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Abstract

Data duplication within large-scale corpora often impedes large language models’
(LLMs) performance and privacy. In privacy-concerned federated learning scenar-
ios, conventional deduplication methods typically rely on trusted third parties to
perform uniform deletion, risking loss of informative samples while introducing
privacy vulnerabilities. To address these gaps, we propose Federated ReWeighting
(FedRW), the first privacy-preserving framework, to the best of our knowledge, that
performs soft deduplication via sample reweighting instead of deletion in federated
LLM training, without assuming a trusted third party. At its core, FedRW proposes
a secure, frequency-aware reweighting protocol through secure multi-party com-
putation, coupled with a parallel orchestration strategy to ensure efficiency and
scalability. During training, FedRW utilizes an adaptive reweighting mechanism
with global sample frequencies to adjust individual loss contributions, effectively
improving generalization and robustness. Empirical results demonstrate that Fe-
dRW outperforms the state-of-the-art method by achieving up to 28.78× speedup
in preprocessing and approximately 11.42% improvement in perplexity, while
offering enhanced security guarantees. FedRW thus establishes a new paradigm
for managing duplication in federated LLM training.
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Figure 1: Deduplication in Federated Learning (FL). (a) Challenges of global deduplication in
decentralized settings: privacy constraints prohibit direct data sharing. (b) State-of-the-art solution
utilizing hard deduplication over encrypted data, requiring a trusted third party.
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1 Introduction

Large language models (LLMs) [1–5] have driven remarkable progress across a wide range of appli-
cations [6–9]. However, their performance fundamentally depends on data quality, yet real-world
corpora often suffer from noise, bias, and especially redundancy. Among these issues, duplicated
sequences are particularly widespread in large text datasets [10, 11], weakening generalization
and encouraging memorization. This not only hinders downstream performance but also increases
vulnerability to privacy attacks such as model inversion, prompt injection, and membership infer-
ence [12–15]. As a result, data deduplication has become a standard preprocessing step in training
pipelines. Existing techniques fall into two categories: hard deduplication, which removes duplicates
via exact or fuzzy matching (e.g., suffix arrays, MinHash) [16, 17]; and soft deduplication, which
reweights samples to preserve dataset integrity and avoid brittle thresholding [18–22].

Meanwhile, the growing scarcity of high-quality public data and rising concerns over data privacy [23]
have brought federated learning (FL) [24] to the forefront as a compelling alternative for LLM training.
By enabling collaborative learning across decentralized clients without local data sharing, FL naturally
supports privacy preservation and improved utilization of high-value private data. Yet, FL introduces
unique challenges for deduplication, presented in Figure 1(a). Unlike centralized settings, global
redundancy across clients cannot be directly resolved due to privacy constraints. A fundamental
dilemma emerges: local deduplication fails to detect inter-client duplicates, while global mechanisms
cannot bypass privacy silos, leaving redundancy unresolved in federated settings.

Abadi et al. [25]’s EP-MPD represents the most state-of-the-art work for federated hard deduplication,
a robust cryptographic framework built on group private set intersection [26], as illustrated in
Figure 1(b). Nonetheless, key challenges remain unresolved: (1) strict removal of samples may
discard informative or domain-specific content beneficial to model training; (2) multi-round key
agreement and encryption introduce significant computational and communication overhead; and
(3) reliance on a trusted third party for both encryption and duplicate counting reduces feasibility in
stricter privacy settings.

To address the issues mentioned above, we propose Federated ReWeighting (FedRW), to the best of
our knowledge, the first framework that enables privacy-preserving soft deduplication in federated
LLM training without relying on any trusted third party. Unlike state-of-the-art method that discards
duplicated samples, FedRW pioneers a new paradigm of secure, frequency-aware sample reweighting,
enabling fine-grained control over sample redundancy while ensuring strict privacy guarantees. At the
core of FedRW lies a novel protocol, Privacy-Preserving Multi-Party Reweighting (PPMPR), which
securely identifies global duplication patterns across clients through a series of lightweight, third-party-
free two-party interactions. To ensure scalability, we further introduce a parallel orchestration strategy
that organizes the pairwise interactions into a hierarchical schedule, significantly reducing protocol
complexity. Comprehensive experiments demonstrate that FedRW improves both preprocessing
efficiency and model generalization, particularly in data-scarce and resource-constrained federated
settings. In summary, the key contributions are:

• FedRW Framework. Duplicate or overly frequent samples in federated LLM training
lead to inefficiency and privacy leakage, especially when deletion-based solutions are
impractical. To the best of our knowledge, we propose FedRW, the first framework to achieve
privacy-preserving soft deduplication in federated LLM training. Unlike hard deletion
methods, FedRW introduces secure, frequency-aware sample reweighting, establishing a
new paradigm that bridges privacy protection and data-centric optimization.

