget

20: return the updated𝑊 matrix

21: end procedure

of𝑂 (𝑚𝑟 log(𝑚)) (e.g., Theorem 1 of Musco and Musco (2015)). The

latter can be achieved with runtime 𝑂 (𝑚 log(𝑚)). By comparison,

the runtime complexity for solving a general linear program (i.e.,

problem (8)) is at least quadratic in the dimension of𝑊 (Cohen

et al., 2021).

Running time guarantee. Next, we examine the number of it-

erations that our algorithm needs to converge to 𝑓 OPT. A well-

established result (e.g., Jaggi (2013)) is that for convex minimization

problems, the Frank-Wolfe algorithm will converge to the global

minimum under mild conditions. In the following, we will show

that the objective 𝑓 (𝑀) is convex. Based on that, we show that our

Frank-Wolfe-EC algorithm will converge to the global minimum of

problem (1), at a rate of 𝑂 (𝑡−1) after 𝑡 iterations.

Theorem 3 (Convergence rate of Frank-Wolfe-EC). Let ^
be the minimum of 𝜎𝑟 (𝑀𝑡 ) − 𝜎𝑟+1 (𝑀𝑡 ) and ` be the maximum of
𝜎1 (𝑀𝑡 ), from 𝑡 = 0, 1, . . . ,𝑇 − 1. Assume that ^ is strictly positive.

Let 𝛼1 = 8

∑
(𝑖, 𝑗) ∈E𝑊

2

𝑖, 𝑗
and 𝛼2 = 4𝑟 + 5` ·

√
𝑟

^ +𝐶 , for some absolute
fixed constant 𝐶 > 0. Then, we have the following approximation
guarantee for𝑀𝑇 ,

𝑓 (𝑀𝑇 ) − 𝑓 OPT ≤ 𝛼1𝛼2

𝑇
. (11)

Theorem 3 implies that our algorithmwill eventually converge to

minimize problem (1), under mild conditions on the spectral gap of

the iterates. See Section B for the proof of Theorem 3. The constants

𝛼1𝛼2 can be large (as are previous guarantees of the Frank-Wolfe
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Figure 3: Illustration of the mobility patterns over ten net-
works. (L) Total edge weights; (R) Largest singular value.

algorithm). Though later in Section 4.3, we find that the number of

iterations 𝑇 required for Frank-Wolfe-EC to converge is less than

30 on all network datasets.

Extension. Our study has focused on mitigating the spread in a

static network. Another consideration is that network typologies

evolve over time. Therefore, an important question is how to tackle

such temporal evolution. We plot the total edge weights and the

largest singular value of ten mobility networks over ten weeks to

understand the evolving network patterns. See Section 4.1 for the

data set description. Figure 3 shows the result: Interestingly, these

four metropolitan statistical areas exhibit similar mobility patterns.

We extend the Frank-Wolfe-EC algorithm to temporal networks

in two steps. Let𝑊1,𝑊2, . . . ,𝑊𝑇 be the weight matrix of a sequence

of networks. First, we allocate a certain budget to every network in

the sequence.We allocate the budget proportional to each network’s

largest singular value. The budget for the 𝑖-th network is set as

_1 (𝑊𝑖 )∑𝑇
𝑗=1 _1 (𝑊𝑗 )

· 𝐵. (12)

Second, we apply Frank-Wolfe-EC to every network with the allo-

cated budget. Thus, such an allocation will prioritize reducing the

edge weights of networks with higher singular values.
1

4 EXPERIMENTS
We evaluate our proposed approaches on a range of mobility net-

works and weighted graphs. Our experiments seek to address the

following three questions. (1) Does our proposed algorithm per-

form well compared to methods from prior works? (2) How well

does the algorithm reduce the largest singular value of the network

weighted matrix? (3) How does the temporal allocation extension

of our algorithm perform in practice? We present positive results to

answer these three questions, validating the practical benefit of our

algorithm. The code for reproducing the experiments is available

in an anonymous link.
2

4.1 Experimental Setup
4.1.1 Datasets. We follow the procedure described within Chang

et al. (2021a) to construct the mobility networks. We briefly summa-

rize the procedure and defer a comprehensive discussion to their

1
We remark that implementing this scheme requires knowing the largest singular

value of every network in the sequence. When such information is not available, one

needs first to estimate this information (e.g., by predicting such information based on

previous network patterns (Qin et al., 2018, Wang and Tang, 2019)). This is left for

future work.

