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ABSTRACT

Motivated by social network analysis and network-based recommendation systems,
we study a semi-supervised community detection problem in which the objective
is to estimate the community label of a new node using the network topology and
partially observed community labels of existing nodes. The network is modeled
using a degree-corrected stochastic block model, which allows for severe degree
heterogeneity and potentially non-assortative communities. We propose an algo-
rithm that computes a ‘structural similarity metric’ between the new node and each
of the K communities by aggregating labeled and unlabeled data. The estimated
label of the new node corresponds to the value of k that maximizes this similarity
metric. Our method is fast and numerically outperforms existing semi-supervised
algorithms. Theoretically, we derive explicit bounds for the misclassification error
and show the efficiency of our method by comparing it with an ideal classifier.
Our findings highlight, to the best of our knowledge, the first semi-supervised
community detection algorithm that offers theoretical guarantees.

1 INTRODUCTION

Nowadays, large network data are frequently observed on social media (such as Facebook, Twitter,
and LinkedIn), science, and social science. Learning the latent community structure in a network
is of particular interest. For example, community analysis is useful in designing recommendation
systems (Debnath et al., 2008), measuring scholarly impacts (Ji et al., 2022), and re-constructing
pseudo-dynamics in single-cell data (Liu et al., 2018). In this paper, we consider a semi-supervised
community detection setting: we are given a symmetric network with n nodes, and denote by
A ∈ Rn×n the adjacency matrix, where Aij ∈ {0, 1} indicates whether there is an edge between
nodes i and j. Suppose the nodes partition into K non-overlapping communities C1, C2, . . . , CK . For
a subset L ⊂ {1, 2, . . . , n}, we observe the true community label yi ∈ {1, 2, . . . ,K} for each i ∈ L.
Write m = |L| and YL = (yi)i∈L. In this context, there are two related semi-supervised community
detection problems: (i) in-sample classification, where the goal is to classify all the existing unlabeled
nodes; (ii) prediction, where the goal is to classify a new node joining the network. Notably, the
in-sample classification problem can be easily reduced to prediction problem: we can successively
single out each existing unlabeled node, regard it as the “new node”, and then predict its label by
applying an algorithms for the prediction problem. Hence, for most of the paper, we focus on the
prediction problem and defer the study of in-sample classification to Section 3. In the prediction
problem, let X ∈ {0, 1}n denote the vector consisting of edges between the new node and each of
the existing nodes. Given (A, YL, X), our goal is to estimate the community label of the new node.

This problem has multiple applications. Consider the news suggestion or online advertising push for a
new Facebook user (Shapira et al., 2013). Given a big Facebook network of existing users, for a small
fraction of nodes (e.g., active users), we may have good information about the communities to which
they belong, whereas for the majority of users, we just observe who they link to. We are interested in
estimating the community label of the new user in order to personalize news or ad recommendations.
For another example, in a co-citation network of researchers (Ji et al., 2022), each community might
be interpreted as a group of researchers working on the same research area. We frequently have a
clear understanding of the research areas of some authors (e.g., senior authors), and we intend to use
this knowledge to determine the community to which a new node (e.g., a junior author) belongs.
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The statistical literature on community detection has mainly focused on the unsupervised setting
(Bickel & Chen, 2009; Rohe et al., 2011; Jin, 2015; Gao et al., 2018; Li et al., 2021). The semi-
supervised setting is less studied. Leng & Ma (2019) offers a comprehensive literature review
of semi-supervised community detection algorithms. Liu et al. (2014) and Ji et al. (2016) derive
systems of linear equations for the community labels through physics theory, and predict the labels
by solving those equations. Zhou et al. (2018) leverages on the belief function to propagate labels
across the network, so that one can estimate the label of a node through its belief. Betzel et al.
(2018) extracts several patterns in size and structural composition across the known communities and
search for similar patterns in the graph. Yang et al. (2015) unifies a number of different community
detection algorithms based on non-negative matrix factorization or spectral clustering under the
unsupervised setting, and fits them into the semi-supervised scenario by adding various regularization
terms to encourage the estimated labels for nodes in L to match with the clustering behavior of their
observed labels. However, the existing methods still face challenges. First, many of them employ the
heuristic that a node tends to have more edges with nodes in the same community than those in other
communities. This is true only when communities are assortative. But non-assortative communities
are also seen in real networks (Goldenberg et al., 2010; Betzel et al., 2018); for instance, Facebook
users sharing similar restaurant preferences are not necessarily friends of each other. Second, real
networks often have severe degree heterogeneity (i.e., the degrees of some nodes can be many times
larger than the degrees of other nodes), but most semi-supervised community detection algorithms do
not handle degree heterogeneity. Third, the optimization-based algorithms (Yang et al., 2015) solve
non-convex problems and face the issue of local minima. Last, to our best knowledge, none of the
existing methods have theoretical guarantees.

Attributed network clustering is a problem related to community detection, for which many algorithms
have been developed (please see Chunaev et al. (2019) for a nice survey). The graph neural networks
(GNN) reported great successes in attributed network clustering. Kipf & Welling (2016) proposes
a graph convolutional network (GCN) approach to semi-supervised community detection, and Jin
et al. (2019) combines GNN with the Markov random field to predict node labels. However, GNN is
designed for the setting where each node has a large number of attributes and these attributes contain
rich information of community labels. The key question in the GNN research is how to utilize the
graph to better propagate messages. In contrast, we are interested in the scenario where it is infeasible
or costly to collect node attributes. For instance, it is easy to construct a co-authorship network from
bibtex files, but collecting features of authors is much harder. Additionally, a number of benchmark
network datasets do not have attributes (e.g. Caltech (Red et al., 2011; Traud et al., 2012), Simmons
(Red et al., 2011; Traud et al., 2012) , and Polblogs (Adamic & Glance, 2005)). It is unclear how
to implement GNN on these data sets. In Section 4, we briefly study the performance of GNN with
self-created nodal features from 1-hop representation, graph topology and node embedding. Our
experiments indicate that GNN is often not suitable for the case of no node attributes.

We propose a new algorithm for semi-supervised community detection to address the limitations of
existing methods. We adopt the DCBM model (Karrer & Newman, 2011) for networks, which models
degree heterogeneity and allows for both assortative and non-assortative communities. Inspired by the
viewpoint of Goldenberg et al. (2010) that a ‘community’ is a group of ‘structurally equivalent’ nodes,
we design a structural similar metric between the new node and each of the K communities. This
metric aggregates information in both labeled and unlabeled nodes. We then estimate the community
label of the new node by the k that maximizes this similarity metric. Our method is easy to implement,
computationally fast, and compares favorably with other methods in numerical experiments. In theory,
we derive explicit bounds for the misclassification probability of our method under the DCBM model.
We also study the efficiency of our method by comparing its misclassification probability with that of
an ideal classifier having access to the community labels of all nodes.

2 SEMI-SUPERVISED COMMUNITY DETECTION

Recall that A is the n× n adjacency matrix on the existing nodes and YL contains the community
labels of nodes in L. Write [n] = {1, 2, . . . , n} and let U = [n] \L denote the set of unlabeled nodes.
We index the new node by n+1 and let X ∈ Rn be the binary vector consisting of the edges between
the new node and existing nodes. Denote by Ā the adjacency matrix for the network of (n+1) nodes.

2.1 The DCBM model and structural equivalence of communities We model Ā with the degree-
corrected block model (DCBM) (Karrer & Newman, 2011). Define a K-dimensional membership
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matrix πi ∈ {e1, e2, . . . , eK}, where ek’s are the standard basis vectors of RK . We encode the
community labels by πi, where πi = ek if and only if yi = k. For a symmetric nonnegative matrix
P ∈ RK×K and a degree parameter θi ∈ (0, 1] for each node i, we assume that the upper triangle of
Ā contains independent Bernoulli variables, where

P(Āij = 1) = θiθj · π′
iPπj , for all 1 ≤ i ̸= j ≤ n+ 1. (1)

When θi are equal, the DCBM model reduces to the stochastic block model (SBM). Compared
with SBM, DCBM is more flexible as it accommodates degree heterogeneity. For a matrix M or
a vector v, let diag(M) and diag(v) denote the diagonal matrices whose diagonals are from the
diagonal of M or the vector v, respectively. Write θ = (θ1, θ2, . . . , θn+1)

′, Θ = diag(θ), and
Π = [π1, π2, . . . , πn+1]

′ ∈ Rn×K . Model (1) yields that

Ā = Ω− diag(Ω) +W, where Ω = ΘΠPΠ′Θ and W̄ = Ā− EĀ. (2)

Here, Ω is a low-rank matrix that captures the ‘signal’,W is a generalized Wigner matrix that captures
‘noise’, and diag(Ω) yields a bias to the ‘signal’ but its effect is usually negligible.

The DCBM belongs to the family of block models for networks. In block models, it is not necessarily
true that the edge densities within a community are higher than those between different communities.
Such communities are called assortative communities. However, non-assortative communities also
appear in many real networks (Goldenberg et al., 2010; Betzel et al., 2018). For instance, in news and
ad recommendation, we are interested in identifying a group of users who have similar behaviors, but
they may not be densely connected to each other. Goldenberg et al. (2010) introduced an intuitive
notion of structural equivalence - two nodes are structurally equivalent if their connectivity with
similar nodes is similar. They argued that a ‘community’ in block models is a group of structurally
equivalent nodes. This way of defining communities is more general than assortative communities.

We introduce a rigorous description of structural equivalence in the DCBM model. For two vectors u
and v, define ψ(u, v) = arccos⟨ u

∥u∥ ,
v

∥v∥ ⟩, which is the angle between these two vectors. Let Āi be
the ith column of Ā. This vector describes the ‘behavior’ of node i in the network. Recall that Ω is as
in (2). When the signal-to-noise ratio is sufficiently large, Āi ≈ Ωi, where Ωi is the ith column of Ω.
We approximate the angle between Āi and Āj by the angle between Ωi and Ωj . By DCBM model,
for a node i in community k, Ωi = θiΘΠPek, where ek is the kth standard basis of RK . It follows
that for i ∈ Ck and j ∈ Cℓ, the degree parameters θi and θj cancel out in our structural similarity:

cosψ(Ωi,Ωj) =

〈
��θiΘΠPek, ��θjΘΠPeℓ

〉
∥��θiΘΠPek∥ · ∥��θjΘΠPeℓ∥

=
Mkℓ√
MkkMℓℓ

, with M := PΠ′Θ2ΠP. (3)

It is seen that cosψ(Ωi,Ωj) does not depend on the degree parameters of nodes and is solely
determined by community membership. When k = ℓ (i.e., i and j are in the same community),
cosψ(Ωi,Ωj) = 1, which means the angle between these two vectors is zero. When k ̸= ℓ, as long
as P is non-singular and Π has a full column rank, M is a positive-definite matrix. It follows that
cosψ(Ωi,Ωj) < 1 and that the angle between Ωi and Ωj is nonzero.

Example 1. Suppose K = 2, P ∈ R2×2 is such that the diagonal entries are 1 and off-diagonal
entries are b, for some b > 0 and b ̸= 1, and maxi{θi} < min{1/b, 1} (to guarantee that all entries
of Ω are smaller than 1). For simplicity, we assume

∑
i∈C1

θ2i =
∑

i∈C2
θ2i . It can be shown that M

is proportional to the matrix whose diagonal entries are (1 + b2) and off-diagonal entries are 2b.
When b < 1, the communities are assortative, and when b > 1, the communities are non-assortative.
However, regardless of the value of b, the off-diagonal entries of M are always strictly smaller than
the diagonal entries, so that cosψ(Ωi,Ωj) < 1, for nodes in distinct communities.

2.2 Semi-supervised community detection Inspired by (3), we propose assigning a community
label to the new node based on its ‘similarity’ to those labeled nodes. For each 1 ≤ k ≤ K, assume
that L ∩ Ck ̸= ∅ and define a vector A(k) ∈ Rn by A(k)

j =
∑

i∈L∩Ck
Aij , for 1 ≤ j ≤ n. The vector

A(k) describes the ‘aggregated behavior’ of all labeled nodes in community k. Recall that X ∈ Rn

contains the edges between the new node and all the existing nodes. We can estimate the community
label of the new node by

ŷ = arg min
1≤k≤K

ψ(A(k), X). (4)
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We call (4) the AngleMin estimate. Note that each A(k) is an n-dimensional vector, the construction
of which uses both ALL and ALU . Therefore, A(k) aggregates information from both labeled and
unlabeled nodes, and so AngleMin is indeed a semi-supervised approach.

The estimate in (4) still has space to improve. First, A(k) and X are high-dimensional random vectors,
each entry of which is a sum of independent Bernoulli variables. When the network is very sparse
or communities are heavily imbalanced in size or degree, the large-deviation bound for ψ(A(k), X)
can be unsatisfactory. Second, recall that our observed data include A and X . Denote by ALL the
submatrix of A restricted on L × L and XL the subvector of X restricted on L; other notations are
similar. In (4), only (ALL, ALU , X) are used, but the information in AUU is wasted. We now propose
a variant of (4). For any vector x ∈ Rn, let xL and xU be the sub-vectors restricted to indices in L
and U , respectively. Let 1(k) denote the |L|-dimensional vector indicating whether each labeled node
is in community k. Given any |U| ×K matrix H = [h1, h2, . . . , hK ], define

f(x;H) = [x′L1(1), . . . , x
′
L1(k), x

′
Uh1, . . . , x

′
UhK ]′ ∈ R2K . (5)

The mapping f(·;H) creates a low-dimensional projection of x. Suppose we now apply this mapping
to A(k). In the projected vector, each entry is a weighted sum of a large number of entries of A(k).
Since A(k) contains independent entries, it follows from large-deviation inequalities that each entry
of f(A(k), H) has a nice asymptotic tail behavior. This resolves the first issue above. We then modify
the AngleMin estimate in (4) to the following estimate, which we call (3):1

ŷ(H) = arg min
1≤k≤K

ψ
(
f(A(k);H), f(X;H)

)
. (6)

AngleMin+ requires an input of H . Our theory suggests that H has to satisfy two conditions: (a) The
spectral norm of H ′H is O(|U|). In fact, given any H , we can always multiply it by a scalar so that
∥H ′H∥ is at the order of |U|. Hence, this condition says that the scaling of H should be properly
set to balance the contributions from labeled and unlabeled nodes. (b) The minimum singular value
of H ′ΘUUΠU has to be at least a constant times ∥H∥∥ΘUUΠU∥, where ΘUU is the submatrix of Θ
restricted to the (U ,U) block and ΠU is the sub-matrix of Π restricted to the rows in U . This condition
prevents the columns of H from being orthogonal to the columns of ΘUUΠU , and it guarantees that
the last K entries of f(x;H) retain enough information of the unlabeled nodes.

We construct a data-drivenH from AUU , by taking advantage of the existing unsupervised community
detection algorithms such as Gao et al. (2018); Jin et al. (2021). Let Π̂U = [π̂i]i∈U be the community
labels obtained by applying a community detection algorithm on the sub-network restricted to
unlabeled nodes, where π̂i = ek if and only if node k is clustered to community k. We propose using

H = Π̂U . (7)

This choice ofH always satisfies the aforementioned condition (a). Furthermore, under mild regularity
conditions, as long as the clustering error fraction is bounded by a constant, this H also satisfies the
aforementioned condition (b). We note that the information in AUU has been absorbed into H , so it
resolves the second issue above. Combining (7) with (3) gives a two-stage algorithm for estimating y.

Remark 1: A nice property of AngleMin+ is that it tolerates an arbitrary permutation of communities
in Π̂U . In other words, the communities output by the unsupervised community detection algorithm
do not need to have a one-to-one correspondence with the communities on the labeled nodes. To see
the reason, we consider an arbitrary permutation of columns of Π̂U . By (12), this yields a permutation
of the last K entries of f(x;H), simultaneously for all x. However, the angle between f(A(k);H)
and f(X;H)) is still the same, and so ŷ(H) is unchanged. This property brings a lot of practical
conveniences. When K is large or the signals are weak, it is challenging (both computationally and
statistically) to match the communities in Π̂U with those in ΠL. Our method avoids this issue.

Remark 2: AngleMin+ is flexible to accommodate other choices of H . Some unsupervised commu-
nity detection algorithms provide both Π̂U and Θ̂UU (Jin et al., 2022). We may use H ∝ Θ̂UU Π̂U ,

1In AngleMin+, H serves to reduce noise. For example, let X,Y ∈ R2m be two random Bernoulli vectors,
where EX = EY = (.1, . . . , .1, .4, . . . , .4)′. As m→ ∞, it can be shown that ψ(X,Y ) → 0.34 ̸= 1 almost
surely. If we project X and Y into R2 by summing the first m coordinates and last m coordinates separately,
then as m→ ∞, ψ(X,Y ) → 1 almost surely.
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(subject to a re-scaling to satisfy the aforementioned condition (a)). This H down-weights the
contribution of low-degree unlabeled nodes in the last K entries of (12). This is beneficial if the
signals are weak and the degree heterogeneity is severe. Another choice is H ∝ Ξ̂(U)Λ̂

−1
(U), where

Λ̂U is a diagonal matrix containing the K largest eigenvalues (in magnitude) of AUU and Ξ̂(U) is
the associated matrix of eigenvectors. For this H , we do not even need to perform any community
detection algorithm on AUU . We may also use spectral embedding (Rubin-Delanchy et al., 2017).

Remark 3: The local refinement algorithm (Gao et al., 2018) may be adapted to the semi-supervised
setting, but it requires prior knowledge on assortativity or dis-assortativity and a strong balance
condition on the average degrees of communities. When these conditions are not satisfied, we can
construct examples where the error rate of AngleMin+ is o(1) but the error rate of local refinement is
0.5. See Section C.

2.3 The choice of the unsupervised community detection algorithm We discuss how to obtain
Π̂U . In the statistical literature, there are several approaches to unsupervised community detection.
The first is modularity maximization (Girvan & Newman, 2002). It exhaustively searches for all
cluster assignments and selects the one that maximizes an empirical modularity function. The second
is spectral clustering (Jin, 2015). It applies k-means clustering to rows of the matrix consisting of
empirical eigenvectors. Other methods include post-processing the output of spectral clustering
by majority vote (Gao et al., 2018). Not every method deals with degree heterogeneity and non-
assortative communities as in the DCBM model. We use a recent spectral algorithm SCORE+ (Jin
et al., 2021), which allows for both severe degree heterogeneity and non-assortative communities.

SCORE+: We tentatively write AUU=A and |U|=n and assume the network (on unlabeled nodes)
is connected (otherwise consider its giant component). SCORE+ first computes L=D−1/2

τ AD
−1/2
τ ,

where Dτ=diag(d1, . . . , dn)+0.1dmaxIn, and di is degree of node i. Let λ̂k be the kth eigenvalue (in
magnitude) of L and let ξ̂k be the associated eigenvector. Let r=K or r=K+1 (see Jin et al. (2021)
for details). Let R̂ ∈ Rn×(r−1) by R̂ik = (λ̂k+1/λ̂1) · [ξ̂k+1(i)/ξ̂1(i)]. Run k-means on rows of R̂.

3 THEORETICAL PROPERTIES

We assume that the observed adjacency matrix Ā follows the DCBM model in (1)-(2). From now
on, let θ∗ denote the degree parameter of the new node n + 1. Suppose k∗ ∈ {1, 2, . . . ,K} is its
true community label, and the corresponding K-dimensional membership vector is π∗ = ek∗ . In
(2), θ and P are not identifiable. To have identifiability, we assume that all diagonal entries of P are
equal to 1 (if this is not true, we replace P by [diag(P )]−

1
2P [diag(P )]−

1
2 and each θi in community

k by θi
√
Pkk, while keeping Ω = ΘΠPΠ′Θ unchanged). In the asymptotic framework, we fix K

and assume n→ ∞. We need some regularity conditions. For any symmetric matrix B, let ∥B∥max

denote its entry-wise maximum norm and λmin(B) denote its minimum eigenvalue (in magnitude).
We assume for a constant C1 > 0 and a positive sequence βn (which may tend to 0),

∥P∥max ≤ C1, |λmin(P )| ≥ βn. (8)

For 1 ≤ k ≤ K, let θ(k) ∈ Rn be the vector with θ(k)i = θi · 1{i ∈ Ck}, and let θ(k)L and θ(k)U be the
sub-vectors restricted to indices in L and U , respectively. We assume for a constant C2 > 0 and a
properly small constant c3 > 0,

max
k

∥θ(k)∥1 ≤ C2 min
k

∥θ(k)∥1, ∥θ(k)L ∥2 ≤ c3βn∥θ(k)L ∥1∥θ∥1, for all 1 ≤ k ≤ K. (9)

These conditions are mild. Consider (8). For identifiability, P is already scaled to make Pkk = 1
for all k. It is thus a mild condition to assume ∥P∥max ≤ C1. The condition of |λmin(P )| ≥ βn is
also mild, because we allow βn → 0. Here, βn captures the ‘dissimilarity’ of communities. To see
this, consider a special P where the diagonals are 1 and the off-diagonals are all equal to b; in this
example, |1− b| captures the difference of within-community connectivity and between-community
connectivity, and it can be shown that |λmin(P )| = |1− b|. Consider (9). The first condition requires
that the total degree in different communities are balanced, which is mild. The second condition is
about degree heterogeneity. Let θmax and θ̄ be the maximum and average of θi, respectively. In the
second inequality of (9), the left hand side is O(n−1θmax/θ̄), so this condition is satisfied as long as
θmax/θ̄ = O(nβn). This is a very mild requirement.
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3.1 The misclassification error of AngleMin+ For any |U| × K matrix H , let ψ̂k(H) =
ψ(f(A(k);H), f(X;H)) be as in (3). AngleMin+ estimates the community label to the new
node by finding the minimum of ψ̂1(H), . . . , ψ̂K(H), with H = Π̂U . We first introduce a coun-
terpart of ψ̂k(H). Recall that Ω is as in (2), which is the ‘signal’ matrix. Let Ω(k) ∈ Rn by
Ω

(k)
j =

∑
i∈L∩Ck

Ωij , for 1 ≤ j ≤ n, and define

ψk(H) = ψ
(
f(Ω(k);H), f(EX;H)

)
, for 1 ≤ k ≤ K. (10)

The next lemma gives the explicit expression of ψk(H) for an arbitrary H .
Lemma 1. Consider the DCBM model where (8)-(9) are satisfied. We define three K ×K matrices:
GLL = Π′

LΘLLΠL, GUU = Π′
UΘUUΠU , and Q = G−1

UUΠ
′
UΘUUH . For 1 ≤ k ≤ K, ψk(H) =

arccos
(

Mkk∗√
Mkk

√
Mk∗k∗

)
, where M = P (G2

LL +GUUQQ
′GUU )P .

