
Under review as a conference paper at ICLR 2023

CRISP: CURRICULUM BASED SEQUENTIAL NEURAL
DECODERS FOR POLAR CODE FAMILY

Anonymous authors
Paper under double-blind review

ABSTRACT

Polar codes are widely used state-of-the-art codes for reliable communication that
have recently been included in the 5th generation wireless standards (5G). However,
there remains room for the design of polar decoders that are both efficient and reli-
able in the short blocklength regime. Motivated by recent successes of data-driven
channel decoders, we introduce a novel CurRIculum based Sequential neural de-
coder for Polar codes (CRISP)1. We design a principled curriculum, guided by
information-theoretic insights, to train CRISP and show that it outperforms the
successive-cancellation (SC) decoder and attains near-optimal reliability perfor-
mance on the Polar(32, 16) and Polar(64, 22) codes. The choice of the proposed
curriculum is critical in achieving the accuracy gains of CRISP, as we show by
comparing against other curricula. More notably, CRISP can be readily extended
to Polarization-Adjusted-Convolutional (PAC) codes, where existing SC decoders
are significantly less reliable. To the best of our knowledge, CRISP constructs the
first data-driven decoder for PAC codes and attains near-optimal performance on
the PAC(32, 16) code.

1 INTRODUCTION

Error-correcting codes (codes) are the backbone of modern digital communication. Codes, composed
of (encoder, decoder) pairs, ensure reliable data transmission even under noisy conditions. Since the
groundbreaking work of Shannon (1948), several landmark codes have been proposed: Convolutional
codes, low-density parity-check (LDPC) codes, Turbo codes, Polar codes, and more recently,
Polarization-Adjusted-Convolutional (PAC) codes (Richardson & Urbanke, 2008). In particular, polar
codes, introduced by Arikan (2009), are widely used in practice owing to their reliable performance
in the short blocklength regime. A family of variants of polar codes known as PAC codes further
improves performance, nearly achieving the fundamental lower bound on the performance of any
code at finite lengths, albeit at a higher decoding complexity (Arıkan, 2019). In this paper, we focus
on the decoding of these two classes of codes, jointly termed the “Polar code family”.

The polar family exhibits several crucial information-theoretic properties; practical finite-length
performance, however, depends on high complexity decoders. This search for the design of efficient
and reliable decoders for the Polar family is the focus of substantial research in the past decade.
(a) Polar codes: The classical successive cancellation (SC) decoder achieves information-theoretic
capacity asymptotically, but performs poorly at finite blocklengths compared to the optimal maximum
a posteriori (MAP) decoder (Arıkan, 2019). To improve upon the reliability of SC, several polar
decoders have been proposed in the literature (Sec. 6). One such notable result is the celebrated
Successive-Cancellation-with-List (SCL) decoder (Tal & Vardy, 2015). SCL improves upon the
reliability of SC and approaches that of the MAP with increasing list size (and complexity). (b)
PAC codes: The sequential “Fano decoder” (Fano, 1963) allows PAC codes to perform information-
theoretically near-optimally; however, the decoding time is long and variable (Rowshan et al., 2020a).
Although SC is efficient, O(n log n), its performance with PAC codes is significantly worse than
that of the Fano decoder. Several works (Yao et al., 2021; Rowshan et al., 2020b; Zhu et al.,
2020; Rowshan & Viterbo, 2021b;a; Sun et al., 2021) propose ameliorations; it is safe to say that
constructing efficient and reliable decoders for the Polar family is an active area of research and of

1Source code available at the following link.

1

https://anonymous.4open.science/r/crisp-7EE3/README.md

Under review as a conference paper at ICLR 2023

3 2 1 0 1 2 3

10 3

10 2

10 1

SC
SC-List, L=32 (MAP)
NSC
CRISP
No curriculum

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(a)

0 20000 40000 60000 80000 100000 120000

10 1

CRISP curriculum
CRISP anti-curriculum
Random curriculum
No curriculum
SC-List, L=32 (MAP)
SC

Training iteration

B
it

E
rr

or
R

at
e

(b)

Figure 1: (a) CRISP achieves near-MAP reliability for Polar(64, 22) code on the AWGN channel. (b)
Our proposed curriculum is crucial for the gains CRISP attains over the baselines; details in Sec. 4.

utmost practical interest given the advent of Polar codes in 5G wireless cellular standards. The design
of efficient and reliable decoders for the Polar family is the focus of this paper.

In this paper, we introduce a novel CurRIculum based Sequential neural decoder for Polar code
family (CRISP). When the proposed curriculum is applied to neural network decoder training, thus
trained decoders outperform existing baselines and attain near-MAP reliabilty on Polar(64, 22),
Polar(32, 16) and PAC(32, 16) codes while maintaining low computational complexity (Figs. 1,
5, Table 1). CRISP builds upon an inherent nested hierarchy of polar codes; a Polar(n, k) code
subsumes all the codewords of lower-rate subcodes Polar(n, i), 1 ≤ i ≤ k (Sec. 2.2). We provide
principled curriculum of training on examples from a sequence of sub-codes along this hierarchy, and
demonstrate that the proposed curriculum is critical in attaining near-optimal performance (Sec. 4).

Curriculum-learning (CL) is a training strategy to train machine learning models, starting with
easier subtasks and then gradually increasing the difficulty of the tasks (Wang et al., 2021). (Elman,
1993), a seminal work, was one of the first to employ CL for supervised tasks, highlighting the
importance of “starting small". Later, Bengio et al. (2009) formalized the notion of CL and studied
when and why CL helps in the context of visual and language learning (Wu et al., 2020; Wang et al.,
2021). In recent years, many empirical studies have shown that CL improves generalization and
convergence rate of various models in domains such as computer vision (Pentina et al., 2015; Jesson
et al., 2017; Morerio et al., 2017; Guo et al., 2018; Wang et al., 2019), natural language processing
(Cirik et al., 2016; Platanios et al., 2019), speech processing (Amodei et al., 2016; Gao et al., 2016;
2018), generative modeling (Karras et al., 2017; Wang et al., 2018), and neural program generation
(Zaremba & Sutskever, 2014; Reed & De Freitas, 2015). Viewed from this context, our results add
decoding of algebraic codes (of the Polar family) to the domain of successes of supervised CL. In
summary, we make the following contributions:

• We introduce CRISP, a novel curriculum-based sequential neural decoder for the Polar code
family. Guided by information-theoretic insights, we propose CL-based techniques to train
CRISP, that are crucial for its superior performance (Sec. 3).

• We demonstrate that CRISP attains near-optimal reliability performance on Polar(64, 22)
and Polar(32, 16) codes whilst achieving a good throughput (Sec. 4.1 and Sec. 4.2).

• Compared to Fano’s decoder, the CRISP decoder has significantly higher throughput and
attains near-MAP reliability for the PAC(32, 16) code. To the best of our knowledge, this is
the first learning-based PAC decoder to achieve this performance (Sec. 4.4).

2 PROBLEM FORMULATION

In this section we formally define the channel decoding problem and provide background on the Polar
code family. Our notation is the following: we denote Euclidean vectors by small bold face letters

2

Under review as a conference paper at ICLR 2023

x,y, etc. [n] ≜ {1, 2, . . . , n}. For m ∈ Rn,m<i ≜ (m1, . . . ,mi−1). N (0, In) denotes a standard
Gaussian distribution in Rn. u⊕ v denotes the bitwise XOR of two binary vectors u,v ∈ {0, 1}ℓ.

2.1 CHANNEL DECODING

ModulationEncoder Channel Decoderu ∈ {0,1}k x ∈ {0,1}n x ∈ {±1}n y ∈ ℝn
̂u

Noise

MSE loss

Learn

Figure 2: Channel decoding problem.

The primary goal of channel decoding is to design efficient decoders that can correctly recover
the message bits upon receiving codewords corrupted by noise (Fig. 2). More precisely, let u =
(u1, . . . , uk) ∈ {0, 1}k denote a block of information/message bits that we wish to transmit. An
encoder g : {0, 1}k → {0, 1}n maps these message bits into a binary codeword x of length n, i.e.
x = g(u). The encoded bits x are modulated via Binary Phase Shift Keying (BPSK), i.e. x 7→ 1−
2x ∈ {±1}n, and are transmitted across the channel. We denote both the modulated and unmodulated
codewords as x. The channel, denoted as PY |X(·|·), corrupts the codeword x to its noisy version y ∈
Rn. Upon receiving the corrupted codeword, the decoder fθ estimates the message bits as û = fθ(y).
The performance of the decoder is measured using standard error metrics such as Bit-Error-Rate (BER)
or Block-Error-Rate (BLER): BER(fθ) ≜ (1/k)

∑
i P[ûi ̸= ui], whereas BLER(fθ) ≜ P[û ̸= u].

Given an encoder g with code parameters (n, k) and a channel PY |X , the channel decoding problem
can be mathematically formulated as:

θ ∈ argmin
θ

BER(fθ), (1)

which is a joint classification of k binary classes. To train the parameters θ, we use the mean-
square-error (MSE) loss as a differentiable surrogate to the objective in Eq. 1. It is well known in
the literature that naively parametrizing fθ by general-purpose neural networks does not work well
and they perform poorly even for small blocklengths like n = 16 (Gruber et al., 2017). Hence it
is essential to use efficient decoding architectures that capitalize on the structure of the encoder g
(Kim et al., 2018b; Chen & Ye, 2021). To this end, we focus on a popular class of codes, the Polar
code family, that comprises two state-of-the-art codes: Polar codes (Arikan, 2009) and Polarization-
Adjusted-Convolutional (PAC) codes (Arıkan, 2019). Both these codes are closely related and hence
we first focus on polar codes in Sec. 2.2. In Sec. 3, we present CRISP, our novel curriculum-learning
based neural decoder to decode polar codes. In Sec. 4.4 we detail PAC codes.