• PPMPR Protocol. We design PPMPR, a secure protocol for global frequency estimation
without relying on a trusted third party. To scale to practical settings, we further introduce
a parallel orchestration strategy that reduces the total protocol complexity from O(n2)
to O(2⌈log2 n⌉), achieving 17.61-28.78× acceleration on large datasets and 4.09-28.78×
speedup in preprocessing when scaled to 50 parties.

• Experimental Evaluation. We conduct extensive empirical studies across diverse datasets
and model configurations. By adaptive reweighting, FedRW yields approximately 11.42%
perplexity reduction over the baseline, with particularly enhanced robustness under data-
scarce and resource-constrained federated settings, where hard deduplication methods often
exhibit apparent limitations.
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2 Related Work

This section reviews data deduplication, categorizing centralized and distributed approaches. We
emphasize the limitations in distributed settings, which motivates our proposed FedRW framework.

Centralized Deduplication. Centralized deduplication is crucial for large text corpora, which
often contain substantial exact or near-exact samples [10, 11] that degrade model performance
and compromise privacy [11, 13–15, 25]. Techniques for exact matching commonly include suffix
arrays [16, 27], while fuzzy matching typically employs MinHash for syntactic similarity [11, 16, 17].
Semantic duplication can be identified using pretrained reference models [20, 22, 28].

Instead of removing duplicates, soft deduplication methods reweight training data to mitigate redun-
dancy while preserving the integrity and valuable diversity of datasets. For instance, RedPajama-
Data-v2 [29] leverages over 40 quality metrics for systematic filtering and reweighting. DoReMi [20]
derives domain-specific weights estimated by a proxy model. Methods like SoftDedup [22] and
DSIR [21] quantify sample commonness or importance via n-grams. DrICL [30] uses differentiated
learning and cumulative advantages for dynamic reweighting. RHO-1 [31] employs token-level
scoring with Selective Language Modeling. However, these centralized strategies are not directly
applicable to privacy-concerned FL environments, which effectively leverage high-quality private
data.

Distributed Deduplication. Deduplication in FL faces unique challenges due to privacy constraints
and data silos. Existing work DupLESS [32] proposes encrypted deduplication using a dual-server
architecture, one for encryption key derivation and one for ciphertext deduplication. The state-of-
the-art, EP-MPD [25], introduces a group private set intersection framework built on symmetric-key
encryption [26] and oblivious pseudorandom functions [33], but still relies on a trusted third party.
Critically, these methods focus solely on hard deduplication, neglecting the benefits of reweighting
strategies that better preserve data utility and potentially enhance model performance.

These limitations highlight the need for a decentralized soft deduplication solution that ensures
privacy without relying on trusted third parties. To this end, we propose an efficient, secure, and
third-party-free reweighting framework for federated LLM training, delivering enhanced scalability,
performance, and robustness while also ensuring stronger privacy guarantees.

3 Preliminaries

Causal Language Models. Causal language models are autoregressive architectures that estimate
the joint probability of a token sequence by expressing it into a chain of conditional probabilities:

P (x1, x2, . . . , xn) =

n∏
i=1

P (xi | x<i), (1)

where P (xi | x<i) is probability of token xi given its historical context x<i. Model training
minimizes the cross-entropy loss to maximize the likelihood of contextually consistent sequences:

L = − 1

n

n∑
i=1

logP (xi | x<i; θ) , (2)

where n is the sequence length and θ the model parameters. Perplexity is the standard evaluation
metric, calculated as the exponentiated average negative log-likelihood over the sequence:

Perplexity = exp

(
− 1

n

n∑
i=1

logP (xi | x<i)

)
. (3)

Lower perplexity signifies reduced prediction uncertainty and better data distribution alignment.