The choice ofH is flexible. For convenience, we focus on the class ofH that is an eligible community
membership matrix, i.e., H = Π̂U . Our theory can be easily extended to more general forms of H .

Definition 1. For any b0 ∈ (0, 1), we say that Π̂U is b0-correct if minT
(∑

i∈U θi · 1{T π̂i ̸= πi}
)
≤

b0∥θ∥1, where the minimum is taken over all permutations of K columns of Π̂U .

The next two theorems study ψk(H) and ψ̂k(H), respectively, for H = Π̂U .
Theorem 1. Consider the DCBM model where (8)-(9) hold. Let k∗ denote the true community
label of the new node. Suppose Π̂U is b0-correct, for a constant b0 ∈ (0, 1). When b0 is properly
small, there exists a constant c0 > 0, which does not depend on b0, such that ψk∗(Π̂U ) = 0 and
mink ̸=k∗{ψk(Π̂U )} ≥ c0βn.
Theorem 2. Consider the DCBM model where (8)-(9) hold. There exists constant C > 0, such that
for any δ ∈ (0, 1/2), with probability 1− δ, simultaneously for 1 ≤ k ≤ K, |ψ̂k(Π̂U )− ψk(Π̂U )| ≤

C

(√
log(1/δ)

∥θ∥1·min{θ∗,∥θ(k)
L ∥1}

+
∥θ(k)

L ∥2

∥θ(k)
L ∥1∥θ∥1

)
.

Write ψ̂k = ψ̂k(Π̂U ) and ψk = ψk(Π̂U ) for short. When maxk{|ψ̂k − ψk|} < (1/2)mink ̸=k∗{ψk},
the community label of the new node is correctly estimated. We can immediately translate the results
in Theorems 1-2 to an upper bound for the misclassification probability.
Corollary 1. Consider the DCBM model where (8)-(9) hold. Suppose for some constants b0 ∈ (0, 1)

and ϵ ∈ (0, 1/2), Π̂U is b0-correct with probability 1 − ϵ. When b0 is properly small, there exist
constants C0 > 0 and C̄ > 0, which do not depend on (b0, ϵ), such that P(ŷ ̸= k∗) ≤ ϵ +

C̄
∑K

k=1 exp
(
−C0β

2
n∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

)
.

Remark 4: When mink ∥θ(k)L ∥1 ≥ O(θ∗), the stochastic noise in X will dominate the error, and the
misspecification probability in Corollary 1 will not improve with more label information. Typically,
the error rate will be the same as in the ideal case that ΠU is known (except there is no ϵ in the ideal
case). Hence, only little label information can make AngleMin+ perform almost as well as a fully
supervised algorithm that possesses all the label information. We will formalize this in Section 3.

Remark 5: Notice that minT
(∑

i∈U θi · 1{T π̂i ̸= πi}
)
≤ 1

K!

∑
T

(∑
i∈U θi · 1{T π̂i ̸= πi}

)
≤

K−1
K ∥θU∥1. Therefore, if ∥θL∥1 ≥ (1− Kb0

K−1 )∥θ∥1, then minT
(∑

i∈U θi · 1{T π̂i ̸= πi}
)
≤ b0∥θ∥1

is always true. In other words, as long as the information on the labels is strong enough, AngleMin+
would not require any assumption on the unsupervised community detection algorithm.

For AngleMin+ to be consistent, we need the bound in Corollary 1 to be o(1). It then requires that
for a small constant b0, Π̂U is b0-correct with probability 1− o(1). This is a mild requirement and
can be achieved by several unsupervised community detection algorithms. The next corollary studies
the specific version of AngleMin+, when Π̂U is from SCORE+:

Corollary 2. Consider the DCBM model where (8)-(9) hold. We apply SCORE+ to obtain Π̂U and
plug it into AngleMin+. As n→ ∞, suppose for some constant q0 > 0, mini∈U θi ≥ q0 maxi∈U θi,
βn∥θU∥ ≥ q0

√
log(n), β2

n∥θ∥1θ∗ → ∞, and β2
n∥θ∥1 mink{∥θ(k)L ∥1} → ∞. Then, P(ŷ ̸= k∗) → 0,

so the AngleMin+ estimate is consistent.
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3.2 Comparison with an information theoretical lower bound We compare the performance of
AngleMin+ with an ideal estimate that has access to all model parameters, except for the community
label k∗ of the new node. For simplicity, we first consider the case of K = 2. For any label predictor
ỹ for the new node, define Risk(ỹ) =

∑
k∗∈[K] P(ỹ ̸= k∗|π∗ = ek∗).

Lemma 2. Consider a DCBM with K = 2 and P = (1 − b)I2 + b121
′
2. Suppose θ∗ = o(1),

θ∗

mink ∥θ(k)
L ∥1

= o(1), 1− b = o(1), ∥θ(1)
L ∥1

∥θ(2)
L ∥1

=
∥θ(1)

U ∥1

∥θ(2)
U ∥1

= 1. There exists a constant c4 > 0 such that

inf ỹ{Risk(ỹ)} ≥ c4 exp
{
−2[1 + o(1)] (1−b)2

8 · θ∗(∥θL∥1 + ∥θU∥1)
}
, where the infimum is taken

over all measurable functions of A, X , and parameters ΠL, ΠU , Θ, P , θ∗. In AngleMin+, suppose
the second part of condition 9 holds with c3 = o(1), Π̂U is b̃0-correct with b̃0

a.s.→ 0. There is a

constant C4 > 0 such that, Risk(ŷ) ≤ C4 exp
{
−[1− o(1)] (1−b)2

8 · θ∗ (∥θL∥2
1+∥θU∥2

1)
2

∥θL∥3
1+∥θU∥3

1

}
.

Lemma 2 indicates that the classification error of AngleMin+ is almost the same as the information
theoretical lower bound of an algorithm that knows all the parameters except π∗ apart from a mild
difference of the exponents. This difference comes from two sources. The first is the extra "2" in the
exponent of Risk(ŷ), which is largely an artifact of proof techniques, because we bound the total
variation distance by the Hellinger distance (the total variation distance is hard to analyze directly).
The second is the difference of ∥θL∥1 + ∥θU∥1 in inf ỹ{Risk(ỹ)} and (∥θL∥2

1+∥θU∥2
1)

2

∥θL∥3
1+∥θU∥3

1
in Risk(ŷ).

Note that (∥θL∥2
1+∥θU∥2

1)
2

∥θL∥3
1+∥θU∥3

1
≤ ∥θL∥1 + ∥θU∥1 ≤ 1.125

(∥θL∥2
1+∥θU∥2

1)
2

∥θL∥3
1+∥θU∥3

1
, so this difference is quite mild.

It arises from the fact that AngleMin+ does not aggregate the information in labeled and unlabeled
data by adding the first and last K coordinates of f(x;H) together. The reason we do not do this
is that unsupervised community detection methods only provide class labels up to a permutation,
and practically it is really hard to estimate this permutation, which will result in the algorithm being
extremely unstable. To conclude, the difference of the error rate of our method and the information
theoretical lower bound is mild, demonstrating that our algorithm is nearly optimal. For a general K,
we have a similar conclusion:
Theorem 3. Suppose the conditions of Corollary 1 hold, where b0 is properly small , and suppose
that Π̂U is b0-correct. Furthermore, we assume for sufficiently large constant C3, θ∗ ≤ 1

C3
, θ∗ ≤

mink∈[K] C3∥θ(k)L ∥1, and for a constant r0 > 0, mink ̸=ℓ{Pkℓ} ≥ r0. Then, there is a constant
c̃2 = c̃2(K,C1, C2, C3, c3, r0) > 0 such that [− log(c̃2Risk(ŷ))]/[− log(inf ỹ{Risk(ỹ)})] ≥ c̃2.

3.3 In-sample Classification In this part, we briefly discuss the in-sample classification problem.
Formally, our goal is to estimate πi for all i ∈ U . As mentioned in section 1, an in-sample
classification algorithm can be directly derived from AngleMin+: for each i ∈ U , predict the label
of i as ŷi(H) = argmin1≤k≤K ψ

(
f(A

(k)
−i ;Hi), f(A−i,i;Hi)

)
, where A(k)

−i is the subvector of A(k)

by removing the ith entry, A−i,i is the subvector of Ai by removing the ith entry, and Hi is a
(|U| − 1)×K projection matrix which may be different across distinct i. As discussed in subsection
2, the choices of Hi are quite flexible. For purely theoretical convenience, we would focus on the
case that Hi = Π̂U\{i}. For any in-sample classifier ỹ = (ỹi)i∈U ∈ [K]|U|, define the in-sample
risk Riskins(ỹ) =

1
|U|
∑

i∈U
∑

k∗∈[K] P(ỹi ̸= k∗|πi = ek∗). For the above in-sample classification
algorithm, we have similar theoretical results as in section 3 on consistency and efficiency under
some very mild conditions:

Theorem 4. Consider the DCBM model where (8)-(9) hold. We apply SCORE+ to obtain Π̂U\{i}
and plug it into the above algorithm. As n→ ∞, suppose for some constant q0 > 0 , mini∈U θi ≥
q0 maxi∈U θi, βn∥θU∥ ≥ q0

√
log(n), β2

n∥θ∥1 mini∈U θi → ∞, and β2
n∥θ∥1 mink{∥θ(k)L ∥1} → ∞.

Then, 1
|U|
∑

i∈U P(ŷi ̸= ki) → 0, so the above in-sample classification algorithm is consistent.

Theorem 5. Suppose the conditions of Corollary 1 hold, where b0 is properly small , and suppose
that Π̂U\{i} is b0-correct for all i ∈ U . Furthermore, we assume for sufficiently large constant C3,

maxi∈U θi ≤ 1
C3

, maxi∈U θi ≤ mink∈[K] C3∥θ(k)L ∥1, log(|U|) ≤ C3β
2
n∥θ∥1 mini∈U θi, and for a

constant r0 > 0, mink ̸=ℓ{Pkℓ} ≥ r0. Then, there is a constant c̃21 = c̃21(K,C1, C2, C3, c3, r0) > 0
such that [− log(c̃21Riskins(ŷ))]/[− log(inf ỹ{Riskins(ỹ)})] ≥ c̃21, so the above in-sample classifi-
cation algorithm is efficient.
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Figure 1: Simulations (n = 500, K = 3; data are generated from DCBM). In each plot, the x-axis is
the number of labeled nodes, and the y-axis is the average misclassification rate over 100 repetitions.

4 EMPIRICAL STUDY

We study the performance of AngelMin+, where Π̂U is from SCORE+ (Jin et al., 2021). We compare
our methods with SNMF (Yang et al., 2015) (a representative of semi-supervised approaches) and
SCORE+ (a fully unsupervised approach). We also compare our algorithm to typical GNN methods
(Kipf & Welling, 2016) in the real data part.

Simulations: To illustrate how information in AUU will improve the classification accuracy, we
would consider AngleMin in (4) in simulations. Also, to cast light on how information on unlabeled
data will ameliorate the classification accuracy, we consider a special version of AngleMin+ in
simulations by feeding into the algorithm only ALL and XL. It ignores information on unlabeled
data and only uses the subnetwork consisting of labeled nodes. We call it AngleMin+(subnetwork).
This method is practically uninteresting, but it serves as a representative of the fully supervised
approach that ignores unlabeled nodes. We simulate data from the DCBM with (n,K) = (500, 3).
To generate P , we draw its (off diagonal) entries from Uniform(0, 1), and then symmetrize it. We
generate the degree heterogeneity parameters θi i.i.d. from one of the 4 following distributions:
n−0.5

√
log(n)Gamma(3.5), n−0.25Gamma(3.5), n−0.5

√
log(n)Pareto(3.5), n−0.25Pareto(3.5).

They cover most scenarios: Gamma distributions have considerable mass near 0, so the network
has severely low degree nodes; Pareto distributions have heavy tails, so the network has severely
high degree nodes. The scaling n−0.5

√
log(n) corresponds to the sparse regime, where the average

node degree is ≍ log(n)2, and n−0.25 corresponds to the dense regime, with average node degree
≍

√
n. We consider two cases of Π: the balanced case (bal.) and the imbalanced case (inbal.). In

the former, π(i) are i.i.d. from Multinomial(1/3, 1/3, 1/3), and in the latter, π(i) are i.i.d. from
Multinomial(0.2, 0.2, 0.6). We repeat the simulation 100 times. Our results are presented in Figure
1, which shows the average classification error of each algorithm as the number of labeled nodes, NL

increases. The plots indicate that AngleMin+ outperforms other methods in all the cases. Furthermore,
though AngleMin is not so good as AngleMin+ when NL is small, it still surpasses all the other
approaches except AngleMin+ in most scenarios. Compared to supervised and unsupervised methods
which only use part of the data, we can see that AngleMin+ gains a great amount of accuracy by
leveraging on both the labeled and unlabeled data.

Real data: We consider three benchmark datasets for community detection, Caltech (Traud et al.,
2012) , Simmons (Traud et al., 2012) , and Polblogs (Adamic & Glance, 2005). For each data set,
we separate nodes into 10 folds and treat each fold as the test data at a time, with the other 9 folds
as training data. In the training network, we randomly choose nL nodes as labeled nodes. We then
estimate the label of each node in the test data and report the misclassification error rate (averaged
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over 10 folds). We consider nL/n ∈ {0.3, 0.5, 0.7}, where n is the number of nodes in training data.
The results are shown in Table 1. In most cases, AngleMin+ significantly outperforms the other
methods (unsupervised or semi-supervised). Additionally, we notice that in the Polblogs data, the
standard deviation of the error of SCORE+ is quite large, indicating that its performance is unstable.
Remarkably, even though AngleMin+ uses SCORE+ to initialize, the performance of AngleMin+ is
nearly unaffected: It still achieves low means and standard deviations in misclassification error. This
is consistent with our theory in Section 3. We also compare the running time of different methods
(please see Section B of the appendix) and find that AngleMin+ is much faster than SNMF.

Table 1: Average misclassification error over 10 data splits, with standard deviation in the parentheses.

Dataset n K nL/n SCORE+ AngleMin+ SNMF GNN (cons.) GNN (random) GNN (adj.) GNN (LP) GNN (node2vec) GNN (AΠ)

Caltech 590 8
0.3 0.237

(0.061)

0.207 (0.059) 0.312 (0.049) 0.858 (0.038) 0.859 (0.035) 0.875 (0.038) 0.839 (0.046) 0.859 (0.055) 0.880 (0.026)
0.5 0.151 (0.040) 0.310 (0.042) 0.846 (0.054) 0.895 (0.026) 0.859 (0.037) 0.861 (0.043) 0.859 (0.039) 0.856 (0.040)
0.7 0.137 (0.046) 0.264 (0.051) 0.849 (0.043) 0.861 (0.034) 0.856 (0.031) 0.859 (0.036) 0.880 (0.027) 0.842 (0.027)

Simmons 1137 4
0.3 0.234

(0.084)

0.128 (0.024) 0.266 (0.041) 0.691 (0.022) 0.702 (0.039) 0.702 (0.036) 0.698 (0.026) 0.706 (0.039) 0.696 (0.028)
0.5 0.096 (0.024) 0.233 (0.033) 0.691 (0.022) 0.711 (0.034) 0.685 (0.025) 0.691 (0.022) 0.710 (0.031) 0.691 (0.022)
0.7 0.092 (0.015) 0.220 (0.037) 0.691 (0.022) 0.692 (0.022) 0.691 (0.022) 0.691 (0.022) 0.707 (0.043) 0.698 (0.026)

Polblogs 1222 2
0.3 0.166

(0.165)

0.074 (0.036) 0.073 (0.019) 0.499 (0.044) 0.502 (0.038) 0.439 (0.048) 0.482 (0.037) 0.502 (0.059) 0.501 (0.044)
0.5 0.092 (0.041) 0.068 (0.033) 0.517 (0.040) 0.516 (0.038) 0.453 (0.056) 0.488 (0.044) 0.499 (0.061) 0.484 (0.041)
0.7 0.066 (0.026) 0.063 (0.028) 0.485 (0.041) 0.492 (0.043) 0.430 (0.062) 0.493 (0.041) 0.492 (0.050) 0.486 (0.039)

GNN is a popular approach for attributed node clustering. Although it is not designed for the case
of no node attributes, we are still interested in whether GNN can be easily adapted to our setting by
self-created features. We take the GCN method in Kipf & Welling (2016) and consider 6 schemes of
creating a feature vector for each node: i) a 50-dimensional constant vector of 1’s, ii) a 50-dimensional
randomly generated feature vector, iii) the n-dimensional adjacency vector, iv) the vector of landing
probabilities (LP) (Li et al., 2019) (which contains network topology information), v) the embedding
vector from node2vec (Grover & Leskovec, 2016), and vi) a practically infeasible vector e′iAΠ ∈ RK

(which uses the true Π). The results are in Table 1. GCN performs unsatisfactorily, regardless of how
the features are created. For example, propagating messages with all-1 vectors seems to result in
over-smoothing; and using adjacency vectors as node features means that the feature transformation
linear layers’ size changes with the number of nodes in a network, which could heavily overfit due to
too many parameters. We conclude that it is not easy to adapt GNN to the case of no node attributes.

For a fairer comparison, we also consider a real network, Citeseer (Sen et al., 2008), that contains
node features. We consider two state-of-the-art semi-supervised GNN algorithms, GCN (Kipf &
Welling, 2016) and MasG (Jin et al., 2019). Our methods can also be generalized to accommodate
node features. Using the “fusion" idea surveyed in Chunaev et al. (2019), we “fuse" the adjacency
matrix Ā (on n+1 nodes) and node features into a weighted adjacency matrix Āfuse (see the appendix
for details). We denote its top left block by Afuse ∈ Rn×n and its last column by Xfuse ∈ Rn and
apply AngleMin+ by replacing (A,X) by (Afuse, Xfuse). The misclassification error averaged over
10 data splits is reported in Table 2. The error rates of GCN and MasG are quoted from those papers,
which are based on 1 particular data split. We also re-run GCN on our 10 data splits.

Table 2: Error rates on Citeseer, where node attributes are available. If the error rate has ∗, it is quoted
from literature and based on one particular data split; otherwise, it is averaged over 10 data splits.

Dataset n K nL/n GCN GCN∗ MasG∗ AngleMin+

Citeseer 3312 6 0.036 0.321 0.297 0.268 0.334

Conclusion and discussions: In this paper, we propose a fast semi-supervised community detection
algorithm AngleMin+ based on the structural similarity metric of DCBM. Our method is able to
address degree heterogeneity and non-assortative network, is computationally fast, and possesses
favorable theoretical properties on consistency and efficiency. Also, our algorithm performs well on
both simulations and real data, indicating its strong usage in practice.

There are possible extensions for our method. Our method does not directly deal with soft label
(a.k.a mixed membership) where the available label information is the probability of a certain node
being in each community. We are currently endeavoring to solve this by fitting our algorithm into the
degree-corrected mixed membership model (DCMM), and developing sharp theories for it.
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A PSEUDO CODE OF THE ALGORITHM

Below are the pseudo code of AngleMin+ which is deferred to the appendix due to the page limit.

Algorithm 1: AngleMin+
Input: Number of communities K, adjacency matrix A ∈ Rn×n, community labels yi for nodes

in i ∈ L, and the vector of edges between a new node and the existing nodes X ∈ Rn .
Output: Estimated community label ŷ of the new node.

1. Unsupervised community detection: Apply a community detection algorithm (e.g.,
SCORE+ in Section 2) on AUU , and let Π̂U = [π̂i]i∈U store the estimated community
labels, where π̂i = ek if and only if node k is clustered to community k, 1 ≤ k ≤ K.

2. Assigning the community label to a new node: Let ΠL = [πi]i∈L contain the community
memberships of labeled nodes, where πi = ek if and only if yi = k, 1 ≤ k ≤ K. Let
H = Π̂U . Compute

x =
[
X ′

LΠL, X
′
UH
]′
, vk =

[
e′kΠ

′
LALLΠL, e

′
kΠ

′
LALUH

]′
, 1 ≤ k ≤ K.

Suppose k∗ minimizes the angle between vk and x, among 1 ≤ k ≤ K (if there is a tie,
pick the smaller k). Output ŷ = k∗.

B RUNNING TIME

Table 3 exhibits the running time of all the algorithms considered in Table 1. It can be seen from the
result that our algorithm AngleMin+ is much faster than all the other algorithms. This is one of the
merits of our method.

Table 3: Running time on Caltech, Simons, and Polblogs networks. The quantities outside and inside
the parentheses are the means and standard deviations of the running time, respectively.

