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ABSTRACT
The Dialogue-level Aspect-based Sentiment Quadruple analysis
(DiaASQ) task has recently received attention in the Aspect-Based
Sentiment Analysis (ABSA) field. It aims to extract (target, aspect,
opinion, sentiment) quadruples from multi-turn and multi-party
dialogues. Compared to previous ABSA tasks focusing on text such
as sentences, the DiaASQ task involves more complex contextual
information and corresponding relations between terms, as well as
longer sequences. These characteristics challenge existing meth-
ods that struggle to model explicit span-level interactions or have
high computational costs. In this paper, we propose a span-pair
interaction and tagging method to solve these issues, which in-
cludes a novel Span-pair Tagging Scheme (STS) and a simple and
efficient Multi-level Representation Model (MRM). STS simplifies
the DiaASQ task to a span-pair tagging task and explicitly captures
complete span-level semantics by tagging span pairs. MRM effi-
ciently models the dialogue structure information and span-level
interactions by constructing multi-level contextual representation.
Besides, we train a span ranker to improve the running efficiency of
MRM. Extensive experiments on multilingual datasets demonstrate
that our method outperforms existing state-of-the-art methods.

CCS CONCEPTS
• Information systems→ Sentiment analysis; • Computing
methodologies→ Natural language processing.

KEYWORDS
Natural language processing, Aspect-based sentiment analysis,
Quadruple extraction, Dialogue scene
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1 INTRODUCTION
Aspect-Based Sentiment Analysis (ABSA) is a crucial research field
in natural language processing, which aims to determine the senti-
ment polarities towards specific aspects of targets [18, 23]. ABSA
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How to choose Xiaomi and iPhone?

Decisive iPhone 13, with no lag when playing games, but
iPhone 12 has serious frame drops. I bought both, real experience.

Don't buy Xiaomi 11, it is very hot when charging, annoying ...

I've used mix 4, at least it's not as hot as 11.

A

Assets

Target Aspect Opinion Sentiment
iPhone 13 playing games no lag positive
iPhone 12 playing games serious frame drops negative
iPhone 12 screen so-so negative
Xiaomi 11 charging very hot negative

mix 4 charging not as hot positive

I couldn't agree more, and the screen feels so-so. 

quadruples
C

D

C

B

Figure 1: An example of a DiaASQ task. The capital letters A,
B, C, and D identify the speakers. Dotted lines with arrows
show the reply relations between utterances. The quadruple
consists of three terms (i.e., target, aspect, opinion) and a
sentiment polarity.

has found wide applications in E-commerce platforms, where it
helps improve products and services based on customer feedback
from web content.1 In recent years, there has been a growing trend
of discussing products and services through multi-turn and multi-
party dialogues on social media platforms such as Twitter and
Weibo. However, existing ABSA methods [2, 5, 16, 17, 19, 20, 22,
29, 35] primarily focus on text-level ABSA tasks, analyzing individ-
ual texts such as sentences and documents while ignoring more
complex and dynamic dialogue scenes.

To address this limitation and promote the development of dialogue-
level ABSA, Li et al. [14] proposed the Dialogue-level Aspect-based
Sentiment Quadruple analysis (DiaASQ) task. This task aims to ex-
tract (target, aspect, opinion, sentiment) quadruples from multi-turn
and multi-party dialogues, as illustrated in Figure 1. Compared to
text-level ABSA tasks, DiaASQ exhibits the following characteris-
tics: 1) More complex contextual information resulting from the
structure of multi-turn and multi-party dialogues. 2) More com-
plex corresponding relations between terms resulting from more
types of terms (a new term target). 3) Longer sequences due to the
inclusion of multiple utterances in dialogue. These characteristics
challenge existing methods in addressing the DiaASQ task.

1Relevance to theWeb: ABSA belongs to Sentiment analysis and opinion mining Topic
ofWebMining and Content Analysis Track, which aims to analyze and extract structural
sentiment information from web content. The works involved in this paper aim to
make web content more harmless and helpful for online shopping and communication.
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's battery

life is not6
iPhone

battery

life

is

not

good

's

iPhone

battery

life

is

not

's

iPhone 6

battery life

not good

(iPhone 6, battery life)

(battery life, not good)

(iPhone 6, not good)

(iPhone 6, battery life, not good, Sentiment?)

token-level matrix

good

. .

t2t

t2t

good .

O

T

A

h2h

t2t

h2h

h2h

Terms Term relations

decoding

 positive? negative? Sentiment polarity

incomplete span-level semantic modeling!

6

6 iPhone

...

not

battery life

...

(iPhone, iPhone 6, battery life)

(iPhone, battery life, battery life is)

(iPhone 6, not, not good)

(iPhone 6, battery life, not good)

invalid

invalid

negative

invalid

...
...

...

...
...

...

enumerate
spans

enumerate
triplets

...

not good

battery life is

high time complexity!  label sparsity! 

Size:

iPhone

battery

life

is

not

's

good

.

6
iPhone 6

Figure 2: Left: Token-pair tagging method proposed by Li et al. [14]. The T/A/O label denotes the target/aspect/opinion term.
The h2h and t2t identify the relation between spans by aligning the head and tail tokens between spans. The sentiment polarity
label is attached to the h2h and t2t labels between the target and opinion terms. Right: Span-level enumeration method.

Token-pair tagging is a popular method for text-level ABSA
tasks [4, 17, 26, 34], and Li et al. [14] extended the classical token-
pair tagging method GTS [26] for the DiaASQ task. As illustrated
on the left side of Figure 2, given a dialogue snippet containing 𝑁
tokens, the method first extracts terms, relations, and sentiment
polarities by tagging each token pair in an 𝑁 ×𝑁 token-level matrix
and then decodes quadruples from the extracted results. However,
the token-pair tagging method cannot capture complete se-
mantic information of spans due to the lack of span-level
modeling and interactions. For example, this method identifies
the token pair (iPhone, not) with negative sentiment and the (6,
good) with positive sentiment, leading to failure to determine the
sentiment polarity of the quadruple. The complex contextual infor-
mation and corresponding relations between terms in the DiaASQ
task exacerbate the issue. To this end, some works [6, 10, 28] pro-
posed span-level enumeration methods to capture the complete
span-level semantic information. However, this method leads to
high computational costs and label sparsity problems due to
themore types of terms and longer sequences involved in the
DiaASQ task.. As shown on the right side of Figure 2, this method
enumerates spans to create a span list of size 𝐿 = 𝑁 (𝑁 + 1)/2.
Then, it arranges spans into (target, aspect, opinion) triplets and pre-
dicts their sentiment polarities, leading to a high time complexity
(𝑂 (𝐿3)). Besides, the abundant invalid triplets cause label sparsity
problems that hinder training from reaching optimal performance.