Security Definition. In cryptographic protocol design, the ideal functionality f models the desired
behavior of a protocol in an idealized setting. It serves as a trusted third party that collects inputs
from all parties, performs the computation securely, and returns the outputs. A protocol is considered
secure if its real-world execution is computationally indistinguishable from the ideal execution with
f . Due to space constraints, formal definitions are deferred to Appendix A.
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4 Framework

This section details the design and implementation of FedRW. We start by formalizing the PPMPR
protocol, followed by a practical construction using cryptographic primitives and a parallel orchestra-
tion acceleration strategy for efficiency and scalability. Finally, we describe the integration of the
derived weights into the FL training pipeline. An overview of key stages of the FedRW framework is
illustrated in Figure 2.

Protocol Runtime
1160.35s
40.32s 

Perplexity

Third-Party-Free

2.89
2.56 

Baseline FedRW

Figure 2: FedRW Framework: Parallel Π2PC-based Reweighting for Efficient FL. The overview
is divided into three parts: (Left) The parallel orchestration of the third-party-free Π2PC protocol.
(Center) The frequency-aware reweighting scheme that dynamically assigns weights (reflected by
color) to samples while preserving data integrity. (Right) A comparison between FedRW and the
baseline approach.

4.1 Formal definition of PPMPR

Consider a federated setting with n clients P1, . . . , Pn, where each client Pi holds a local dataset
Xi = [xi

1, . . . , x
i
mi

] consisting of mi text samples. The objective of our proposed PPMPR protocol
is to assign a weight to each sample in a privacy-preserving manner, based on how often it appears
across all datasets. This functionality fPPMPR can be formally defined as:

fPPMPR(X1, ..., Xn)→ (W1, ...,Wn), (4)
where Wi = [wi

1, . . . , w
i
mi

] refers to the weight vector for the samples in Xi. Specifically, each
sample xi

j is associated with an individualized weight wi
j reflecting its global frequency.

Subsequently, the derived weights are applied to enhance the federated training of LLMs, providing
a fine-grained pattern to handle duplicated data. To quantify the relative informativeness of each
sample x, we employ an intuitive yet effective heuristic: the weight w(x) is inversely proportional to
its global frequency:

w(x) ∝ 1

freqglobal(x)
. (5)

Here, freqglobal(x) denotes the occurrence frequency of the sample x within the entire dataset,
specifically, the concatenation of all clients’ local datasets. This formulation naturally turns the
reweighting task into a challenge of securely deriving global frequencies without revealing local data.
To solve this problem, we leverage a secure multi-party computation (MPC) approach.

To avoid reliance on a trusted third party, the procedure is decomposed into multiple rounds of secure
two-party computation (2PC), a sub-issue of MPC. In a 2PC protocol, two clients, Pi and Pj , jointly
compute a specific function based on their private inputs, Xi and Xj , without directly disclosing the
inputs to each other. The functionality f2PC defined for this situation is:

f2PC(Xi, Xj)→ (C⃗i, C⃗j), (6)

where C⃗i is vector of length mi, containing the counts of samples in Xj that are identical to each
sample x in Xi. Since there are no privacy concerns client-side, each unique sample x will be
maintained only once in Xi, along with its local frequency, freqXi(x), which can be easily collected
and securely shared with other clients that hold the same sample. Through this iterative pairwise 2PC
protocol, each client computes and obtains the global frequency for its local samples, allowing them
to adjust the sample weights without exposing private data.
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4.2 Efficient construction of PPMPR

To realize the defined functionalities, we utilize two-party private set intersection (PSI) as the
cryptographic foundation of our 2PC protocol. PSI enables two parties to compute the intersecting
elements of their datasets without revealing any additional information beyond the agreed-upon rules.
The protocol involves only the two participating parties as sender and receiver. In the semi-honest
setting, the protocol reveals solely the shared samples and how often they appear in each local dataset,
as specified by f2PC. The detailed procedure is outlined in Protocol 1.

Table 1: Protocol Π2PC in the semi-honest setting model
Protocol 1 Two-Party Computation (2PC)

Input: Client P1 holds input X1 = {x1
1, ..., x

1
m1
}, and client P2 holds input X2 =

{x2
1, ..., x

2
m2
}. Both input sets are preprocessed local data samples.

Output: P1 outputs C⃗1, and P2 outputs C⃗2, as defined in Eq. (6).
Protocol:

1. P1 and P2 initiate a two-party Private Set Intersection (PSI) protocol, where:
• P1 acts as sender, and receives nothing.
• P2 acts as receiver, and receives the intersection set I of P1’s data.