Dataset n K nL/n SCORE+ AngleMin+ SNMF GNN (cons.) GNN (random) GNN (adj.) GNN (LP) GNN (node2vec) GNN (AΠ)

Caltech 590 8
0.3 0.083

(0.009)

0.068 (0.064) 0.178 (0.017) 0.277 (0.154) 0.249 (0.049) 0.311 (0.100) 0.296 (0.044) 0.498 (0.053) 0.396 (0.097)
0.5 0.034 (0.003) 0.211 (0.069) 0.575 (0.133) 0.535 (0.061) 0.620 (0.133) 0.609 (0.067) 0.836 (0.080) 0.649 (0.045)
0.7 0.022 (0.003) 0.211 (0.054) 0.861 (0.099) 0.892 (0.116) 1.068 (0.213) 0.949 (0.049) 1.204 (0.186) 0.998 (0.068)

Simmons 1137 4
0.3 0.157

(0.008)

0.075 (0.008) 0.515 (0.036) 0.334 (0.086) 0.344 (0.102) 0.564 (0.273) 0.421 (0.094) 1.045 (0.680) 0.455 (0.087)
0.5 0.054 (0.011) 0.577 (0.090) 0.691 (0.199) 0.692 (0.084) 1.245 (0.691) 0.642 (0.032) 1.106 (0.151) 0.685 (0.059)
0.7 0.031 (0.003) 0.541 (0.073) 0.988 (0.139) 0.897 (0.056) 1.208 (0.454) 0.958 (0.057) 1.977 (0.775) 1.046 (0.069)

Polblogs 1222 2
0.3 0.093

(0.014)

0.054 (0.006) 0.356 (0.034) 0.402 (0.127) 0.353 (0.093) 0.444 (0.160) 0.311 (0.055) 0.810 (0.261) 0.343 (0.031)
0.5 0.031 (0.004) 0.431 (0.098) 0.780 (0.147) 0.700 (0.181) 0.965 (0.179) 0.649 (0.054) 1.031 (0.190) 0.644 (0.044)
0.7 0.022 (0.004) 0.351 (0.037) 1.135 (0.118) 1.152 (0.314) 1.430 (0.169) 0.986 (0.149) 1.408 (0.210) 0.999 (0.060)

C COMPARISON WITH LOCAL REFINEMENT ALGORITHM

We would first illustrate why local refinement may not work with an example and then explain our
insight behind it.

Consider a network with n = 4m nodes and K = 2 communities. Suppose that there are 2m labeled
nodes, m of them are in community C1 and have degree heterogeneity θ = 0.8, and the other m of
them are in community C2 and have degree heterogeneity θ = 0.5. There are 2m unlabeled nodes, m
of them are in community C1 and have degree heterogeneity θ = 0.6, and the other m of them are in
community C2 and have degree heterogeneity θ = 0.7. The P matrix is defined as follows:

P =

(
1 0.9
0.9 1

)
Under this setting, all the assumptions in our paper are satisfied.

On the other hand, recall that the prototypical refinement algorithm, Algorithm 2 of Gao et al. (2018)
is defined as follows:

ŷi = arg max
u∈[K]

1

|{j : ŷ0(j) = u}|
∑

{j:ŷ0(j)=u}

Aij

14
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where ŷ0 is a vector of community label and ŷ is the refined community label.

For semi-supervised setting, one may consider the following modification of local refinement algo-
rithm:

(i) Apply local refinement algorithm, with known labels to assign nodes in U .

(ii) With the labels of all nodes, one updates the labels of every node by applying the same
refinement procedure.

Under the setting of our toy example, for step (i), all the unlabeled nodes which are actually in
community C2 will be assigned to community C1 with probability converging to 1 as n → ∞.
The reason is that for any unlabeled node i which is actually in community C2, when u = 1,
{Aij : j ∈ L, yj = u} are iid ∼ Bern(θiθjP21) = Bern(θi · 0.8 · 0.9) = Bern(0.72θi); when
u = 2, {Aij : j ∈ L, yj = u} are iid ∼ Bern(θiθjP22) = Bern(θi · 0.5 · 1) = Bern(0.5θi).
Hence, by law of large numbers,

1

{Aij : j ∈ L, yj = u}
∑

{Aij :j∈L,yj=u}

Aij
a.s.→
{
0.72θi, u = 1

0.5θi, u = 2

Consequently, the prototypical refinement algorithm will incorrectly assign all the unlabeled nodes
which are actually in the community C2 to C1 with probability converging to 1 as n→ ∞. This will
cause a classification error of at least 50%.

Based on the huge classification error in step (i), step (ii) will also perform poorly. Similar to the
reasoning above, by law of large numbers, it can be shown that after step (ii). the algorithm will
still assign all the unlabeled nodes which are actually in the community C2 to C1 with probability
converging to 1 as n→ ∞. In other words, even if the local refinement algorithm is applied to the
whole network, a classification error of at least 50% will always remain.

Even if all the labels of the nodes are known, applying the local refinement algorithm still can cause
severe errors. Still consider our toy example. Suppose now that we know the label of all the nodes,
and we perform the local refinement algorithm on these known labels in an attempt to purify them.
By the law of large numbers, however, it is not hard to show that for any node i which is actually in
community C2,

1

{Aij : j ∈ L, yj = u}
∑

{Aij :yj=u}

Aij
a.s.→
{
0.63θi, u = 1

0.6θi, u = 2

Consequently, similar to the previous cases, the local refinement algorithm will incorrectly assign all
the unlabeled nodes which are actually in the community C2 to C1 with probability converging to 1 as
n→ ∞. This will cause a classification error of at least 50%, even though the input of the algorithm
is actually the true label vector.

To conclude, in general, the local refinement algorithms may not work under the broad settings of our
paper. Intrinsically, label refinement is quite challenging when there is moderate degree heterogeneity,
not to mention the scenarios where non-assortative networks occur. Local refinement algorithm
works theoretically because strong assumptions on degree heterogeneity are imposed. For instance,
it is required that the mean of the degree heterogeneity parameter in each community is 1 + o(1),
which means that the network is extremely dense and that the degree heterogeneity parameters across
communities are strongly balanced. Both of these two assumptions are hardly true in the real world,
where most of the networks are sparse and imbalanced. Gao et al. (2018) is a very good paper, but
we think that local refinement algorithm or similar algorithms might not be good choices for our
problem.
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D GENERALIZATION OF LEMMA 2

In the main paper, for the smoothness and comprehensibility of the text, we do not present the most
general form of Lemma 2. We have a more general version of the lemma by relaxing the condition
∥θ(1)

L ∥1

∥θ(2)
L ∥1

=
∥θ(1)

U ∥1

∥θ(2)
U ∥1

= 1. Please see Section J for more details.

E PRELIMINARIES

For any positive integer N , Define [N ] = {1, 2, ..., N}.

For a matrix D and two index sets S1, S2, define DS1S2
to be the submatrix (Dij)i∈S1,j∈S2

, DS1· to
be the submatrix (Dij)i∈S1,j∈L∪U , and D·S2

to be the submatrix (Dij)i∈L∪U,|∈S∈ .

The two main assumptions (8), (9) in the main paper are presented below for convenience.

∥P∥max ≤ C1, |λmin(P )| ≥ βn. (8)

max1≤k≤K{∥θ(k)∥1}
min1≤k≤K{∥θ(k)∥1}

≤ C2, max
1≤k≤K

{
∥θ(k)L ∥2

∥θ(k)L ∥1∥θ∥1

}
≤ c3βn. (9)

, where constant c3 is properly small. We would specify this precisely in our proofs.

A number of lemmas used in our proofs will be presented as follows.

The following lemma shows that sinx and x have the same order.

Lemma 3. Let x ∈ R. When x ≥ 0, sinx ≤ x; when x ∈ [0, π2 ], sinx ≥ 2
πx.

Lemma 3 is quite obvious, but for the completeness of our work, we provide a proof for it.

Proof. Let g1(x) = sinx− x.

Then
d

dx
g1(x) = cosx− 1 ≤ 0

Hence g1(x) is monotonously decreasing on R. As a result, when x ≥ 0, g1(x) ≥ g1(0) = 0.
Therefore, when x ≥ 0, sinx ≤ x.

Let g2(x) = sinx− 2
πx. Then

d

dx
g2(x) = cosx− 2

π

Since cosx is monotonously decreasing on [0, π2 ],
d
dxg2(x) ≥ 0 when x ∈ [0, arccos 2

π ] and
d
dxg2(x) ≤ 0 when x ∈ [arccos 2

π ,
π
2 ]. Hence, g2(x) is monotonously increasing on [0, arccos 2

π ]

and is monotonously decreasing on [arccos 2
π ,

π
2 ]. As a result, when x ∈ [0, π2 ],

g2(x) ≥ min{g2(0), g2(
2

π
)} = 0

Therefore, when x ∈ [0, π2 ], sinx ≥ 2
πx.

The following lemma demonstrates that the angle ψ(u, v) in Definition 1 satisfies the triangle
inequality, so that it can be regarded as a sort of "metric".

Lemma 4 (Angle Inequality). Let x, y, z be three real vectors. Then,

ψ(x, z) ≤ ψ(x, y) + ψ(y, z)
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The proof of Lemma 4 can be seen in Gustafson & Rao (1997), pg 56. Also, for completeness of our
work, we provide a proof of Lemma 4.

Proof. Let x̃ = x
∥x∥ , ỹ = y

∥y∥ , z̃ = z
∥z∥ , then cosψ(x, y) = ⟨x̃, ỹ⟩, cosψ(y, z) = ⟨ỹ, z̃⟩,

cosψ(x, z) = ⟨x̃, z̃⟩. Consider the following matrix

G =

(
1 cosψ(x, y) cosψ(x, z)

cosψ(x, y) 1 cosψ(y, z)
cosψ(x, z) cosψ(y, z) 1

)
=

(⟨x̃, x̃⟩ ⟨x̃, ỹ⟩ ⟨x̃, z̃⟩
⟨ỹ, x̃⟩ ⟨ỹ, ỹ⟩ ⟨ỹ, z̃⟩
⟨z̃, x̃⟩ ⟨z̃, ỹ⟩ ⟨z̃, z̃⟩

)

For any vector c = (c1, c2, c3)
T ∈ R3,

cTGc = ⟨c1x̃+ c2ỹ + c3z̃, c1x̃+ c2ỹ + c3z̃⟩ ≥ 0

Also, G is symmetric. Therefore, G is positive semi-definite. As a result, det(G) ≥ 0. In other word,

1− cos2 ψ(x, y)− cos2 ψ(y, z)− cos2 ψ(x, z) + 2 cosψ(x, y) cosψ(y, z) cosψ(x, z) ≥ 0

The above inequality can be rewritten as

(1− cos2 ψ(x, y))(1− cos2 ψ(y, z)) ≥ (cosψ(x, y) cosψ(y, z)− cosψ(x, z))2

or

(sinψ(x, y) sinψ(y, z))2 ≥ (cosψ(x, y) cosψ(y, z)− cosψ(x, z))2

By definition of arccos, ψ(x, y), ψ(y, z) ∈ [0, π], so sinψ(x, y) sinψ(y, z) ≥ 0. Therefore,

− sinψ(x, y) sinψ(y, z) ≤ cosψ(x, y) cosψ(y, z)− cosψ(x, z) ≤ sinψ(x, y) sinψ(y, z)

cosψ(x, z) ≥ cosψ(x, y) cosψ(y, z)− sinψ(x, y) sinψ(y, z)

cosψ(x, z) ≥ cos(ψ(x, y) + ψ(y, z))

If ψ(x, y) + ψ(y, z) > π, because by definition of arccos, ψ(x, z) ∈ [0, π], it is immediate that

ψ(x, z) ≤ ψ(x, y) + ψ(y, z)

If ψ(x, y) + ψ(y, z) ≤ π, recall that ψ(x, y), ψ(y, z) ∈ [0, π], hence ψ(x, y) + ψ(y, z) ∈ [0, π].
Also, ψ(x, z) ∈ [0, π]. Since cos is monotone decreasing on [0, π], we obtain

ψ(x, z) ≤ ψ(x, y) + ψ(y, z)

In all,
ψ(x, z) ≤ ψ(x, y) + ψ(y, z)

The following lemma relates angle to Euclidean distance.
Lemma 5. Suppose that x, y ∈ Rm, ∥y∥ < ∥x∥. Then,

ψ(x, x+ y) ≤ arcsin

(
∥y∥
∥x∥

)
The equality holds if and only if ⟨y, x+ y⟩ = 0
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Proof. Let ρ = ∥y∥
∥x∥ , ψ0 = ψ(x, y). Then ⟨x, y⟩ = ∥x∥∥y∥ cosψ0. Notice that

ρ2(ρ+ cosψ0)
2 ≥ 0

This can be rewritten as

(1 + ρ cosψ0)
2 ≥ (1 + ρ2 + 2ρ cosψ0)(1− ρ2)

Since ∥y∥ < ∥x∥, so ρ < 1, 1 + ρ cosψ0 > 0. Hence

1 + ρ cosψ0√
1 + ρ2 + 2ρ cosψ0

≥
√
1− ρ2

Plugging in ρ = ∥y∥
∥x∥ , we have

∥x∥2 + ∥x∥∥y∥ cosψ0√
∥x∥2 + ∥y∥2 + 2∥x∥∥y∥ cosψ0

≥

√
1− ∥y∥2

∥x∥2

Since ⟨x, y⟩ = ∥x∥∥y∥ cosψ0,

∥x∥2 + ⟨x, y⟩
∥x∥
√
∥x∥2 + ∥y∥2 + 2⟨x, y⟩

≥

√
1− ∥y∥2

∥x∥2

⟨x, x+ y⟩
∥x∥
√
⟨x+ y, x+ y⟩

≥

√
1− ∥y∥2

∥x∥2

In other words,

cosψ(x, x+ y) ≥

√
1− ∥y∥2

∥x∥2
= cos arcsin

(
∥y∥
∥x∥

)

Since ∥y∥
∥x∥ ≥ 0, arcsin

(
∥y∥
∥x∥

)
∈ [0, π2 ]. Therefore, by monotonicity of cos on [0, π2 ],

ψ(x, x+ y) ≤ arcsin

(
∥y∥
∥x∥

)

The equality holds if and only if ρ2(ρ+ cosψ0)
2 ≥ 0, or equivalently,

(∥y∥2 + ∥x∥∥y∥ cosψ0)
2 = 0

This can be reduced to
⟨y, x+ y⟩ = 0

F PROOF OF LEMMA 1

Lemma 1. Consider the DCBM model where (8)-(9) are satisfied. We define three K ×K matrices:
GLL = Π′

LΘLLΠL, GUU = Π′
UΘUUΠU , and Q = G−1

UUΠ
′
UΘUUH . For 1 ≤ k ≤ K,

ψk(H) = arccos
( Mkk∗
√
Mkk

√
Mk∗k∗

)
, where M = P

(
G2

LL +GUUQQ
′GUU

)
P.
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Proof. Recall that

ψk(H) = ψ
(
f(Ω(k);H), f(EX;H)

)
, for 1 ≤ k ≤ K. (11)

where
f(x;H) =

[
x′L1(1), . . . , x

′
L1(k), x

′
Uh1, . . . , x

′
UhK

]′
= [x′LΠL, x

′
UH]′. (12)

and

Ω
(k)
j =

∑
i∈L∩Ck

Ωij = e′kΠ
′
LΩL·ej

which indicates

Ω(k) = (e′kΠ
′
LΩL·)

′

Hence

f(Ω(k);H) = f((e′kΠ
′
LΩL·)

′;H)

= [e′kΠ
′
LΩLLΠL, e

′
kΠ

′
LΩLUH]′

= [e′kΠ
′
LΘLLΠLPΠ

T
LΘLLΠL, e

′
kΠ

′
LΘLLΠLPΠ

T
UΘUUH]′

= [Π′
LΘLLΠL, H

′Π′
UΘUU ]

′PΠ′
LΘLLΠLek

= [GLL, Q
′GUU ]

′PΠ′
LΘLLΠLek (13)

Notice that

(Π′
LΘLLΠL)kl = 1(k)ΘLL1(l) =

{
∥θ(k)L ∥1, k = l

0, k ̸= l

In other words,

Π′
LΘLLΠL = diag

(
∥θ(1)L ∥1, ..., ∥θ(K)

L ∥1
)

Hence
f(Ω(k);H) = ∥θ(k)L ∥1[GLL, Q

′GUU ]
′Pek

Similarly,
f(EX;H) = θ∗[GLL, Q

′GUU ]
′Pek∗

Therefore,

⟨f(Ω(k);H), f(EX;H)⟩ = (∥θ(k)L ∥1[GLL, Q
′GUU ]

′Pek)
′θ∗[GLL, Q

′GUU ]
′Pek∗

= θ∗∥θ(k)L ∥1e′kP [GLL, GUUQ][GLL, Q
′GUU ]

′Pek∗

= θ∗∥θ(k)L ∥1e′kP
(
G2

LL +GUUQQ
′GUU

)
Pek∗

= θ∗∥θ(k)L ∥1e′kMek∗

= θ∗∥θ(k)L ∥1Mkk∗ (14)

Similarly,

∥f(Ω(k);H)∥ =
√
⟨f(Ω(k);H), f(Ω(k);H)⟩ = ∥θ(k)L ∥1

√
Mkk (15)

∥f(EX;H)∥ =
√
⟨f(EX;H), f(EX;H)⟩ = θ∗

√
Mk∗k∗ (16)
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Hence,

ψk(H) = ψ
(
f(Ω(k);H), f(EX;H)

)
= arccos

(
⟨f(Ω(k);H), f(EX;H)⟩
∥f(Ω(k);H)∥∥f(EX;H)∥

)
= arccos

(
θ∗∥θ(k)L ∥1Mkk∗

∥θ(k)L ∥1
√
Mkkθ∗

√
Mk∗k∗

)

= arccos

(
Mkk∗

√
Mkk

√
Mk∗k∗

)
(17)

G PROOF OF THEOREM 1

Theorem 1. Consider the DCBM model where (8)-(9) hold. Let k∗ denote the true community
label of the new node. Suppose Π̂U is b0-correct, for a constant b0 ∈ (0, 1). When b0 is properly
small, there exists a constant c0 > 0, which does not depend on b0, such that ψk∗(Π̂U ) = 0 and
mink ̸=k∗{ψk(Π̂U )} ≥ c0βn.

Proof. Define GLL = Π′
LΘLLΠL, GUU = Π′

UΘUUΠU , Q = G−1
UUΠ

′
UΘUU Π̂U , and M =

P
(
G2

LL +GUUQQ
′GUU

)
P as in Lemma 1. According to Lemma 1,

ψk(Π̂U ) = arccos
( Mkk∗
√
Mkk

√
Mk∗k∗

)
Hence,

ψk∗(Π̂U ) = arccos
( Mk∗k∗
√
Mk∗k∗

√
Mk∗k∗

)
= arccos 1 = 0

When k ̸= k∗, according to Lemma 3,

ψk(Π̂U ) = 2 · 1
2
ψk(Π̂U )

≥ 2 sin
1

2
ψk(Π̂U )

= 2

√
1− cosψk(Π̂U )

2

=

√
2
(
1− cos arccos

( Mkk∗
√
Mkk

√
Mk∗k∗

))
=

√
2
(
1− Mkk∗

√
Mkk

√
Mk∗k∗

)
(18)

Let DM = diag(M11, ...,MKK), M̃ = D
− 1

2

M MD
− 1

2

M . Then

(ek − ek∗)′M̃(ek − ek∗)

= M̃kk + M̃k∗k∗ − M̃kk∗ − M̃k∗k

=
Mkk√

Mkk

√
Mkk

+
Mk∗k∗

√
Mk∗k∗

√
Mk∗k∗

− Mkk∗
√
Mkk

√
Mk∗k∗

− Mk∗k√
Mk∗k∗

√
Mkk

= 2
(
1− Mkk∗

√
Mkk

√
Mk∗k∗

)
(19)
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Hence,

ψk(Π̂U ) ≥
√

(ek − ek∗)′M̃(ek − ek∗) (20)

M̃ is affected by Π̂U and is complicated to evaluate directly. Hence, we would first evaluate its oracle
version and then reduce the noisy version to the oracle version.

Define the oracle version of M as follow, where Π̂U is replaced by ΠU

M (0) = P
(
G2

LL +G2
UU

)
P

Similarly, define the oracle version of DM , DM(0) = diag(M
(0)
11 , ...,M

(0)
KK), and the oracle version

of M̃ , M̃ (0) = D
− 1

2

M(0)M
(0)D

− 1
2

M(0)

Oracle Case We first study the oracle case |α′M̃ (0)α|.

Since GLL = Π′
LΘLLΠL = diag

(
∥θ(1)L ∥1, ..., ∥θ(K)

L ∥1
)

, GUU = Π′
UΘUUΠU =

diag
(
∥θ(1)U ∥1, ..., ∥θ(K)

U ∥1
)

, which indicates that G2
LL +G2

UU = diag
((

∥θ(k)L ∥21 + ∥θ(k)U ∥21
)K
k=1

)
,

for any vector α ∈ Rk,

|α′M̃ (0)α| = |α′D
− 1

2

M(0)M
(0)D

− 1
2

M(0)α|

= |α′D
− 1

2

M(0)P
(
G2

LL +G2
UU

)
PD

− 1
2

M(0)α|

≥ ∥PD− 1
2

M(0)α∥2 min
k

(∥θ(k)L ∥21 + ∥θ(k)U ∥21)

(Cauchy-Schwartz Inequality) ≥ |α′D
− 1

2

M(0)PP
′D

− 1
2

M(0)α|min
k

1

2
(∥θ(k)L ∥1 + ∥θ(k)U ∥1)2

≥ 1

2
λmin(P )

2∥D− 1
2

M(0)α∥2 min
k

(∥θ(k)∥1)2

(Condition (8)) ≥ 1

2
β2
n|αD−1

M(0)α|min
k

(∥θ(k)∥1)2

≥ 1

2
β2
n∥α∥2 min

k
(∥θ(k)L ∥21 + ∥θ(k)U ∥21)−1 min

k
(∥θ(k)∥1)2

≥ 1

2
β2
n∥α∥2 min

k

[
(∥θ(k)L ∥1 + ∥θ(k)U ∥1)2

]−1

(min
k

∥θ(k)∥1)2

=
1

2
β2
n∥α∥2

(
mink ∥θ(k)∥1
maxk ∥θ(k)∥1

)2

(Condition (9)) ≥ β2
n∥α∥2

2C2
2

(21)

It remains to study the noisy case. We reduce the noisy case to the oracle case through the following
lemma.