In this paper, we propose a span-pair interaction and tagging
method, comprising a novel Span-pair Tagging Scheme (STS) and a
simple and efficient Multi-level Representation Model (MRM), to
solve the issues of the above two kinds of methods. In contrast to
previous works of tagging token pairs, STS can explicitly capture
complete span-level semantic information by tagging span pairs in
the span-level matrix. Meanwhile, MRM generates the 𝐿 × 𝐿 span-
level matrix by modeling the multi-level information. Compared
to the span-level enumeration method, MRM exhibits stable time
complexity at𝑂 (𝐿2) and does not increase with the number of term
types.

Concretely, STS extracts target, aspect, and opinion terms by
tagging the span-level matrix diagonal. It also extracts the type of
relations between terms and sentiment polarities by tagging the
strictly upper triangular region of the matrix. Then, STS decodes

quadruples under the verification of terms and the type of relations
between terms. Furthermore, MRM models the dialogue structure
information at the token level by self-attention mechanism [24] and
models interactions between spans at the span level by Hadamard
product operation, respectively. It enumerates all spans and con-
structs a 𝐿 × 𝐿 span-level matrix. Then, it obtains quadruples with
the help of STS. The simple structure of MRM ensures the 𝑂 (𝐿2)
time complexity. Besides, we train a span ranker to improve the
running efficiency of MRM. It further optimizes the time complex-
ity to 𝑂 (𝐾2) by selecting the top 𝐾 spans to reduce the size of the
matrix from 𝐿 × 𝐿 to 𝐾 × 𝐾 (𝐾 ≪ 𝐿, 𝐾 < 𝑁 , 𝑁 is the number of
tokens, and 𝐿 is the number of spans). Our contribution can be
summarized as follows:

(1) We design a Span-pair Tagging Scheme (STS) that explicitly
capture complete span-level semantic information by tagging span
pairs rather than token pairs. To our best knowledge, this is the
first time to solve the dialogue-level ABSA task by tagging span
pairs.

(2) We propose a simple and efficient Multi-level Representation
Model (MRM), which explicitly models the dialogue information
and the interactions between spans at the token and span level,
respectively. Besides, we train a span ranker to make MRM run
more efficiently than previous models.

(3) We conduct extensive experiments on multilingual DiaASQ
datasets. The experimental results demonstrate that our method
outperforms the state-of-the-art methods.2

2 RELATEDWORK
2.1 Text-level Aspect-Based Sentiment Analysis
Text-level Aspect-Based Sentiment Analysis (ABSA) is a fine-grained
sentiment analysis problem that aims to determine the opinion
and sentiment polarity at the aspect level from sentences or doc-
uments [12, 18, 23, 33, 36]. Early works focused on single ABSA
tasks such as Aspect Term Extraction (ATE) [19, 25] and Aspect
Sentiment Classification (ASC) [8, 15, 27]. However, recent studies
have explored compound ABSA tasks such as Aspect-Opinion Pair

2The code and datasets is located in Anonymous GitHub: https://anonymous.4open.
science/r/WWW24-ID259.
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Extraction (AOPE) [11, 26, 35], Aspect Sentiment Triplet Extrac-
tion (ASTE) [13, 26, 28, 34], and Aspect Sentiment Quad Prediction
(ASQP) [3, 30] due to their practicality. Next, we will focus on the
ASTE task and provide a detailed explanation of its methods as
it is most relevant to the DiaASQ task. ASTE is a prevalent com-
pound ABSA task that aims to extract (aspect, opinion, sentiment)
triplets from texts such as sentences [22]. Wu et al. [26] proposed
the Grid Tagging Scheme (GTS) for the ASTE task. GTS extracts
aspect terms, opinion terms, and sentiment polarities by tagging
token pairs. To alleviate the boundary insensitivity and relation
inconsistency problems of GTS, Zhang et al. [34] and Liang et al.
[17] proposed Boundary-Driven Table-Filling (BDTF) and Span
TAgging and Greed infErence (STAGE) methods, respectively. How-
ever, these methods cannot explicitly capture complete span-level
semantic information because they all belong to the token-pair
tagging scheme. To this end, span-level enumeration methods are
proposed [6, 10, 28]. This method enumerates all spans, arranges
them into (aspect, opinion) pairs, and predicts their sentiment po-
larities. Xu et al. [28] proposed an end-to-end model, Span-ASTE,
which includes a dual-channel span pruning strategy to ease the
high computational cost. Chen et al. [6] proposed a span-level bidi-
rectional network to extract triplets from both aspect-to-opinion
and opinion-to-aspect directions. Feng et al. [10] infused syntax
knowledge into the span-level enumeration method. However, the
time complexity of the span-level enumeration methods increases
exponentially with the increase of the term types.

2.2 Dialogue-level Aspect-based Sentiment
Quadruple Analysis

In recent years, there has been a proliferation of conversational
scenes on social media platforms. Individuals increasingly use posts
and comments on sites such as Twitter and Weibo to discuss prod-
ucts and services in a dialogue format. In order to promote the
development of ABSA in dialogue scenarios, Li et al. [14] proposed
the Dialogue-level Aspect-based Sentiment Quadruple analysis (Di-
aASQ) task and annotated large-scale datasets in both Chinese and
English. The DiaASQ task aims to extract (target, aspect, opinion,
sentiment) quadruples given multi-turn and multi-party dialogues.
Compared with text-level ABSA, DiaASQ adds the new term target,
which denotes words or phrases that refer to the evaluated object,
such as iPhone 6. Li et al. [14] proposed an end-to-end token-pair
tagging method based on GTS [26]. The method models the dia-
logue information by a multi-head attention mechanism [24] and
designs a new token-pair tagging scheme. However, it still cannot
explicitly capture the complete span-level semantic information.
Besides, Li et al. [14] evaluated the span-level enumeration method
on the DiaASQ task. However, high computational costs and label
sparsity problems caused by characteristics of the DiaASQ task
degrade its performance and efficiency. Before the span pair-level
method proposed in this paper, no work could still efficiently model
full span-level semantics in the DiaASQ task.

3 METHODOLOGY
3.1 Task Formulation
A dialogue contains multiple utterances𝐷 = (𝑢1, 𝑢2, · · · , 𝑢 |𝐷 | ) with
the corresponding reply sequence 𝑅𝑒 = (𝑟𝑒1, 𝑟𝑒2, · · · , 𝑟𝑒 |𝐷 | ) and

T

O

T

iPhone 13

no lag

playing
games

iPhone 12

serious frame
drops

screen

so-so

iPhone 1
3

no lag
iPhone 1

2

scr
een so-so

......