2
https://github.com/anonymous-researchcode/Iterative-Edge-Centrality-Min.

https://github.com/anonymous-researchcode/Iterative-Edge-Centrality-Minimization
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Table 1: Basic statistics for eight mobility networks constructed from SafeGraph’s monthly patterns data (Chang et al., 2021a).

AT CH DA HO MI NY PH DC

Number of census block groups 2,799 5,784 4,069 4,029 2,279 10,170 3,547 2,564

Number of points of interest 8,433 26,606 15,000 34,866 15,559 24,046 15,102 8,026

Number of nonzero weighted edges 154,729 439,262 283,928 671,217 276,109 463,719 260,279 107,733

Average edge weight 5.258 4.659 4.921 4.951 4.833 4.749 4.864 4.848

Average population per group 2400.402 1593.152 2069.406 2395.407 2219.864 1578.068 1568.618 2060.778

Table 2: Basic statistics for three weighted graphs.

Airport Advogato Bitcoin

Number of Nodes 7,977 6,541 3,783

Number of Edges 30,501 51,127 24,186

Average edge weight 1.45 0.83 1.46

paper. The construction requires the following data sources: (i)

Mobility patterns from the Monthly Pattern and Weekly Pattern

datasets (SafeGraph, 2020a,b), (ii) The geometry dataset (SafeGraph,

2021), and (iii) The Open Census Dataset (SafeGraph, 2018). Ad-

ditionally, we will use the reported cases of COVID-19 infections

from The New York Times to calibrate the SEIR model. We gener-

ate the mobility networks based on monthly patterns from March

2, 2020, to May 10, 2020. We report the statistics of the mobility

networks from each metropolitan statistical area (MSA) in Table

1. Overall, the mobility patterns cover 25,341 CBGs with over 65

million people and 147,638 POIs. The temporal mobility networks

are constructed based on weekly mobility patterns during the same

period mentioned above, including ten networks for every MSA.

Besides mobility networks, we consider three other weighted

networks: (i) An Airport traffic network of flights among all com-

mercial airports in the world (Opsahl, 2011); (ii) A network of trust

relationships among users on Advogato; (Massa et al., 2009); (iii) A

network of trust relationships among users on the Bitcoin Alpha

platform. (Kumar et al., 2016). Edge weights in the last two net-

works denote different levels of declared trust among users. The

statistics of these three networks are listed in Table 2.

Data availability. Themobility data is freely available to researchers,

non-profit organizations, and governments through the SafeGraph

COVID-19 Data Consortium.
3
The New York Times COVID-19-data

is publicly available online.
4
Links to the other weighted networks

are included in the references.

4.1.2 Baseline methods. The experiments for spreading on a static

network involve the following baseline methods.

• K-EdgeDeletion: Delete a set of edges with the highest edge

centrality scores according to the best rank-1 approximation of

𝑊 , subject to the reduction budget (Tong et al., 2012).

• Edge weighted reduction: Reduce the weight of every edge by a

ratio that is proportional to its weight.

• Uniform reduction: Uniformly reduce the weight of every edge

by the same fraction, subject to the budget constraint.

3
https://www.safegraph.com/covid-19-data-consortium

4
https://github.com/nytimes/covid-19-data

• Max occupancy capping: Reduce the cumulative weights at each

POI proportional to its max occupancy.

• Capping by POI category: Cap the maximum occupancy of a

particular category of POIs.

The last three baselines are adapted from Chang et al. (2021a).

For the experiments on a sequence of temporal networks, we will

only use Algorithm 1 to modify the network weight matrix while

varying the budget allocation scheme. We consider the following

list of allocation schemes along with the scheme from equation 12.

• First week only: Assign all the edge-weight reduction budget to

the first week of the sequence.

• Uniform allocation: Distribute the budget uniformly among ev-

ery network in the sequence.

• Exponential allocation: Distribute the budget proportional to

exp(−𝑡), decaying exponentially over time.

4.1.3 Implementation. For the experiments concerning mobility

networks, we follow the procedures of Chang et al. (2021a) to sim-

ulate a metapopulation SEIR model in each network. We simulate

100 epochs to be consistent with the simulation of Chang et al.