Lemma 6. Denote

C5 = 8K2
√
KC2

2b0
∥θU∥1
∥θ∥1

(22)

Suppose that C5 ≤ 1
4 . Then, for any vector α ∈ Rk,

|α′M̃α| ≥ 1− 3C5

1− C5
|α′M̃ (0)α| ≥ 1

3
|α′M̃ (0)α| (23)

The proof of Lemma 6 is quite tedious and we would defer it to the end of this section.
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Set b0 ≤ 1
32K2

√
KC2

2

, then C5 ≤ ∥θU∥1

4∥θ∥1
≤ 1

4 . As a result, combining (21) with Lemma 6, we have

for any vector α ∈ Rk,

|α′M̃α| ≥ 1

3
|α′M̃ (0)α| ≥ β2

n∥α∥2

6C2
2

(24)

Hence, take α = ek − ek∗ in (24) and combine it with (20), we obtain that for any k ∈ [K]

ψk(Π̂U ) ≥
√
(ek − ek∗)′M̃(ek − ek∗) ≥

√
1

6C2
2

β2
n∥ek − ek∗∥2 =

√
1

3C2
2

βn (25)

Therefore, set c0 =
√

1
3C2

2
, we have

min
k ̸=k∗

{ψk(Π̂U )} ≥ c0βn (26)

In all, when b0 is properly small such that b0 ≤ 1
32K2

√
KC2

2

, there exists constant c0 =
√

1
3C2

2
> 0

not depending on b0 such that ψk∗(Π̂U ) = 0 and mink ̸=k∗{ψk(Π̂U )} ≥ c0βn.

G.1 PROOF OF LEMMA 6

Proof. For any vector α ∈ Rk,

|α′M̃α− α′M̃ (0)α| = |α′D
− 1

2

M MD
− 1

2

M α− α′D
− 1

2

M(0)M
(0)D

− 1
2

M(0)α|

= |α′D
− 1

2

M (M −M (0))D
− 1

2

M α

+ α′D
− 1

2

M M (0)D
− 1

2

M α− α′D
− 1

2

M(0)M
(0)D

− 1
2

M(0)α|

≤ |α′D
− 1

2

M (M −M (0))D
− 1

2

M α|

+ |α′
(
D

− 1
2

M M (0)D
− 1

2

M −D
− 1

2

M(0)M
(0)D

− 1
2

M(0)

)
α| (27)

The first part on the RHS of (27),

|α′D
− 1

2

M (M −M (0))D
− 1

2

M α| = |α′D
− 1

2

M PΠ′
UΘUU (Π̂U Π̂

′
U −ΠUΠ

′
U )ΘUUΠUPD

− 1
2

M α|

≤ ∥PD− 1
2

M α∥2∥Π′
UΘUU (Π̂U Π̂

′
U −ΠUΠ

′
U )ΘUUΠU∥2

≤
√
K∥PD− 1

2

M α∥2∥Π′
UΘUU (Π̂U Π̂

′
U −ΠUΠ

′
U )ΘUUΠU∥∞ (28)

Denote G(d) = Π′
UΘUU (Π̂U Π̂

′
U − ΠUΠ

′
U )ΘUUΠU . Define ηll̃ =

∑
i∈U,πi=el,π̂i=el̃

θi. In other
words, ηll̃ is the sum of the degree heterogeneity parameters of all the nodes in U with true label l
and estimated label l̃.

Then,
(Π′

UΘUU Π̂U )ll̃ = ηll̃

(Π′
UΘUUΠU )ll̃ =

∑
i∈U,πi=el,πi=el̃

θi = Il=l̃

∑
s∈[K]

ηls

where Il=l̃ is the indicator function of event {l = l̃}.

Hence,
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G
(d)

ll̃
= (Π′

UΘUU (Π̂U Π̂
′
U −ΠUΠ

′
U )ΘUUΠU )ll̃

= ((Π′
UΘUU Π̂U )(Π

′
UΘUU Π̂U )

′)ll̃ − ((Π′
UΘUUΠU )(Π

′
UΘUUΠU )

′)ll̃

=
∑
s∈[K]

ηlsηl̃s − Il=l̃(
∑
s∈[K]

ηls)
2 (29)

Since Π̂U is b0 correct, there exists permutation T ofK columns of Π̂U such that
(∑

i∈U θi ·1{T π̂i ̸=
πi}
)
≤ b0∥θ∥1.

Let r = r(l) satisfies er = T−1el.

When l = l̃, we have

|G(d)

ll̃
| = |

∑
s∈[K]

η2ls − (
∑
s∈[K]

ηls)
2|

= (
∑
s∈[K]

ηls)
2 −

∑
s∈[K]

η2ls

≤ (
∑
s∈[K]

ηls)
2 − η2lr

= (
∑
s̸=r

ηls)(ηlr +
∑
s∈[K]

ηls)

≤ 2(
∑
s̸=r

ηls)(
∑
s∈[K]

ηls) (30)

When l ̸= l̃, we have

|G(d)

ll̃
| = |

∑
s∈[K]

ηlsηl̃s|

=
∑
s∈[K]

ηlsηl̃s (31)

Therefore,

∥G(d)∥∞ ≤
∑

l,l̃∈[K]

|G(d)

ll̃
|

=
∑
l∈[K]

|G(d)
ll |+

∑
l ̸=l̃

|G(d)
ll |

≤
∑
l∈[K]

(
2(
∑
s ̸=r

ηls)(
∑
s∈[K]

ηls)
)
+
∑
l ̸=l̃

∑
s∈[K]

ηlsηl̃s

≤ 2max
l

( ∑
s∈[K]

ηls

)( ∑
l∈[K],s̸=r(l)

ηls
)
+
∑
s∈[K]

∑
l ̸=l̃

ηlsηl̃s

= 2max
l

( ∑
s∈[K]

ηls

)( ∑
l∈[K],s ̸=r(l)

ηls
)
+
∑
s∈[K]

[(∑
l∈[k]

ηls
)2 − ∑

l∈[k]

η2ls
]

≤ 2max
l

( ∑
s∈[K]

ηls

)( ∑
l∈[K],s ̸=r(l)

ηls
)
+
∑
s∈[K]

[(∑
l∈[k]

ηls
)2 − ∑

r(l)=s

η2ls
]

= 2max
l

( ∑
s∈[K]

ηls

)( ∑
l∈[K],s ̸=r(l)

ηls
)
+
∑
s∈[K]

[( ∑
r(l)̸=s

ηls
)(∑

l∈[K]

ηls +
∑

r(l)=s

ηls
)]
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≤ 2max
l

( ∑
s∈[K]

ηls

)( ∑
l∈[K],s̸=r(l)

ηls
)
+ 2

∑
s∈[K]

[( ∑
r(l)̸=s

ηls
)(∑

l∈[K]

ηls
)]

≤ 2max
l

( ∑
s∈[K]

ηls

)( ∑
l∈[K],s̸=r(l)

ηls
)
+ 2max

s

(∑
l∈[K]

ηls

) ∑
s∈[K]

∑
r(l)̸=s

ηls

= 2
( ∑
l∈[K],s̸=r(l)

ηls
)(

max
l

( ∑
s∈[K]

ηls

)
+max

s

(∑
l∈[K]

ηls

))
≤ 2
( ∑
l∈[K],s̸=r(l)

ηls
)(∑

l∈[K]

∑
s∈[K]

ηls +
∑
s∈[K]

∑
l∈[K]

ηls

)
= 4∥θU∥1

( ∑
l∈[K],s̸=r(l)

ηls
)

(32)

Recall that T satisfies
(∑

i∈U θi · 1{T π̂i ̸= πi}
)
≤ b0∥θ∥1, hence∑

l∈[K],s̸=r(l)

ηls =
∑

l∈[K],s̸=r(l),
i∈U,πi=el,π̂i=es

θi =
∑
i∈U

θi · 1{T π̂i ̸= πi} ≤ b0∥θ∥1

Therefore,
∥G(d)∥∞ ≤ 4b0∥θU∥1∥θ∥1 (33)

Plugging (33) into (28), we obtain

|α′D
− 1

2

M (M −M (0))D
− 1

2

M α| ≤ 4
√
Kb0∥θU∥1∥θ∥1∥PD

− 1
2

M α∥2 (34)

On the other hand,

|α′D
− 1

2

M M (0)D
− 1

2

M α| = |α′D
− 1

2

M P
(
G2

LL +G2
UU

)
PD

− 1
2

M α|

Since GLL = Π′
LΘLLΠL = diag(∥θ(1)L ∥1, ..., ∥θ(K)

L ∥1), GUU = Π′
UΘUUΠU =

diag(∥θ(1)U ∥1, ..., ∥θ(K)
U ∥1),

|α′D
− 1

2

M M (0)D
− 1

2

M α| ≥ ∥PD− 1
2

M α∥2 min
k

(∥θ(k)L ∥21 + ∥θ(k)U ∥21)

(Cauchy-Schwartz Inequality) ≥ ∥PD− 1
2

M α∥2 min
k

1

2
(∥θ(k)L ∥1 + ∥θ(k)U ∥1)2

=
1

2
∥PD− 1

2

M α∥2 min
k

∥θ(k)∥21

Recall condition (9) in the main paper,

max1≤k≤K{∥θ(k)∥1}
min1≤k≤K{∥θ(k)∥1}

≤ C2

Hence

|α′D
− 1

2

M M (0)D
− 1

2

M α| ≥ 1

2
∥PD− 1

2

M α∥2( 1

C2
max

k
∥θ(k)∥1)2

≥ 1

2
∥PD− 1

2

M α∥2( 1

KC2
∥θ∥1)2

=
1

2K2C2
2

∥PD− 1
2

M α∥2∥θ∥21 (35)

Comparing (35) with (34), we obtain

|α′D
− 1

2

M (M −M (0))D
− 1

2

M α|
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≤ 8K2
√
KC2

2b0
∥θU∥1
∥θ∥1

|α′D
− 1

2

M M (0)D
− 1

2

M α|

≤ C5|α′D
− 1

2

M(0)M
(0)D

− 1
2

M(0)α|

+ C5|α′
(
D

− 1
2

M M (0)D
− 1

2

M −D
− 1

2

M(0)M
(0)D

− 1
2

M(0)

)
α| (36)

Consequently, we bound the first part of (27) by the second part of (27). It remains to bound the
second part of (27).

Since DM , DM(0) , M (0) are all diagonal matrices, we can rewrite the second part on the LHS of (27)
as follows:

|α′
(
D

− 1
2

M M (0)D
− 1

2

M −D
− 1

2

M(0)M
(0)D

− 1
2

M(0)

)
α|

= |α′D
− 1

2

M(0)(M
(0))

1
2

(
(M (0))−

1
2D

1
2

M(0)D
− 1

2

M M (0)D
− 1

2

M D
1
2

M(0)(M
(0))−

1
2 − 1

)
(M (0))

1
2D

− 1
2

M(0)α|

= |α′D
− 1

2

M(0)(M
(0))

1
2

(
DM(0)D−1

M − 1
)
(M (0))

1
2D

− 1
2

M(0)α|

≤ λmax

(
DM(0)D−1

M − 1
)
∥(M (0))

1
2D

− 1
2

M(0)α∥2

= max
k∈[K]

∣∣∣∣∣M (0)
kk

Mkk
− 1

∣∣∣∣∣ · ∥(M (0))
1
2D

− 1
2

M(0)α∥2

= max
k∈[K]

∣∣∣∣∣∣ 1

M
(0)
kk

(M(0)−M)kk
− 1

∣∣∣∣∣∣ · |α′D
− 1

2

M(0)M
(0)D

− 1
2

M(0)α| (37)

Notice that for any k ∈ [K] ∣∣∣∣∣ M
(0)
kk

(M (0) −M)kk

∣∣∣∣∣ =
∣∣∣e′kM (0)ek

∣∣∣∣∣∣e′k(M (0) −M)ek

∣∣∣
=

∣∣∣e′kP(G2
LL +G2

UU

)
Pek

∣∣∣∣∣∣e′kPG(d)Pek

∣∣∣
≥

∥Pek∥2 mink(∥θ(k)L ∥21 + ∥θ(k)U ∥21)
∥Pek∥2∥G(d)∥2

(Cauchy-Schwartz Inequality) ≥
mink

1
2 (∥θ

(k)
L ∥1 + ∥θ(k)U ∥1)2√
K∥G(d)∥∞

(Plugging in (33)) ≥ mink(∥θ(k)∥1)2

8
√
Kb0∥θU∥1∥θ∥1

(Condition (9)) ≥
(maxk

1
C2

∥θ(k)∥1)2

8
√
Kb0∥θU∥1∥θ∥1

≥
( 1
C2K

∥θ∥1)2

8
√
Kb0∥θU∥1∥θ∥1

=
1

C5

≥ 4 > 1 (38)

Plugging (38) into (37), we have

|α′
(
D

− 1
2

M M (0)D
− 1

2

M −D
− 1

2

M(0)M
(0)D

− 1
2

M(0)

)
α|
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≤ max
k∈[K]

1∣∣∣∣ M
(0)
kk

(M(0)−M)kk

∣∣∣∣− 1

· |α′D
− 1

2

M(0)M
(0)D

− 1
2

M(0)α|

≤ max
k∈[K]

1
1
C5

− 1
· |α′D

− 1
2

M(0)M
(0)D

− 1
2

M(0)α|

=
C5

1− C5
|α′D

− 1
2

M(0)M
(0)D

− 1
2

M(0)α| (39)

Combining (27), (36), and (39), we have

|α′M̃α− α′M̃ (0)α| ≤ |α′D
− 1

2

M (M −M (0))D
− 1

2

M α|

+ |α′
(
D

− 1
2

M M (0)D
− 1

2

M −D
− 1

2

M(0)M
(0)D

− 1
2

M(0)

)
α|

≤ C5|α′D
− 1

2

M(0)M
(0)D

− 1
2

M(0)α|

+ C5|α′
(
D

− 1
2

M M (0)D
− 1

2

M −D
− 1

2

M(0)M
(0)D

− 1
2

M(0)

)
α|

+ |α′
(
D

− 1
2

M M (0)D
− 1

2

M −D
− 1

2

M(0)M
(0)D

− 1
2

M(0)

)
α|

= C5|α′D
− 1

2

M(0)M
(0)D

− 1
2

M(0)α|

+ (C5 + 1)|α′
(
D

− 1
2

M M (0)D
− 1

2

M −D
− 1

2

M(0)M
(0)D

− 1
2

M(0)

)
α|

≤ C5|α′D
− 1

2

M(0)M
(0)D

− 1
2

M(0)α|

+ (C5 + 1)
C5

1− C5
|α′D

− 1
2

M(0)M
(0)D

− 1
2

M(0)α|

=
2C5

1− C5
|α′M̃ (0)α| (40)

Hence for any vector α ∈ Rk,

|α′M̃α| ≥ |α′M̃ (0)α| − |α′M̃α− α′M̃ (0)α| ≥ 1− 3C5

1− C5
|α′M̃ (0)α| (41)

To conclude, in this subsection, we successfully reduce the noisy case |α′M̃α| to the oracle case
|α′M̃ (0)α|. Result (41) will also be used in the proof of other claims.

H PROOF OF THEOREM 2

Theorem 2. Consider the DCBM model where (8)-(9) hold. There exists constant C > 0, such that
for any δ ∈ (0, 1/2), with probability 1− δ, simultaneously for 1 ≤ k ≤ K,

|ψ̂k(Π̂U )− ψk(Π̂U )| ≤ C

(√
log(1/δ)

∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}
+

∥θ(k)L ∥2

∥θ(k)L ∥1∥θ∥1

)
.

To prove Theorem 2, we need a famous concentration inequality, Bernstein inequality:

Lemma 7 (Bernstein inequality). Suppose X1, ..., Xn are independent random variables such that
EXi = 0, |Xi| ≤ b and V ar(Xi) ≤ σ2

i for all i. Let σ2 = n−1
∑n

i=1 σ
2
i . Then, for any t > 0,

P
(
n−1|

n∑
i=1

Xi| ≥ t
)
≤ 2 exp

(
− nt2/2

σ2 + bt/3

)
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The proof of Lemma 7, Bernstein inequality, can be seen in most probability textbooks such as
Uspensky (1937).

Proof. Recall that for k ∈ [K],

ψ̂k(Π̂U ) = ψ(f(A(k); Π̂U ), f(X;H)),

ψk(Π̂U ) = ψ
(
f(Ω(k); Π̂U ), f(EX; Π̂U )

)
.

Denote vk = f(A(k); Π̂U ), v∗ = f(X; Π̂U ), ṽk = f(Ω(k); Π̂U ), ṽ∗ = f(EX; Π̂U ), k ∈ [K]. Then,
by Lemma 4,

ψ̂k(Π̂U ) = ψ(vk, v
∗) ≤ ψ(vk, ṽk) + ψ(ṽk, v

∗)

≤ ψ(vk, ṽk) + ψ(ṽk, ṽ
∗) + ψ(ṽ∗, v∗)

= ψk(Π̂U ) + ψ(vk, ṽk) + ψ(ṽ∗, v∗)

Similarly,
ψk(Π̂U ) ≤ ψ̂k(Π̂U ) + ψ(vk, ṽk) + ψ(ṽ∗, v∗)

Therefore,
|ψ̂k(Π̂U )− ψk(Π̂U )| ≤ ψ(vk, ṽk) + ψ(ṽ∗, v∗). (42)

For any ϕ1, ..., ϕK ≥ 0.

P
(
∀k ∈ [K], |ψ̂k(Π̂U )− ψk(Π̂U )| ≤ ϕk

)
= 1− P

(
∃k ∈ [K], |ψ̂k(Π̂U )− ψk(Π̂U )| > ϕk

)
≥ 1−

K∑
k=1

P
(
|ψ̂k(Π̂U )− ψk(Π̂U )| > ϕk

)
(43)

By definition of ψ, ψ̂k(Π̂U ), ψk(Π̂U ) ∈ [0, π]. Hence, |ψ̂k(Π̂U ) − ψk(Π̂U )| ∈ [0, π]. As a result,
when ϕk ≥ π,

P
(
|ψ̂k(Π̂U )− ψk(Π̂U )| > ϕk

)
= 0

When ϕk < π, by (42),

P
(
|ψ̂k(Π̂U )− ψk(Π̂U )| > ϕk

)
≤ P

(
ψ(vk, ṽk) + ψ(ṽ∗, v∗) > ϕk

)
≤ P

(
ψ(vk, ṽk) >

1

2
ϕk or ψ(ṽ∗, v∗) >

1

2
ϕk

)
≤ P

(
ψ(vk, ṽk) >

1

2
ϕk

)
+ P

(
ψ(ṽ∗, v∗) >

1

2
ϕk

)
(44)

By lemma 5, when ∥vk − ṽk∥ < ∥ṽk∥

ψ(vk, ṽk) ≤ arcsin
∥vk − ṽk∥

∥ṽk∥

Hence, for any ϕ ∈ [0, π2 ), ∥vk − ṽk∥ ≤ sin(ϕ)∥ṽk∥ implies ψ(vk, ṽk) ≤ ϕ.

As a result, for any ϕ ∈ [0, π2 ), ψ(vk, ṽk) > ϕ implies ∥vk − ṽk∥ > sin(ϕ)∥ṽk∥.

Similarly, for any ϕ ∈ [0, π2 ), ψ(v
∗, ṽ∗) > ϕ implies ∥v∗ − ṽ∗∥ ≥ sin(ϕ)∥ṽ∗∥.

By definition of ϕk, ϕk ≥ 0. Hence, when ϕk < π, 1
2ϕk ∈ [0, π2 ). Plugging the above results into

(44), we have
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P
(
|ψ̂k(Π̂U )− ψk(Π̂U )| > ϕk

)
≤ P

(
ψ(vk, ṽk) >

1

2
ϕk

)
+ P

(
ψ(ṽ∗, v∗) >

1

2
ϕk

)
≤ P

(
∥vk − ṽk∥ ≥ sin(

1

2
ϕk)∥ṽk∥

)
+ P

(
∥v∗ − ṽ∗∥ ≥ sin(

1

2
ϕk)∥ṽ∗∥

)
≤ P

(
∃l ∈ [2K], |(vk − ṽk)l| ≥

1√
K

sin(
1

2
ϕk)∥ṽk∥

)
+ P

(
∃l ∈ [2K], |(v∗ − ṽ∗)l| ≥

1√
K

sin(
1

2
ϕk)∥ṽ∗∥

)
≤

2K∑
l=1

P
(
|(vk − ṽk)l| ≥

1√
K

sin(
1

2
ϕk)∥ṽk∥

)
+

2K∑
l=1

P
(
|(v∗ − ṽ∗)l| ≥

1√
K

sin(
1

2
ϕk)∥ṽ∗∥

)
(45)

Since when ϕk < π, 1
2ϕk ∈ [0, π2 ], by Lemma 3, sin( 12ϕk) ≥

2
π

1
2ϕk = 1

πϕk. Plugging back to (45),
we have when ϕk < π,

P
(
|ψ̂k(Π̂U )− ψk(Π̂U )| > ϕk

)
≤

2K∑
l=1

P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕk∥ṽk∥

)
+

2K∑
l=1

P
(
|(v∗ − ṽ∗)l| ≥

1

π
√
K
ϕk∥ṽ∗∥

)
(46)

It remains to evaluate P
(
|(vk − ṽk)l| ≥ 1

π
√
K
ϕk∥ṽk∥

)
and P

(
|(v∗ − ṽ∗)l| ≥ 1

π
√
K
ϕk∥ṽ∗∥

)
, which

are illustrated in the following two lemmas.

Lemma 8. Define C6 = C2

16
√
2π2C2K2(

√
K+ 1

3 )
. When ϕk ≥ 2

√
2πC2K

2 ∥θ(k)
L ∥2

∥θ(k)
L ∥1∥θ∥1

,

P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕk∥ṽk∥

)
≤ 2 exp

(
−C6

C2
ϕ2k∥θ

(k)
L ∥1∥θ∥1

)
Lemma 9. Define C7 = C2

2
√
2π2C2K2(

√
K+ 1

3 )
. Then,

P
(
|(v∗ − ṽ∗)l| ≥

1

π
√
K
ϕk∥ṽ∗∥

)
≤ 2 exp

(
−C7

C2
ϕ2kθ

∗∥θ∥1
)

The proof of Lemma 8 and 9 are quite tedious. We would defer their proofs to the end of this section.

Choose

ϕk = ϕk(C, δ) = C

(√
log(1/δ)

∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}
+

∥θ(k)L ∥2

∥θ(k)L ∥1∥θ∥1

)
.