.....
.

.....
.

......

A

O

AOA

O

TA

AO

TA

TA

AO

Decoding

(iPhone 13, playing games, no lag, positive)
(iPhone 12, playing games, serious frame drops, negative)
(iPhone 12, screen, so-so, negative)

play
ing

gam
es

ser
ious fr

am
e

drops

TO-
POS

TO-
NEG

TO-
NEG

Figure 3: An example of span-pair tagging. Due to the space
constraints, we selected a few candidate spans from Figure 1
to form the span-level matrix.

speaker sequence 𝑆𝑝 = (𝑠𝑝1, 𝑠𝑝2, · · · , 𝑠𝑝 |𝐷 | ), where 𝑟𝑒𝑖 denotes the
index of the utterance that the 𝑖-th utterance replies to and 𝑠𝑝𝑖
denotes the speaker identity of the 𝑖-th utterance3. The goal of
the DiaASQ task is to extract all (target, aspect, opinion, sentiment)
quadruples in 𝐷 . The quadruple set is denoted as:

𝑄 = {(𝑡𝑘 , 𝑎𝑘 , 𝑜𝑘 , 𝑝𝑘 )}
|𝑄 |
𝑘=1, (1)

where 𝑡 , 𝑎, and 𝑜 are spans from origin dialogue𝐷 and represent tar-
get, aspect, and opinion term, respectively. 𝑝 ∈ {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑜𝑡ℎ𝑒𝑟 }
is sentiment polarity.

3.2 Span-pair Tagging Scheme
In this section, we first introduce the definition of span-pair la-
bels. Then, we provide a straightforward decoding process. Finally,
we summarize several differences between the Span-pair Tagging
Scheme (STS) and the token-pair tagging scheme proposed by Li
et al. [14] to further emphasize the advantages of STS.

3.2.1 The Definition of Span-pair Labels. 1) Term Types: We use
the T, A, and O labels to denote the target, aspect, and opinion
terms. For example, the screen is an aspect term if the span pair
(screen, screen) is tagged with A. 2) Relations between Terms: We
use TA, AO, and TO labels to denote the three relations between
terms, namely target-aspect relation, aspect-opinion relation, and
target-opinion relation. For example, if the span pair (iPhone 12,
screen) is tagged with TA, the relation between iPhone 12 and screen
is a target-aspect relation. 3) Sentiment Polarities: We use POS,
NEG, and OTH labels to denote the positive, negative, and other
sentiment polarities. To ensure consistency in the tagging scheme,
3The | ∗ | denotes the number of elements in the collection ∗.
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we attach sentiment labels to the TO label to form TO-POS, TO-
NEG, and TO-OTH labels. For example, there is a target-opinion
relation with positive sentiment if the span pair (iPhone 13, no lag)
is tagged with TO-POS. All span-pair labels are as follows:

{T,A,O,TA,AO,TO-POS,TO-NEG,TO-OTH,None}. (2)

Figure 3 shows a matrix tagged by span-pair labels. It is worth
noting that labels {T,A,O} are only in the matrix diagonal, while
labels {TA,AO,TO-POS, TO-NEG,TO-OTH} are only in the strictly
upper triangular region of the matrix.

3.2.2 The Decoding Process. The design of span-pair labels makes
the decoding process more straightforward and intuitive. When
decoding quadruples, we first obtain the (target, aspect, opinion)
triplets under the supervision of labels {T, A, O} and {TA, AO}. Then,
we filter invalid triplets and identify sentiment polarities by labels
{TO-POS, TO-NEG, TO-OTH}. The detailed decoding process and
algorithm are in the Appendix A.

3.2.3 Differences from Token-pair Tagging Scheme. Li et al. [14]
first applied the token-pair tagging scheme to the DiaASQ task by
retrofitting the GTS [26]. For convenience, we refer to the token-pair
tagging scheme proposed by Li et al. [14] as the GTS-Dia scheme.
Our STS differs from the GTS-Dia scheme in the following ways:

(1) The granularity of tagging is different. STS tags at the
span level, while GTS-Dia scheme tags at the token level. Therefore,
STS can explicitly capture the complete semantics of spans and
model the span-level interactions while the GTS-Dia scheme fails.

(2) The difficulty of tagging is different. The labels {T,A,O}
and labels {TA,AO,TO-POS, TO-NEG,TO-OTH} are distributed
across different regions of the span-level matrix in the STS, which
reduces the difficulty of tagging. In other words, the model can
narrow down the choice of labels by identifying whether two spans
in a span pair are the same or not. In contrast, in the GTS-Dia
scheme, all labels will likely appear in the strictly upper triangular
region of the token-level matrix, making tagging more challenging.

(3) The difficulty and efficiency of decoding are different.
The decoding process of STS is both straightforward and intu-
itive thanks to the design of span-pair labels, as mentioned in
section 3.2.2. However, the GTS-Dia scheme requires a human-
designed heuristic algorithm for complicated situations. One such
issue is the difficulty in determining the correspondence between
h2h and t2t labels. Besides, it can be tricky to determine the senti-
ment polarity when the sentiment labels attached to h2h and t2t
are different. These issues complicate the decoding process of the
GTS-Dia scheme.

3.3 Multi-level Representation Model
Figure 4 shows an overview of ourMulti-level RepresentationModel
(MRM).

Token Encoding: We use Pre-trained Language Models (PLMs)
as the contextual encoder of the dialogue 𝐷 = (𝑢1, 𝑢2, · · · , 𝑢 |𝐷 | ).
In order to take full advantage of the capabilities of the PLMs, the
whole dialogue 𝐷 with < 𝑠 > and < /𝑠 > is fed into the PLMs:

𝐼 = (< 𝑠 >, 𝑢1, < /𝑠 >, · · · , < 𝑠 >, 𝑢 |𝐷 | , < /𝑠 >), (3)

H = (h1, h2, · · · , h |𝐼 | ) = PLMs(𝐼 ), (4)

PLMs

Input Dialogue

...

...

...

...
...

Span
Ranker

...

quadruple set

Token
Encoding

Span
Generating

&
Pruning

Span pair
Generating

&
Classifying

Deocding

Speaker Attention Reply Attention

...

...