2.2 POLAR CODES

Encoding. Polar codes, introduced in Arikan (2009), were the first codes to be theoretically proven
to achieve capacity for any binary-input discrete memoryless channel. Their encoding is defined
as follows: let (n, k) be the code parameters with n = 2p, 1 ≤ k ≤ n. In order to encode a block
of message bits u = (u1, . . . , uk) ∈ {0, 1}k, we first embed them into a source message vector
m ≜ (m1, . . . ,mn) = (0, . . . , u1, 0, . . . , u2, 0, . . . , uk, 0, . . .) ∈ {0, 1}n, where mIk = u and
mIC

k
= 0 for some Ik ⊆ [n]. Since the message block m contains the information bits u only at the

indices pertaining to Ik, the set Ik is called the information set, and its complement ICk the frozen set.
For the set Ik, we first compute the capacities of the n individual polar bit channels and rank them
in their increasing order (Tal & Vardy, 2013). Then Ik picks the top k out of them. For example,
Polar(4, 2) has the ordering m1 < m2 = m3 < m4 and Ik = {2, 4}, and thus m = (0,m2, 0,m4).
Similarly, Polar(8, 4) has m1 < m2 < m3 < m5 < m4 < m6 < m7 < m8, I4 = {4, 6, 7, 8} and
m = (0, 0, 0,m4, 0,m6,m7,m8).

3

Under review as a conference paper at ICLR 2023

Plotkin

0 0/1 0 0/1

Plotkin Plotkin

m1 m2 m3 m4

u = (m2, m2) v = (m4, m4)

x = (m2 ⊕ m4, m2 ⊕ m4, m4, m4)

(a) Polar encoder

Ly

0 L2 0 L4

Lu Lv

m̂1 m̂2 m̂3 m̂4

y

(b) Successive cancellation decoder

Figure 3: Polar(4, 2): (a) Polar encoding via Plotkin tree; (b) Blue arrows indicate the decoding order.

Finally, we obtain the polar codeword x = PlotkinTree(m), where the mapping
PlotkinTree : {0, 1}n → {0, 1}n is given by a complete binary tree, known as Plotkin tree
(Plotkin, 1960). Fig. 3a details the Plotkin tree for Polar(4, 2). Plotkin tree takes the input
message block m ∈ {0, 1}n at the leaves and applies the “Plotkin" function at each of its
internal nodes recursively to obtain the codeword x ∈ {0, 1}n at the root. The function
Plotkin : {0, 1}ℓ × {0, 1}ℓ → {0, 1}2ℓ, ℓ ∈ N, is defined as

Plotkin(u,v) ≜ (u⊕ v,v).

For example, in Fig. 3a, starting with the message block m = (0,m2, 0,m4) at the leaves, we
first obtain u = Plotkin(0,m2) = (m2,m2) and v = Plotkin(0,m4) = (m4,m4). Applying the
function once more, we obtain the codeword x = Plotkin(u,v) = (m2 ⊕m4,m2 ⊕m4,m4,m4).

Decoding. The successive-cancellation (SC) algorithm is one of the most efficient decoders for polar
codes, with a decoding complexity of O(n log n). The basic principle behind the SC algorithm is
to sequentially decode one message bit mi at a time according to the conditional log-likelihood
ratio (LLR), Li ≜ log(P[mi = 0|y, m̂<i]/P[mi = 1|y, m̂<i]), given the corrupted codeword y and
previous decoded bits m̂<i for i ∈ Ik. Fig. 3b illustrates this for the Polar(4, 2) code: for both the
message bits m2 and m4, we compute these conditional LLRs and decode them via m̂2 = 1{L2 < 0}
and m̂4 = 1{L4 < 0}. Given the Plotkin tree structure, these LLRs can be efficiently computed
sequentially using a depth-first-search based algorithm (App. A).

As discussed in Sec. 1, SC achieves the theoretically optimal performance only asymptotically,
and its reliability is sub-optimal at finite blocklengths. SC-list (SCL) decoding improves upon its
error-correction performance by maintaining a list of L candidate paths at any time step and choosing
the best among them in the end. In fact, for a reasonably large list size L, SCL achieves MAP
performance at the cost of increased complexity O(Ln log n), as highlighted in Table 1.

3 CRISP: CURRICULUM BASED SEQUENTIAL NEURAL DECODER FOR POLAR
FAMILY

We design CRISP, a curriculum-learning-based sequential neural decoder for polar codes that strictly
outperforms the SC algorithm and existing baselines. CRISP uses a sequential RNN decoder, powered
by gated recurrent units (GRU) (Chung et al., 2014), to decode one bit at a time. Instead of standard
training techniques, we design a novel curriculum, guided by information-theoretic insights, to train
the RNN to learn good decoders. Fig. 4 illustrates our approach.

4

Under review as a conference paper at ICLR 2023

GRU GRU GRU GRU

FCNN FCNN

m̂1 = 0 m̂2

m̂4m̂2

m̂3 = 00

y

h0
h1 h2 h3 h4

(a) CRISP decoder

CRISPθx ym2 m̂2

MSE loss

ChannelPolar

CRISPθx y(m2, m4) (m̂2, m̂4)

MSE loss

ChannelPolar

(b) Curriculum to train CRISP

Figure 4: CRISP decoder and its training by curriculum-learning for Polar(2, 4).

CRISP decoder. We use the Polar(4, 2) code as a guiding example to illustrate our CRISP decoder
(Fig. 4a). This code has two message bits (m2,m4) and the message block is m = (0,m2, 0,m4).
Upon encoding it to the polar codeword x ∈ {±1}4 and receiving its noisy version y ∈ R4, the
decoder estimates the message as m̂ = (0, m̂2, 0, m̂4). Similar to SC, CRISP uses the sequential
paradigm of decoding one bit m̂i at a time by capitalizing on the previous decoded bits m̂<i and y.
To that end, we parametrize the bit estimate m̂i conditioned on the past as a fully connected neural
network (FCNN) that takes the hidden state hi as its input. Here hi denotes the hidden state of the
GRU that implicitly encodes this past information (m̂<i,y) via GRU’s recurrence equation, i.e.

hi = GRUθ(hi−1, m̂i−1,y), i ∈ {1, 2, 3, 4}, (2)
m̂i|y, m̂<i = FCNNθ(hi), i ∈ {4, 2}, (3)

where θ denotes the FCNN and GRU parameters jointly. Henceforth we refer to our decoder as
either CRISP or CRISPθ. Note that while the RNN is unrolled for n = 4 time steps (Eq. 2), we
only estimate bits at k = 2 information indices, i.e. m̂2 and m̂4 (Eq. 3). A key drawback of SC
is that a bit error at a position i can contribute to the future bit errors (> i), and it does not have a
feedback mechanism to correct these error events. On the other hand, owing to the RNN’s recurrence
relation (Eq. 2), CRISP can learn to correct these mistakes through the gradient it receives (via
backpropagation through time) during training.

Curriculum-training of CRISP. Given the decoding architecture of CRISP in Fig. 4a, a natural
approach to train its parameters via supervised learning is to use a joint MSE loss function for both
the bits (m̂2, m̂4): MSE(m̂2, m̂4) = (m̂2(θ)−m2)

2 + (m̂4(θ)−m4)
2. However, as we highlight

in Sec. 4.1 such an approach learns to fail better decoders than SC and gets stuck at local minima. To
address this issue, we propose a curriculum-learning based approach to train the RNN parameters.

The key idea behind our curriculum training of CRISP is to decompose the problem of joint estimation
of bits (m̂2, m̂4) into a sequence of sub-problems with increasing difficulty: start with learning to
estimate only the first bit (m̂2) and progressively add one new message bit at each curriculum step
(m̂4) until we estimate the full message block m = (m̂2, m̂4). We freeze all the non-trainable
message bits to zero during any curriculum step. In other words, in the first step, we freeze the bit m4

and train the decoder only to estimate the bit m̂2 (i.e. the subcode corresponding to k = 1):

(m2,m4 = 0) → m = (0,m2, 0, 0)
Polar−−−→ x

Channel−−−−→ y
CRISPθ−−−−→ m̂2. (4)

We use this trained θ as an initialization for the next task of estimating both the bits (m̂2, m̂4):

(m2,m4) → m = (0,m2, 0,m4)
Polar−−−→ x

Channel−−−−→ y
CRISPθ−−−−→ (m̂2, m̂4). (5)

Fig. 4b illustrates this curriculum-learning approach. We note that the knowledge of decoding m̂2

when m4 = 0 (Eq. 4) serves as a good initialization when we learn to decode m̂2 for a general
m4 ∈ {0, 1} (Eq. 5). With such a curriculum aided training, we show in Sec. 4.1 (Figs. 1, 5) that the

5

Under review as a conference paper at ICLR 2023

CRISP decoder outperforms the existing baselines and attains near-optimal performance for a variety
of blocklengths and codes. We interpret this in Sec. 4.3. We defer the training details to App. E.

Left-to-Right (L2R) curriculum for Polar(n, k). For a general Polar(n, k) code, we follow a
similar curriculum to train CRISPθ. Denoting the index set by Ik = {i1, i2, . . . , ik} ⊆ [n] in the
increasing order of indices i1 < i2 < . . . < ik, our curriculum is given by: Train θ on m̂i1 → Train
θ on (m̂i1 , m̂i2) → . . . → Train θ on (m̂i1 , . . . , m̂ik). We term this curriculum Left-to-Right (L2R).
The anti-curriculum R2L refers to progressively training in the decreasing order of the indices in Ik.

4 MAIN RESULTS

In this section, we present numerical results for the CRISP decoder on the Polar code family.

4.1 AWGN CHANNEL

0 1 2 3 4 5 6
10 6

10 5

10 4

10 3

10 2

10 1

SC
SC-List, L=32
CRISP
No curriculum

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(a) Polar(32, 16)

2 1 0 1 2 3 4 5

10 4

10 3

10 2

10 1

SC
SC-List, L=128
Fano
CRISP
No curriculum

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(b) PAC(32, 16)

0 20000 40000 60000 80000 100000

10 1

2 × 10 1

3 × 10 1

4 × 10 1

CRISP
No curriculum
SC
Fano

Training step

B
it

E
rr

or
R

at
e

(c) PAC(32,16) - Progressive train

Figure 5: CRISP outperforms baselines and attains near-MAP performance for Polar(32, 16) and
PAC(32, 16) codes on the AWGN channel.