Then leveraging on Lemma 8 and 9, we have when C ≥ 2
√
2πK2,

P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕk∥ṽk∥

)
≤ 2 exp

(
−
C6C

2 log(1/δ)∥θ(k)L ∥1∥θ∥1
C2∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

)
≤ 2 exp (−C6 log(1/δ))

= 2δC6 (47)
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P
(
|(v∗ − ṽ∗)l| ≥

1

π
√
K
ϕk∥ṽ∗∥

)
≤ 2 exp

(
− C7C

2 log(1/δ)θ∗∥θ∥1
C2∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

)
≤ 2 exp (−C7 log(1/δ))

= 2δC7 (48)

Plugging (47) and (48) back to (46), leveraging on the fact that δ ≤ 1
2 < 1, we obtain when ϕk < π,

and C ≥ 2
√
2πK2,

P
(
|ψ̂k(Π̂U )− ψk(Π̂U )| > ϕk

)
≤ 4KδC6 + 4KδC7 ≤ 8KδC6

Recall that when ϕk ≥ π,
P
(
|ψ̂k(Π̂U )− ψk(Π̂U )| > ϕk

)
= 0

.

In all, we have that when C ≥ 2
√
2πK2,

P
(
|ψ̂k(Π̂U )− ψk(Π̂U )| > ϕk

)
≤ 8KδC6 (49)

Substituting (49) into (43), we obtain that when C ≥ 2
√
2πK2,

P
(
∀k ∈ [K], |ψ̂k(Π̂U )− ψk(Π̂U )| ≤ ϕk

)
≥ 1− 8K2δC6 (50)

Hence, it suffices to make 8K2δC6 ≤ δ. Choose

C = max{2
√
2πK2,

√
16
√
2π2C2K2(

√
K +

1

3
)(1 +

log(8K2)

log 2
)}, (51)

Then C6 − 1 ≥ log(8K2)
log 2 ≥ 1. Since δ ≤ 1

2 ,

δC6−1 ≤
(
1

2

)C6−1

≤ 1

2
log(8K2)

log 2

=
1

8K2

As a result, 8K2δC6 ≤ δ.

Hence, choose C as in (51), then C >), and for any δ ∈ (0, 1/2),

P
(
∀k ∈ [K], |ψ̂k(Π̂U )− ψk(Π̂U )| ≤ ϕk

)
≥ 1− δ (52)

To conclude, there exists constant C > 0, such that for any δ ∈ (0, 1/2), with probability 1 − δ,
simultaneously for 1 ≤ k ≤ K,

|ψ̂k(Π̂U )− ψk(Π̂U )| ≤ C

√
log(1/δ)

∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}
.

H.1 PROOF OF LEMMA 8

Proof. When l ∈ [K],

(ṽk)l = (f(Ω(k); Π̂U ))l = Ω(k)1(l) =
∑

i∈Ck∩L

∑
j∈Cl∩L

Ωij
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When l ∈ {K + 1, ..., 2K}, define

Ĉl = {i ∈ U : π̂i = el−K}

, then
(ṽk)l = (f(Ω(k); Π̂U ))l = Ω(k)

(
Π̂U

)
l
=

∑
i∈Ck∩L

∑
j∈Ĉl

Ωij

Hence

∥ṽk∥ =

√ ∑
l∈[2K]

(ṽk)2l

(Cauchy-Schwartz) ≥

√√√√ 1

2K
(
∑

l∈[2K]

(ṽk)l)2

=
1√
2K

|
∑

l∈[2K]

(ṽk)l|

=
1√
2K

|
K∑
l=1

∑
i∈Ck∩L

∑
j∈Cl∩L

Ωij +

2K∑
l=K+1

∑
i∈Ck∩L

∑
j∈Ĉl

Ωij |

=
1√
2K

|
∑

i∈Ck∩L

∑
j∈L

Ωij +
∑

i∈Ck∩L

∑
j∈Û

Ωij |

=
1√
2K

∑
i∈Ck∩L

∑
j∈[n]

Ωij

≥ 1√
2K

∑
i∈Ck∩L

∑
j∈Ck

Ωij

=
1√
2K

∑
i∈Ck∩L

∑
j∈Ck

θiθjPkk

(Identifiability condition) =
1√
2K

∑
i∈Ck∩L

∑
j∈Ck

θiθj

=
1√
2K

∥θ(k)L ∥1∥θ(k)∥1

≥ 1√
2K

∥θ(k)L ∥1 min
l∈[K]

∥θ(l)∥1

(Condition (9)) ≥ 1

C2

√
2K

∥θ(k)L ∥1 max
l∈[K]

∥θ(l)∥1

≥ 1

C2K
√
2K

∥θ(k)L ∥1∥θ∥1 (53)

When l ∈ [K],
(vk)l = (f(A(k); Π̂U ))l = A(k)1(l) =

∑
i∈Ck∩L

∑
j∈Cl∩L

Aij

Recall that,
(ṽk)l = (f(Ω(k); Π̂U ))l = Ω(k)1(l) =

∑
i∈Ck∩L

∑
j∈Cl∩L

Ωij

So
|(vk − ṽk)l| =

∑
i∈Ck∩L

∑
j∈Cl∩L

(Aij − Ωij)
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When l ∈ [K]\{k}, since Π̂U only depends on AUU , it is independent of ALL. Hence, given Π̂U ,
{Aij − Ωij : i ∈ Ck ∩ L, j ∈ Cl ∩ L} are a collection of |Ck ∩ L||Cl ∩ L| independent random
variables. Furthermore, given Π̂U , for any i ∈ Ck ∩ L, j ∈ Cl ∩ L,

E
[
Aij − Ωij |Π̂U

]
= E

[
Aij |Π̂U

]
− Ωij = Ωij − Ωij = 0

Also,
−1 ≤ −Ωij ≤ Aij − Ωij ≤ Aij ≤ 1

So |Aij − Ωij | ≤ 1. Additionally,

var
(
Aij − Ωij

)
= var

(
Aij |Π̂U

)
= Ωij(1− Ωij) ≤ Ωij

Therefore, denote nkl = |Ck ∩ L||Cl ∩ L|, by Lemma 7,

P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕk∥ṽk∥

)
= E

[
P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕk∥ṽk∥

)
|Π̂U

]

= E

P( 1

nkl
|
∑

i∈Ck∩L

∑
j∈Cl∩L

(Aij − Ωij)| ≥
1

π
√
Knkl

ϕk∥ṽk∥
)
|Π̂U


≤ 2E exp

−
1
2nkl

(
1

π
√
Knkl

ϕk∥ṽk∥
)2

1
nkl

∑
i∈Ck∩L

∑
j∈Cl∩L Ωij +

1
3

1
π
√
Knkl

ϕk∥ṽk∥


= 2E exp

(
− ϕ2k
2π

√
K

∥ṽk∥2

π
√
K
∑

i∈Ck∩L
∑

j∈Cl∩L Ωij +
1
3ϕk∥ṽk∥

)

= 2E exp

(
− ϕ2k
2π

√
K

∥ṽk∥2

π
√
K|(ṽk)l|+ 1

3ϕk∥ṽk∥

)

= 2E exp

−ϕ
2
k∥ṽk∥
2π

√
K

1

π
√
K |(ṽk)l|

∥ṽk∥ + 1
3ϕk


≤ 2E exp

(
− ϕ2k∥ṽk∥
2π

√
K(π

√
K + π

3 )

)
(54)

When l = k, {Aij−Ωij : i, j ∈ Ck∩L, i < j} are a collection of 1
2 |Ck∩L|(|Ck∩L|−1) independent

random variables. Furthermore, for any i, j ∈ Ck ∩ L, i < j,

E(Aij − Ωij) = EAij − Ωij = Ωij − Ωij = 0

Also,
−1 ≤ −Ωij ≤ Aij − Ωij ≤ Aij ≤ 1

So |Aij − Ωij | ≤ 1.

Additionally,
var(Aij − Ωij) = var(Aij) = Ωij(1− Ωij) ≤ Ωij

Denote nkk = 1
2 |Ck ∩ L|(|Ck ∩ L| − 1), we have

P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕk∥ṽk∥

)
= P

( 1

nkk
|
∑

i∈Ck∩L

∑
j∈Ck∩L

(Aij − Ωij)| ≥
1

π
√
Knkk

ϕk∥ṽk∥
)

31



Published as a conference paper at ICLR 2023

= P
( 1

nkk
|2

∑
i<j∈Ck∩L

(Aij − Ωij) +
∑

i∈Ck∩L
Ωii| ≥

1

π
√
Knkk

ϕk∥ṽk∥
)

≤ P
( 1

nkk
|2

∑
i<j∈Ck∩L

(Aij − Ωij)| ≥
1

π
√
Knkk

ϕk∥ṽk∥ −
1

nkk

∑
i∈Ck∩L

Ωii

)
= P

( 1

nkk
|

∑
i<j∈Ck∩L

(Aij − Ωij)| ≥
1

2π
√
Knkk

ϕk∥ṽk∥ −
1

2nkk

∑
i∈Ck∩L

Ωii

)

= E

P( 1

nkk
|

∑
i<j∈Ck∩L

(Aij − Ωij)| ≥
1

2π
√
Knkk

ϕk∥ṽk∥ −
1

2nkk

∑
i∈Ck∩L

Ωii

)
|Π̂U

 (55)

Notice that

ϕk ≥ C
∥θ(k)L ∥2

∥θ(k)L ∥1∥θ∥1
.

Since ϕk ≥ 2
√
2πC2K

2 ∥θ(k)
L ∥2

∥θ(k)
L ∥1∥θ∥1

∥ṽk∥,

1

2π
√
Knkk

ϕk∥ṽk∥ ≥ 2
√
2πK2

2π
√
Knkk

∥θ(k)L ∥2

∥θ(k)L ∥1∥θ∥1
∥ṽk∥

((By (53))) ≥ C2K
√
2K

nkk

∥θ(k)L ∥2

∥θ(k)L ∥1∥θ∥1

1

C2K
√
2K

∥θ(k)L ∥1∥θ∥1

= 2∥ 1

2nkk
θ
(k)
L ∥2

= 2
1

2nkk

∑
i∈Ck∩L

θ2i

(Identifiability condition) =
C√
2πK2

1

2nkk

∑
i∈Ck∩L

θ2i Pkk

= 2
1

2nkk

∑
i∈Ck∩L

Ωii (56)

Therefore, by Lemma 7,

P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕk∥ṽk∥

)
= E

P( 1

nkk
|

∑
i<j∈Ck∩L

(Aij − Ωij)| ≥
1

2π
√
Knkk

ϕk∥ṽk∥ −
1

2

1

2π
√
Knkk

ϕk∥ṽk∥
)
|Π̂U


≤ 2E exp

−
1
2nkk

(
1

4π
√
Knkk

ϕk∥ṽk∥
)2

1
nkk

∑
i<j∈Ck∩L Ωij +

1
3

(
1

2π
√
Knkk

ϕk∥ṽk∥ − 1
2nkk

∑
i∈Ck∩L Ωii

)


≤ 2E exp

− 1

16π
√
K

(
ϕk∥ṽk∥

)2
π
√
K · 2

∑
i<j∈Ck∩L Ωij +

1
3ϕk∥ṽk∥


≤ 2E exp

− 1

16π
√
K

(
ϕk∥ṽk∥

)2
π
√
K
∑

i,j∈Ck∩L Ωij +
1
3ϕk∥ṽk∥


= 2E exp

(
− ϕ2k
16π

√
K

∥ṽk∥2

π
√
K|(ṽk)k|+ 1

3ϕk∥ṽk∥

)
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= 2E exp

− ϕ2k∥ṽk∥
16π

√
K

1

π
√
K |(ṽk)k|

∥ṽk∥ + 1
3ϕk


≤ 2E exp

(
− ϕ2k∥ṽk∥
16π

√
K(π

√
K + π

3 )

)
(57)

When l ∈ {K + 1, ..., 2K}, recall

Ĉl = {i ∈ U : π̂i = el−K}
So

(vk)l = (f(A(k); Π̂U ))l = A(k)
(
Π̂U

)
l
=

∑
i∈Ck∩L

∑
j∈Ĉl

Aij

Recall that
(ṽk)l = (f(Ω(k); Π̂U ))l = Ω(k)

(
Π̂U

)
l
=

∑
i∈Ck∩L

∑
j∈Ĉl

Ωij

So
|(vk − ṽk)l| =

∑
i∈Ck∩L

∑
j∈Ĉl

(Aij − Ωij)

Since Π̂U only depends on AUU , it is independent of ALU . Hence, given Π̂U , {Aij − Ωij : i ∈
Ck ∩ L, j ∈ Ĉl} are a collection of |Ck ∩ L||Ĉl| independent random variables. Furthermore, given
Π̂U , for any i ∈ Ck ∩ L, j ∈ Ĉl,

E
[
Aij − Ωij |Π̂U

]
= E

[
Aij |Π̂U

]
− Ωij = Ωij − Ωij = 0

Also,
−1 ≤ −Ωij ≤ Aij − Ωij ≤ Aij ≤ 1

So |Aij − Ωij | ≤ 1. Additionally,

var
(
Aij − Ωij

)
= var

(
Aij |Π̂U

)
= Ωij(1− Ωij) ≤ Ωij

Therefore, denote n̂kl = |Ck ∩ L||Ĉl|, by Lemma 7,

P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕk∥ṽk∥

)
= E

[
P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕk∥ṽk∥

)
|Π̂U

]

= E

P( 1

n̂kl
|
∑

i∈Ck∩L

∑
j∈Ĉl

(Aij − Ωij)| ≥
1

π
√
Kn̂kl

ϕk∥ṽk∥
)
|Π̂U


≤ 2E exp

−
1
2 n̂kl

(
1

π
√
Kn̂kl

ϕk∥ṽk∥
)2

1
n̂kl

∑
i∈Ck∩L

∑
j∈Ĉl

Ωij +
1
3

1
π
√
Kn̂kl

ϕk∥ṽk∥


= 2E exp

(
− ϕ2k
2π

√
K

∥ṽk∥2

π
√
K
∑

i∈Ck∩L
∑

j∈Ĉl
Ωij +

1
3ϕk∥ṽk∥

)

= 2E exp

(
− ϕ2k
2π

√
K

∥ṽk∥2

π
√
K|(ṽk)l|+ 1

3ϕk∥ṽk∥

)

= 2E exp

−ϕ
2
k∥ṽk∥
2π

√
K

1

π
√
K |(ṽk)l|

∥ṽk∥ + 1
3ϕk


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≤ 2E exp

(
− ϕ2k∥ṽk∥
2π

√
K(π

√
K + π

3 )

)
(58)

In all, for any l ∈ [2K],

P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕk∥ṽk∥

)
≤ 2E exp

(
− ϕ2k∥ṽk∥
16π

√
K(π

√
K + π

3 )

)
(59)

Plugging (53) into (59), we obtain

P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕk∥ṽk∥

)
≤ 2 exp

(
−

ϕ2k∥θ
(k)
L ∥1∥θ∥1

16
√
2π2C2K2(

√
K + 1

3 )

)

= 2 exp

(
−C6

C2
ϕ2k∥θ

(k)
L ∥1∥θ∥1

)
(60)

That concludes the proof.

H.2 PROOF OF LEMMA 9

The proof of Lemma 9 is nearly the same as Lemma 8. For the completeness of our paper, we will
present a proof of Lemma 9 as follows.

Proof. When l ∈ [K],
(v∗)l = (f(X; Π̂U ))l = X1(l) =

∑
j∈Cl∩L

Xj

Similarly,
(ṽ∗)l = (f(E[X]; Π̂U ))l = E[X]1(l) =

∑
j∈Cl∩L

E[Xj ]

So
|(v∗ − ṽ∗)l| =

∑
j∈Cl∩L

(Xj − E[Xj ])

When l ∈ [K], since Π̂U only depends on AUU , it is independent of X . Hence, given Π̂U , {Xj −
E[Xj ] : j ∈ Cl ∩ L} are a collection of |Cl ∩ L| independent random variables. Furthermore, given
Π̂U , for any j ∈ Cl ∩ L,

E
[
Xj − E[Xj ]|Π̂U

]
= E

[
Xj |Π̂U

]
− E[Xj ] = E[Xj ]− E[Xj ] = 0

Also,
−1 ≤ −E[Xj ] ≤ Xj − E[Xj ] ≤ Xj ≤ 1

So |Xj − E[Xj ]| ≤ 1. Additionally,

var
(
Xj − E[Xj ]

)
= var

(
Xj |Π̂U

)
= E[Xj ](1− E[Xj ]) ≤ E[Xj ]

Therefore, denote nl = |Cl ∩ L|, by Lemma 7,

P
(
|(v∗ − ṽ∗)l| ≥

1

π
√
K
ϕk∥ṽ∗∥

)
= E

[
P
(
|(v∗ − ṽ∗)l| ≥

1

π
√
K
ϕk∥ṽ∗∥

)
|Π̂U

]
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= E

P( 1

nl
|
∑

j∈Cl∩L
(Xj − E[Xj ])| ≥

1

π
√
Knl

ϕk∥ṽ∗∥
)
|Π̂U


≤ 2E exp

−
1
2nl

(
1

π
√
Knl

ϕk∥ṽ∗∥
)2

1
nl

∑
j∈Cl∩L E[Xj ] +

1
3

1
π
√
Knl

ϕk∥ṽ∗∥


= 2E exp

(
− ϕ2k
2π

√
K

∥ṽ∗∥2

π
√
K
∑

j∈Cl∩L E[Xj ] +
1
3ϕk∥ṽ∗∥

)

= 2E exp

(
− ϕ2k
2π

√
K

∥ṽ∗∥2

π
√
K|(ṽ∗)l|+ 1

3ϕk∥ṽ∗∥

)

= 2E exp

−ϕ
2
k∥ṽ∗∥
2π

√
K

1

π
√
K |(ṽ∗)l|

∥ṽ∗∥ + 1
3ϕk


≤ 2E exp

(
− ϕ2k∥ṽ∗∥
2π

√
K(π

√
K + π

3 )

)
(61)

When l ∈ {K + 1, ..., 2K}, define

Ĉl = {i ∈ U : π̂i = el−K}
Then

(v∗)l = (f(X; Π̂U ))l = X1(l) =
∑
j∈Ĉl

Xj

Similarly,
(ṽ∗)l = (f(E[X]; Π̂U ))l = E[X]1(l) =

∑
j∈Ĉl

E[Xj ]

So
|(v∗ − ṽ∗)l| =

∑
j∈Ĉl

(Xj − E[Xj ])

When l ∈ [K], since Π̂U only depends on AUU , it is independent of X . Hence, given Π̂U , {Xj −
E[Xj ] : j ∈ Ĉl} are a collection of |Cl ∩ L| independent random variables. Furthermore, given Π̂U ,
for any j ∈ Ĉl,

E
[
Xj − E[Xj ]|Π̂U

]
= E

[
Xj |Π̂U

]
− E[Xj ] = E[Xj ]− E[Xj ] = 0

Also,
−1 ≤ −E[Xj ] ≤ Xj − E[Xj ] ≤ Xj ≤ 1

So |Xj − E[Xj ]| ≤ 1. Additionally,

var
(
Xj − E[Xj ]

)
= var

(
Xj |Π̂U

)
= E[Xj ](1− E[Xj ]) ≤ E[Xj ]

Therefore, denote n̂l = |Ĉl|, by Lemma 7,

P
(
|(v∗ − ṽ∗)l| ≥

1

π
√
K
ϕk∥ṽ∗∥

)
= E

[
P
(
|(v∗ − ṽ∗)l| ≥

1

π
√
K
ϕk∥ṽ∗∥

)
|Π̂U

]

= E

P( 1

n̂l
|
∑
j∈Ĉl

(Xj − E[Xj ])| ≥
1

π
√
Kn̂l

ϕk∥ṽ∗∥
)
|Π̂U


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≤ 2E exp

−
1
2 n̂l

(
1

π
√
Kn̂l

ϕk∥ṽ∗∥
)2

1
n̂l

∑
j∈Ĉl

E[Xj ] +
1
3

1
π
√
Kn̂l

ϕk∥ṽ∗∥


= 2E exp

(
− ϕ2k
2π

√
K

∥ṽ∗∥2

π
√
K
∑

j∈Ĉl
E[Xj ] +

1
3ϕk∥ṽ∗∥

)

= 2E exp

(
− ϕ2k
2π

√
K

∥ṽ∗∥2

π
√
K|(ṽ∗)l|+ 1

3ϕk∥ṽ∗∥

)

= 2E exp

−ϕ
2
k∥ṽ∗∥
2π

√
K

1

π
√
K |(ṽ∗)l|

∥ṽ∗∥ + 1
3ϕk


≤ 2E exp

(
− ϕ2k∥ṽ∗∥
2π

√
K(π

√
K + π

3 )

)
(62)

In all, for any l ∈ [2K],

P
(
|(v∗ − ṽ∗)l| ≥

1

π
√
K
ϕk∥ṽ∗∥

)
≤ 2E exp

(
− ϕ2k∥ṽ∗∥
2π

√
K(π

√
K + π

3 )

)
(63)

Notice that

∥ṽ∗∥ =

√ ∑
l∈[2K]

(ṽ∗)2l

(Cauchy-Schwartz) ≥

√√√√ 1

2K
(
∑

l∈[2K]

(ṽ∗)l)2

=
1√
2K

|
∑

l∈[2K]

(ṽ∗)l|

=
1√
2K

|
K∑
l=1

∑
j∈Ĉl

E[Xj ] +

2K∑
l=K+1

∑
j∈Ĉl

E[Xj ]|

=
1√
2K

|
∑
j∈L

E[Xj ] +
∑
j∈Û

E[Xj ]|

=
1√
2K

∑
j∈[n]

E[Xj ]

≥ 1√
2K

∑
j∈Ck∗

E[Xj ]

=
1√
2K

∑
j∈Ck

θ∗θjPk∗k∗

(Identifiability condition) =
1√
2K

∑
j∈Ck

θ∗θj

=
1√
2K

θ∗∥θ(k)∥1

≥ 1√
2K

θ∗ min
l∈[K]

∥θ(l)∥1

(Condition (9)) ≥ 1

C2

√
2K

θ∗ max
l∈[K]

∥θ(l)∥1
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≥ 1

C2K
√
2K

θ∗∥θ∥1 (64)

Plugging (64) into (63), we obtain

P
(
|(v∗ − ṽ∗)l| ≥

1

π
√
K
ϕk∥ṽ∗∥

)
≤ 2 exp

(
− ϕ2kθ

∗∥θ∥1
2
√
2π2C2K2(

√
K + 1

3 )

)

= 2 exp

(
−C7

C2
ϕ2kθ

∗∥θ∥1
)

(65)

That concludes the proof.