(2021a). The results are consistent throughout the simulation. We

compare the Frank-Wolfe-EC algorithm with baseline methods

using an edge-weight reduction budget as 5% of the total edge

weights. Results of using other budget amounts are consistent.

We simulate an SEIR model on each graph for the other weighted

networks. To avoid infecting all the graph nodes, we simulate for

50 epochs. We use a slightly higher edge-weight reduction budget

as 20% of the total edge weights because the average edge weight

in these three graphs is smaller than the mobility networks.

For the temporal mobility networks experiments, we simulate

the metapopulation SEIR model on a sequence of ten networks for

70 epochs or seven epochs for every network. We set the edge-

weight reduction budget as 5% of the total edge weights of the

sequence and allocate the budget to each network by allocation

strategies described above.

We calibrate the parameters of the SEIR model following the

method presented in Chang et al. (2021a). Specifically, we calibrate

the following parameters: (i) the transmission constant in POIs,

𝜓 ; (ii) the base transmission rate, 𝛽
base

; and (iii) the ratio of initial

exposed people, 𝑝0. We use grid search to find the parameters

with the smallest root mean square error compared to the reported

number of infected cases.We calibrate an SEIRmodel for everyMSA

independently. For the weighted graphs, we use a transmission rate

𝛽Base = 0.05 and a initial exposed ratio 𝑝0 = 0.01.

In Algorithm 1, we search the rank parameter 𝑟 in [1, 50] and the
number of iterations in [5, 30]. For each result reported in Section

https://www.safegraph.com/covid-19-data-consortium
https://github.com/nytimes/covid-19-data
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Table 3: Comparison of Frank-Wolfe-EC to baseline methods on mobility networks. We modify the edge weights using the
strategy in each row. Top: The total number of infected populations (×103). Bottom: Comparison of the largest singular value.
Results are averaged over 50 runs.

Infected populations Atlanta Chicago Dallas Houston Miami New York Philadelphia Washington DC

No Intevention 48.45±3.17 1858.81±46.53 91.91±21.29 366.55±26.74 752.53±26.94 3146.57±21.43 492.52±20.75 41.10±2.20
Uniform Reduction 46.80±2.37 1762.01±64.38 84.76±11.14 312.11±26.31 671.32±23.72 2996.90±40.06 463.42±12.80 41.11±1.64
Weighted Reduction 43.22±2.77 782.53±86.92 66.18±3.29 194.636±18.58 43.42±12.64 1336.65±60.05 342.19±10.46 40.76±1.36
Max Occ. Capping 44.38±2.70 1741.16±65.30 82.34±8.67 315.34±33.37 675.56±26.52 2990.03±45.23 455.15±15.90 41.53±1.70
POI Category 46.17±3.20 1728.66±62.58 77.37±8.47 283.87±31.66 687.65±25.52 2950.27±38.45 458.36±17.62 41.04±1.44
K-EdgeDeletion 44.92±2.96 346.86±40.64 64.11±2.88 186.56±18.99 78.29±8.96 352.92±27.70 185.22±10.64 39.85±0.91
Top-k-EC 45.82±3.52 355.19±46.55 64.06±2.41 187.24±21.25 78.91±7.94 362.91±36.31 178.62±11.28 39.92±1.29
Frank-Wolfe-EC 40.47±1.78 166.23±16.17 62.07±2.47 86.40±10.98 8.53±2.58 301.46±88.41 129.23±13.4 8 39.27±1.06

Largest singular value Atlanta Chicago Dallas Houston Miami New York Philadelphia Washington DC

No Intevention 5526.633 1296.219 2093.614 1467.722 555.780 2413.421 1203.220 1406.572

Uniform Reduction 5250.302 1231.409 1988.933 1394.337 527.991 2292.751 1143.059 1336.244

Weighted Reduction 1254.204 302.670 564.700 420.529 213.059 481.870 374.599 365.950

Max Occ. Capping 5250.302 1231.409 1988.933 1394.337 527.991 2292.751 1143.059 1336.244

POI Category 5526.390 1295.837 2073.784 1467.647 555.619 2270.005 1202.895 1375.490

K-EdgeDeletion 1565.267 257.987 417.208 447.988 216.761 355.909 282.725 227.280

Top-k-EC 1565.264 257.987 417.192 447.987 216.761 355.902 282.720 226.879

Frank-Wolfe-EC 1191.216 125.901 308.401 235.638 169.539 197.262 190.066 188.135

Figure 4: Illustration of the results for the three weighted graphs. (4a): Number of infected nodes from simulating an SEIR
model on the modified weight matrix averaged over 50 runs. (4b): The largest singular value of the modified weight matrix.
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(b) Largest singular value of modified network weight matrix.