Data generation. The input message u ∈ {0, 1}k is randomly drawn uniformly from the boolean
hypercube and encoded as a polar codeword x ∈ {±1}n. The classical additive white Gaussian noise
(AWGN) channel, y = x+z, z ∼ N (0, σ2In), generates the training/test data (y,u) for the decoder.
The signal-to-noise ratio, i.e. SNR = −10 log10 σ

2, characterizes the noise level in the channel. Here
we fix the channel to be AWGN in all our experiments, as per the standard convention (Kim et al.,
2018b), and refer to App. D for additional results on fading and t-distributed channels. App. E details
the training procedure. Once trained, we use the CRISP models for comparison against the baselines.

Baselines. The optimal channel decoder is the MAP estimator: û = argmaxu∈{0,1}k P[u|y], whose
complexity grows exponentially in k and is computationally infeasible. Given this, we compare
our CRISP decoder with the SCL (Tal & Vardy, 2015), which has near-MAP performance for a
large L, along with the classical SC. Among learning-based decoders, we choose the state-of-the-art
Neural-Successive-Cancellation (NSC) as our baseline (Doan et al., 2018). While the original NSC
uses a sub-optimal training procedure with SC probabilities as the target, we consider an improved
version with end-to-end training (Fig. 2) for a fair comparison. We also include the performance
of CRISP trained directly without the curriculum. We also compare with the curriculum training
procedure of Lee et al. (2020) via the C2N scheme (Sec. 5, Fig. 11). All these baselines have the
same number of parameters as CRISP.

Fig. 1a highlights that the CRISP decoder outperforms the existing baselines and attains near-MAP
performance over a wide range of SNRs for the Polar(64, 22) code. Fig. 1b illustrates the mechanism
behind these gains at 0dB: the curriculum-guided CRISP slowly improves upon the overall BER
(over the 22 bits) during the training and eventually achieves much better performance than SC and
other baselines. In contrast, the decoder trained from scratch makes a big initial gain but gets stuck at
local minima and only achieves a marginal improvement over SC. We observe a similar trend for
Polar(32, 16) code in Fig. 5a, where CRISP achieves near-MAP performance. We posit that aided by
a good curriculum, CRISP avoids getting stuck at bad local minima and converges to better minima
in the optimization landscape. App. D highlights similar reliability gains for non-AWGN channels,
other blocklengths, and rates. App. C illustrates the ablation analysis

6

Under review as a conference paper at ICLR 2023

4.2 RELIABILITY-COMPLEXITY COMPARISON

Table 1: Throughput and reliability comparison of various decoders on Polar(n, k).

Decoder
Throughput (in Mbps) Gap to SCL, L=32 (in dB)
(32, 16) (64, 22) (32, 16) (64, 22)

GPU CPU GPU CPU

SC 0.17 27 0.08 15 0.80 0.40
FastSC N/A 47 N/A 40 0.80 0.40
SCL, L=4 0.01 8.5 0.02 6.27 0.05 0.10
FastSCL, L=4 N/A 30 N/A 24 0.05 0.10
SCL, L=32 (MAP) 5e-3 0.81 2e-3 0.60 0.00 0.00
FastSCL, L=32 N/A 7.7 N/A 5.5 0.00 0.00
NSC N/A N/A 32.6 0.02 N/A 0.35
CRISP_GRU (Ours) 80 0.04 38.7 0.02 0.15 0.20
CRISP_CNN (Ours) 250 0.02 133 0.13 0.15 0.20
CRISP_GRU - No curriculum 80 0.04 38.7 0.02 0.60 0.35

In the previous section, we demonstrated that CRISP achieves better reliability than the baselines.
Here we analyze these gains through the lens of decoding complexity. To quantitatively compare
the complexities of these decoders, we evaluate their throughput on a single GTX 1080 Ti GPU as
well as a CPU (Intel i7-6850K, 12 threads). For the GPU version, we use our implementation of
SC/SCL owing to the lack of publicly available implementations. On the other hand, for the CPU
column we use an optimized multithreaded implementation of SC/FastSC, SCL/FastSCL (Léonardon
et al. (2019)) in C++ by Cassagne et al. (2019). As Table 1 highlights, CRISP exploits the GPUs’
inherent optimization towards NNs to achieve excellent throughput, whilst achieving near-SCL BER
performance. We also design CRISP_CNN, a 1D-CNN decoder trained similar to CRISP_GRU
(App. C.2), that attains better throughput than CRISP_GRU, while maintaining gains in BER. We
posit that further improvement in throughput can be realized using techniques like pruning and
knowledge distillation. This is beyond the scope of this paper and is an important and separate
direction of future research. We refer to App. F for further discussion. Note that we use BER= 10−3

to compute the gap to SCL (Figs. 1a, 5a)

4.3 INTERPRETATION

m̂1

x1 x2 x3 x4

m̂1

m̂1

m̂1

m̂1

m̂1

m̂1

x1

x1

x1

x1

x1

x1

x2

x2

x2

x2 x2

x2

x2

x3

x3x3

x3

x3

x3

x4

m̂1

x1 x3 x4

x4x4

x4

x4

x4

L2R curriculum R2L curriculum

x2

m̂1

x1 x3 x4x2

No curriculum

(a) L2R vs. R2L for decoding m1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

L2R curriculum
R2L curriculum

Curriculum Step

L
ea

rn
in

g
D

iffi
cu

lty

(b) Evolution of learning difficulty

Figure 6: L2R vs. R2L: (a) Bit estimates evolve more smoothly under L2R than R2L for Polar(4, 4),
(b) Learning difficulty increases more gracefully for L2R than R2L for Polar(64, 22).

7

Under review as a conference paper at ICLR 2023

This section describes why L2R is a better curriculum than others. To this end, we first claim that
learning to decode uncorrupted codewords (y = x) is critical to learning a reliable decoder. This claim
follows from the following key observation: while training our model (sequential or block) at a specific
SNR, we observe that whenever our model reaches SC or better performance, its BER on uncorrupted
codewords, aka the noiseless BER, drops to zero very early in the training (App. B, Fig. 7a). On the
other hand, when the model gets stuck at bad minima even after a lot of training, its noiseless BER is
high (Fig. 7b). Hence, without loss of generality, we focus on the setting y = x. Under this noiseless
scenario, we analyze how the optimal bit decoding rules evolve for different curricula. In particular,
we focus on the least reliable bits as they contribute the largest to noiseless BER (Fig. 8a and Fig. 8b).

For the Polar(4, 4) code, Fig. 6a illustrates how the optimal rule evolves for its least reliable bit
m1. In this case, the MAP decoding rule for m1 is: m̂1 = x1x2x3x4. Under the L2R curriculum,
we arrive at this expression via x1 → x1x2 → x1x2x3 → x1x2x3x4, whereas R2L follows
1 → 1 → 1 → x1x2x3x4. This highlights that L2R reaches the optimal rule more gracefully by
learning to include one coordinate xi at a time while this change for R2L (and no-curriculum) is abrupt,
making it harder to learn. Fig. 9 illustrates a similar evolution for the remaining bits (m2,m3,m4).

More concretely, we define the notion of learning difficulty for a bit: the number of bits multiplied
in its optimal decoding rule. This metric roughly captures the number of operations a model has to
learn at any curriculum step. Fig. 6b illustrates how it evolves over the L2R and R2L curricula for the
least reliable bit in Polar(64, 22). If we take the maximum learning difficulty over all bits, we obtain
a similar plot (Fig. 10). Note that in both the plots, the jumps in learning difficulty are larger for R2L,
thus indicating a harder transfer than L2R, where it increases smoothly (at most one bit per step).

4.4 PAC CODES

A recent breakthrough work Arıkan (2019) introduces a new class of codes called Polarization-
Adjusted-Convolutional (PAC) codes that match the fundamental lower bound on the performance
of any code under the MAP decoding at finite-lengths (Moradi et al., 2020). The motivating idea
behind PAC codes is to overcome two key limitations of polar codes at finite blocklengths: the
poor minimum distance properties of the code and the sub-optimality of SC compared to the MAP
(Mondelli et al., 2014). This is addressed by adding a convolutional outer code, with an appropriate
indexing Ik, before polar encoding to improve the distance properties of the resulting code.
More formally, the message block u ∈ {0, 1}k is embedded into the source vector m ∈ {0, 1}n

according to the Reed-Muller (RM) indices I
(RM)
k : compute the Hamming weights of integers

0, 1, . . . , n− 1 and choose the top k. Now we encode the message m via a rate-1 convolutional
code, i.e. v = c ∗m ∈ {0, 1}n ⇔ vi =

∑
j cjmi−j , for some 1D convolutional kernel c ∈ {0, 1}ℓ.

Finally we obtain the PAC codeword x by polar encoding v: x = PlotkinTree(v).

PAC codes can be decoded using the classical Fano algorithm (Fano, 1963), a sequential decoding
algorithm that uses backtracking. Coupled with the Fano decoder, PAC codes achieve impressive
results outperforming polar codes (with SCL decoder) and matching the finite-length capacity bound
(Polyanskiy et al., 2010). However, the Fano decoder has significant drawbacks like variable running
time, large time complexity at low-SNRs (Rowshan et al., 2020b), and sensitivity to the choice of
hyperparameters (Moradi, 2020). To overcome these issues, several non-learning techniques, such
as stack/list decoding, adaptive path metrics, etc., have been proposed in the literature (Yao et al.,
2021; Zhu et al., 2020; Rowshan & Viterbo, 2021b;a; Sun et al., 2021). In contrast, we design a
curriculum-learning-based CRISP decoder for PAC codes trained directly from the data. We use the
same L2R curriculum to decode PAC codes.

Fig. 5b highlights that the CRISP decoder achieves near-MAP performance for the PAC(32, 16)
code. While Fano decoding achieves similar reliability, it is inherently non-parallelizable. In contrast,
CRISP allows for batching, and achieves a higher throughput, as highlighted in Table 2. Here
we measure the throughput of Fano (Rowshan et al., 2020a) at SNR = 1 dB. We note that the
existing implementation of Fano is not supported on GPUs. These preliminary results suggest that
curriculum-based training holds a great promise for designing efficient PAC decoders, especially for
longer blocklengths, which is an interesting topic of future research (App. D.2).

8

Under review as a conference paper at ICLR 2023

Table 2: Throughput and reliability comparison of various decoders on PAC(32, 16).