I PROOF OF COROLLARY 1, 2

I.1 PROOF OF COROLLARY 1

Corollary 1. Consider the DCBM model where (8)-(9) hold. Suppose for some constants b0 ∈ (0, 1)

and ϵ ∈ (0, 1/2), Π̂U is b0-correct with probability 1 − ϵ. When b0 is properly small, there exist
constants C0 > 0 and C̄ > 0, which do not depend on (b0, ϵ), such that P(ŷ ̸= k∗) ≤ ϵ +

C̄
∑K

k=1 exp
(
−C0β

2
n∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

)
.

Proof. Let B0 be the event that Π̂U is b0-correct. Then,

P(ŷ ̸= k∗)

= P(ŷ ̸= k∗, BC
0 ) + P

(
ŷ ̸= k∗, B0

)
≤ P(BC

0 ) + P
({

∃k ̸= k∗, ψ̂k(Π̂U ) ≤ ψ̂k∗(Π̂U )
}
, B0

)
≤ ϵ+ P

({
∃k ̸= k∗,

(
ψk(Π̂U )− ψ̂k(Π̂U )

)
+
(
ψ̂k∗(Π̂U )− ψk∗(Π̂U )

)
≥
(
ψk(Π̂U )− ψk∗(Π̂U )

)}
, B0

)
≤ ϵ+ P

({
∃k ̸= k∗,

∣∣∣ψk(Π̂U )− ψ̂k(Π̂U )
∣∣∣

+
∣∣∣ψ̂k∗(Π̂U )− ψk∗(Π̂U )

∣∣∣ ≥ ∣∣∣ψk(Π̂U )− ψk∗(Π̂U )
∣∣∣}, B0

)
(66)

By Theorem 1, when b0 is properly small, B0 implies that there exists a constant c0 > 0, which does
not depend on b0, such that ψk∗(Π̂U ) = 0 and mink ̸=k∗{ψk(Π̂U )} ≥ c0βn.

Substituting this result into (66), we have
P(ŷ ̸= k∗)

≤ ϵ+ P
({

∃k ̸= k∗,
∣∣∣ψk(Π̂U )− ψ̂k(Π̂U )

∣∣∣+ ∣∣∣ψ̂k∗(Π̂U )− ψk∗(Π̂U )
∣∣∣ ≥ c0βn

}
, B0

)
≤ ϵ+ P

(
∃k ̸= k∗,

∣∣∣ψk(Π̂U )− ψ̂k(Π̂U )
∣∣∣+ ∣∣∣ψ̂k∗(Π̂U )− ψk∗(Π̂U )

∣∣∣ ≥ c0βn

)
≤ ϵ+ P

(
∃k ∈ [K],

∣∣∣ψk(Π̂U )− ψ̂k(Π̂U )
∣∣∣ ≥ 1

2
c0βn

)
≤ ϵ+ P

(
∃k ∈ [K],

∣∣∣ψk(Π̂U )− ψ̂k(Π̂U )
∣∣∣ > 1

3
c0βn

)
(67)

According to Theorem 2, there exists a constant C > 0, such that for any δ ∈ (0, 1/2), with
probability 1− δ, simultaneously for 1 ≤ k ≤ K,

|ψ̂k(Π̂U )− ψk(Π̂U )| ≤ C

(√
log(1/δ)

∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}
+

∥θ(k)L ∥2

∥θ(k)L ∥1∥θ∥1

)
.

37



Published as a conference paper at ICLR 2023

Take C0 =
c20

36C2 ,

δ = exp
(
−C0β

2
n∥θ∥1 ·min

{
θ∗, min

k∈[K]
∥θ(k)L ∥1

})
Then

C

√
log(1/δ)

∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}
= C

√√√√√ log
(
1/ exp

(
−C0β2

n∥θ∥1 ·min
{
θ∗,mink∈[K] ∥θ

(k)
L ∥1

}))
∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

= C

√√√√√C0β2
n∥θ∥1 ·min

{
θ∗,mink∈[K] ∥θ

(k)
L ∥1

}
∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

≤ 1

6
c0βn (68)

On the other hand, take c3 in condition (9) properly small such that c3 ≤ c0
6C , then according to

condition (9),

C
∥θ(k)L ∥2

∥θ(k)L ∥1∥θ∥1
≤ C · c3βn ≤ 1

6
c0βn (69)

Combining (68) and (69), we have

C

(√
log(1/δ)

∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}
+

∥θ(k)L ∥2

∥θ(k)L ∥1∥θ∥1

)
≤ 1

3
c0βn

Therefore, when δ < 1
2 , by Theorem 2, with probability 1− δ, simultaneously for 1 ≤ k ≤ K,

|ψ̂k(Π̂U )− ψk(Π̂U )| ≤
1

3
c0βn.

As a result, when δ < 1
2 ,

P
(
∃k ∈ [K],

∣∣∣ψk(Π̂U )− ψ̂k(Π̂U )
∣∣∣ > 1

3
c0βn

)
≤ δ

When δ ≥ 1
2 ,

P
(
∃k ∈ [K],

∣∣∣ψk(Π̂U )− ψ̂k(Π̂U )
∣∣∣ > 1

3
c0βn

)
≤ 1 ≤ 2δ

Hence in total, we have

P
(
∃k ∈ [K],

∣∣∣ψk(Π̂U )− ψ̂k(Π̂U )
∣∣∣ > 1

3
c0βn

)
≤ 2δ (70)

Plugging (70) into (67), we obtain

P(ŷ ̸= k∗) ≤ ϵ+ 2δ

= ϵ+ 2 exp
(
−C0β

2
n∥θ∥1 ·min

{
θ∗, min

k∈[K]
∥θ(k)L ∥1

})
≤ ϵ+ 2

K∑
k=1

exp
(
−C0β

2
n∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

)
(71)

Choose C̄ = 2, we obtain

P(ŷ ̸= k∗) ≤ ϵ+ C̄

K∑
k=1

exp
(
−C0β

2
n∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

)
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To conclude, when b0 is properly small, there exist constants C0 =
c20

36C2 > 0 and C̄ = 2 > 0, which

do not depend on (b0, ϵ), such that P(ŷ ̸= k∗) ≤ ϵ+ C̄
∑K

k=1 exp
(
−C0β

2
n∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

)
.

I.2 PROOF OF COROLLARY 2

Corollary 2. Consider the DCBM model where (8)-(9) hold. We apply SCORE+ to obtain Π̂U and
plug it into AngleMin+. As n→ ∞, suppose for some constant q0 > 0, mini∈U θi ≥ q0 maxi∈U θi,
βn∥θU∥ ≥ q0

√
log(n), β2

n∥θ∥1θ∗ → ∞, and β2
n∥θ∥1 mink{∥θ(k)L ∥1} → ∞. Then, P(ŷ ̸= k∗) → 0,

so the AngleMin+ estimate is consistent.

Proof. By Corollary 2, let ϵ be the probability that Π̂U obtained through SCORE+ is not b0-correct,
then

P(ŷ ̸= k∗) ≤ ϵ+ C̄

K∑
k=1

exp
(
−C0β

2
n∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

)
Since β2

n∥θ∥1θ∗ → ∞, and β2
n∥θ∥1 mink{∥θ(k)L ∥1} → ∞,

C̄

K∑
k=1

exp
(
−C0β

2
n∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

)
→ 0

By Theorem 2.2 in Jin et al. (2021), when q0 is sufficiently large, mini∈U θi ≥ q0 maxi∈U θi and
βn∥θU∥ ≥ q0

√
log(n) imply that ϵ→ 0.

Hence, in all, we have P(ŷ ̸= k∗) → 0, so the AngleMin+ estimate is consistent.

J PROOF OF LEMMA 2

As mentioned in section D, in the main paper, for the smoothness and comprehensibility of the
text, we do not present the most general form of Lemma 2. Here, we present both the original
version, Lemma 2, and the generalized version, Lemma 2’ below, where we relax the assumption that
∥θ(1)

L ∥1

∥θ(2)
L ∥1

=
∥θ(1)

U ∥1

∥θ(2)
U ∥1

= 1 to the much weaker assumption: the first part of condition (9) in the main text,

which only assumes that ∥θ(1)∥1 and ∥θ(2)∥1 are of the same order.
Lemma 2. Consider a DCBM with K = 2 and P = (1 − b)I2 + b121

′
2. Suppose θ∗ = o(1),

θ∗

mink ∥θ(k)
L ∥1

= o(1), 1− b = o(1), ∥θ(1)
L ∥1

∥θ(2)
L ∥1

=
∥θ(1)

U ∥1

∥θ(2)
U ∥1

= 1. There exists a constant c4 > 0 such that

inf
ỹ
{Risk(ỹ)} ≥ c4 exp

{
−2[1 + o(1)]

(1− b)2

8
· θ∗(∥θL∥1 + ∥θU∥1)

}
, (12)

where the infimum is taken over all measurable functions of A, X , and parameters ΠL, ΠU , Θ, P ,
θ∗. In AngleMin+, suppose the second part of condition 9 holds with c3 = o(1), Π̂U is b̃0-correct
with b̃0

a.s.→ 0. There is a constant C4 > 0 such that,

Risk(ŷ) ≤ C4 exp
{
−[1− o(1)]

(1− b)2

8
· θ∗ (∥θL∥

2
1 + ∥θU∥21)2

∥θL∥31 + ∥θU∥31

}
. (13)

Lemma 2’. Consider a DCBM with K = 2 and P = (1 − b)I2 + b121
′
2. Suppose 1 − b = o(1).

There exists a constant c4 > 0 such that

inf
ỹ
{Risk(ỹ)} ≥ c4 exp

{
−2[1 + o(1)]

(1− b)2

8
· θ∗(∥θL∥1 + ∥θU∥1)

}
, (75)

where the infimum is taken over all measurable functions of A, X , and parameters ΠL, ΠU , Θ, P ,
θ∗. In AngleMin+, suppose condition 9 holds with c3 = o(1), θ∗ = o(1), θ∗

mink ∥θ(k)
L ∥1

= o(1), Π̂U is
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b̃0-correct with b̃0
a.s.→ 0. There is a constant C4 > 0 such that,

Risk(ŷ) ≤ C4 exp

−[1− o(1)]
(1− b)2

8
· θ∗ 4

∥θ(1)
L ∥3

1+∥θ(1)
U ∥3

1

(∥θ(1)
L ∥2

1+∥θ(1)
U ∥2

1)
2
+

∥θ(2)
L ∥3

1+∥θ(2)
U ∥3

1

(∥θ(2)
L ∥2

1+∥θ(2)
U ∥2

1)
2

 . (76’)

When conditions of Lemma 2 hold, conditions of Lemma 2’ hold. Also, with ∥θ(1)
L ∥1

∥θ(2)
L ∥1

=
∥θ(1)

U ∥1

∥θ(2)
U ∥1

= 1

assumed in Lemma 2, the results of Lemma 2’ imply the results of 2. Therefore, it suffices to prove
the generalized version, Lemma 2’.

We prove the lower bound (75) and upper bound (76’) separately.

J.1 PROOF OF LOWER BOUND (75)

Proof. Let P(1) and P(2) be the joint distribution ofA andX given π∗ = e1 and π∗ = e2, respectively.
For a random variable or vector or matrix Y , let P(1)

Y and P(2)
Y be the distribution of Y given π∗ = e1

and π∗ = e2, respectively.

According to Theorem 2.2 in Section 2.4.2 of Tsybakov (2009),

inf
ỹ
{Risk(ỹ)} ≥ 2 · 1

2
(1−

√
H2(P(1),P(2))(1−H2(P(1),P(2))/4))

= 1−
√
1−

(
1− 1

2
H2(P(1),P(2))

)2
≥ 1−

(
1− 1

2

(
1− 1

2
H2(P(1),P(2))

)2)
=

1

2

(
1− 1

2
H2(P(1),P(2))

)2
(76)

where
H2(P(1),P(2)) =

∫ (√
dP(1) −

√
dP(2)

)2
is the Hellinger distance between P(1) and P(2).

As in Section 2.4 of Tsybakov (2009), one key property of Hellinger distance is that if Q(1) and Q(2)

are product measures, Q(1) = ⊗N
i=1Q

(1)
i , Q(2) = ⊗N

i=1Q
(2)
i , then

H2(Q(1),Q(2)) = 2
(
1−

N∏
i=1

(
1− H2(Q(1)

i ,Q(2)
i )

2

))
(77)

Notice that for k = 1, 2, since according to DCBM, A,X1, ..., Xn are independent,

P(k) = P(k)
A ×⊗n

i=1P
(k)
Xi

(78)

Combining (77) and (78), we obtain

H2(P(1),P(2)) = 2
(
1−

(
1−

H2(P(1)
A ,P(2)

A )

2

) n∏
i=1

(
1−

H2(P(1)
Xi
,P(2)

Xi
)

2

))
(79)

Given π∗ = e1 and π∗ = e2, according to DCBM, the distribution of A remains the same. As a
result, H2(P(1)

A ,P(2)
A ) = 0.

On the other hand, for k = 1, 2 and i ∈ [n], according to DCBM model

P(k)
Xi

∼ Bern(θ∗θiPkki)
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where ki is the true label of node i.

As a result,

1−
H2(P(1)

Xi
,P(2)

Xi
)

2

= 1− 1

2

[(√
θ∗θiP1ki −

√
θ∗θiP2ki

)2
+
(√

1− θ∗θiP1ki −
√
1− θ∗θiP2ki

)2]
=
√
θ∗θiP1ki

θ∗θiP2ki
+
√

(1− θ∗θiP1ki
)(1− θ∗θiP2ki

) (80)

For x, y ∈ R, denote g(x, y) = log(xy +
√

(1− x2)(1− y2)).

Then, 1−
H2(P(1)

Xi
,P(2)

Xi
)

2 = exp g(
√
θ∗θiP1ki ,

√
θ∗θiP2ki)

Hence, by (79)

1− 1

2
H2(P(1),P(2)) =

(
1−

H2(P(1)
A ,P(2)

A )

2

) n∏
i=1

(
1−

H2(P(1)
Xi
,P(2)

Xi
)

2

)
= exp

n∑
i=1

g(
√
θ∗θiP1ki ,

√
θ∗θiP2ki) (81)

Substituting (81) into (76), we obtain

inf
ỹ
{Risk(ỹ)} ≥ 1

2
exp
(
2

n∑
i=1

g(
√
θ∗θiP1ki ,

√
θ∗θiP2ki)

)
(82)

To reduce the RHS of (82), we need to evaluate g. The following lemma shows that g(x, y) ≈
− 1

2 (x− y)2.

Lemma 10. Suppose that 0 ≤ x, y ≤ a < 1. Then,

g(x, y) ≥ − 1

2(1− a2)
3
2

(x− y)2

Proof. We first prove a short inequality on log. For z > 0, define g3(z) = log(z)− z−1
z . Then

d

dz
g3(z) =

1

z
− 1

z2
=
z − 1

z2

Therefore, when z ≤ 1, d
dz g3(z) ≤ 0, g3(z) is monotonously deceasing, hence g3(z) ≥ g3(1) = 0;

when z ≥ 1, d
dz g3(z) ≥ 0, g3(z) is monotonously increasing, hence g3(z) ≥ g3(1) = 0.

In all, g3(z) ≥ 0, so

log(z) ≥ z − 1

z
. (83)

Since x, y ∈ [0, 1], we could define ϕx = arcsinx ∈ [0, π2 ], ϕy = arcsin y ∈ [0, π2 ]. Then,

g(x, y) = g(sinϕx, sinϕy)

= log
(
sinϕx sinϕy +

√
(1− sin2 ϕx)(1− sin2 ϕy)

)
= log(sinϕx sinϕy + cosϕx cosϕy)

= log(cos(ϕx − ϕy))
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(By (83)) ≥ cos(ϕx − ϕy)− 1

cos(ϕx − ϕy)

=
−2 sin2

(ϕx−ϕy)
2

cos(ϕx − ϕy)

= −1

2

4 sin2
(ϕx−ϕy)

2

(sinϕx − sinϕy)2
1

cos(ϕx − ϕy)
(sinϕx − sinϕy)

2

= −1

2

4 sin2
(ϕx−ϕy)

2

(2 sin
(ϕx−ϕy)

2 cos
(ϕx+ϕy)

2 )2

1

cos(ϕx − ϕy)
(x− y)2

= −1

2
(x− y)2

1

cos(|ϕx − ϕy|) cos2 (ϕx+ϕy)
2

(84)

Since x, y ∈ [0, a], ϕx, ϕy ∈ [0, arcsin a].As a result, |ϕx − ϕy|, (ϕx+ϕy)
2 ∈ [0, arcsin a]. Plugging

this result back into (84), we have

g(x, y) ≥ −1

2
(x− y)2

1

cos(arcsin a) cos2 arcsin a
= − 1

2(1− a2)
3
2

(x− y)2 (85)

This concludes the proof.

Back to the proof of lower bound (75). Define θa =

√
θ∗
(
maxi∈[n] θi

)
(max{1, b}), then for any

k ∈ {1, 2}, i ∈ [n],
√
θ∗θiPkki ≤ θa. Therefore, applying Lemma 10 in (82), we have when θa < 1,

inf
ỹ
{Risk(ỹ)} ≥ 1

2
exp
(
2

n∑
i=1

− 1

2(1− (θa)2)
3
2

(√
θ∗θiP1ki −

√
θ∗θiP2ki

)2)
=

1

2
exp
(
− 1

(1− (θa)2)
3
2

n∑
i=1

θ∗θi

(√
P1ki

−
√
P2ki

)2)
=

1

2
exp
(
− 1

(1− (θa)2)
3
2

n∑
i=1

θ∗θi(1−
√
b)2
)

=
1

2
exp
(
− 1

(1− (θa)2)
3
2

θ∗∥θ∥1
(1− b)2

(1 +
√
b)2

)
=

1

2
exp
(
−2

4

(1 +
√
b)2(1− (θa)2)

3
2

(1− b)2

8
· θ∗(∥θL∥1 + ∥θU∥1)

)
(86)

Since θ∗ = o(1), b = 1 − o(1), and by DCBM model, maxi∈[n] θi ≤, we have θa =√
θ∗
(
maxi∈[n] θi

)
(max{1, b}) = o(1). Since b = 1 − o(1), (1 +

√
b)2 → 4. Therefore,

4

(1+
√
b)2(1−(θa)2)

3
2
= 1− o(1). Substituting these results into (86), we obtain

inf
ỹ
{Risk(ỹ)} ≥ 1

2
exp
{
−2[1 + o(1)]

(1− b)2

8
· θ∗(∥θL∥1 + ∥θU∥1)

}
, (87)

This concludes our proof of lower bound (75), with c4 = 1
2 .

J.2 PROOF OF UPPER BOUND (76’)

Proof. When K = 2, Risk(ŷ) = P(ŷ = 2|π∗ = e1) + P(ŷ = 1|π∗ = e2). The evaluation of
P(ŷ = 2|π∗ = e1) and P(ŷ = 1|π∗ = e2) are exactly the same. Without the loss of generosity, we
would focus on P(ŷ = 2|π∗ = e1).
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Recall that in the proof of 2, we define vk = f(A(k); Π̂U ), v∗ = f(X; Π̂U ), ṽk = f(Ω(k); Π̂U ),
ṽ∗ = f(EX; Π̂U ), k ∈ [K].

We have

P(ŷ = 2|π∗ = e1) = P(ψ(v2, v∗) ≥ ψ(v1, v
∗)|π∗ = e1)

= P
( ⟨v∗, v2⟩
∥v∗∥∥v2∥

≥ ⟨v∗, v1⟩
∥v∗∥∥v1∥

∣∣∣π∗ = e1

)
= P

(
⟨v∗,

( v2
∥v2∥

− v1
∥v1∥

)
⟩ ≥ 0

∣∣∣π∗ = e1

)
(88)

Recall that in proof of Lemma 8 9, we define Ĉk = {i ∈ U : π̂i = ek−K}, k = K + 1, ..., 2K. Let
w = v2

∥v2∥ − v1
∥v1∥ . Since when l ∈ [K],

(v∗)l = (f(X; Π̂U ))l = X1(l) =
∑

j∈Cl∩L
Xj

; when l ∈ {K + 1, ..., 2K},

(v∗)l = (f(X; Π̂U ))l = X1(l) =
∑
j∈Ĉl

Xj

we have

P(ŷ = 2|π∗ = e1) = P
( K∑
k=1

wk

∑
i∈Ck∩L

Xi +

2K∑
k=K+1

wk

∑
i∈Ĉk

Xi ≥
∣∣∣π∗ = e1

)

= P
( K∑
k=1

∑
i∈Ck∩L

wk(Xi − EXi) +

2K∑
k=K+1

∑
i∈Ĉk

wk(Xi − EXi) ≥

−
K∑

k=1

∑
i∈Ck∩L

wkEXi −
2K∑

k=K+1

∑
i∈Ĉk

wkEXi

∣∣∣π∗ = e1

)

≤ P
(∣∣∣ K∑

k=1

∑
i∈Ck∩L

wk(Xi − EXi) +

2K∑
k=K+1

∑
i∈Ĉk

wk(Xi − EXi)
∣∣∣ ≥

∣∣∣ K∑
k=1

∑
i∈Ck∩L

wkEXi +

2K∑
k=K+1

∑
i∈Ĉk

wkEXi

∣∣∣∣∣∣π∗ = e1

)

= E
[
P
(∣∣∣ K∑

k=1

∑
i∈Ck∩L

wk(Xi − EXi) +

2K∑
k=K+1

∑
i∈Ĉk

wk(Xi − EXi)
∣∣∣ ≥

∣∣∣ K∑
k=1

∑
i∈Ck∩L

wkEXi +

2K∑
k=K+1

∑
i∈Ĉk

wkEXi

∣∣∣∣∣∣A, π∗ = e1

)]
(89)

Since A and X are independent and for k ∈ [2K], wk is measurable with respect to A, given A,
{wk(Xi −EXi) : k ∈ [K], i ∈ Ck ∩L}∪{wk(Xi −EXi) : k ∈ [2K]\[K], i ∈ Ĉk} are a collection
of independent random variables. Also, for any k ∈ [2K], i ∈ [n],

E[wk(Xi − EXi)|A] = wk(E[Xi|A]− EXi) = wk(EXi − EXi) = 0

Furthermore,
−1 ≤ −EXi ≤ Xi − EXi ≤ Xi ≤ 1

So |wk(Xi − EXi)| ≤ maxk∈[2K] |wk|.
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Additionally,

var(wk(Xi − EXi)|A) = w2
kvar(Xi) = w2

kEXi(1− EXi) ≤ w2
kEXi

Let

t =
1

n

∣∣∣ K∑
k=1

∑
i∈Ck∩L

wkEXi +

2K∑
k=K+1

∑
i∈Ĉk

wkEXi

∣∣∣ = 1

n
|⟨w, ṽ∗⟩|

σ2 =
1

n

( K∑
k=1

∑
i∈Ck∩L

w2
kEXi +

2K∑
k=K+1

∑
i∈Ĉk

w2
kEXi

)
=

1

n
⟨w ◦ w, ṽ∗⟩

where w ◦ w is defined as (w2
1, ..., w

2
2K).