4, we search the two hyper-parameters 50 times. For the range of

learning rate 𝐻 , we use 30 values from the range of [10−3, 10−1]
as 𝐻 . In each iteration of the algorithm, we conduct a grid search

over the learning rate range and choose the learning rate [𝑡 that

leads to the smallest object value 𝑓
(
(1 − [𝑡 )𝑀𝑡 + [𝑡𝐺★

𝑡

)
. All the

experiments are conducted on an AMD 24-Core CPU machine.

4.2 Experimental Results
Does Algorithm 1 reduce the number of infected nodes ef-
fectively?We begin by comparing the number of infected nodes

between our algorithm and the baseline methods.

Results for weighted graphs: Figure 4a compares our algorithm to

baseline intervention strategies on three weighted graphs. Overall,

we see that Frank-Wolfe-EC reduces the number of infected nodes

by 10.46% more than baseline methods on average.

Results for mobility networks: Table 3 compares the total num-

ber of infected populations using different intervention strategies

on eight networks. We note that Frank-Wolfe-EC—our iterative

optimization method—outperforms other baselines by 30.17% on

average and up to 80.36%. Additionally, we observe that the trend
is consistent with Table 3 during the entire spreading process.

Similar results with different budgets: We have also observed

similar results by varying the budget for mobility reduction. We

vary the budget from 1% to 20% using the New York mobility net-

work. We find that our algorithm outperforms the baseline methods

consistently using different budget levels, similarly for the largest

singular value. Interestingly, when the level of budget is small (e.g.,

1%), Frank-Wolfe-EC reduces the largest singular value more

significantly than baseline methods.

How much does the largest singular value decrease? Next,

we report the drop in the largest singular value. Figure 4b illus-

trates the largest singular value of the modified weight matrix of

the three weighted graphs. Frank-Wolfe-EC reduces the largest

singular value more than baselines by 11.42% on average. Addi-

tionally, Table 3 reports the largest singular value of networks

modified by each edge-weight reduction strategy on mobility net-

works. Frank-Wolfe-EC is 30.75% more effective than the best

baseline on average.

Is the extension to temporal weighted networks effective?
Finally, we evaluate our algorithm and a budget allocation strategy

over a sequence of weighted temporal networks. We find that al-

locating the budget to every network proportional to their largest
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Figure 5: Comparison of greedy selection and uniform edge-weight reduction on a mobility network. Top-K-EC is more ef-
fective in reducing the infected proportion throughout the SEIR model simulation. Moreover, the CBGs and the POIs in this
network have a heavy-tailed degree distribution, which supports the intuition behind selecting edges by their centrality scores.

singular value outperforms all the other allocations. In particular,

the number of infected populations is smaller by 39.82% averaged

over both Chicago and New York mobility networks.

Model validation:We compare the predicted cases of our simu-

lated SEIR model with the reported cases from New York Times

COVID-19 data. The root mean squared error of all the epochs is

295.17 averaged over eight mobility networks. The error is within

3% compared to the overall infected population which is at the scale

of 10
4
. These results reaffirm the finding of Chang et al. (2021a).

4.3 Ablation Study
Benefit of choosing rank 𝑟 . Recall that our algorithm requires

specifying rank 𝑟–the number of top singular values–in Equation

1. We hypothesize that varying the rank 𝑟 would lead to different

intervention results. We ablate the performance of our algorithm

by using different 𝑟 in a range of [1, 50]. The results show that the

performance of the best choice 𝑟 outperforms using 𝑟 = 1 by 40.27%

averaged over all networks. This result justifies our formulation of

the network intervention problem as an optimization for the sum

of largest-𝑟 singular values instead of only the largest single value.

Choosing edges via edge centrality. We validate that removing

edges via top edge centrality scores effectively reduces infections.