Decoder Throughput (in Mbps) Gap to SCL, L=128 (in dB)
GPU CPU

SC N/A 27 1.0
SCL, L=128 N/A 0.02 0.0
Fano N/A 4e-3 0.1
CRISP_GRU (Ours) 80 0.03 0.4
CRISP_CNN (Ours) 250 0.15 0.4
CRISP_GRU - No curriculum 80 0.03 0.8

5 INFORMATION THEORY GUIDED CURRICULA

In Sec. 4, we demonstrated the superiority of L2R curriculum over other schemes. Here we introduce
an alternate curriculum, Noisy-to-Clean (N2C), that slightly bests the L2R, inspired by the polarization
property of polar codes. The key idea behind N2C curriculum is to capitalize on the polar index set
Ik. Recall that the set Ik is obtained by ranking the n polar bit channels (under SC decoding) in the
increasing order of their reliabilities (from noisy to clean) and choosing the top k indices. Formally,
given Ik = {ir1, ir2, . . . , irk} ⊆ [n] in the increasing order of reliabilities, our N2C curriculum
is given by: Train θ on m̂ir1 → Train θ on (m̂ir1 , m̂ir2) → . . . → Train θ on (m̂ir1 , . . . , m̂irk).
For both the sequential and block decoders, we observe that N2C is the best curriculum and we
have N2C ≈ L2R > C2N ≈ R2L (Fig. 11). This ordering is consistent with our interpretation in
Sec. 4.3 of how the learning difficulty evolves over a curriculum (Fig. 12). For both N2C and L2R,
the learning difficulty evolves smoothly but is abrupt for C2N and R2L, thus making transfer harder
in these curricula. Note that the C2N curriculum refers to progressively training on subcodes of
Polar(n, k): Polar(n, 1) → . . . → Polar(n, k) (Lee et al., 2020).

6 RELATED WORK

To address the sub-optimality of SC at finite lengths, a popular technique is to use list decoding (Tal &
Vardy, 2015; Balatsoukas-Stimming et al., 2015), aided by cyclic redundancy checks (CRC) (Li et al.,
2012; Niu & Chen, 2012a; Miloslavskaya & Trifonov, 2014). Several alternate decoding methods
have also been proposed such as stack decoding (Niu & Chen, 2012b; Trifonov, 2018), belief
propagation decoding (Yuan & Parhi, 2014; Elkelesh et al., 2018). Deep learning for communication
(Qin et al., 2019; Kim et al., 2020) has been an active field in the recent years and has seen success
in many problems including the design of neural decoders for existing linear codes (Nachmani
et al., 2016; O’shea & Hoydis, 2017; Lugosch & Gross, 2017; Vasić et al., 2018; Liang et al., 2018;
Bennatan et al., 2018; Jiang et al., 2019a; Nachmani & Wolf, 2019; Buchberger et al., 2020; He
et al., 2020), and jointly learning channel encoder-decoder pairs. (O’Shea et al., 2016; Kim et al.,
2018a; Jiang et al., 2019b; Makkuva et al., 2021; Jamali et al., 2021; Chahine et al., 2021a;b).

Earlier works on designing neural polar decoders (Gross et al., 2020) used off-the-shelf neural
architectures. These were only able to decode codes of small blocklength (≤ 16) (Lyu et al., 2018;
Cao et al., 2020). Later works augmented belief propagation decoding (Xu et al., 2018; Doan et al.,
2019), with neural components and improved performance. In Cammerer et al. (2017a) and Doan
et al. (2018), the authors replace sub-components of the existing SC decoder with NNs to scale
decoding to longer lengths. However, these methods fail to give reasonable reliability gains compared
to SC. In contrast, we use curriculum learning to train neural decoders, and show non-trivial gains
over SC performance. Our approach is closest to that of Lee et al. (2020), who consider curriculum
training of polar decoder via the C2N scheme, upon which we strictly improve.

7 CONCLUSION

We introduce a novel curriculum based neural decoder, CRISP, that attains near-optimal reliability on
the Polar code family in the short blocklength regime. Extending our results to medium blocklengths
(100-1000) and codes outside the Polar family are interesting future directions.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep speech 2: End-to-
end speech recognition in english and mandarin. In International conference on machine learning,
pp. 173–182. PMLR, 2016.

Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks, 2015. URL https://arxiv.org/abs/1512.08571.

Erdal Arikan. Channel polarization: A method for constructing capacity-achieving codes for
symmetric binary-input memoryless channels. IEEE Transactions on Information Theory, 55
(7):3051–3073, Jul 2009. ISSN 0018-9448. doi: 10.1109/tit.2009.2021379. URL http:
//dx.doi.org/10.1109/TIT.2009.2021379.

Erdal Arıkan. From sequential decoding to channel polarization and back again. arXiv preprint
arXiv:1908.09594, 2019.

Alexios Balatsoukas-Stimming, Mani Bastani Parizi, and Andreas Burg. Llr-based successive
cancellation list decoding of polar codes. IEEE transactions on signal processing, 63(19):5165–
5179, 2015.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. Deep learning for decoding of linear codes-a
syndrome-based approach. In 2018 IEEE International Symposium on Information Theory (ISIT),
pp. 1595–1599. IEEE, 2018.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https:
//arxiv.org/abs/2005.14165.

Andreas Buchberger, Christian Häger, Henry D Pfister, Laurent Schmalen, and Alexandre Graell
Amat. Pruning neural belief propagation decoders. In 2020 IEEE International Symposium on
Information Theory (ISIT), pp. 338–342. IEEE, 2020.

Sebastian Cammerer, Tobias Gruber, Jakob Hoydis, and Stephan Ten Brink. Scaling deep learning-
based decoding of polar codes via partitioning. In GLOBECOM 2017-2017 IEEE global communi-
cations conference, pp. 1–6. IEEE, 2017a.

Sebastian Cammerer, Benedikt Leible, Matthias Stahl, Jakob Hoydis, and Stephan ten Brink. Combin-
ing belief propagation and successive cancellation list decoding of polar codes on a gpu platform.
In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp.
3664–3668. IEEE, 2017b.

Zhiwei Cao, Hongfei Zhu, Yuping Zhao, and Dou Li. Learning to denoise and decode: A novel
residual neural network decoder for polar codes. In 2020 IEEE 92nd Vehicular Technology
Conference (VTC2020-Fall), pp. 1–6. IEEE, 2020.

A. Cassagne, O. Hartmann, M. Léonardon, K. He, C. Leroux, R. Tajan, O. Aumage, D. Barthou,
T. Tonnellier, V. Pignoly, B. Le Gal, and C. Jégo. Aff3ct: A fast forward error correction toolbox!
Elsevier SoftwareX, 10:100345, October 2019.

Karl Chahine, Yihan Jiang, Pooja Nuti, Hyeji Kim, and Joonyoung Cho. Turbo autoencoder with a
trainable interleaver. arXiv preprint arXiv:2111.11410, 2021a.

Karl Chahine, Nanyang Ye, and Hyeji Kim. Deepic: Coding for interference channels via deep
learning. arXiv preprint arXiv:2108.06028, 2021b.

10

https://arxiv.org/abs/1512.08571
http://dx.doi.org/10.1109/TIT.2009.2021379
http://dx.doi.org/10.1109/TIT.2009.2021379
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165

Under review as a conference paper at ICLR 2023

Xiangyu Chen and Min Ye. Cyclically equivariant neural decoders for cyclic codes. arXiv preprint
arXiv:2105.05540, 2021.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Volkan Cirik, Eduard Hovy, and Louis-Philippe Morency. Visualizing and understanding curriculum
learning for long short-term memory networks. arXiv preprint arXiv:1611.06204, 2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2018. URL https://arxiv.org/
abs/1810.04805.

Nghia Doan, Seyyed Ali Hashemi, and Warren J Gross. Neural successive cancellation decoding of
polar codes. In 2018 IEEE 19th international workshop on signal processing advances in wireless
communications (SPAWC), pp. 1–5. IEEE, 2018.

Nghia Doan, Seyyed Ali Hashemi, Elie Ngomseu Mambou, Thibaud Tonnellier, and Warren J Gross.
Neural belief propagation decoding of crc-polar concatenated codes. In ICC 2019-2019 IEEE
International Conference on Communications (ICC), pp. 1–6. IEEE, 2019.

Ahmed Elkelesh, Moustafa Ebada, Sebastian Cammerer, and Stephan Ten Brink. Belief propagation
list decoding of polar codes. IEEE Communications Letters, 22(8):1536–1539, 2018.

Jeffrey L Elman. Learning and development in neural networks: The importance of starting small.
Cognition, 48(1):71–99, 1993.

Robert Fano. A heuristic discussion of probabilistic decoding. IEEE Transactions on Information
Theory, 9(2):64–74, 1963.

Tian Gao, Jun Du, Li-Rong Dai, and Chin-Hui Lee. Snr-based progressive learning of deep neural
network for speech enhancement. In INTERSPEECH, pp. 3713–3717, 2016.

Tian Gao, Jun Du, Li-Rong Dai, and Chin-Hui Lee. Densely connected progressive learning for
lstm-based speech enhancement. In 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5054–5058. IEEE, 2018.

Warren J Gross, Nghia Doan, Elie Ngomseu Mambou, and Seyyed Ali Hashemi. Deep learning
techniques for decoding polar codes. Machine learning for future wireless communications, pp.
287–301, 2020.

Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, and Stephan ten Brink. On deep learning-based
channel decoding. In 2017 51st Annual Conference on Information Sciences and Systems (CISS),
pp. 1–6. IEEE, 2017.

Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan Zhuang, Dengke Dong, Matthew R Scott, and
Dinglong Huang. Curriculumnet: Weakly supervised learning from large-scale web images. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 135–150, 2018.

Xu Han, Rongke Liu, Zhanxian Liu, and Ling Zhao. Successive-cancellation list decoder of polar
codes based on gpu. In 2017 3rd IEEE International Conference on Computer and Communications
(ICCC), pp. 2065–2070. IEEE, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015. URL https://arxiv.org/abs/1512.03385.

Yunfeng He, Jing Zhang, Shi Jin, Chao-Kai Wen, and Geoffrey Ye Li. Model-driven dnn decoder for
turbo codes: Design, simulation, and experimental results. IEEE Transactions on Communications,
68(10):6127–6140, 2020.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2016. URL https:
//arxiv.org/abs/1606.08415.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
URL https://arxiv.org/abs/1503.02531.