2. For each sample x in I, P2 extracts the local frequency freqX2
(x), and creates the

frequency set F2. P2 then sends I and F2 to P1.
3. Upon receiving I and F2, P1 extracts the local frequency freqX1

(x), and creates
the frequency set F1. P1 then sends F1 to P2.

4. P1 outputs C⃗1 = [freqX2(x
1
1), . . . , freqX2(x

1
m1

)], and P2 outputs C⃗2 =
[freqX1(x

2
1), . . . , freqX1(x

2
m2

)].

The 2PC protocol provides an efficient and secure method for pairwise exchange of sample frequencies
between clients. We now extend this building block to construct the full PPMPR protocol.

Table 2: Protocol ΠPPMPR in the semi-honest setting model
Protocol 2 Full Protocol (PPMPR)

Input: Each client Pi holds a local dataset Xi = {xi
1, . . . , x

i
mi
}, where i ∈ {1, . . . , n}. All

datasets are preprocessed.
Output: Each Pi outputs a frequency vector C⃗i containing freqglobal(x) for every x in Xi, as

defined in Eq. (5).
Protocol:

1. Each Pi initialize C⃗i using its local frequencies freqXi(x) for all x in Xi.
2. Each Pi performs Π2PC once with every other client Pj (all n− 1 of them).

• After each run, Pi outputs C⃗i and updates its global vector: C⃗i ← C⃗i + C⃗i.

3. After n− 1 rounds, Pi outputs the final C⃗i.

As presented in Protocol 2, Each client Pi starts by initializing its frequency vector with local counts,
then iteratively executes Π2PC with every other clients to progressively build C⃗i, the vector of global
frequencies. The formal security definitions and proofs are available in Appendix A.

4.3 Parallel Acceleration

The formula "N choose 2" represents that the full protocol involves each pair of the n clients
performing Π2PC, which results in

(
n
2

)
executions, leading to an overall time complexity of O(n2)

when run sequentially. This quickly becomes inefficient as a growing number of clients. To address
this scalability bottleneck, we introduce a parallel orchestration strategy that reorganizes the execution
schedule to minimize overall runtime. We start with a toy example where n = 8 in Figure 3, and the
detailed procedure is provided in Appendix B.
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Level 1

Level 2

Level 3

Figure 3: A toy example for the parallel orchestration when n = 8.

The key insight is that multiple Π2PC instances can be performed concurrently, provided their
participating sets do not overlap. As shown in Figure 3, from the left-hand side of level 1, adjacent
pairs of clients perform Π2PC independently. At the next level, these client pairs are grouped into
disjoint blocks (e.g., {P1, P2} with {P3, P4}), and inter-block protocols are executed in parallel. This
hierarchical process forms progressively larger blocks, such as {P1, P2, P3, P4} and {P5, P6, P7, P8}
at level 3. The structure resembles a binary tree and can be viewed as a recursive two-way merge that
manages all

(
n
2

)
sub-protocols efficiently.

To organize this orchestration, the client pairings at each level are structured into pairing matrices,
with partial examples highlighted in the dashed-line areas of Figure 3. When n is a power of two, these
matrices perfectly arrange all Π2PC executions, maximizing parallelism. Each matrix is constructed by
element-wise pairing of two client blocks. For instance, at level 3, matrixM3 is formed as follows:

a⃗ := (1, 2, 3, 4), b⃗ := (5, 6, 7, 8)

b⃗′ ← RotL(⃗b, 0), row1 ← {(a⃗i, b⃗′i)|i = 1, 2, 3, 4}

b⃗′ ← RotL(⃗b, 1), row2 ← {(a⃗i, b⃗′i)|i = 1, 2, 3, 4}

b⃗′ ← RotL(⃗b, 2), row3 ← {(a⃗i, b⃗′i)|i = 1, 2, 3, 4}

b⃗′ ← RotL(⃗b, 3), row4 ← {(a⃗i, b⃗′i)|i = 1, 2, 3, 4}

(7)

Here, a⃗ and b⃗ contain the indices of clients from interacting blocks. In each step, b⃗′ is generated by
cyclically left-shifting b⃗ by k positions using RotL(⃗b, k). Client pairs are then formed by matching
elements from a⃗i and b⃗′i, allowing Π2PC to run concurrently across each row. For 2m−1 < n ≤ 2m,
the hierarchical structure remains valid by simply ignoring the unused blocks, thus maintaining
optimality and full coverage of client interactions. This parallel approach reduces the total runtime
complexity of the full protocol from O(n2) to O(2⌈log2 n⌉ − 1).