Figure 5 compares Top-K-EC (cf. Algorithm 1) to uniformly reducing

every edge’s weight by the same ratio. With Top-K-EC, the largest

singular value dropped by 57.7% in (5a) and 96.8% in (5b). With

uniform reduction, the drop goes down to 1% and 20%, respectively.

Benefit of the iterative approach. The greedy selection algo-

rithm Top-k-EC can be viewed as a special case of Frank-Wolfe-

EC with 𝑇 = 1. Notice that the iterative approach is necessary to

get the observed empirical performance. In Table 3, Frank-Wolfe-

EC outperforms Top-k-EC by 31.41% on average, and the largest

singular value is reduced by 33.09% more in Table 3.

5 DISCUSSION AND RELATEDWORK
There is an extensive body of work studying diffusion control on

networks. Besides epidemic spreading, network diffusion is also

widely studied in social and information networks (Goel et al., 2015,

2016, Matsubara et al., 2012). We summarize the most relevant re-

search to ours while referring the reader to Pastor-Satorras et al.

(2015)’s survey for references. A key result in the epidemics litera-

ture is that the largest eigenvalue of the adjacency matrix (a.k.a. the

spectral radius, denoted as _1) characterizes the epidemic threshold

for more than 25 propagation models (Prakash et al., 2012).

An important implication of this result is that the epidemic

dies out if _1 decreases, and this is the basis of many works on

epidemic control (Chen et al., 2016, Le et al., 2015, Torres et al., 2021,

Van Mieghem et al., 2011). Because eigen-optimization problems

via edge additions or deletions are NP-hard (Khalil et al., 2014, Tong

et al., 2012), approximation algorithms are used for diffusion control.

A key approach is a greedy algorithm based on some notion of

centrality information in the network (Parotsidis et al., 2016). There

is a connection between this problem and submodular optimization,

leading to provable approximation ratios for the greedy algorithm

(Chen et al., 2018, Saha et al., 2015).

Besides, there is a line of work studying diffusion control under

the name of the Firefighter problem in approximation algorithms

(Anshelevich et al., 2009, Finbow and MacGillivray, 2009). Finally,

there are studies on the design of vaccine distribution for pandemic

control (Sambaturu et al., 2020, Zhang and Prakash, 2014). These

works and their analysis do not lead to direct bounds for weighted

networks, which is the focus of our setting.

The modeling of dynamical processes in social-technical systems

requires both data-driven models and theoretical understanding of

the dynamics (Mønsted et al., 2017, Vespignani, 2012). Besides SEIR

compartmental models, there are other ways to model network

spreading processes. The critical algorithmic insight of our work is

to strategically restrict mobility using spectral properties of a net-

work. While our study focuses on the SEIR model and applications

to mobility-based modeling, it is conceivable that our algorithmic

insights might apply to different epidemic models and different

data-driven modeling of the pandemic. For example, an interest-

ing research question is to examine our approach with different

epidemic models such as SIS and SIR. Besides, another interesting

question is to study node deletion as the intervention. In the con-

text of mobility networks, reducing the weight of a node means

reducing a fraction of the node’s mobility. Lastly, it is conceivable

that one can combine our approach with existing techniques to

better deal with temporal dynamics (Prakash et al., 2010). These

questions are left for future work.
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A RUNTIME RESULT
We report the runtime of Frank-Wolfe-EC. Across all eleven net-

works, the Frank-Wolfe-EC converges within 30 iterations (17

iterations on average). At each iteration, the SVD step takes less

than 3 seconds. The other steps in the inner loop take less than 2.7

seconds on all eleven networks.

Next, we report the per-iteration runtime of Frank-Wolfe-EC

on graphs with 1.5 million to 117 million edges. In addition to the

11 networks, we run our method on seven graphs, including com-

Orkut (with 117M edges), com-LiveJournal (34M), wiki-topcats

(28M), web-BerkStan (7.6M), web-Google (5.1M), web-Stanford

(2.3M), andweb-NotreDame (1.4M) from the SNAP datasets (Leskovec

and Krevl, 2014). Figure 6 illustrates the per-iteration runtime on

these graphs (including the eleven networks described above). No-

tice that the runtime scales are nearly-linear with the number of

edges: The slope is less than 1 in Figure 6, which means the runtime

is less than linear in the size of the graph. For example, our algo-

rithm takes 4943 seconds per iteration on the largest graph with

117 million edges and 3 million nodes. These results show that our

algorithm runs efficiently on large-scale graphs.
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Figure 6: Runtime of Frank-Wolfe-EC in log-log scale for
one iteration. The number of edges ranges from 10

4 to 10
8

and the number of nodes ranges from 10
3 to 10

6.