11

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1503.02531

Under review as a conference paper at ICLR 2023

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

Mohammad Vahid Jamali, Hamid Saber, Homayoon Hatami, and Jung Hyun Bae. Productae: Towards
training larger channel codes based on neural product codes. arXiv preprint arXiv:2110.04466,
2021.

Andrew Jesson, Nicolas Guizard, Sina Hamidi Ghalehjegh, Damien Goblot, Florian Soudan, and
Nicolas Chapados. Cased: curriculum adaptive sampling for extreme data imbalance. In Interna-
tional Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 639–646.
Springer, 2017.

Yihan Jiang, Sreeram Kannan, Hyeji Kim, Sewoong Oh, Himanshu Asnani, and Pramod Viswanath.
Deepturbo: Deep turbo decoder. In 2019 IEEE 20th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pp. 1–5. IEEE, 2019a.

Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath.
Turbo autoencoder: Deep learning based channel codes for point-to-point communication channels.
In Advances in Neural Information Processing Systems, pp. 2758–2768, 2019b.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun
Liu. Tinybert: Distilling bert for natural language understanding, 2019. URL https://arxiv.
org/abs/1909.10351.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. Deepcode: Feedback
codes via deep learning. Advances in neural information processing systems, 31, 2018a.

Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath.
Communication algorithms via deep learning. arXiv preprint arXiv:1805.09317, 2018b.

Hyeji Kim, Sewoong Oh, and Pramod Viswanath. Physical layer communication via deep learning.
IEEE Journal on Selected Areas in Information Theory, 2020.

Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua Bengio.
Professor forcing: A new algorithm for training recurrent networks, 2016. URL https://
arxiv.org/abs/1610.09038.

Hyunjae Lee, Eun Young Seo, Hyosang Ju, and Sang-Hyo Kim. On training neural network decoders
of rate compatible polar codes via transfer learning. Entropy, 22(5):496, 2020.

Mathieu Léonardon, Adrien Cassagne, Camille Leroux, Christophe Jégo, Louis-Philippe Hamelin,
and Yvon Savaria. Fast and flexible software polar list decoders. Journal of Signal Processing
Systems, 91(8):937–952, 2019.

Bin Li, Hui Shen, and David Tse. An adaptive successive cancellation list decoder for polar codes
with cyclic redundancy check. IEEE communications letters, 16(12):2044–2047, 2012.

Fei Liang, Cong Shen, and Feng Wu. An iterative bp-cnn architecture for channel decoding. IEEE
Journal of Selected Topics in Signal Processing, 12(1):144–159, 2018.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2016. URL
https://arxiv.org/abs/1608.03983.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Loren Lugosch and Warren J Gross. Neural offset min-sum decoding. In 2017 IEEE International
Symposium on Information Theory (ISIT), pp. 1361–1365. IEEE, 2017.

Wei Lyu, Zhaoyang Zhang, Chunxu Jiao, Kangjian Qin, and Huazi Zhang. Performance evaluation
of channel decoding with deep neural networks. In 2018 IEEE International Conference on
Communications (ICC), pp. 1–6. IEEE, 2018.

12

https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/1610.09038
https://arxiv.org/abs/1610.09038
https://arxiv.org/abs/1608.03983

Under review as a conference paper at ICLR 2023

Ashok V Makkuva, Xiyang Liu, Mohammad Vahid Jamali, Hessam Mahdavifar, Sewoong Oh, and
Pramod Viswanath. Ko codes: inventing nonlinear encoding and decoding for reliable wireless
communication via deep-learning. In International Conference on Machine Learning, pp. 7368–
7378. PMLR, 2021.

Vera Miloslavskaya and Peter Trifonov. Sequential decoding of polar codes. IEEE Communications
Letters, 18(7):1127–1130, 2014.

Marco Mondelli, S Hamed Hassani, and Rüdiger L Urbanke. From polar to reed-muller codes: A
technique to improve the finite-length performance. IEEE Transactions on Communications, 62
(9):3084–3091, 2014.

Mohsen Moradi. On the metric and computation of pac codes. arXiv preprint arXiv:2012.05511,
2020.

Mohsen Moradi, Amir Mozammel, Kangjian Qin, and Erdal Arikan. Performance and complexity of
sequential decoding of pac codes. arXiv preprint arXiv:2012.04990, 2020.

Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, René Vidal, and Vittorio Murino. Curriculum
dropout. In Proceedings of the IEEE International Conference on Computer Vision, pp. 3544–3552,
2017.

Eliya Nachmani and Lior Wolf. Hyper-graph-network decoders for block codes. Advances in Neural
Information Processing Systems, 32:2329–2339, 2019.

Eliya Nachmani, Yair Be’ery, and David Burshtein. Learning to decode linear codes using deep
learning. In 2016 54th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 341–346. IEEE, 2016.

Kai Niu and Kai Chen. Crc-aided decoding of polar codes. IEEE communications letters, 16(10):
1668–1671, 2012a.

Kai Niu and Kai Chen. Stack decoding of polar codes. Electronics letters, 48(12):695–697, 2012b.

Timothy J O’Shea, Kiran Karra, and T Charles Clancy. Learning to communicate: Channel auto-
encoders, domain specific regularizers, and attention. In 2016 IEEE International Symposium on
Signal Processing and Information Technology (ISSPIT), pp. 223–228. IEEE, 2016.

Timothy O’shea and Jakob Hoydis. An introduction to deep learning for the physical layer. IEEE
Transactions on Cognitive Communications and Networking, 3(4):563–575, 2017.

Anastasia Pentina, Viktoriia Sharmanska, and Christoph H Lampert. Curriculum learning of multiple
tasks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
5492–5500, 2015.

Emmanouil Antonios Platanios, Otilia Stretcu, Graham Neubig, Barnabas Poczos, and Tom M
Mitchell. Competence-based curriculum learning for neural machine translation. arXiv preprint
arXiv:1903.09848, 2019.

M. Plotkin. Binary codes with specified minimum distance. IRE Transactions on Information Theory,
6(4):445–450, 1960.

Yury Polyanskiy, H Vincent Poor, and Sergio Verdú. Channel coding rate in the finite blocklength
regime. IEEE Transactions on Information Theory, 56(5):2307–2359, 2010.

Zhijin Qin, Hao Ye, Geoffrey Ye Li, and Biing-Hwang Fred Juang. Deep learning in physical layer
communications. IEEE Wireless Communications, 26(2):93–99, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279,
2015.

Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge University Press, 2008.

13

Under review as a conference paper at ICLR 2023

Mohammad Rowshan and Emanuele Viterbo. On convolutional precoding in pac codes. In 2021
IEEE Globecom Workshops (GC Wkshps), pp. 1–6. IEEE, 2021a.

Mohammad Rowshan and Emanuele Viterbo. List viterbi decoding of pac codes. IEEE Transactions
on Vehicular Technology, 70(3):2428–2435, 2021b.

Mohammad Rowshan, Andreas Burg, and Emanuele Viterbo. Complexity-efficient fano decoding of
polarization-adjusted convolutional (pac) codes. In 2020 International Symposium on Information
Theory and Its Applications (ISITA), pp. 200–204. IEEE, 2020a.

Mohammad Rowshan, Andreas Burg, and Emanuele Viterbo. Polarization-adjusted convolutional
(pac) codes: Fano decoding vs list decoding. arXiv preprint arXiv:2002.06805, 2020b.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter, 2019. URL https://arxiv.org/abs/1910.
01108.

Claude E Shannon. A mathematical theory of communication. The Bell system technical journal, 27
(3):379–423, 1948.

He Sun, Emanuele Viterbo, and Rongke Liu. Optimized rate-profiling for pac codes. arXiv preprint
arXiv:2106.04074, 2021.

Ido Tal and Alexander Vardy. How to construct polar codes. IEEE Trans. Inf. Theory, 59(10):
6562–6582, 2013.

Ido Tal and Alexander Vardy. List decoding of polar codes. IEEE Transactions on Information
Theory, 61(5):2213–2226, 2015.

Peter Trifonov. A score function for sequential decoding of polar codes. In 2018 IEEE International
Symposium on Information Theory (ISIT), pp. 1470–1474, 2018. doi: 10.1109/ISIT.2018.8437559.

Bane Vasić, Xin Xiao, and Shu Lin. Learning to decode ldpc codes with finite-alphabet message
passing. In 2018 Information Theory and Applications Workshop (ITA), pp. 1–9. IEEE, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021.

Yifan Wang, Federico Perazzi, Brian McWilliams, Alexander Sorkine-Hornung, Olga Sorkine-
Hornung, and Christopher Schroers. A fully progressive approach to single-image super-resolution.
In Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp.
864–873, 2018.

Yiru Wang, Weihao Gan, Jie Yang, Wei Wu, and Junjie Yan. Dynamic curriculum learning for
imbalanced data classification. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 5017–5026, 2019.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.
496. URL https://doi.org/10.18653%2Fv1%2F2020.emnlp-main.496.

Xiaoxia Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work? arXiv preprint
arXiv:2012.03107, 2020.

Weihong Xu, Xiaohu You, Chuan Zhang, and Yair Be’ery. Polar decoding on sparse graphs with deep
learning. In 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pp. 599–603.
IEEE, 2018.

Hanwen Yao, Arman Fazeli, and Alexander Vardy. List decoding of arıkan’s pac codes. Entropy, 23
(7):841, 2021.

14

https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.18653%2Fv1%2F2020.emnlp-main.496

Under review as a conference paper at ICLR 2023

Bo Yuan and Keshab K Parhi. Early stopping criteria for energy-efficient low-latency belief-
propagation polar code decoders. IEEE transactions on signal processing, 62(24):6496–6506,
2014.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Hongfei Zhu, Zhiwei Cao, Yuping Zhao, Dou Li, and Yanjun Yang. Fast list decoders for polarization-
adjusted convolutional (pac) codes. arXiv preprint arXiv:2012.09425, 2020.