Figure 4: Multi-level Representation Model.

where < 𝑠 > and < /𝑠 > denote special tokens of PLMs, h𝑖 denotes
the contextual representation of the 𝑖-th token of input sequence
𝐼 . We construct the reply mask M𝑅𝑒 and speaker mask M𝑆𝑝 to
denote the reply sequence 𝑅𝑒 and speaker sequence 𝑆𝑝 , respectively.
Following previous work [14], we use multi-head self-attention
mechanisms [24] to infuse this information:

H∗ = Masked-MultiHead-Attn
(
Q,K,V,M∗)

= softmax
(
(Q𝑇K) ⊙ M∗

√
𝑑

)
V,

(5)

where ∗ ∈ {𝑅𝑒, 𝑆𝑝}, Q = K = V = H, ⊙ denotes Hadamard product
operation, and 𝑑 denotes the hidden size. Next, we use the MaxPool-
ing operation to obtain the contextual representations of tokens
with dialogue structure information:

H𝑓 = (h𝑓1 , h
𝑓

2 , · · · , h
𝑓

|𝐼 | ) = MaxPooling(H𝑅𝑒 ,H𝑆𝑝 ). (6)

Span Generating & Pruning: We obtain the span list 𝑆𝐿 by
enumerating all spans. Then, we define the contextual representa-
tion of each span by infusing boundary and width information and
obtain the span’s contextual representation list S corresponding to
𝑆𝐿:

s𝑖 = [h𝑓START(𝑠𝑝𝑎𝑛𝑖 ) , h
𝑓

END(𝑠𝑝𝑎𝑛𝑖 ) ,wembℓ ],
S = (s1, s2, ..., s𝐿),

(7)
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where 𝑠𝑝𝑎𝑛𝑖 ∈ 𝑆𝐿 denotes the 𝑖-th span, 𝐿 = |𝑆𝐿 | = |S| denotes
the total number of spans, START(𝑠𝑝𝑎𝑛𝑖 ) and END(𝑠𝑝𝑎𝑛𝑖 ) denotes
the index of the start and end token for the 𝑖-th span, and wembℓ
denotes the learnable embeddings of width ℓ = |END(𝑠𝑝𝑎𝑛𝑖 ) −
START(𝑠𝑝𝑎𝑛𝑖 ) +1|. In order to improve running efficiency, we train
a Span Ranker (It will be described below) to prune 𝑆𝐿 and S. The
Span Ranker gives the score of term types for 𝑠𝑝𝑎𝑛𝑖 :

𝑠𝑐𝑜𝑟𝑒𝑖 = 𝑃 (T|𝑠𝑝𝑎𝑛𝑖 ) + 𝑃 (A|𝑠𝑝𝑎𝑛𝑖 ) + 𝑃 (O|𝑠𝑝𝑎𝑛𝑖 ), (8)

where 𝑃 (T|𝑠𝑝𝑎𝑛𝑖 ) denotes the probability that the 𝑖-th span is pre-
dicted as the target term. Then, we use the contextual represen-
tations of the top 𝐾 spans with the highest score to form a new
contextual representation list:

S𝑡𝑜𝑝 = {s1, s2, · · · , s𝐾 }, (9)

where |S𝑡𝑜𝑝 | = 𝐾 ≪ 𝐿.
Span pair Generating & Classifying To model the span-level

interactions and the distance information between spans, we con-
struct the contextual representation of each span pair as:

p𝑖, 𝑗 = [s𝑖 , s𝑗 , s𝑖 ⊙ s𝑗 , dembℓ ], (10)

where dembℓ denotes the learnable embeddings of distance ℓ =

𝑚𝑖𝑛( |END(𝑠𝑝𝑎𝑛 𝑗 )−START(𝑠𝑝𝑎𝑛𝑖 ) |, |START(𝑠𝑝𝑎𝑛 𝑗 )−END(𝑠𝑝𝑎𝑛𝑖 ) |),
1 ≤ 𝑖 ≤ 𝑗 ≤ 𝐾 and s𝑖 , s𝑗 ∈ S𝑡𝑜𝑝 . The contextual representations
of all span pairs form the upper triangular matrix of size 𝐾 × 𝐾 .
We apply a Multi-Layer Perception (MLP) to predict the probability
distribution of labels:

𝑃 (𝑦𝑖, 𝑗 ) = softmax(MLP(p𝑖, 𝑗 )), (11)

where the label 𝑦𝑖, 𝑗 is distributed among nine categories, as shown
in Formula 2.

Decoding Finally, we obtain all quadruples from the tagged
span-level matrix with the help of STS.

3.4 Span Ranker
We train a Part-Of-Speech-aware (POS-aware) Span Ranker to
score candidate spans within the MRM. Like the MRM, we con-
catenate utterances by special tokens of PLMs and feed them into
PLMs to obtain the initial contextual representation of tokens
H = (h1, h2, · · · , h |𝐼 | ), as shown in Formulas 3 and 4.

In fact, the type of term is closely related to its POS. For example,
the target term is generally a proper noun or noun phrase, and the
opinion term is generally an adjective or adjective phrase. Therefore,
we enumerate all spans and obtain their boundary POS information
using natural language processing tools (NLTK4 for English and
Jieba5 for Chinese). Besides, we use the AveragePooling operation
to obtain the overall semantic representation of each span. The
final contextual representation of each span is as follows:

s𝑠𝑟
𝑎,𝑏

= [h𝑎, pemb𝑝𝑜𝑠𝑎 , h𝑏 , pemb𝑝𝑜𝑠𝑏 ,wemb |𝑏−𝑎+1 | ,

AveragePooling(h𝑎, h𝑎+1, · · · , h𝑏 )],
(12)

where superscript 𝑠𝑟 is the abbreviation for Span Ranker, pemb𝑝𝑜𝑠
denotes the learnable embedding of POS 𝑝𝑜𝑠 , and 𝑝𝑜𝑠𝑎 denotes the

4https://www.nltk.org/
5https://github.com/fxsjy/jieba

Table 1: Statistics of DiaASQ dataset. The “Intra” denotes the
intra-utterance quadruples, where terms come from the same
utterances. The “Inter” denotes the inter-utterance quadru-
ples, where terms come from different utterances. The “Avg”
is the abbreviation for Average.

Datasets ZH EN

Dialogue 1,000 1,000
Utterance 7,452 7,452

Target 8,308 8,264
Aspect 6,572 6,434
Opinion 7,051 6,933

Quadruple 5,742 5,514
Intra 4,467 4,287
Inter 1,275 1,227

Avg. of #Word per dialogue 206 181
Avg. of #Utterance per dialogue 7.45 7.45
Avg. of #Quadruple per dialogue 15 14

POS of the 𝑎-th token. We apply a MLP to predict the probability
distribution of labels:

𝑃 (𝑦𝑠𝑟
𝑎,𝑏

) = softmax(MLP(s𝑠𝑟
𝑎,𝑏

)), (13)

where the label 𝑦𝑠𝑟
𝑎,𝑏

∈ {T,A,O,None}.