Then by Lemma 7,

P(ŷ = 2|π∗ = e1) ≤ E
[
P
( 1
n

∣∣∣ K∑
k=1

∑
i∈Ck∩L

wk(Xi − EXi) +

2K∑
k=K+1

∑
i∈Ĉk

wk(Xi − EXi)
∣∣∣ ≥

1

n

( K∑
k=1

∑
i∈Ck∩L

wkEXi +

2K∑
k=K+1

∑
i∈Ĉk

wkEXi

)∣∣∣A, π∗ = e1

)]

≤ 2E exp

(
−

1
2nt

2

σ2 + 1
3 maxk∈[2K] |wk|t

)

= 2E exp

(
−

1
2 ⟨w, ṽ

∗⟩2

⟨w ◦ w, ṽ∗⟩+ 1
3 maxk∈[2K] |wk||⟨w, ṽ∗⟩|

)
(90)

By Lemma 8, when ϕ ≥ 2
√
2πC2K

2 ∥θ(k)
L ∥2

∥θ(k)
L ∥1∥θ∥1

,

P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕ∥ṽk∥

)
≤ 2 exp

(
−C6

C2
ϕ2∥θ(k)L ∥1∥θ∥1

)
Take

ϕ = max{2
√
2πC2K

2 ∥θ(k)L ∥2

∥θ(k)L ∥1∥θ∥1
, |1− b|

( θ∗

mink∈[K] ∥θ
(k)
L ∥1

)0.25
}

Then because θ∗

mink∈[K] ∥θ
(k)
L ∥1

= o(1) and by condition 9, ∥θ(k)
L ∥2

∥θ(k)
L ∥1∥θ∥1

≤ c3βn = o(|1− b|), we have

ϕ = o(|1− b|). Also,

P
(
∃k ∈ [K], l ∈ [2K], |(vk − ṽk)l| ≥

1

π
√
K
ϕ∥ṽk∥

)
≤
∑

k∈[K]

∑
l∈[2K]

P
(
|(vk − ṽk)l| ≥

1

π
√
K
ϕ∥ṽk∥

)
≤
∑

k∈[K]

∑
l∈[2K]

2 exp

(
−C6

C2
ϕ2∥θ(k)L ∥1∥θ∥1

)

=
∑

k∈[K]

∑
l∈[2K]

2 exp

(
−C6

C2
(1− b)2

( θ∗

mink∈[K] ∥θ
(k)
L ∥1

)−0.5 ∥θ(k)L ∥1
mink∈[K] ∥θ

(k)
L ∥1

θ∗∥θ∥1

)

≤ 4K2 exp
(
− 1

o(1)
(1− b)2θ∗∥θ∥1

)
≪ inf

ỹ
{Risk(ỹ)} (91)
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Hence, we can focus on the case where for all k ∈ [K], l ∈ [2K], |(vk − ṽk)l| = o(|1 − b|)∥ṽk∥.
Until the end of the proof, we assume that we are under this case.

We first evaluate ⟨w, ṽ∗⟩. Let w̃ = ṽ2
∥ṽ2∥ − ṽ1

∥ṽ1∥ . Then,

|⟨w, ṽ∗⟩ − ⟨w̃, ṽ∗⟩| = |⟨( v2
∥v2∥

− v1
∥v1∥

)− (
ṽ2
∥ṽ2∥

− ṽ1
∥ṽ1∥

), ṽ∗⟩|

= ∥ṽ∗∥ · |⟨( v2
∥v2∥

− ṽ2
∥ṽ2∥

)− (
v1
∥v1∥

− ṽ1
∥ṽ1∥

),
ṽ∗

∥ṽ∗∥
⟩|

= ∥ṽ∗∥ · |(cosψ(v2, ṽ∗)− cosψ(ṽ2, ṽ
∗))− (cosψ(v1, ṽ

∗)− cosψ(ṽ1, ṽ
∗))|

= ∥ṽ∗∥ · | − 2 sin
ψ(v2, ṽ

∗)− ψ(ṽ2, ṽ
∗)

2
sin

ψ(v2, ṽ
∗) + ψ(ṽ2, ṽ

∗)

2

+ 2 sin
ψ(v1, ṽ

∗)− ψ(ṽ1, ṽ
∗)

2
sin

ψ(v1, ṽ
∗) + ψ(ṽ1, ṽ

∗)

2
|

≤ 2∥ṽ∗∥ · sin |ψ(v2, ṽ∗)− ψ(ṽ2, ṽ
∗)|

2
sin

ψ(v2, ṽ
∗) + ψ(ṽ2, ṽ

∗)

2

+ 2∥ṽ∗∥ · sin |ψ(v1, ṽ∗)− ψ(ṽ1, ṽ
∗)|

2
sin

ψ(v1, ṽ
∗) + ψ(ṽ1, ṽ

∗)

2

(By Lemma 4) ≤ 2∥ṽ∗∥ · sin ψ(v2, ṽ2)
2

sin
2ψ(ṽ2, ṽ

∗) + ψ(v2, ṽ2)

2

+ 2∥ṽ∗∥ · sin ψ(v1, ṽ1)
2

sin
2ψ(ṽ1, ṽ

∗) + ψ(v1, ṽ1)

2
(92)

Since π∗ = 1, b̃0 → 0, by Theorem 1, ψ(ṽ1, ṽ∗) = ψ1 = 0, ψ(ṽ2, ṽ∗) = ψ2 ≥ c0βn = c0|1 − b|.
On the other hand, that for all k ∈ [K], l ∈ [2K], |(vk − ṽk)l| = o(|1 − b|)∥ṽk∥ indicates that
∥vk − ṽk∥ = o(|1 − b|)∥ṽk∥. By lemma 5, this implies that ψ(v1, ṽ1) = o(|1 − b|), k = 1, 2.
Therefore,

|⟨w, ṽ∗⟩ − ⟨w̃, ṽ∗⟩| ≤ o(1) · 2∥ṽ∗∥ sin ψ(ṽ2, ṽ
∗)

2
sinψ(ṽ2, ṽ

∗)

= o(1) · 2∥ṽ∗∥ sin ψ(ṽ2, ṽ
∗)

2
2 sin

ψ(ṽ2, ṽ
∗)

2
cos

ψ(ṽ2, ṽ
∗)

2

= o(1) · ∥ṽ∗∥ sin2 ψ(ṽ2, ṽ
∗)

2
cos

ψ(ṽ2, ṽ
∗)

2

≤ o(1) · ∥ṽ∗∥ sin2 ψ(ṽ2, ṽ
∗)

2
≤ o(1) · ∥ṽ∗∥(1− cosψ(ṽ2, ṽ

∗))

= o(1) · ∥ṽ∗∥(cosψ(ṽ1, ṽ∗)− cosψ(ṽ2, ṽ
∗))

= o(1) · ∥ṽ∗∥⟨ ṽ1
∥ṽ1∥

− ṽ2
∥ṽ2∥

,
ṽ∗

∥ṽ∗∥
⟩

= o(1) · (−⟨w̃, ṽ∗⟩)
≤ o(1) · |⟨w̃, ṽ∗⟩| (93)

Therefore, ⟨w, ṽ∗⟩ = (1 + o(1))⟨w̃, ṽ∗⟩.

Let ηkl =
∑

πi=ek,π̂i=el
θi. Let µ(k)

a = ∥θ(k)a ∥1, a ∈ {L,U}, k ∈ [K]. Then,

ṽ1 = µ
(1)
L (µ

(1)
L , bµ

(2)
L , µ

(1)
U − η12 + bη21, bµ

(2)
U + η12 − bη21)

ṽ2 = µ
(2)
L (bµ

(1)
L , µ

(2)
L , bµ

(1)
U − bη12 + η21, µ

(2)
U + bη12 − η21)

ṽ∗ = θ∗(µ
(1)
L , bµ

(2)
L , µ

(1)
U − η12 + bη21, bµ

(2)
U + η12 − bη21)

Hence,

−⟨w̃, ṽ∗⟩ = ∥ṽ∗∥
( ⟨ṽ1ṽ∗⟩
∥ṽ1∥∥ṽ∗∥

− ⟨ṽ2ṽ∗⟩
∥ṽ2∥∥ṽ∗∥

)
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= ∥ṽ∗∥

(
1−

√
1− (1− b2)2(µ

(1)
L )2(µ

(2)
L )2

I1I2 − 4I2
3

∥ṽ1∥2∥ṽ2∥2

)
(94)

where

I1 = (µ
(1)
L )2 + (µ

(1)
U − η12)

2 + η221

I2 = (µ
(2)
L )2 + (µ

(2)
U − η21)

2 + η212

I3 = (µ
(1)
U − η12)η21 + (µ

(2)
U − η21)η12

Notice that

|I1I2 − 4I2
3 − ((µ

(1)
L )2 + (µ

(1)
U )2)((µ

(2)
L )2 + (µ

(2)
U )2)|

≤ ((µ
(1)
L )2 + (µ

(1)
U )2 + (µ

(2)
L )2 + (µ

(2)
U )2)(η212 + η221)

+ 2η12µ
(1)
U ((µ

(2)
L )2 + (µ

(2)
U )2) + 2η21µ

(2)
U ((µ

(1)
L )2 + (µ

(1)
U )2)

+ 4I2
3

≤ ((µ
(1)
L )2 + (µ

(1)
U )2 + (µ

(2)
L )2 + (µ

(2)
U )2)(η12 + η21)

2

+ 2η12µ
(1)
U ((µ

(2)
L )2 + (µ

(2)
U )2) + 2η21µ

(2)
U ((µ

(1)
L )2 + (µ

(1)
U )2)

+ 8(µ
(1)
U )2η221 + 8(µ

(2)
U )2η212

≤ ∥θ∥21(η12 + η21)
2 + 2∥θ∥31(η12 + η21) + 8∥θ∥21(η12 + η21)

2

≤ (9b̃20 + 2b̃0)∥θ∥41
= o(1) · ∥θ∥41 (95)

On the other hand,

((µ
(1)
L )2 + (µ

(1)
U )2)((µ

(2)
L )2 + (µ

(2)
U )2) ≥ 1

4
(µ

(1)
L + µ

(1)
U )2(µ

(2)
L + µ

(2)
U )2

=
1

4
∥θ(1)∥21∥θ(2)∥21

=
1

4
min
k∈[K]

∥θ(k)∥21 max
k∈[K]

∥θ(k)∥21

(By condition (9)) ≥ 1

4C2
max
k∈[K]

∥θ(k)∥41

≥ 1

64C2
∥θ∥41

(96)

Therefore,
I1I2 − 4I2

3 = (1 + o(1))((µ
(1)
L )2 + (µ

(1)
U )2)((µ

(2)
L )2 + (µ

(2)
U )2)

Similarly,

∥ṽ1∥2∥ṽ2∥2

(µ
(1)
L )2(µ

(2)
L )2

= (1 + o(1))((µ
(1)
L )2 + (µ

(1)
U )2 + (µ

(2)
L )2 + (µ

(2)
U )2)2

∥ṽ∗∥ = (1 + o(1))θ∗
√
(µ

(1)
L )2 + (µ

(1)
U )2 + (µ

(2)
L )2 + (µ

(2)
U )2
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Therefore,

−⟨w̃, ṽ∗⟩ = ∥ṽ∗∥

1−

√√√√1− (1 + o(1))(1− b2)2
((µ

(1)
L )2 + (µ

(1)
U )2)((µ

(2)
L )2 + (µ

(2)
U )2)

((µ
(1)
L )2 + (µ

(1)
U )2 + (µ

(2)
L )2 + (µ

(2)
U )2)2


=

1

2
(1 + o(1))θ∗(1− b2)2

((µ
(1)
L )2 + (µ

(1)
U )2)((µ

(2)
L )2 + (µ

(2)
U )2)

((µ
(1)
L )2 + (µ

(1)
U )2 + (µ

(2)
L )2 + (µ

(2)
U )2)1.5

= 2(1 + o(1))θ∗(1− b)2
((µ

(1)
L )2 + (µ

(1)
U )2)((µ

(2)
L )2 + (µ

(2)
U )2)

((µ
(1)
L )2 + (µ

(1)
U )2 + (µ

(2)
L )2 + (µ

(2)
U )2)1.5

(97)

We turn to ⟨w ◦ w, ṽ∗⟩.
Denote that

ν̃1 =
1

µ
(1)
L

ṽ1 = (µ
(1)
L , bµ

(2)
L , µ

(1)
U − η12 + bη21, bµ

(2)
U + η12 − bη21)

ν̃2 =
1

µ
(2)
L

ṽ2 = (bµ
(1)
L , µ

(2)
L , bµ

(1)
U − bη12 + η21, µ

(2)
U + bη12 − η21)

One simple but useful fact is that ∥ν̃1∥, ∥ν̃2∥ = O(∥θ∥1). The reason is that for k ∈ [K]

∥ν̃k∥ = O(∥ν̃k∥1) = O(µ
(1)
L + bµ

(2)
L + µ

(1)
U + bµ

(2)
U ) = O(∥θ∥1)

Notice that

w̃3 =
bµ

(1)
U − bη12 + η21

∥ν̃2∥
−
µ
(1)
U − η12 + bη21

∥ν̃1∥

= (bµ
(1)
U − bη12 + η21)(

1

∥ν̃2∥
− 1

∥ν̃1∥
)− 1− b

∥ν̃1∥
(µ

(1)
U − η12 − η21)

= −
bµ

(1)
U − bη12 + η21

∥ν̃1∥
(1− ∥ν̃1∥

∥ν̃2∥
)− 1− b

∥ν̃1∥
µ
(1)
U + o(1− b)

= −
bµ

(1)
U − bη12 + η21

∥ν̃1∥

(
1−

√
1− ∥ν̃2∥2 − ∥ν̃1∥2

∥ν̃2∥2

)
− 1− b

∥ṽ1∥
µ
(1)
U + o(1− b) (98)

Since

∥ν̃2∥2 − ∥ν̃1∥2 = (1− b2)((µ
(2)
L )2 + (µ

(2)
U − η21)

2 − (µ
(1)
L )2 − (µ

(1)
U − η12)

2)

= (1− b2)((µ
(2)
L )2 + (µ

(2)
U )2 − (µ

(1)
L )2 − (µ

(1)
U )2 + o(1) · ∥θ∥21) (99)

We have

w̃3 = −
bµ

(1)
U + o(1) · ∥θ∥1

∥ν̃1∥
1

2∥ν̃2∥2
(1− b2)((µ

(2)
L )2 + (µ

(2)
U )2 − (µ

(1)
L )2 − (µ

(1)
U )2 + o(1) · ∥θ∥21)

− 1− b

∥ν̃1∥
µ
(1)
U + o(1− b)

= −1− b

∥ν̃1∥
µ
(1)
U

(
1 +

(µ
(2)
L )2 + (µ

(2)
U )2 − (µ

(1)
L )2 − (µ

(1)
U )2

∥ν̃2∥2

)
+ o(1− b) (100)
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Since for all k ∈ [K], l ∈ [2K], |(vk − ṽk)l| = o(|1− b|)∥ṽk∥, we have |wk − w̃k| = o(|1− b|), k =

1, 2, ..., 2K. Hence, denote γ =
(µ

(2)
L )2+(µ

(2)
U )2−(µ

(1)
L )2−(µ

(1)
U )2

∥ν̃2∥2 , we obtain

w3 = −1− b

∥ν̃1∥
µ
(1)
U (1 + γ) + o(1− b) (101)

Similarly, we can show that

w1 = −1− b

∥ν̃1∥
µ
(1)
L (1 + γ) + o(1− b) (102)

w2 =
1− b

∥ν̃2∥
µ
(2)
L (1− γ) + o(1− b) (103)

w4 =
1− b

∥ν̃2∥
µ
(2)
U (1− γ) + o(1− b) (104)

As a result,

⟨w ◦ w, ν̃∗⟩

=
∑

a∈{L,U}

K∑
k=1

(
1− b

∥ν̃k∥
µ(k)
a (1− (−1)kγ) + o(1− b))2θ∗µ(k)

a

= θ∗(1− b)2
∑

a∈{L,U}

K∑
k=1

(
(µ

(k)
a )3(1− (−1)kγ)2

∥ν̃k∥2
+ 2o(1)

(µ
(k)
a )2(1− (−1)kγ)

∥ν̃k∥2
+ o(1)2

µ
(k)
a

∥ν̃k∥2

)
(105)

When ∥θ∥1 = o(1), the bounds (75) and (76′) both become trivial, so we can focus on the case
where ∥θ∥1 ≥ O(1).

In this case, (µ(k)
a )2(1−(−1)kγ)

∥ν̃k∥2 ≤ O(1), µ(k)
a

∥ν̃k∥2 ≤ O(1). On the other hand, for k ∈ [K],

∑
a∈{L,U}

(µ
(k)
a )3

∥ν̃k∥2
=

(µ
(k)
L )3 + (µ

(k)
U )3

∥ν̃k∥2

(Holder Inequality) ≥
(µ

(k)
L + µ

(k)
U )3

4∥ν̃k∥2

=
∥θ(k)∥31
4∥ν̃k∥2

≥
mink∈[K] ∥θ(k)∥31

4∥ν̃k∥2

(By (9)) ≥
maxk∈[K] ∥θ(k)∥31

4C3
2∥ν̃k∥2

≥ ∥θ∥31
4K3C3

2∥ν̃k∥2

≥ O(1) (106)

Since 1− γ and 1 + γ cannot be both o(1), we have∑
a∈{L,U}

K∑
k=1

(µ
(k)
a )3(1− (−1)kγ)2

∥ν̃k∥2
≥ O(1)
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Therefore,

⟨w ◦ w, ν̃∗⟩ = (1 + o(1))θ∗(1− b)2
∑

a∈{L,U}

K∑
k=1

(µ
(k)
a )3(1− (−1)kγ)2

∥ν̃k∥2

= (1 + o(1))4θ∗(1− b)2

·
((µ

(1)
L )3 + (µ

(1)
U )3)((µ

(2)
L )2 + (µ

(2)
U )2)2 + ((µ

(2)
L )3 + (µ

(2)
U )3)((µ

(1)
L )2 + (µ

(1)
U )2)2

((µ
(1)
L )2 + (µ

(1)
U )2 + (µ

(2)
L )2 + (µ

(2)
U )2)3

(107)

By (101) (102) (103) (104), maxk∈[2K] |wk| = O(1 − b) = o(1). Substituting this result together
with (97) and (107) into (90), we obtain

P(ŷ = 2|π∗ = e1)

= 2 exp

−(1− o(1))
(1− b)2

8
· θ∗ 4

∥θ(1)
L ∥3

1+∥θ(1)
U ∥3

1

(∥θ(1)
L ∥2

1+∥θ(1)
U ∥2

1)
2
+

∥θ(2)
L ∥3

1+∥θ(2)
U ∥3

1

(∥θ(2)
L ∥2

1+∥θ(2)
U ∥2

1)
2

 (108)

Similarly,

P(ŷ = 1|π∗ = e2)

≤ 2 exp

−(1− o(1))
(1− b)2

8
· θ∗ 4

∥θ(1)
L ∥3

1+∥θ(1)
U ∥3

1

(∥θ(1)
L ∥2

1+∥θ(1)
U ∥2

1)
2
+

∥θ(2)
L ∥3

1+∥θ(2)
U ∥3

1

(∥θ(2)
L ∥2

1+∥θ(2)
U ∥2

1)
2

 (109)

Therefore,

Risk(ŷ) ≤ 4 exp

−(1− o(1))
(1− b)2

8
· θ∗ 4

∥θ(1)
L ∥3

1+∥θ(1)
U ∥3

1

(∥θ(1)
L ∥2

1+∥θ(1)
U ∥2

1)
2
+

∥θ(2)
L ∥3

1+∥θ(2)
U ∥3

1

(∥θ(2)
L ∥2

1+∥θ(2)
U ∥2

1)
2

 . (110)

Taking C4 = 4, we conclude the proof.

K PROOF OF THEOREM 3

Theorem 3. Suppose the conditions of Corollary 1 hold, where b0 is properly small , and suppose
that Π̂U is b0-correct. Furthermore, we assume for sufficiently large constant C3, θ∗ ≤ 1

C3
, θ∗ ≤

mink∈[K] C3∥θ(k)L ∥1, and for a constant r0 > 0, mink ̸=ℓ{Pkℓ} ≥ r0. Then, there is a constant
c̃2 = c̃2(K,C1, C2, C3, c3, r0) > 0 such that [− log(c̃2Risk(ŷ))]/[− log(inf ỹ{Risk(ỹ)})] ≥ c̃2.