B PROOF OF THEOREM 3
We complete the convergence analysis of our algorithm. First, we

show that the objective function 𝑓 (𝑀) is convex in𝑀 . Second, we

invoke the result of Jaggi (2013), specifically Lemma 7 and Theorem

1, which show that as long as the gradient ∇𝑓 (𝑀) is Lipschitz-
continuous and the constraint set has bounded diameter, the Frank-

Wolfe algorithm will converge to the optimum at a rate of 𝑂 ( 1𝑡 )
after 𝑡 iterations.

Proof of Theorem 3. We first show that the sum of top sin-

gular values 𝑔(𝑀) = ∑𝑟
𝑘=1

_𝑘 (𝑀) is convex. With the variational

characterization of singular values, 𝑔(𝑀) is equal to
𝑔(𝑀) = max

𝑈 ⊤𝑈=𝑉 ⊤𝑉=Id𝑟 : 𝑈 ∈R𝑛×𝑟 ,𝑉 ∈R𝑚×𝑟
⟨𝑈𝑉⊤, 𝑀⟩. (13)

Thus, for any 𝑛 by𝑚 matrix𝑀1, 𝑀2, and any 𝛼 ∈ [0, 1], let �̃� and �̃�

be the maximizer of the above for 𝑓
(
𝛼𝑀1 + (1 − 𝛼)𝑀2

)
. Therefore,

𝑔
(
𝛼𝑀1 + (1 − 𝛼)𝑀2

)
= ⟨�̃� �̃�⊤, 𝛼𝑀1 + (1 − 𝛼)𝑀2⟩
≤ 𝛼 ⟨�̃� �̃�⊤, 𝑀1⟩ + (1 − 𝛼)⟨�̃� �̃�⊤, 𝑀2⟩
≤ 𝛼𝑔(𝑀1) + (1 − 𝛼)𝑔(𝑀2),

which implies that 𝑔(𝑀) is convex. Next, we show that 𝑓 (𝑀) is
convex. For any 𝛼 ∈ [0, 1],

𝑓 (𝛼𝑀1 + (1 − 𝛼)𝑀2) = 𝑔

(
(𝛼𝑀1 + (1 − 𝛼)𝑀2)𝑇 (𝛼𝑀1 + (1 − 𝛼)𝑀2)

)
≤ 𝛼2𝑔(𝑀⊤

1
𝑀1) + (1 − 𝛼)2𝑔(𝑀⊤2 𝑀2) + 2𝛼 (1 − 𝛼)𝑔(𝑀⊤1 𝑀2).

Let �̃� and �̃� be the maximizer of (13) for𝑀⊤
1
𝑀2. We have

2𝑔(𝑀⊤
1
𝑀2) = 2⟨�̃� �̃�⊤, 𝑀⊤

1
𝑀2⟩ = 2⟨𝑀1�̃� , 𝑀2�̃� ⟩

≤
𝑀1�̃�

2
𝐹
+
𝑀2�̃�

2
𝐹
= ⟨𝑀⊤

1
𝑀1, �̃� �̃�

⊤⟩ + ⟨𝑀⊤
2
𝑀2, �̃� �̃�

⊤⟩
≤𝑔(𝑀⊤

1
𝑀1) + 𝑔(𝑀⊤2 𝑀2) .

Therefore, 𝑓 (𝛼𝑀1+ (1−𝛼)𝑀2) is less than 𝛼 ·𝑔(𝑀⊤
1
𝑀1) = 𝛼 · 𝑓 (𝑀1)

plus (1 − 𝛼) · 𝑔(𝑀⊤
2
𝑀2) = (1 − 𝛼) · 𝑓 (𝑀2).

Second, we verify that ∇𝑓 (𝑀) is 𝛼2 Lipschitz continuous in the

Frobenius norm. The proof is based on matrix perturbation bounds.