3.5 Training
For the MRM, the loss function is defined using the span pair-level
cross-entropy loss:

L = −
𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖

𝑦𝑖, 𝑗 log(𝑃 (𝑦𝑖, 𝑗 )) . (14)

For the Span Ranker, the loss function is defined using the span-
level cross-entropy loss:

L𝑠𝑟 = −
|𝐼 |∑︁
𝑎=1

|𝐼 |∑︁
𝑏=𝑎

𝑦𝑠𝑟
𝑎,𝑏

log(𝑃 (𝑦𝑠𝑟
𝑎,𝑏

)). (15)

4 EXPERIMENTS
4.1 Dataset and Metrics
We conducted experiments on the DiaASQ dataset [14] derived
from posts and comments on the Chinese social media platform
Weibo 6. The dataset is in the mobile phone domain and includes
Chinese (ZH) and English (EN) versions. Table 1 lists the statistics
of the dataset.

Following previous works [14], we take identification-F1 (iden-
F1 for short) [1] and micro-F1 as measurements for evaluating the
DiaASQ task. The micro-F1 measures the whole quadruple, while
iden-F1 does not distinguish the sentiment polarity. We also test
the span match and pair extraction subtasks using exact-F1, where
a prediction is only correct if the extracted span or pair matches
the ground truth exactly. Besides, we use macro-F1 to measure the
performance of Span Ranker.
6https://weibo.com
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Table 2: Main results on Chinese (ZH) and English (EN) datasets. The “T/A/O” is the abbreviation of Target/Aspect/Opinion.
The “ICL” denotes in-context learning. The “/” means that models cannot execute the span match task. The “±” denotes the
standard deviation of our results. The Micro-F1 in the DiaASQ task is our main measure.

Span Match (F1) Pair Extraction (F1) DiaASQ (Main)

T A O TA TO AO Iden-F1 Micro-F1

ZH

CRF-Extract-Classify 91.11 75.24 50.06 32.47 26.78 18.90 9.25 8.81
SpERT 90.69 76.81 54.06 38.05 31.28 21.89 14.19 13.00
ParaPhrase / / / 37.81 34.32 27.76 27.98 23.27
Span-ASTE / / / 44.13 34.46 32.21 30.85 27.42
BDTF-Dia 91.08 76.24 60.88 51.41 49.33 52.58 41.06 34.22
GTS-Dia 90.23 76.94 59.35 48.61 43.31 45.44 37.51 34.94
ChatGPT (5-shot ICL) 68.78 57.87 36.45 34.98 42.48 27.43 20.59 18.41

Ours 91.49±0.21 77.10±0.30 61.24±0.55 53.56±0.54 50.29±0.22 53.26±0.64 42.82±0.37 40.59±0.36

EN

CRF-Extract-Classify 88.31 71.71 47.90 34.31 20.94 19.21 12.80 11.59
SpERT 87.82 74.65 54.17 28.33 21.39 23.64 13.38 13.07
ParaPhrase / / / 37.22 32.19 30.78 26.76 24.54
Span-ASTE / / / 42.19 30.44 45.90 28.34 26.99
BDTF-Dia 88.60 73.37 62.53 49.26 47.55 49.95 38.80 31.81
GTS-Dia 88.62 74.71 60.22 47.91 45.58 44.27 36.80 33.31
ChatGPT (5-shot ICL) 68.05 53.22 45.08 28.76 37.24 25.36 17.17 15.26

Ours 89.00±0.71 75.09±0.68 63.57±1.07 55.12±0.89 53.11±0.29 56.52±1.15 47.61±0.78 43.80±0.76

4.2 Baselines
Because DiaASQ is a new task, Li et al. [14] redesigned several
existing methods and proposed a new token-pair tagging method,
GTS-Dia, based on GTS [26]. We redesign another token-pair tag-
gingmethod, BDTF-Dia, based on the table representation approach
of the BDTF [34]. Besides, we utilize the few-shot in-context learn-
ing method to evaluate the ChatGPT 7. The detailed settings for
ChatGPT are in Appendix B. All baselines are as follows:

Token-pair TaggingMethods: GTS-Dia [14] and BDTF-Dia [34].
Span-level Enumeration Method: Span-ASTE [28].
Few-shot In-Context Learning Method: ChatGPT.
Other Methods: CRF-Extract-Classify [2], SpERT [9], and Para-

Phrase [31].

4.3 Experimental Settings
All fine-tuned models use the Roberta-Large [21] and Chinese-
Roberta-wwm-base [7] as PLMs for English and Chinese datasets.
For our MRM, we set 𝐾 = 128. The max length of the span is 10. We
select the model with the highest micro-F1 scores on the validation
set for the test set. Our experiments run on a single Nvidia RTX
3090 GPU with 24GB of memory, and all experimental results are
the average values over five runs under the seed list [0, 1, 2, 3, 4].

4.4 Main Results
We compare our model against baselines in the DiaASQ task using
micro-F1 and iden-F1 scores. Besides, we also evaluate the per-
formance of our model in two sub-tasks (Span Match and Pair
Extraction). Table 2 presents these results.

7https://chat.openai.com/

For the DiaASQ task, our model shows considerable and sta-
ble performance improvements, surpassing the previous state-of-
the-art GTS-Dia by an average of 8.06% in iden-F1 and 8.07% in
micro-F1 scores across two languages. We attribute these gains to
our span-pair tagging scheme and the consideration of our model
on the three characteristics of DiaASQ tasks mentioned in the In-
troduction. For the Pair Extraction task, our model achieves the
best performance, reflected by exact-F1 scores exceeding 50% for
TA, AO, and TO extraction on Chinese and English datasets. These
improvements highlight the effectiveness of our model in capturing
relations between terms through span-level interactions. Besides,
the performance of Span-ASTE is unsatisfactory despite modeling
span-level interactions. The reason is that the enumerated triplets
are mostly invalid, leading to a severe label sparsity problem. The
problem further prevents Span-ASTE from training toward the op-
timal solution. For the Span Match task, our model achieves an
overall performance improvement in both languages. Furthermore,
the performance of all models is poor in the Opinion Match task.
The phenomenon is related to the diverse expressions of opinion.