Proof. On one hand, for any k, k∗ ∈ [K], k ̸= k∗, using exactly the same proof as in Section J.1, we
can show that when C3 > C1,

inf
ỹ
(P(ŷ = k|π∗ = ek∗) + P(ŷ = k∗|π∗ = k))

≥ 1

2
exp
(
2

n∑
i=1

− 1

2(1− (θa)2)
3
2

(√
θ∗θiPkki

−
√
θ∗θiPk∗ki

)2)
(111)

where ki is the true label of node i, θa = maxi∈[n] maxk∈[K]

√
θ∗θiPkki

. According to DCBM
model and condition (8), θa ≤ C

C3
. Hence take C3 ≥

√
2C1, then

inf
ỹ
{Risk(ỹ)} ≥ max

k ̸=k∗∈[K]
inf
ỹ
(P(ŷ = k|π∗ = ek∗) + P(ŷ = k∗|π∗ = ek))
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≥ max
k ̸=k∗∈[K]

1

2
exp
(
−2

√
2

n∑
i=1

(√
θ∗θiPkki

−
√
θ∗θiPk∗ki

)2)
=

1

2
exp
(
−2

√
2θ∗ min

k ̸=k∗∈[K]

K∑
l=1

∥θ(l)∥1
(√

Pkl −
√
Pk∗l

)2)
(112)

Let B0 be the event that Π̂U is b0-correct. When inf ỹ{Risk(ỹ)} is replaced by the version condi-
tioning on B0, since X and A are independent, and B0 ∈ σ(A), conditioning on B0 or not does not
affect the distribution of X . On the other hand, for any k, k∗, since π∗ does not affect the distribution
of A, the distribution of A|B0, π

∗ = ek and A|B0, π
∗ = ek∗ are the same, so their Hellinger distance

is still 0. Hence, all the proofs in Section J and above remain unaffected. In other words, one does
not gain a lot of information from B0.

On the other hand, notice that proof of Theorem 2 still works conditioning on B0. In other words,
there exists constant C > 0, such that given B0, for any δ ∈ (0, 1/2), with probability 1 − δ,
simultaneously for 1 ≤ k ≤ K,

|ψ̂k(Π̂U )− ψk(Π̂U )| ≤ C

(√
log(1/δ)

∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}
+

∥θ(k)L ∥2

∥θ(k)L ∥1∥θ∥1

)
.

Define β̃k = ψk(Π̂U ). Replacing c0βn by β̃k and replicating the proof of Corollary 1 , we can show
that

P(ŷ ̸= k∗|B0, π
∗ = ek∗) ≤ C̄

K∑
k=1

exp
(
−C0

c20
β̃2
k∥θ∥1 ·min{θ∗, ∥θ(k)L ∥1}

)
Since θ∗ ≤ mink∈[K] C3∥θ(k)L ∥1, min{θ∗, ∥θ(k)L ∥1} ≥ min{1, 1

C3
}θ∗, therefore,

P(ŷ ̸= k∗|B0, π
∗ = ek∗) ≤ C̄

K∑
k=1

exp
(
−C0

c20
min{1, 1

C3
}β̃2

kθ
∗∥θ∥1

)
(113)

Recall that in (20) of Section G, we show that

β̃k = ψk(Π̂U ) ≥
√
(ek − ek∗)′M̃(ek − ek∗) (114)

By Lemma 6, denote

C5 = 8K2
√
KC2

2b0
∥θU∥1
∥θ∥1

(115)

Suppose that C5 ≤ 1
4 . Then, for any vector α ∈ Rk,

|α′M̃α| ≥ 1− 3C5

1− C5
|α′M̃ (0)α| ≥ 1

3
|α′M̃ (0)α| (116)

where recall that in Section G, we define

M (0) = P
(
G2

LL +G2
UU

)
P

DM(0) = diag(M
(0)
11 , ...,M

(0)
KK), and M̃ , M̃ (0) = D

− 1
2

M(0)M
(0)D

− 1
2

M(0)

Hence, when b0 is sufficiently small,

β̃2
k ≥ (ek − ek∗)′M̃(ek − ek∗) ≥ 1

3
|(ek − ek∗)′M̃ (0)(ek − ek∗)|

=
2

3

1−
M

(0)
kk∗√

M
(0)
kk

√
M

(0)
k∗k∗

 (117)
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Define λl =
√
∥θ(l)L ∥21 + ∥θ(l)U ∥21, l ∈ [K]. Then,

M
(0)
kk∗ =

K∑
l=1

λ2l PklPlk∗ =

K∑
l=1

λ2l PklPk∗l

M
(0)
kk =

K∑
l=1

λ2l PklPlk =

K∑
l=1

λ2l P
2
kl

M
(0)
k∗k∗ =

K∑
l=1

λ2l Pk∗lPlk∗ =

K∑
l=1

λ2l P
2
k∗l

Therefore, plugging the above result into (117), we have

β̃2
k ≥ 2

3

1−
M

(0)
kk∗√

M
(0)
kk

√
M

(0)
k∗k∗


=

2

3

1−
∑K

l=1 λ
2
l PklPk∗l√∑K

l=1 λ
2
l P

2
kl

√∑K
l=1 λ

2
l P

2
k∗l


=

2

3

1−

√√√√1−
(
∑K

l=1 λ
2
l P

2
kl)(
∑K

l=1 λ
2
l P

2
k∗l)− (

∑K
l=1 λ

2
l PklPk∗l)2

(
∑K

l=1 λ
2
l P

2
kl)(
∑K

l=1 λ
2
l P

2
k∗l)


≥ 1

3

(
∑K

l=1 λ
2
l P

2
kl)(
∑K

l=1 λ
2
l P

2
k∗l)− (

∑K
l=1 λ

2
l PklPk∗l)

2

(
∑K

l=1 λ
2
l P

2
kl)(
∑K

l=1 λ
2
l P

2
k∗l)

(118)

Notice that

(

K∑
l=1

λ2l P
2
kl)(

K∑
l=1

λ2l P
2
k∗l)− (

K∑
l=1

λ2l PklPk∗l)
2

=
∑

l,l̃∈[K]

λ2l λ
2
l̃
(PklPk∗ l̃ − Pkl̃Pk∗l)

2

≥
∑
l∈[K]

λ2l λ
2
k(PklPk∗k − PkkPk∗l)

2 +
∑
l∈[K]

λ2l λ
2
k∗(PklPk∗k∗ − Pkk∗Pk∗l)

2

(Identification Condition) =
∑
l∈[K]

λ2l

(
λ2k(Pkk∗Pkl − Pk∗l)

2 + λ2k∗(Pkl − Pkk∗Pk∗l)
2
)

(Cauchy-Schwartz) ≥
∑
l∈[K]

λ2l
1

1
λ2
k
+ 1

λ2
k∗

(
Pkk∗Pkl − Pk∗l + Pkl − Pkk∗Pk∗l

)2
=
∑
l∈[K]

λ2l
1

1
λ2
k
+ 1

λ2
k∗

(1 + Pkk∗)2(Pkl − Pk∗l)
2

≥ 1
1

minl∈[K] λ
2
l
+ 1

minl∈[K] λ
2
l

∑
l∈[K]

λ2l (Pkl − Pk∗l)
2

=
1

2
min
l∈[K]

λ2l
∑
l∈[K]

λ2l (Pkl − Pk∗l)
2 (119)

Substituting (119) into (118), we have

β̃2
k ≥ 1

6

minl∈[K] λ
2
l

∑
l∈[K] λ

2
l (Pkl − Pk∗l)

2

(
∑K

l=1 λ
2
l P

2
kl)(
∑K

l=1 λ
2
l P

2
k∗l)
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(By Condition (8)) ≥ 1

6C4
1

minl∈[K] λ
2
l

∑
l∈[K] λ

2
l (Pkl − Pk∗l)

2

(
∑K

l=1 λ
2
l )

2
(120)

On one hand, by Cauchy-Schwartz inequality,

λ2l = ∥θ(l)L ∥21 + ∥θ(l)U ∥21

≥ 1

2
(∥θ(l)L ∥1 + ∥θ(l)U ∥1)2

=
1

2
∥θ(l)∥21 (121)

So

min
l∈[K]

λ2l ≥ 1

2
(min
l∈[K]

∥θ(l)∥1)2

(By Condition (9)) ≥ 1

2
(
1

C2
max
l∈[K]

∥θ(l)∥1)2

≥ 1

2
(

1

KC2
∥θ∥1)2

=
1

2K2C2
2

∥θ∥21 (122)

On the other hand,
K∑
l=1

λ2l =

K∑
l=1

(∥θ(l)L ∥21 + ∥θ(l)U ∥21)

≤ (

K∑
l=1

∥θ(l)L ∥1 +
K∑
l=1

∥θ(l)U ∥1)2

= ∥θ∥21 (123)

Plugging (121), (122), (123) into (120), we obtain

β̃2
k ≥ 1

6C4
1

minl∈[K] λ
2
l

∑
l∈[K] λ

2
l (Pkl − Pk∗l)

2

(
∑K

l=1 λ
2
l )

2

≥ 1

6C4
1

1
2K2C2

2
∥θ∥21

∑
l∈[K]

1
2∥θ

(l)∥21(Pkl − Pk∗l)
2

(∥θ∥21)2

=
1

24K2C4
1C

2
2

∑
l∈[K] ∥θ(l)∥21(Pkl − Pk∗l)

2

∥θ∥21

≥ 1

24K2C4
1C

2
2

minl∈[K] ∥θ(l)∥1
∑

l∈[K] ∥θ(l)∥1(
√
Pkl −

√
Pk∗l)

2

∥θ∥21(
√
Pkl +

√
Pk∗l)

(By (9),min
k ̸=ℓ

{Pkℓ} ≥ r0) ≥
1

24K2C4
1C

2
2

1
C2

maxl∈[K] ∥θ(l)∥1
∑

l∈[K] ∥θ(l)∥1(
√
Pkl −

√
Pk∗l)

2

∥θ∥212
√
r0

≥ 1

24K2C4
1C

2
2

1
KC2

∥θ∥1
∑

l∈[K] ∥θ(l)∥1(
√
Pkl −

√
Pk∗l)

2

∥θ∥212
√
r0

=
1

48
√
r0K3C4

1C
3
2

∑
l∈[K] ∥θ(l)∥1(

√
Pkl −

√
Pk∗l)

2

∥θ∥1
(124)

Substituting (124) into (113), we obtain

P(ŷ ̸= k∗|B0, π
∗ = ek∗) ≤ C̄

K∑
k=1

exp
(
−C0

c20
min{1, 1

C3
}β̃2

kθ
∗∥θ∥1

)
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≤ C̄

K∑
k=1

exp
(
−C8θ

∗
K∑
l=1

∥θ(l)∥1(
√
Pkl −

√
Pk∗l)

2
)

(125)

where C8 = C0

c20
min{1, 1

C3
} 1
48

√
r0K3C4

1C
3
2
= min{1, 1

C3
} C0

48
√
r0K3c20C

4
1C

3
2

.

As a result,

1

C̄K2
Risk(ŷ|B0) =

1

C̄K2

K∑
k∗=1

P(ŷ ̸= k∗|B0, π
∗ = ek∗)

≤ 1

C̄K2

K∑
k∗=1

C̄

K∑
k=1

exp
(
−C8θ

∗
K∑
l=1

∥θ(l)∥1(
√
Pkl −

√
Pk∗l)

2
)

=
1

K2

K∑
k∗=1

K∑
k=1

exp
(
−C8θ

∗
K∑
l=1

∥θ(l)∥1(
√
Pkl −

√
Pk∗l)

2
)

≤ max
k ̸=k∗∈[K]

exp
(
−C8θ

∗
K∑
l=1

∥θ(l)∥1(
√
Pkl −

√
Pk∗l)

2
)

= exp
(
−C8θ

∗ min
k ̸=k∗∈[K]

K∑
l=1

∥θ(l)∥1(
√
Pkl −

√
Pk∗l)

2
)

(126)

Comparing (112) and (126), we have

− log( 1
2C̄K2Risk(ŷ|B0))

− log(inf ỹ{Risk(ỹ)})
≥ log(2) + C8I

log(2) + 2
√
2I

(127)

where I = θ∗ mink ̸=k∗∈[K]

∑K
l=1 ∥θ(l)∥1(

√
Pkl −

√
Pk∗l)

2 denotes the efficient information in the
data.

Notice that since I ≥ 0, when C8 ≥ 2
√
2, log(2)+C8I

log(2)+2
√
2I ≥ 1; when C8 ≤ 2

√
2, log(2)+C8I

log(2)+2
√
2I ≥

log(2)
C8
2
√

2
+C8I

log(2)+2
√
2I = C8

2
√
2

. Therefore,

− log( 1
2C̄K2Risk(ŷ|B0))

− log(inf ỹ{Risk(ỹ)})
≥ log(2) + C8I

log(2) + 2
√
2I

≥ min{1, C8

2
√
2
} (128)

Take c̃2 = min{1, C8

2
√
2
, 1
2C̄K2 }. Then c̃2 only depends on K,C1, C2, C3, c3, r0 (recall that both C0

and c0 only depend on K,C1, C2, C3, c3, r0, and C̄ = 2), and

− log(c̃2Risk(ŷ|B0))

− log(inf ỹ{Risk(ỹ)})
≥

− log( 1
2C̄K2Risk(ŷ|B0))

− log(inf ỹ{Risk(ỹ)})
≥ min{1, C8

2
√
2
} ≥ c̃2 (129)

This concludes our proof.

L PROOF OF THEOREM 4, 5

L.1 PROOF OF THEOREM 4

Theorem 4. Consider the DCBM model where (8)-(9) hold. We apply SCORE+ to obtain Π̂U\{i}
and plug it into the above algorithm. As n→ ∞, suppose for some constant q0 > 0 , mini∈U θi ≥
q0 maxi∈U θi, βn∥θU∥ ≥ q0

√
log(n), β2

n∥θ∥1 mini∈U θi → ∞, and β2
n∥θ∥1 mink{∥θ(k)L ∥1} → ∞.

Then, 1
|U|
∑

i∈U P(ŷi ̸= ki) → 0, so the in-sample classification algorithm in section 3 is consistent.
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Proof. Let i∗ = argmaxi∈U P(ŷi ̸= ki). Then

1

|U|
∑
i∈U

P(ŷi ̸= ki) ≤ P(ŷi∗ ̸= ki∗)

Notice that the assumptions of theorem 4 directly imply the assumptions of Corollary 2 when taking
i∗ as the new node. Hence, regard i∗ as the new node and leveraging on Corollary 2, we have

P(ŷi∗ ̸= ki∗) → 0

Therefore,
1

|U|
∑
i∈U

P(ŷi ̸= ki) → 0

In other words, the in-sample classification algorithm in section 3 is consistent.

L.2 PROOF OF THEOREM 5

Theorem 5. Suppose the conditions of Corollary 1 hold, where b0 is properly small , and suppose
that Π̂U\{i} is b0-correct for all i ∈ U . Furthermore, we assume for sufficiently large constant C3,

maxi∈U θi ≤ 1
C3

, maxi∈U θi ≤ mink∈[K] C3∥θ(k)L ∥1, log(|U|) ≤ C3β
2
n∥θ∥1 mini∈U θi, and for a

constant r0 > 0, mink ̸=ℓ{Pkℓ} ≥ r0. Then, there is a constant c̃21 = c̃21(K,C1, C2, C3, c3, r0) > 0
such that [− log(c̃21Riskins(ŷ))]/[− log(inf ỹ{Riskins(ỹ)})] ≥ c̃21, so the in-sample classification
algorithm in section 3 is efficient.

Proof. For i ∈ U , define individual risk Risk(ỹi) =
∑

k∗∈[K] P(ỹi ̸= k∗|πi = ek∗). Then the
in-sample risk Riskins(ỹ) =

1
|U|
∑

i∈U Risk(ŷi).

The minimizer of Riskins(ỹ) may not exist, so we define ỹ(0) to be an approximate minimizer such
that Riskins(ỹ(0)) ≤ 2 inf ỹ{Riskins(ỹ)}. By the definition of infimum, such ỹ(0) always exists as
long as inf ỹ{Riskins(ỹ)} > 0. Notice that for any i ∈ U , inf ỹ{Riskins(ỹ)} ≥ inf ỹi

1
|U|{Risk(ỹi)}.

Regarding node i as the new node and leveraging on (112), we know that inf ỹi
{Risk(ỹi)} > 0.

Hence, inf ỹ{Riskins(ỹ)} ≥ inf ỹi

1
|U|{Risk(ỹi)} > 0 (note that we are not taking n or |U| → ∞

here), and ỹ(0) is well-defined.

Let i∗ = argmaxi∈U Risk(ŷi), and let k∗ be the true label of i∗. Regard [n]\{i∗} as the existing
nodes in the network and i∗ as the new node. By (112) and (126), we have

− log(
1

2C̄K2
Risk(ŷi∗)) ≥ log(2) + C8Ii∗ (130)

− log({Risk(ỹ(0)i∗ )}) ≤ − inf
ỹi∗

log({Risk(ỹi∗)}) ≤ log(2) + 2
√
2Ii∗ (131)

where Ii∗ = θi∗ mink ̸=k∗∈[K](
∑K

l=1 ∥θ(l)∥1(
√
Pkl −

√
Pk∗l)

2 − θi∗(1 −
√
Pkk∗)2) denotes the

efficient information in the data for classifying node i∗.

As a result, we have

− log( 1
4C̄K2Riskins(ŷ))

− log(inf ỹ{Riskins(ỹ)})
≥

− log( 1
4C̄K2Riskins(ŷ))

− log( 12Riskins(ỹ
(0)))

=
− log( 1

4C̄K2
1
|U|
∑

i∈U Risk(ŷi))

− log( 1
2|U|

∑
i∈U Risk(ỹ)

(0)
i )
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≥
− log( 1

4C̄K2Risk(ŷi∗))

− log( 1
|2U|Risk(ỹ)

(0)
i∗ )

(By (130), (131)) ≥ log(4) + C8Ii∗
log(4) + 2

√
2Ii∗ + log(|U|)

(132)

Notice that

Ii∗

= θi∗ min
k ̸=k∗∈[K]

(

K∑
l=1

∥θ(l)∥1(
√
Pkl −

√
Pk∗l)

2 − θi∗(1−
√
Pkk∗)2)

≥ θi∗ min
k ̸=k∗∈[K]

(∥θ(k)∥1(
√
Pkk −

√
Pk∗k)

2 + ∥θ(k
∗)∥1(

√
Pkk∗ −

√
Pk∗k∗)2 − θi∗(1−

√
Pkk∗)2)

(By identification condition that Pkk = Pk∗k∗ = 1)

= θi∗ min
k ̸=k∗∈[K]

((∥θ(k)∥1 + ∥θ(k
∗)∥1 − θi∗)(1−

√
Pk∗k)

2)

(The true label of node i∗ is k∗)

≥ θi∗ min
k ̸=k∗∈[K]

(∥θ(k)∥1(1−
√
Pk∗k)

2) (133)

By assumption 8, for any k ∈ [K],

(1−
√
Pk∗k)

2 =
(1− Pk∗k)

2

(1 +
√
Pk∗k)2

=
(2− 2Pk∗k)

2

4(1 +
√
Pk∗k)2

(By identification condition that Pkk = Pk∗k∗ = 1)

=
(Pkk + Pk∗k∗ − 2Pk∗k)

2

4(1 +
√
Pk∗k)2

=
((ek − ek∗)′P (ek − ek∗))2

4(1 +
√
Pk∗k)2

≥ (|λmin(P )|∥ek − ek∗∥2)2

4(1 +
√
C1)2

≥ β2
n

(1 +
√
C1)2

(134)

By assumption 9, for any k ∈ [K]

∥θ(k)∥1 ≥ min
k ̸=k∗∈[K]

∥θ(k)∥1

≥ 1

C2
max

k ̸=k∗∈[K]
∥θ(k)∥1

≥ 1

KC2

∑
k ̸=k∗∈[K]

∥θ(k)∥1

=
1

KC2
∥θ∥1 (135)

From the assumption, log(|U|) ≤ C3β
2
n∥θ∥1 mini∈U θi. Plugging (134) (135) into (133), we obtain

Ii∗ ≥ θi∗ min
k ̸=k∗∈[K]

(
1

KC2(1 +
√
C1)2

β2
n∥θ∥1)

≥ 1

KC2(1 +
√
C1)2

β2
n∥θ∥1 min

i∈U
θi
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≥ 1

KC2C3(1 +
√
C1)2

log(|U|) (136)

In other words,
log(|U|) ≤ KC2C3(1 +

√
C1)

2Ii∗ (137)

Substituting (137) into (132), we have

− log( 1
4C̄K2Riskins(ŷ))

− log(inf ỹ{Riskins(ỹ)})
≥ log(4) + C8Ii∗

log(4) + (2
√
2 +KC2C3(1 +

√
C1)2)Ii∗

(138)

Similar to the proof of Theorem 3, notice that since Ii∗ ≥ 0, when C8 ≥ 2
√
2+KC2C3(1+

√
C1)

2,

log(4) + C8Ii∗
log(4) + (2

√
2 +KC2C3(1 +

√
C1)2)Ii∗

≥ 1 (139)

; when C8 ≤ 2
√
2 +KC2C3(1 +

√
C1)

2,

log(4) + C8Ii∗
log(4) + (2

√
2 +KC2C3(1 +

√
C1)2)Ii∗

≥
log(4) C8

2
√
2+KC2C3(1+

√
C1)2

+ C8Ii∗

log(4) + (2
√
2 +KC2C3(1 +

√
C1)2)Ii∗

=
C8

2
√
2 +KC2C3(1 +

√
C1)2

(140)

Therefore,

− log( 1
4C̄K2Riskins(ŷ))

− log(inf ỹ{Riskins(ỹ)})
≥ log(4) + C8Ii∗

log(4) + (2
√
2 +KC2C3(1 +

√
C1)2)Ii∗

≥ min{1, C8

2
√
2 +KC2C3(1 +

√
C1)2

} (141)

Take c̃21 = min{1, C8

2
√
2+KC2C3(1+

√
C1)2

, 1
4C̄K2 }. Then c̃21 only depends on K,C1, C2, C3, c3, r0

(recall that both C0 and c0 only depend on K,C1, C2, C3, c3, r0, and C̄ = 2), and

− log(c̃21Riskins(ŷ))

− log(inf ỹ{Riskins(ỹ)})
≥

− log( 1
4C̄K2Riskins(ŷ))

− log(inf ỹ{Riskins(ỹ)})

≥ min{1, C8

2
√
2 +KC2C3(1 +

√
C1)2

}

≥ c̃21 (142)

This concludes our proof.
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