4.4 Enhanced Training

To integrate duplication awareness into model optimization, FedRW employs a frequency-based
sample reweighting strategy. Given the global frequency vector C⃗, where each element represents the
occurrence count of a local sample across all clients, the corresponding weight vector W⃗ is defined
as:

W⃗ =
1

ln(C⃗ + 1⃗) + ε⃗
(8)

Here, ε is a small constant for numerical stability. This formula penalizes frequent samples using
a logarithmic function, reducing their impact on optimization without complete exclusion. The
logarithm, shifted by 1, ensures that the weights decrease moderately and prevents extreme weights
for infrequent samples (e.g., when C⃗i = 1). Compared to linear or hard-threshold formulas, this
scheme offers a smoother and adaptive adjustment across varying duplication levels, leveraging the
observation that moderate redundancy can promote better model generalization.
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These derived weights, W⃗ , are then applied during training via a sample-wise reweighted loss. Instead
of modifying the model architecture, each sample’s loss contribution is rescaled by its assigned weight.
For a batch of B samples, with W⃗i as the weight and ℓ

(t)
i as the token-level average loss of the i-th

sample, the aggregated batch loss is calculated as:

Lbatch =

∑B
i=1 W⃗i · ℓ(t)i∑B

i=1 W⃗i

(9)

This method diminishes the impact of frequent samples while balancing the influence of less frequent
or underrepresented ones. By adapting to statistical redundancy across clients, it preserves informative
samples and mitigates overfitting to specific patterns. This provides a lightweight yet effective
sample-level reweighting mechanism, particularly advantageous in federated settings with skewed or
redundant data. Model updates are then aggregated using the standard FedAvg [24] algorithm.

5 Experiments

5.1 Experimental Settings

Environments. For protocol evaluation, we implement the Π2PC prototype based on [33] and
benchmark its runtime under varying configurations. For FL experiments, we use eight public
datasets: Haiku [34], Rotten Tomatoes [35], Short Jokes [36], Poetry [37], IMDB [38], Sonnets [39],
Plays[40], and Twitter Sentiment Analysis[41]. To simulate redundancy, duplicates are synthetically
added into the training set at different rates and distributed uniformly across 10 clients. The final
performance of models is evaluated using perplexity on the test sets. More details can be found in
Appendix C.

Baseline Setting. We choose EP-MPD [25] as the primary baseline, the most state-of-the-art hard
deduplication solution for federated LLM training via a trusted third party. We follow their original
experimental settings and directly use their reported runtime and perplexity results for comparison.

5.2 Main Results

Preprocessing. This part evaluates the efficiency and scalability of our proposed PPMPR pro-
tocol against the baseline across three key factors: dataset size, client number, and duplication
percentage, with the results shown in tables 3 and 4, and figure 4.

Table 3: Effect of dataset size with 30% duplication percentage on Π2PC running time.
Method Protocol Running Time (ms)

Dataset Size 210 212 214 216 218 220

Setup 47.0±0.002 48.6±0.003 54.6±0.078 76.0±0.178 167.8±0.478 715.8±1.841

Execution 0.4±0.006 1.0±0.006 5.9±0.019 23.5±0.325 118.7±1.738 713.3±7.600

Π2PC-total 47.4±0.055 49.7±0.118 60.9±0.423 100.8±1.500 291.8±6.250 1451.8±27.141

The runtime of the basic 2PC protocol increases with dataset size due to the underlying frequency
counting mechanism. For small datasets (e.g., 210-214), runtime differences are minimal, mainly
because the cryptographic setup overhead of two-party PSI is significant compared with the actual
execution time, which grows linearly with the dataset size. Noticeably, the execution time scales
rapidly beyond a certain dataset size, and begins to dominate the total runtime. For instance,
processing 220 samples per client takes approximately 1.45 seconds, as illustrated in table 3.