Let �̃� = 𝑀 + 𝐸 be a perturbation of 𝑀 . Let 𝑀𝑟 = 𝑈𝑟𝐷𝑟𝑉
⊤
𝑟 be

the top-𝑟 SVD of𝑀 . Let `1 be the largest singular value of𝑀 . Let

�̃�𝑟 = �̃�𝑟 �̃�𝑟�̃�
⊤
𝑟 be the top-𝑟 SVD of �̃� . First, consider ∥𝐸∥2 ≤ ^/2.

By matrix perturbation bounds on the truncated SVD of a matrix

(e.g., Theorem 1 of Vu et al. (2021); the condition is satisfied since ^

is the spectral gap between the 𝑟 -th and (𝑟 + 1)-th largest singular

values), we have

∥𝑀𝑟 − �̃�𝑟 ∥2𝐹 ≤ 2∥𝐸∥2
𝐹
+
4_2

1

^2
∥𝐸∥2

𝐹
+𝐶 ∥𝐸∥2

𝐹
.

When ∥𝐸∥2 ≥ ^/2, notice that
∥𝑀𝑟 − �̃�𝑟 ∥2𝐹 = ∥𝑈𝑟𝐷𝑟𝑉

⊤
𝑟 − �̃�𝑟 �̃�𝑟�̃�

⊤
𝑟 ∥2𝐹

≤ 2∥𝐷𝑟 ∥2𝐹 + 2∥�̃�𝑟 ∥2𝐹
≤ 2𝑟_2

1
+ 2𝑟 (_1 + ∥𝐸∥2)2,

which is at most 2𝑟 (3_2
1
+ 2∥𝐸∥2

2
). The step above uses the Weyl’s

Theorem that ∥𝐷𝑟 − �̃�𝑟 ∥2 ≤ ∥𝐸∥2. Taken together, we conclude

that ∇𝑓 (𝑀) must be√
max

(
2 +

4_2
1

^2
+𝐶,

24𝑟 · _2
1

^2
+ 4𝑟

)
Lipschitz continuous. Lastly, the diameter of the constraint set is

at most

√∑
(𝑖, 𝑗) ∈E𝑊

2

𝑖, 𝑗
, since for every (𝑖, 𝑗) ∈ E, the search space

is bounded between 0 and𝑊𝑖, 𝑗 . Taken together, we have proved

that: 𝑓 (𝑀) is convex, ∇𝑓 (𝑀) is 𝛼2 Lipschitz continuous, and the

diameter of the constrained space of problem (1) is

√
𝛼1/8. Using

Lemma 7 and Theorem 1 of Jaggi (2013), the proof is complete. □

C CONCLUSION AND FUTUREWORK
We studied the problem of controlling the diffusion of an epidemic

on weighted networks via reducing edge weights. This problem

is motivated by recent studies of mobility-based modeling for the

COVID-19. We introduced a constrained optimization problem to

reduce edge weights that minimize the network’s largest singular

values. We designed an iterative procedure for finding the global

minimum of the above optimization problem. Our algorithm is

guaranteed to converge to the global optimum. Additionally, we

theoretically proved and empirically observed that each iteration

only requires a nearly-linear runtime in the size of the network.
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Our experiments demonstrated the superiority of our approaches.

Our work highlights the existence of spectral properties in mobility

networks and uses them to design practical intervention algorithms.

We mention two questions for future work. First, although we

demonstrated that choosing the rank 𝑟 larger than one yields supe-

rior empirical performance, theoretically justifying the reduction of

𝑓 (𝑀) to reducing epidemic threading is still lacking, and we leave

it for future work. Second, while our algorithm achieved strong

empirical performance on mobility networks, theoretically analyz-

ing it within the setting of mobility-based modeling remains an

interesting question. In particular, we are not aware of any result

on the epidemic threshold of the metapopulation SEIR model. More

broadly, we hope our work inspires further algorithmic and theo-

retical studies on epidemic spreads, which could in turn contribute

to the ongoing discussion of pandemic prevention.


	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Epidemic Models
	2.2 Optimization of Spectral Properties

	3 Method
	3.1 Edge Centrality
	3.2 Iterative Edge Centrality Minimization

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Ablation Study

	5 Discussion and Related Work
	References
	A Runtime Result
	B Proof of Theorem 3
	C Conclusion and Future Work