15

Under review as a conference paper at ICLR 2023

A SUCCESSIVE CANCELLATION DECODER

Here we detail the successive-cancellation (SC) algorithm for decoding polar codes. As a motivating
example, let’s consider the Polar(2, 2) code. Let the two information bits be denoted by u and v,
where u, v ∈ {0, 1}. The codeword x ∈ {0, 1}2 is given by x = (x1, x2) = (u⊕ v, v). Let y ∈ R2

be the corresponding noisy codeword received by the decoder. First we convert the received y into a
vector of log-likelihood-ratios (LLRs), Ly ∈ R2, which contains the soft-information about coded
bits x1 and x2, i.e.

Ly = (L(1)
y ,L(2)

y) ≜

(
log

P[y1|x1 = 0]

P[y1|x1 = 1]
, log

P[y2|x2 = 0]

P[y2|x2 = 1]

)
∈ R2.

Once we have the soft-information about the codeword x, the goal is to now obtain the same for
the message bits u and v. To compute the LLRs for these information bits, SC uses the following
principle: first, compute the soft-information for the left bit u to estimate û. Use the decoded û to
compute the soft-information for the right bit v and decode it. More concretely, we compute the LLR
for the bit u as:

Lu = LSE(L(1)
y ,L(2)

y) = log
1 + eL

(1)
y +L(2)

y

eL
(1)
y + eL

(2)
y

∈ R, (6)

where LSE(a, b) ≜ log(1 + ea+b)/(ea + eb) for a, b ∈ R. The expression in Eq. 6 follows from the
fact that u = (u⊕ v)⊕ v = x1 ⊕ x2 and hence the soft-information Lu can be accordingly derived
from that of x1 and x2, i.e. Ly. Now we estimate the bit as û = 1{Lu < 0}. Assuming that we
know the bit u = û, we observe that the codeword x = (û⊕ v, v) can be viewed as a two-repitition
of v. Hence its LLR Lv is given by

Lv = L(1)
y · (−1)û +L(2)

y ∈ R. (7)

Finally we decode the bit as v̂ = 1{Lv < 0}. To summarize, given the LLR vector Ly we first
compute the LLR for the bit u, Lu, using Eq. 6 and decode it. Utilizing the decoded version û, we
compute the LLR Lv according to Eq. 7 and decode it.

For a more generic Polar(n, k), the underlying principle is the same: to decode a polar codeword
x = (u⊕v,v), first decode the left child u and utilize this to decode the right child v. This principle
is recursively applied at each node of the Plotkin tree until we reach the leaves of the tree where the
decoding is trivial. In view of this principle, the SC algorithm for Polar(2, 4), illustrated in Fig. 3b,
can be mathematically expressed as (in the sequence of steps):

y ∈ R4 −→ Ly = (L(1)
y ,L(2)

y ,L(3)
y ,L(4)

y) ∈ R4,

Lu = (LSE(L(1)
y ,L(3)

y),LSE(L(2)
y ,L(4)

y)) ∈ R2,

frozen bit −→ m̂1 = 0,

L2 = LSE(L(1)
y ,L(3)

y) + LSE(L(2)
y ,L(4)

y) ∈ R,
m̂2 = 1{L2 < 0} ∈ {0, 1},
û = (m̂2, m̂2) ∈ {0, 1}2,

Lv = (L(1)
y ,L(2)

y) · (−1)û + (L(3)
y ,L(4)

y) ∈ R2,

frozen bit −→ m̂3 = 0,

L4 = L(1)
v +L(2)

v ∈ R,
m̂4 = 1{L4 < 0} ∈ {0, 1}.

In Fig. 3b, the above equations are succinctly represented by two set of arrows: the black solid arrows
represent the flow of soft-information from the parent node to the children whereas the green dotted
arrows represent the flow of the decoded bit information from the children to the parent. We note that
we use a simpler min-sum approximation for the function LSE that is often used in practice, i.e.

LSE(a, b) ≈ min(|a| , |b|)sign(a)sign(b), a, b ∈ R.

16

Under review as a conference paper at ICLR 2023

25 50 75 100 125 150
0.00

0.05

0.10

0.15

0.20

0.25

Noiseless
CRISP-1dB
SC-1dB

Training iterations

B
it

E
rr

or
R

at
e

(a) Noiseless BER goes to zero when the model is
better than SC

0 200 400 600 800 1000 1200

0.1

0.2

0.3

0.4

Noiseless
CRISP-1dB
SC-1dB

Training iterations

B
it

E
rr

or
R

at
e

(b) Noiseless BER is high when the model is worse
than SC

Figure 7: Evolution of training BER at 1dB and noiseless BER for CRISP.

B INTERPRETATION

As discussed in Sec. 4.3, we observe that whenever our decoder reaches SC or better performance even-
tually when training at a specific SNR, its BER (over all the bits) on uncorrupted codewords, noiseless
BER, drops to 0 early on in the training. Fig. 7a illustrates this for Polar(32, 16). Conversely, if the
model gets stuck at a BER worse than that of SC, then we observe that its noiseless BER is also stuck at
a non-zero value. This is highlighted in Fig. 7b for Polar(64, 32). In particular, we notice that the least
reliable bits contribute the most to the noiseless BER, while a majority of the cleaner bits have zero
individual BER (Fig. 8a). Viewed from this context, we focus on the noiseless scenario, i.e. y = x.

As a motivating example, we first consider the Polar(4, 4) code. Let m = (m1,m2,m3,m4) ∈
{0, 1}4 be the block of message bits and x ∈ {0, 1}4 be the codeword. Hence under the L2R
curriculum, the subcodes evolve as

• k = 1 : m1 7→ (m1, 0, 0, 0) 7→ x = (m1, 0, 0, 0),
• k = 2 : (m1,m2) 7→ (m1,m2, 0, 0) 7→ x = (m1 ⊕m2,m2, 0, 0),
• k = 3 : (m1,m2,m3) 7→ (m1,m2,m3, 0) 7→ x = (m1 ⊕m2 ⊕m3,m2,m3, 0),
• k = 4 : (m1,m2,m3,m4) 7→ (m1,m2,m3,m4) 7→ x = (m1 ⊕m2 ⊕m3 ⊕m4,m2 ⊕
m4,m3 ⊕m4,m4).

Correspondingly, their optimal bit decoding rules under the MAP evolve as

• k = 1 : y = x = (m1, 0, 0, 0) 7→ m̂1 = x1,
• k = 2 : y = x = (m1 ⊕m2,m2, 0, 0) 7→ (m̂1, m̂2) = (x1 ⊕ x2, x2),
• k = 3 : y = x = (m1⊕m2⊕m3,m2,m3, 0) 7→ (m̂1, m̂2, m̂3) = (x1⊕x2⊕x3, x2, x3),
• k = 4 : y = x = (m1⊕m2⊕m3⊕m4,m2⊕m4,m3⊕m4,m4) 7→ (m̂1, m̂2, m̂3, m̂4) =
(x1 ⊕ x2 ⊕ x3 ⊕ x4, x2 ⊕ x4, x3 ⊕ x4, x4).

Similarly, we can compute the subcodes and their corresponding decision rules under the R2L
curriculum. Fig. 9 illustrates this evolution for both L2R and R2L. For the least reliable bit m1, we
observe that the L2R curriculum reaches the optimal rule more gracefully by including one coordinate
xi at a time while this change for R2L (and no-curriculum) is abrupt, making it harder to learn. We
observe the same trend for other bits m2,m3 and m4. Note that for Polar(4, 4), the reliability order
is m1 < m2 = m3 < m4 and hence the L2R curriculum is same as N2C and R2L is same as C2N.

For a general Polar(n, k), we can likewise compute the optimal MAP rules using the fact that the
mapping PlotkinTree : {0, 1}n → {0, 1}n is its own inverse, i.e. x = PlotkinTree(m) =⇒ m =
PlotkinTree(x).

17

Under review as a conference paper at ICLR 2023

To concretely compare different curricula, we define the notion of learning difficulty for a bit: the
number of codeword bits multiplied in its optimal decoding rule. This metric roughly captures the
number of multiplication operations a model has to learn at any curriculum step. For example, for
Polar(4, 4), the learning difficulty for m1 evloves as 1 → 2 → 3 → 4 for the L2R curriculum and
as 0 → 0 → 0 → 4 for the R2L curriculum. Fig. 10 illustrates the evolution of learning difficulty
(taking maximum over all bits) for Polar(32, 16) and Polar(64, 22) codes. We observe here that the
jumps in the learning difficulty are larger for R2L, thus indicating a harder transfer than L2R, where
it increases smoothly (at most one bit per step).

Fig. 12 highlights a similar phenomenon for Polar(64, 22) for L2R, R2L, N2C and C2N curricula.
We observe that the learning difficulties of the L2R and N2C curricula evolve smoothly while that of
R2L and C2N are abrupt. Correspondingly, their final BER reliability performance follows the order
N2C ≈ L2R < R2L ≈ C2N (Fig. 11).

0 50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

0.5

Noisy bit 1
Noisy bit 2
Clean bit 1
Clean bit 2

Training iterations

B
it

E
rr

or
R

at
e

(a) Bitwise BER for clean and noisy bits

RNN CNN SC SCL
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Contribution of each bit to BLER (first error at the bit position)
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Decoding method

B
lo

ck
E

rr
or

R
at

e

(b) Bitwise contribution to the total BLER

Figure 8: Error analysis for Polar(64, 32) : (a) Noiseless BER for the two least reliable bits gets
stuck at 0.5 whereas it converges to 0 for the two most reliable bits, (b) Contribution of each bit
(conditioned on no previous errors) to the BLER.

̂m2

x1 x2 x3 x4

m̂1

m̂1

m̂1

m̂1

̂m2

x1x1

x1

x1

x1

x2

x2

x2

x2 x2

x2 x3

x3

x3

x3

x3

x4

̂m2

x1 x3 x4

x4

x4

x4

x4 x2

m̂3

m̂3

x1

x1

x2

x2 x2

x3

x3 x1 x3 x4

x4

x4 x2

Bit 1 Bit 2 Bit 3 Bit 4

m̂4

(a) L2R curriculum

x2

m̂1

x1 x3 x4x2

̂m2

x1 x2 x3 x4

x2

̂m2

x1 x3 x4x2

m̂3

x1 x2 x3 x4

m̂3

x1

x2

x2 x3 x4

m̂3

x1 x3 x4x2

m̂4

x1 x2 x3 x4

m̂4

m̂4

x1

x1

x2

x2

x2

x3

x3

x4

m̂4

x1 x3 x4

x4

x2

Bit 1 Bit 2 Bit 3 Bit 4

(b) R2L curriculum

Figure 9: Evolution of the MAP decoding rules for L2R and R2L for Polar(4, 4). Dotted lines
indicate new coded bits being introduced into the decoding rule at each curriculum step.