Table 4 examines how the duplication percentage affects Π2PC runtime when each client holds
219 samples. The results show a negligible effect, with the protocol maintaining near-constant
performance even at extreme duplication levels. For instance, with 90% duplication, the runtime
remains stable at 0.666 seconds, differing by only 6.9% from the 0.620-second runtime with 10%
duplication. These small variations are attributed to the increased amount of frequency information
exchange (F1, F2 in 3) as the intersection (I in 3) cardinality grows.
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Table 4: Effect of duplication percentage with 219 data size in each client on Π2PC running time.
Method Protocol Running Time (ms)

Duplication Percentage 10% 30% 50% 70% 90%

Setup 342.2±1.092 322.4±0.966 337.4±0.988 339.8±1.015 343.4±0.974

Execution 265.9±0.259 293.3±3.456 284.9±5.905 304.2±9.283 310.6±11.622

Π2PC-total 620.1±12.213 626.9±13.091 633.6±14.766 656.5±18.170 665.9±18.913

Figure 4 analyzes the effect of client number on the runtime of the baseline and PPMPR under
consistent experimental settings. The baseline proposes two variants that trade off performance
and leakage, and we utilize EP-MPD(I), which prioritizes efficiency while introducing more privacy
leakage. PPMPR demonstrates superior efficiency and scalability, achieving a 17.61× to 28.78
speedup over the baseline with 10 to 50 clients. This advantage is primarily due to the efficient Π2PC
protocol as its basic component, with the parallel orchestration strategy, which reduces the overall
computational complexity to O(m− 1) for n ∈ (2m−1, 2m] clients.
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Figure 4: We evaluate the effect of client number and dataset size on protocol running time. For
clients (10-50) with 219 data per client and 30% duplication, PPMPR exhibits 17.61-28.78× speedup.
For 50 clients, PPMPR outperforms the baseline by 4.09-28.78× with increasing dataset size.

Furthermore, we evaluate the impact of dataset size per client with 50 clients. While PPMPR initially
lags EP-MPD(I) on smaller datasets, its parallel strategy quickly becomes dominant as data size
scales. With 217 samples per client, PPMPR achieves a 23.04× speedup. This dual advantage in
scaling across both client counts and data volumes positions PPMPR as a highly efficient and scalable
solution for real-world federated environments.

Model Performance. This section evaluates model performance across eight text datasets with
diverse linguistic structures. To simulate realistic data redundancy in FL, we introduce different
levels of artificial duplication (10%, 20%, and 30%) into the training data. Initially, we assess the
robustness of each method under two foundational models utilized in the baseline, GPT-2 Large [42]
and DistilGPT2 [43], with perplexity as the evaluation metric.

Table 5: Model perplexity (↓) on test set under various duplication settings with GPT-2 Large
Method Dataset

Duplication Haiku Rotten Tomatoes Short Jokes Sonnets
Percentage 30% 20% 10% 30% 20% 10% 30% 20% 10% 30% 20% 10%

Raw Data 3.26 3.25 2.98 2.65 2.61 2.53 4.11 4.03 3.94 4.39 4.34 4.31
Baseline 2.89 - - 2.21 - - 3.79 - - 4.35 - -

FedRW (Ours) 2.56 2.67 2.69 1.61 1.63 1.64 3.15 3.17 3.17 4.07 4.26 4.26
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As detailed in Table 5, FedRW consistently outperforms the baseline across all datasets and duplication
levels with GPT-2 Large. The improvement is evident on the highly structured Sonnets and Haiku
datasets, where FedRW achieves relative perplexity reductions of up to 6.44% and 11.42% at 30%
duplication, respectively. The strict structures of these datasets likely worsen the negative impact of
redundancy, highlighting FedRW’s ability to preserve content diversity and reduce overfitting through
adaptive reweighting.

Similar trends are observed on less structured datasets. For Short Jokes, FedRW reduces perplexity
from 3.79 to 3.15 under 30% duplication, despite its high lexical diversity. Likewise, on Rotten
Tomatoes, which is composed of short, opinion-based reviews often prone to duplication, perplexity
decreases from 2.21 to 1.61. These results indicate FedRW’s effectiveness even when redundancy
arises from stylistic repetition.