Besides, we use 5-shot in-context learning to evaluate the per-
formance of ChatGPT. On the one hand, ChatGPT performs better
than CRF-Extract-Classify and SpERT in many cases, demonstrat-
ing its potential in resource-constrained scenarios. On the other
hand, it still falls short compared to most PLMs-based fine-tuned
models. The performance sharply decreases when dealing with
complex tasks such as DiaASQ, indicating that ChatGPT strug-
gles with understanding complex structured sentiment information.
This conclusion is consistent with the observations of Zhang et al.
[32] and Zhao et al. [37].

6
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Table 3: Ablation results.

Model ZH EN

MRM 40.59 43.80
w/o all modules 36.80(↓3.79) 38.62(↓5.18)
w/o H𝑆𝑝 & H𝑅𝑒 39.35(↓1.24) 42.53(↓1.27)

w/o H𝑆𝑝 40.45(↓0.14) 42.89(↓0.91)
w/o H𝑅𝑒 40.53(↓0.06) 43.00(↓0.80)

w/o wemb 40.41(↓0.18) 41.46(↓2.34)
w/o demb 40.08(↓0.51) 43.57(↓0.23)
w/o s𝑖 ⊙ s𝑗 38.71(↓1.88) 40.80(↓3.00)

Span Ranker 82.95 81.99
w/o pemb 82.62(↓0.33) 81.58(↓0.41)

Table 4: Results on complex scenarios.

Model Overall D1 D2 D3

ZH
GTS-Dia 34.94 30.19(↓4.75) 14.81(↓20.13) 25.29(↓9.65)
BDTF-Dia 34.22 30.53(↓3.69) 32.98(↓1.24) 35.40(↑1.18)
Ours 40.59 37.62(↓2.97) 42.34(↑1.75) 40.37(↓0.22)

EN
GTS-Dia 33.31 26.95(↓6.36) 31.25(↓2.06) 32.85(↓0.46)
BDTF-Dia 31.81 30.00(↓1.81) 30.69(↓1.12) 30.89(↓0.92)
Ours 43.80 43.09(↓0.71) 42.76(↓1.04) 42.97(↓0.83)

5 FURTHER ANALYSIS
5.1 Ablation Study
We conduct ablation studies to verify the effectiveness of different
modules in MRM, using the micro-F1 scores in the DiaASQ task as
the measure. Besides, we study the impact of POS information in
the Span Ranker, using the macro-F1 scores in three span match
subtasks as the measure.

As shown in Table 3, each module positively functions on MRM.
Our model performs better than the state-of-the-art baseline even
without all modules, demonstrating that MRM benefits from the
span-pair tagging scheme. Specifically, the performance of MRM
degrades on both Chinese and English datasets when removing
speaker and reply attention modules H𝑆𝑝 and H𝑅𝑒 , demonstrating
the necessity of dialogue structure information. The speaker and
reply sequence can provide relevant information between utter-
ances. Besides, MRM needs the width information of spans due
to the imbalanced distribution of the width of terms, so removing
the wemb hurts the performance. After removing the distance in-
formation between spans demb, our model cannot perceive the
relative distance between spans in span pairs, so the performance
drops. MRM can explicitly model the span-level interactions by
Hadamard product 𝑠𝑖 ⊙ 𝑠 𝑗 . Removing 𝑠𝑖 ⊙ 𝑠 𝑗 makes the performance
of MRM sharply degrade. Finally, we study the effect of POS in Span
Ranker. The performance improvement of the Span Ranker gains
from POS information pemb is limited. One possible reason is that
PLMs acquired substantial POS knowledge during pre-training.
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Figure 5: Analysis results with respect to 𝐾 on the English
dataset. In the second line chart, recall@𝐾 denotes the ratio
of the number of terms in the top𝐾 spans to the total number
of terms; Label sparsity@𝐾 denotes the ratio of the number
of None labels to the total number of labels in the 𝐾 × 𝐾

matrix; Label num@𝐾 denotes the overall number of labels
in the 𝐾 ×𝐾 matrix. The results of the Chinese dataset are in
Appendix C.

5.2 Detailed Study on Complex Scenarios
To verify the ability of our model to deal with complex scenarios,
we conduct the three subsets of the test set: 1)D1: each dialogue in
the D1 contains inter-utterance quadruples. 2)D2: the number of
quadruples for each dialogue in theD2 is not less than 15. 3)D3: the
number of utterances for each dialogue in the D3 is not less than 8.
TheD1,D2, andD3 accounted for 68%, 14%, and 48% of the ZH test
set and 32%, 32%, and 48% of the EN test set. We compare the perfor-
mance of our model with GTS-Dia and BDTF-Dia on the DiaASQ
task, and the micro-F1 scores are in Table 4. The performance of
GTS-Dia sharply drops when facing complex scenarios. BDTS-Dia
performs more stablely than GTS-Dia, but the performance is still
unsatisfactory. In contrast, our model exhibits a stable and consid-
erable performance when facing complex scenarios, outperforming
the GTS-Dia and BDTF-Dia in all cases. The phenomenon suggests
that our model is more effective in 1) capturing inter-utterance de-
pendencies, 2) handling complex corresponding relations between
terms caused by abundant quadruples, and 3) handling longer se-
quences.

5.3 Effect of 𝐾 value
The 𝐾 value denotes the number of remaining spans after pruning,
determining the size of the span-level matrix. We study the effect
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A: 'OnePR 9Pro ?', B: 'The battery life is not good , plus the overheat [ eat melon ]', C: 'Have you used it ?', D: 'Holding the
OnePlus 9P , the heat is really hot, and the power consumption is also very large, especially after updating the 12 system', E: "The
battery life of the x3 is OK.", F: 'One plus has become an abandoned ship , it is better to buy the findx3 series'.

Ground Truth / Ours:
{OnePR 9Pro, battery life, not good, negative}, {OnePlus 9P, heat, hot, negative}, {OnePlus 9P, power consumption, very large,
negative}, {x3, battery life, OK, positive}

GTS-Dia:
{OnePR 9Pro, battery life,    good, positive},  {OnePlus 9P, heat, hot, negative}, {OnePlus 9P,            consumption, very large, negative},
{x3, battery life, OK, positive}

Figure 6: An example predicted by GTS-Dia and our model.

Table 5: TimeComplexity. The𝑁 , 𝐿, and𝐾 denote the number
of tokens, spans, and remaining spans after pruning, where
𝐿 ≫ 𝑁 and 𝐿 ≫ 𝐾 . We ignore the dimension of vector repre-
sentations for convenience. It is worth noting that our span
pruning strategy implemented by the Span Ranker differs
from the span pruning strategy of the Span-ASTE.