C ABLATION STUDIES

Recall that our CRISP decoder consists of the sequential RNN (512-dim hidden state) trained with
the L2R curriculum. To understand the contribution of each of these components to its gains over SC,
we did the following ablation experiments for Polar(64, 22) code.

18

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1

2

3

4

5

6

7

8

9

L2R curriculum
R2L curriculum

Training iterations

L
ea

rn
in

g
D

iffi
cu

lty

(a) Polar(32, 16)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

L2R curriculum
R2L curriculum

Training iterations

L
ea

rn
in

g
D

iffi
cu

lty

(b) Polar(64, 22)

Figure 10: Evolution of the learning difficulty for L2R and R2L.

0 1 2 3 4 5

10 4

10 3

10 2

10 1

SC
SC-List, L=32
L2R (CRISP)
R2L
N2C
C2N

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(a) Polar(32, 16)

2 1 0 1 2 3

10 4

10 3

10 2

10 1

SC
SC-List, L=32
L2R (CRISP)
R2L
N2C
C2N

Signal-to-noise ratio (SNR) [dB]

B
lo

ck
E

rr
or

R
at

e

(b) Polar(64, 22)

Figure 11: Information-theory guided curricula N2C and C2N are marginally better than the L2R and
R2L schemes respectively.

C.1 EFFECT OF MODEL SIZE

We fix the decoder to be GRU and consider different model sizes via the hidden state size
h ∈ {256, 512}, and different curricula among {L2R, R2L, Without curriculum (w/o C)}. Fig. 13a
demonstrates that the accuracy gains of the L2R curriculum are more pronounced for smaller models
(h = 256). On the other hand, we observe minimal reliabilty gains for L2R with large models
(h = 512). We also tried other sequential architectures such as LSTMs (Hochreiter & Schmidhuber,
1997) and Transformers (Radford et al., 2019), but found GRUs to be the best (App. D).

C.2 SEQUENTIAL VS. BLOCK DECODING

We note that the sequential RNN architecture for CRISP is inspired in part by the sequential SC
algorithm. Notwithstanding, we also designed block decoders that estimate all the information bits
mi in one shot given y. We choose 1D Convolutional Neural Networks (CNNs) to parametrize this
block decoder. Similar to sequential decoders, curriculum learning; in particular, the L2R scheme
works the best for block decoding in achieving near-MAP reliability.

Fig. 14b compares RNNs and CNNs in terms of BLER for Polar(64, 22) with L2R and R2L curricula.
We observe that RNN-based decoders (CRISP) are more reliable in terms of BLER than CNNs; in
contrast, RNNs and CNNs achieve similar BER performance (Fig. 14a). Further, we observe that the
error patterns corresponding to bitwise contribution to the total BLER for the RNN model resemble
that of SC-List, as opposed to CNN models (Fig. 8b). We show the evolution of validation BER for
CNN training in Fig. 15. We see that the C2N curriculum performs worse than the N2C curriculum.

19

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

N2C curriculum
C2N curriculum
L2R curriculum
R2L curriculum

Training iterations

L
ea

rn
in

g
D

iffi
cu

lty

(a) Noisiest bit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

0

1

2

3

4

5

6

7

8

9

N2C curriculum
C2N curriculum
L2R curriculum
R2L curriculum

Training iterations

L
ea

rn
in

g
D

iffi
cu

lty

(b) Maximum over all bits

Figure 12: Evolution of learning bit difficulty for different curricula for Polar(64, 22).

3 2 1 0 1 2 3 4
10 5

10 4

10 3

10 2

10 1

SC
SC-List, L=32
L2R, h=512
L2R, h=256
R2L, h=512
R2L, h=256
w/o C, h=512
w/o C, h=256

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(a)

0 20000 40000 60000 80000 100000 120000 140000

10 1

No curriculum
CRISP schedule 1
CRISP schedule 2
CRISP schedule 3
CRISP schedule 4

SC
SC-List (MAP)

Training iteration

B
it

E
rr

or
R

at
e

(b)

Figure 13: Ablation plots: (a) Choosing the right curriculum is critical when model size is smaller,
(b) The number of iterations to train CRISP on each subcode using the L2R/N2C curriculum are not
critical to the final performance achieved.

D ADDITIONAL RESULTS

We present our additional results on the Polar code family with various decoding architectures such
as CNNs and transformers, with BLER reliability, and for longer blocklengths (n = 128). Recall that
the CRISP decoder uses the GRU-based RNN (Fig. 4a) trained with the L2R curriculum.

D.1 ADDITIONAL RESULTS FOR POLAR CODES

D.1.1 ROBUSTNESS TO NON-AWGN NOISE

In this section we evaluate CRISP trained on AWGN on non-AWGN settings. We test CRISP on a
Rayleigh fading channel, and T-distributed noise. As shown in Fig. 16, CRISP retains its gains when
tested on a Rayleigh fading channel. Further, as demonstrated in Fig. 17, CRISP is very robust to
T-distributed noise and marginally outperforms SCL at higher SNRs.

D.1.2 CRISP FOR CRC-POLAR CODES

In practice, polar codes with successive cancellation list decoding is used in conjunction with a cyclic
redundancy check (CRC) outer code. The message u ∈ {0, 1}km is encoded by a systematic cyclic
code of rate km

k to obtain a vector m ∈ {0, 1}k. We obtain the codewords via the normal polar
encoding procedure on m. CRISP can be used to decode such CRC-Polar codes by considering m as
the input to the polar code block. As shown in Fig. 18, CRISP achieves near-MAP reliability when
CRCs of length 3 and 8 are used for a Polar(64, 22) code.

20

Under review as a conference paper at ICLR 2023

3 2 1 0 1 2 3 4
10 5

10 4

10 3

10 2

10 1

SC
SC-List, L=32
CRISP
CNN - L2R
CNN - R2L
CNN - w/o C

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(a)

3 2 1 0 1 2 3

10 3

10 2

10 1

100

SC
SC-List, L=32
CRISP
RNN - No curriculum
CNN - L2R
CNN - No curriculum

Signal-to-noise ratio (SNR) [dB]

B
lo

ck
E

rr
or

R
at

e

(b)

Figure 14: a) CNN decoder achieves near-MAP BER performance with L2R curriculum.
b) CRISP achieves near-MAP BLER for Polar(64, 22). CNN is slightly worse.

0 50000 100000 150000 200000
10 3

10 2

10 1

N2C curriculum

C2N curriculum

No curriculum

SC

SC-List (MAP)

Training iteration

B
it

E
rr

or
R

at
e

Figure 15: L2R curriculum helps CNN to achieve near-optimal reliability

D.1.3 SCALING TO LARGER CODES

Curriculum training can be used to train even larger codes and obtain gains over naive training
methods. However, we observed that our models were only able to achieve a reliability marginally
better than SC. As shown in Fig. 21, CRISP performs similar to SC decoding on the Polar(128, 22)
code. We believe that it is possible to close the gap with MAP with more training tricks.

D.1.4 RESULTS WITH TRANSFORMERS

We also experimented with transformer-based architecures Vaswani et al. (2017) for our decoder. In
particular, we tried an autoregressive transformer-decoder network (similar to GPT (Brown et al.,
2020) that does sequential decoding) and the transformer-encoder network (similar to BERT (Devlin
et al., 2018) that does block decoding). Preliminary results indicate that these transformer-based
models are less reliable compared to RNNs and CNNs (Fig. 19). In addition, these models take
a greater number of iterations (E) to train on each of the subcodes than RNNs and CNNs during
curriculum training. Transformer training is sensitive to architectural and hyperparameter choices
and is computationally expensive. We believe that with the right training tricks, transformer-based
models can be used to decode larger codes. This is ongoing work.

D.2 ADDITIONAL RESULTS FOR PAC CODES

CRISP maintains its good performance even in block error rate, as we show in Fig. 20b. Fig. 20a
compares RNNs and CNNs in terms of BER for PAC(32, 16) code with L2R and R2L curricula.

21

Under review as a conference paper at ICLR 2023

3 2 1 0 1 2
SNR

10 2

10 1

BE
R

Polar(22,64) - Rayleigh fading test
SC
SC List L=32
CRISP

(a) Polar(64, 22)

1 2 3 4 5 6 7 8
SNR

10 3

10 2

10 1

BE
R

Polar(16,32) - Rayleigh fading channel
SC
SCL L=32
CRISP

(b) Polar(32, 16)

Figure 16: CRISP achieves good reliability on Rayleigh fading channels

3 2 1 0 1 2 3
SNR

10 3

10 2

10 1

BE
R

Polar(22,64) - T-distribution = 5
SC
SC List L=32
CRISP

(a) Polar(64, 22)

1 0 1 2 3 4 5
SNR

10 3

10 2

10 1
BE

R

Polar(16,32) - T-distribution, = 5
SC
SCL L=32
CRISP

(b) Polar(32, 16)

Figure 17: CRISP matches SCL reliability on T-distributed channels

We observe that while both RNNs and CNNs outperform SC, RNNs achieve slightly better BER
reliability than CNNs. On the other hand, Fig. 20b highlights that CNNs achieves an SC-like BLER.

E EXPERIMENTAL DETAILS

We provide our code at the following link.

Data generation. Note that for any Polar(n, k) or PAC(n, k)) code, the input message m is chosen
uniformly at random from {0, 1}k. We simulate this by drawing k i.i.d. Bernoulli random variables
with probability 1/2. We follow a similar procedure to generate a batch of message blocks (in
{0, 1}B×k) with batch size B, both during training and inference. For the AWGN channel, the batch
noise (in RB×n) is accordingly generated by drawing i.i.d. Gaussian samples from N (0, σ2).

Hyper-parameters. For training our models (both sequential and block decoders), we use AdamW
optimizer (Loshchilov & Hutter, 2017) with a learning rate of 10−3. At each curriculum step,
corresponding to training a subcode, we choose the SNR corresponding to which the optimal decoder
for that subcode has BER in the range of 10−2 ∼ 10−1 (Kim et al., 2018b). This ensures that a
significant portion of training examples lie close to the decision boundary. It is well known that using
a large batch size is essential to train a reliable decoder (Jiang et al., 2019a); we use a batch size of
4096 or 8192.