Model Time Complexity

GTS-Dia 𝑂 (𝑁 2)
Span-ASTE 𝑂 (𝑁 2) +𝑂 (𝐾3) = 𝑂 (max(𝑁 2, 𝐾3))
w/o span pruning 𝑂 (𝑁 2) +𝑂 (𝐿3) = 𝑂 (𝐿3)
Ours 𝑂 (𝑁 2) +𝑂 (𝐾2) = 𝑂 (max(𝑁 2, 𝐾2))
w/o span pruning 𝑂 (𝐿2)

of the 𝐾 value on the English dataset, as depicted in Figure 5. We
selected the model with the best performance in the validation
dataset to evaluate the test dataset.

Specifically, the performance of our model is suboptimal with a
small 𝐾 value, such as 16. The reason is that a small 𝐾 corresponds
to a low recall, indicating that abundant terms do not appear in
the 𝐾 × 𝐾 matrix. Subsequently, our model achieves state-of-the-
art performance as 𝐾 increases due to increased recall and label
number. However, the performance does not infinitely increase
with the increase of 𝐾 . The reasons for this phenomenon are as
follows: 1) the high label sparsity makes it difficult for the model to
converge to the optimal solution during training; 2) The number
of non-None labels has an upper bound. Besides, the training time
of our model positively correlates with the 𝐾 value. Our model
exhibits extremely high training efficiency when 𝐾 is less than
256. In conclusion, our model demonstrates superior performance
compared to GTS-Dia and Span-ASTE regarding effectiveness and
efficiency, provided that a suitable value of 𝐾 is chosen (such as 64
and 128).

5.4 Analysis of Time Complexity
Table 5 shows the time complexity of the three models. On the
one hand, our model outperforms the Span-ASTE with or without
using the span pruning strategy because we construct the span-
level matrix rather than enumerating all spans and triplets, which
leads to Span-ASTE’s 𝑂 (max(𝑁 2, 𝐾3)) time complexity. On the
other hand, GTS-Dia has 𝑂 (𝑁 2) time complexity due to its token-
level matrix. The time complexity of our model is slightly worse

at𝑂 (max(𝑁 2, 𝐾2)) because we enumerate spans and construct the
span-level matrix. In practice, the time complexity of our model
is optimized to 𝑂 (𝑁 2) due to 𝐾 < 𝑁 . Besides, the Span Ranker
accelerates the enumeration of spans in MRM by caching the span
indices so that the running speed of our model is faster than GTS-
Dia.

5.5 Case Study
In order to better understand the capacity of our model, we illus-
trate a case study using GTS-Dia and our model. As shown in Fig-
ure 6, our model can correctly extract all quadruples while GTS-Dia
fails. Concretely, GTS-Dia ignores the not and wrongly identifies
the sentiment polarity by tagging the token pairs (𝑂𝑛𝑒𝑃𝑅,𝑔𝑜𝑜𝑑)
and (9𝑃𝑟𝑜, 𝑔𝑜𝑜𝑑) when extracting the first quadruple. In the third
quadruple, GTS-Dia wrongly extracts consumption rather than
power consumption. The reason is that GTS-Dia cannot capture
the complete span-level semantics. In contrast, our model correctly
extracts quadruples by tagging the span pairs.

6 CONCLUSIONS AND FUTUREWORK
This paper proposes a novel span-pair interaction and tagging
method for the Dialogue-level Aspect-based Sentiment Quadruple
analysis (DiaASQ) task, which includes a novel Span-pair Tagging
Scheme (STS) and a simple and efficient Multi-level Representation
Model (MRM). The STS explicitly captures the complete span-level
semantics by tagging span pairs in a span-level matrix. MRM enu-
merates spans and constructs a span-level matrix of span pairs
based on the STS, explicitly modeling the dialogue information
and the span-level interactions. Besides, we train a Span Ranker to
improve the running efficiency of the MRM. Extensive experiments
on the DiaASQ datasets demonstrate the superiority of our method.

There are also several potential limitations in this work. When
K is small, the Span Ranker may filter out some terms from the
candidate span list with the result that they cannot appear in the
span-level matrix. These errors further limit the performance of
final quadruple decoding. In the future, we will extend our work
and develop an end-to-end framework to solve this issue under
the premise of efficiency. Besides, there is mutual supervision in-
formation between span-pair labels in the span-level matrix. We
plan to apply contrastive learning to model label-level supervision
information.
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A QUADRUPLE DECODING
The quadruple decoding details are shown in Algorithm 1. Firstly,
we extract all target, aspect, and opinion terms using the predicted
label of span pairs only located in the matrix diagonal. Secondly,
we extract all relations between terms and sentiment polarities
using the predicted label of span pairs only located in the strictly
upper triangular region of the matrix. Thirdly, we decode all (target,
aspect, opinion) triplets by the extracted terms and target-aspect and
aspect-opinion relations. Finally, we verify all triplets and obtain
their sentiment polarities by the extracted target-opinion relations
with sentiment polarities.

Algorithm 1 Quadruple Decoding for DiaASQ

Input: Span-level tagging matrix 𝑃 = {..., 𝑦𝑖, 𝑗 , ...} with length 𝐾 ,
where 𝑦𝑖, 𝑗 denotes the predicted label; Label set {T, A, O, TA,
AO, TO-POS, TO-NEG, TO-OTH}; The function I2S() denoting
the mapping from Span Index to Span String.

Output: quadruples set Q2
1: Initialize sets T = {}, A = {}, O = {}, TA = {}, AO = {},

Q1 = {}, Q2 = {} and dict TO = {};
2: # 1. decoding term types from main diagonal region of 𝑃 .
3: T = {𝑖 | 𝑦𝑖,𝑖 = T, 0 ≤ 𝑖 < 𝐾}
4: A = {𝑖 | 𝑦𝑖,𝑖 = A, 0 ≤ 𝑖 < 𝐾}
5: O = {𝑖 | 𝑦𝑖,𝑖 = O, 0 ≤ 𝑖 < 𝐾}
6: # 2. decoding relations between terms and sentiment polarities

from the strictly upper triangular region of 𝑃 .
7: TA = {(𝑖, 𝑗) | 𝑦𝑖, 𝑗 = TA, 𝑖 ∈ T , 𝑗 ∈ A, 0 ≤ 𝑖 < 𝑗 < 𝐾} ∪

{( 𝑗, 𝑖) | 𝑦𝑖, 𝑗 = TA, 𝑖 ∈ A, 𝑗 ∈ T , 0 ≤ 𝑖 < 𝑗 < 𝐾}
8: AO = {(𝑖, 𝑗) | 𝑦𝑖, 𝑗 = AO, 𝑖 ∈ A, 𝑗 ∈ O, 0 ≤ 𝑖 < 𝑗 < 𝐾} ∪