22

https://anonymous.4open.science/r/crisp-7EE3/README.md

Under review as a conference paper at ICLR 2023

3 2 1 0 1 2
SNR

10 3

10 2

10 1

BE
R

Polar(22,64) - CRC-length=3
SC
SC List L=32
CRISP
CRISP List L=32

(a) Polar(64, 22)

3 2 1 0 1 2
SNR

10 3

10 2

10 1

BE
R

Polar(22,64) - CRC-length=8
SC
SC List L=32
CRISP
CRISP List L=32

(b) Polar(32, 16)

Figure 18: CRISP performs well on CRC-Polar code

3 2 1 0 1 2 3 4

10 3

10 2

10 1

SC
MAP
GPT - L2R
GPT - R2L

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(a) GPT-based architecture (sequential decoding)

3 2 1 0 1 2 3 4

10 3

10 2

10 1

SC
MAP
BERT - L2R
BERT - R2L

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(b) BERT-based architecture (block decoding)

Figure 19: Transformer performance on Polar(32, 16).

E.1 SEQUENTIAL DECODERS

We present the architectures and training details for our sequential decoders. We consider two popular
choices for our sequential models: RNNs and GPT. We also note that it is a standard practice to
use teacher forcing to train sequential models (Lamb et al., 2016): during training, as opposed to
feeding the model prediction m̂i as an input for the next time step, the ground truth message bit mi is
provided as an input to the model instead (Fig. 4a). Student forcing refers to using the same m̂i as an
input.

E.1.1 RNNS

Architecture. We use a 2-layer GRU with a hidden state size of 512. The output at each timestep
is obtained through a fully connected layer (as shown in Fig. 4a). The network has 2.5M and 600K
parameters for block lengths 64 and 32. As shown in Figure 22, 2-layer-LSTM and 3-layer-GRU
models achieve similar performance. We choose a 2-layer GRU for our experiments since it allows
for faster training and has fewer parameters.

Training. We use the teacher forcing mechanism to train our models. We found that teacher forcing
gives a better final performance in terms of both BER and BLER, whereas student forcing only
provides gains in the BER reliability (Fig. 23). We observed that student forced training achieved sub-
optimal performance for larger block lengths. Empirically we observed that the number of iterations
spent on training each intermediate subcode of the curriculum is not critical to the performance
of the final model (Fig. 13b). To train CRISP for Polar(64,22), we use the following curriculum
schedule: Train each subcode for 2000 iterations, and finally train the full code until convergence

23

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5

10 4

10 3

10 2

10 1

SC
SC-List, L=32
Fano
RNN - L2R
RNN - R2L
CNN - L2R
CNN - R2L

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(a) BERs PAC(32, 16)

0 1 2 3 4 5
10 4

10 3

10 2

10 1

SC
SC-List, L=32
Fano
RNN - L2R
RNN - R2L
CNN - L2R
CNN - R2L

Signal-to-noise ratio (SNR) [dB]

B
lo

ck
E

rr
or

R
at

e

(b) BLERs PAC(32, 16)

Figure 20: With correct choice of curriculum, CNNs match the BER performance of CRISP on
PAC(32,16). However, they are sub-optimal in BLER.

5 4 3 2 1 0

10 5

10 4

10 3

10 2

10 1

SC
SC-List, L=32
CRISP
No curriculum

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(a) BERs Polar(128, 22)

5 4 3 2 1 0
10 5

10 4

10 3

10 2

10 1

SC
SC-List, L=32
CRISP
No curriculum

Signal-to-noise ratio (SNR) [dB]

B
lo

ck
E

rr
or

R
at

e

(b) BLERs Polar(128, 22)

Figure 21: CRISP matches SC reliabilty on Polar(128, 22).

with a decaying learning rate. This training schedule required 13-15 hours of training on a GTX
1080Ti GPU.

E.1.2 GPT

Architecture. The model consists of 6 transformer blocks with masked self-attention and GELU
activation. The multiheaded attention unit has 8 heads in each block, and an embedding/hidden
size of 64 is used throughout the network. The output vectors of the final transformer block are
passed through a linear layer to estimate each bit sequentially. The model has 350K parameters for
blocklength 32.

Training. For training the GPT-based transformer, we use a teacher forcing mechanism. Here,
we observed that the decoder takes a greater number of iterations (40, 000) to train on each of the
subcodes than RNNs and CNNs (2, 000− 10, 000) during curriculum training of Polar(32, 16). For a
fixed batch size, GPT also takes significantly longer to train (12 hours) compared to CNNs (3 hours)
and RNNs (4 hours) on GTX 1080 Ti GPU.

E.2 BLOCK DECODERS

E.2.1 CNNS

Architecture. For block decoding using Convolutional Neural Networks (CNNs), we use a ResNet-
like architecture (He et al., 2015), with the primary difference being the use of 1D convolutions instead

24

Under review as a conference paper at ICLR 2023

3 2 1 0 1 2 3

10 3

10 2

10 1

SC
SC-List, L=32
GRU - depth=1
GRU - depth=2
GRU - depth=3
LSTM - depth=2

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

(a)

3 2 1 0 1 2 3

10 3

10 2

10 1

SC
SC-List, L=32
GRU - depth=1
GRU - depth=2
GRU - depth=3
LSTM - depth=2

Signal-to-noise ratio (SNR) [dB]

B
lo

ck
E

rr
or

R
at

e

(b)

Figure 22: Polar(64, 22): LSTMs and GRUs achieve similar reliability.

0 1 2 3 4 5

10 4

10 3

10 2

10 1

SC
SC-List, L=32
Teacher-forcing
Student-forcing

Signal-to-noise ratio (SNR) [dB]

B
it

E
rr

or
R

at
e

0 1 2 3 4 5

10 3

10 2

10 1

SC
SC-List, L=32
Teacher-forcing
Student-forcing

Signal-to-noise ratio (SNR) [dB]

B
lo

ck
E

rr
or

R
at

e

Figure 23: Training CRISP using student forcing results in sub-optimal BLER.

of 2D. The model has 10 1D-convolutional layers with residual connections skipping every two
consecutive layers. Each convolutional layer has 64 channels, which are flattened at the penultimate
layer and fed as an input to a fully-connected neural network with one hidden layer. We use the
GELU (Hendrycks & Gimpel, 2016) activation function throughout the network. The model has
2.5M parameters for blocklength 64.

Training. We train the CNN model for 5, 000 iterations for each intermediate subcode of the
curriculum. In the last step of the curriculum, we train it for 100, 000 iterations with a decaying
cosine annealing schedule for the learning rate (Loshchilov & Hutter, 2016).

E.2.2 BERT

Architecture. The model consists of 6 transformer blocks with unmasked self-attention and GELU
activation. In each block, the multiheaded attention unit has 8 heads, and an embedding/hidden
size of 64 is used throughout the network. The output vectors of the final transformer block are
passed through a linear layer to estimate all the bits in one shot. The model has 350K parameters for
blocklength 32.

Training. We train this model on each intermediate subcode for around 10, 000−20, 000 steps. Thus
the BERT-based decoder achieves better reliability than its GPT counterpart despite fewer training
iterations (Fig. 19).

25

Under review as a conference paper at ICLR 2023

F RELIABILITY-COMPLEXITY COMPARISON

Two important metrics in evaluating a decoding algorithm are the decoding reliability and complexity.
In this paper, we focus on optimizing the BER performance; the main goal of our paper is to
design a curriculum based decoder for Polar and PAC codes that can achieve near-optimal reliability
performance as opposed to the current data-driven approaches that only match the SC. In Sec. 4.2,
we demonstrated that CRISP achieves excellent inference throughput on GPUs. We also see that the
decoding complexity of CRISP can be improved with a hardware-aware neural architecture.

We believe that neural decoders, coupled with the recent advances in distillation Sanh et al. (2019)
and pruning of neural networks Hinton et al. (2015); Wang et al. (2020); Anwar et al. (2015) far
larger than ours (E.g., 110M for BERT vs. 2.5M for CRISP), can achieve even better runtimes. For
instance, TinyBERT (Jiao et al. (2019)) uses knowledge distillation to learn a model 9.4x faster on
inference compared to the parent BERT. With these improvements (a separate line of research), we
can have a fair comparison with SCL decoders, which are the outcome of a decade of innovations
in efficient implementations (e.g., FastSCL) – the CRISP decoder is only one of the first of its kind
in designing a reliable neural decoder for Polar and Polar-like codes. Coupled with efficient GPU
implementations, which are optimized for vector-matrix multiplications, and the aforementioned
compression techniques, we believe neural decoders offer a great potential for fast and reliable
channel decoding.

It is important to note that inference throughput is hardware and software dependant. In Table 1,
we report throughput numbers of the optimized C++ multithreaded implementation of SC/SCL
decoding on CPU using the aff3ct toolbox (Cassagne et al. (2019)). There has been progress in
developing GPU implementations of SCL (Cammerer et al. (2017b); Han et al. (2017)). Since we
could not find publicly available implementations of these works, we report throughput numbers of
our implementation.

26

	1 Introduction
	2 Problem formulation
	2.1 Channel decoding
	2.2 Polar codes

	3 CRISP: Curriculum based sequential neural decoder for Polar family
	4 Main results
	4.1 AWGN channel
	4.2 Reliability-complexity comparison
	4.3 Interpretation
	4.4 PAC codes

	5 Information theory guided curricula
	6 Related work
	7 Conclusion
	A Successive Cancellation decoder
	B Interpretation
	C Ablation studies
	C.1 Effect of model size
	C.2 Sequential vs. block decoding

	D Additional results
	D.1 Additional results for polar codes
	D.1.1 Robustness to non-AWGN noise
	D.1.2 CRISP for CRC-Polar codes
	D.1.3 Scaling to larger codes
	D.1.4 Results with transformers

	D.2 Additional results for PAC codes

	E Experimental details
	E.1 Sequential decoders
	E.1.1 RNNs
	E.1.2 GPT

	E.2 Block decoders
	E.2.1 CNNs
	E.2.2 BERT

	F Reliability-complexity comparison