{( 𝑗, 𝑖) | 𝑦𝑖, 𝑗 = AO, 𝑖 ∈ O, 𝑗 ∈ A, 0 ≤ 𝑖 < 𝑗 < 𝐾}
9: TO = {{(𝑖, 𝑗) : ∗} | 𝑦𝑖, 𝑗 = TO-∗, 𝑖 ∈ T , 𝑗 ∈ O, 0 ≤ 𝑖 < 𝑗 <

𝐾, ∗ ∈ {POS, NEG, OTH}}
10: TO = TO ∪ {{( 𝑗, 𝑖) : ∗} | 𝑦𝑖, 𝑗 = TO-∗, 𝑖 ∈ O, 𝑗 ∈ T , 0 ≤ 𝑖 <

𝑗 < 𝐾, ∗ ∈ {POS, NEG, OTH}}
11: # 3. obtaining quadruples
12: Q1 = {(𝑎, 𝑏, 𝑐) | (𝑎, 𝑏) ∈ TA, (𝑏, 𝑐) ∈ AO}
13: Q2 = {(I2S(𝑎), I2S(𝑏), I2S(𝑐), 𝑠) | (𝑎, 𝑏, 𝑐) ∈ Q1, (𝑎, 𝑐) ∈

TO .𝑘𝑒𝑦𝑠 (), 𝑠 = TO[(𝑎, 𝑐)]}
14: return Q2

B PROMPT DESIGN FOR CHATGPT
We use the gpt-3.5-turbo-16K model of the OpenAI public API (ver-
sion up to July 10) and design a prompt elaborately to test the
performance on the DiaASQ task. The prompt (i.e., the input of
ChatGPT) includes three parts:

1) Instruction. We use instruction to guide the ChatGPT what
it needs to do. Our instruction is as follows:

Given a conversation as input, you need to extract all (Target,
Aspect, Opinion, Sentiment) quads.

Meanwhile, we attach five annotations to the instructions so
that the ChatGPT better understands the DiaASQ task. These an-
notations are summarized from the annotation rules of DiaASQ
datasets [14], as shown in Table 6.

2) Demonstrations
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Figure 7: Analysis results with respect to 𝐾 on the Chinese
dataset.

We achieve the few-shot in-context learning of ChatGPT by
adding demonstrations. We use the 5-shot in-context learning due
to the limitations of the input length. Each demonstration includes
a dialogue as input and a two-dimension list as a quadruple set.

3) Tested Sample The tested sample is the sample ChatGPT
need to test. Compared with the demonstration, the tested sample
lacks the quadruple set.

The above three parts constitute the input of ChatGPT.We expect
ChatGPT to output a two-dimensional list as a quadruple set of the
tested sample. An example is shown in Table 6.

C EFFECT OF K VALUE ON THE CHINESE
DATASET

As shown in Figure 7, the effect of K value on the Chinese dataset
and English dataset is similar.
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1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 6: An example of prompt for ChatGPT.

Input

instruction

Given a conversation as input, you need to extract all (Target, Aspect, Opinion, Sentiment) quads.
(1) Target represents the object to be described, such as mobile phone models, mobile phone
brands, operating system, processor, etc. Besides, a demonstrative pronoun or general reference
words can not be annotated as targets. For example, the word phone is not a target. (2) A noun
phrase that indicates a specific aspect of the target should be annotated as a aspect. If multiple
contiguous words indicate a fine-grained aspect, they should be annotated together as a whole
aspect. For example, screen brightness instead of screen should be annotated as an aspect.
Similarly, fast charge chip external frequency and screen size should be labeled as one aspect,
respectively. (3) Words to express positive or negative or other emotional tendencies can be
annotated as opinions, such as bad, wrong and good. (4) The opinions can reflect the sentiment
orientation towards an aspect. The sentiment polarity of this task is divided into positive, negative
, and other. In other words, The value range of Sentiment is [positive, negative, other]. (5) Target
, Aspect and Opinion must be substring from the input.

demonstrations

Input:
{‘turn’: 0, ‘speaker’: 0, ‘utterance’: ‘Trust me , buying an old Apple is the best for your needs’}
{‘turn’: 1, ‘speaker’: 1, ‘utterance’: ‘That charging speed , battery , signal can be used ?’}
{‘turn’: 2, ‘speaker’: 0, ‘utterance’: “Why ca n’t it be used”}
{‘turn’: 3, ‘speaker’: 2, ‘utterance’: “As far as his cognitive level is concerned , do n’t need Apple ,
Nokia is enough”}

{‘turn’: 4, ‘speaker’: 3, ‘utterance’: ‘Signal is bad’}
{‘turn’: 5, ‘speaker’: 4, ‘utterance’: ‘Battery ? Charge ?’}
Target-Aspect-Opinion-Sentiment Quads:
[[‘Apple’, ‘charging’, ‘can be used’, ‘other’], [‘Apple’, ‘battery’, ‘can be used’, ‘other’],
[‘Apple’, ‘signal’, ‘can be used’, ‘other’], [‘Apple’, ‘Signal’, ‘bad’, ‘negative’]]

Input:
......
Target-Aspect-Opinion-Sentiment Quads:
......

tested sample

Input:
{‘turn’: 0, ‘speaker’: 0, ‘utterance’: ‘Why sister Yi change back to Xiaomi ?’}
{‘turn’: 1, ‘speaker’: 1, ‘utterance’: ‘find n ready to sell , no need for two phones’}
{‘turn’: 2, ‘speaker’: 2, ‘utterance’: ‘Does the folding screen not good to use , sister Yi ?’}
{‘turn’: 3, ‘speaker’: 1, ‘utterance’: “It ’s easy to use , but compared to the Xiaomi 11ultra
flagship machine that is good in all aspects , some things are not good enough , such as taking
pictures and charging, so I took the two mobile phones out together , and I found that I used
Xiaomi more often ."}

{‘turn’: 4, ‘speaker’: 3, ‘utterance’: ‘He has always used Xiaomi’}
{‘turn’: 5, ‘speaker’: 0, ‘utterance’: ‘He changed to OPPO some time ago’}
Target-Aspect-Opinion-Sentiment Quads:

Output quadruples
[[‘find n’, ‘taking pictures’, ‘not good’, ‘negative’], [‘find n’, ‘charging’, ‘not good’, ‘negative’],
[‘Xiaomi 11ultra’, ‘taking pictures’, ‘not good’, ‘positive’], [‘Xiaomi 11ultra’, ‘charging’,
‘not good’, ‘positive’]]
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