Furthermore, FedRW exhibits robustness to varying duplication rates. While the baseline’s hard
filtering yields fixed perplexity (10% to 30% duplication), FedRW maintains stable or slightly
improved performance. For instance, perplexity on Short Jokes remains constant at 3.17, and on
Haiku, it decreases from 2.69 to 2.56. These observations align with prior research suggesting that
controlled repetition can enhance generalization by reinforcing key training patterns [44]. Instead of
discarding duplicates, FedRW adaptively reweights updates to retain informative redundancy, as seen
in datasets where increased duplication slightly improves performance. This suggests that effectively
managed redundancy can amplify useful linguistic or semantic signals, underscoring FedRW’s ability
to adapt to varying levels of data noise.

Table 6: Model perplexity (↓) on test set under 30% duplication percentage with DistilGPT2

Method Dataset
Haiku Short Jokes Rotten Tomatoes IMDB Poetry Sonnets Plays

Raw Data 3.70 2.07 1.78 7.17 2.84 5.87 15.07
Baseline 3.67 2.07 1.77 7.25 3.01 6.08 16.09

FedRW (Ours) 3.65 2.08 1.75 7.00 2.66 5.75 14.50

To evaluate FedRW’s generalizability in resource-limited scenarios, we evaluate it with DistilGPT2, a
smaller version of GPT-2 suitable for FL with limited computational resources. Despite its reduced
size, which makes it more vulnerable to the negative effects of data duplication, Table 6 shows that
FedRW consistently maintains or slightly improves performance across various datasets.

On datasets like Haiku and Short Jokes, perplexity remains similar across the three methods. However,
more noticeable variances emerge on Sonnets, Poetry, and Plays, where the baseline sometimes
underperforms even the undeduplicated data. This could be due to the literary structure and the sparse
samples of these datasets. As noted in the baseline, hard deduplication considerably reduces the
training samples (e.g., Poetry: 526 to 405; Plays: 542 to 417), potentially increasing training variance,
especially for distilled models. By contrast, FedRW’s flexible and adaptive approach aims to retain
useful instances when handling excessive redundancy. This reweighting strategy provides a more
stable training signal to preserve the integrity of sparse datasets, leading to improved generalization.

Table 7: Model perplexity (↓) on test set under 30% duplication percentage on mainsteam models

Model Method Dataset
Haiku Jokes Rotten Poetry Sonnets Plays

Qwen3-0.6B Baseline 2.47 2.61 1.71 2.54 4.07 8.21
FedRW (Ours) 2.36 2.44 1.59 2.21 3.62 7.23

Qwen2.5-0.5B-
Instruct

Baseline 2.21 2.48 1.58 2.28 4.11 11.77
FedRW (Ours) 2.12 2.36 1.55 2.03 3.84 9.92

Llama-3.2-1B-
Instruct

Baseline 2.14 2.34 1.65 2.39 4.11 18.35
FedRW (Ours) 2.09 2.21 1.54 1.99 4.00 16.03
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To further validate FedRW’s applicability beyond the GPT-2 family, we evaluate the performance on
three representative modern models with diverse architectures: Qwen3-0.6B [45], Qwen2.5-0.5B-
Instruct [46], and Llama-3.2-1B-Instruct [47]. The results in Table 7 demonstrate that data redundancy
remains a substantial challenge even for these contemporary architectures. FedRW robustly maintains
its advantage in mitigating the impact of redundancy on model performance, particularly under
challenging conditions such as data complexity or sparsity. For instance, FedRW achieves an average
relative perplexity reduction of approximately 13.43% on the Plays dataset across the three models.

Table 8: Model perplexity (↓) on test set under 30% duplication percentage on larger models

Model Method Dataset
Haiku Jokes Rotten Poetry Sonnets Plays Twitter

Qwen2.5-3B-
Instruct

Baseline 1.69 2.09 2.20 2.33 4.14 9.17 3.35
FedRW (Ours) 1.55 1.94 2.01 1.85 3.29 7.53 2.46

Qwen2.5-7B-
Instruct

Baseline 1.68 2.07 1.74 2.09 4.52 8.82 2.24
FedRW (Ours) 1.49 1.95 1.61 1.81 3.43 6.54 1.35

With increasing model capacity, memorization of specific patterns due to duplication becomes
more pronounced and critical, leading to overfitting, degraded generalization, and increased privacy
risks [12]. To assess the issue, we conduct experiments on two large-scale models from the Qwen
family: Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct [46]. While larger models may exhibit lower
perplexity on certain datasets, the results in Table 8 show that FedRW sustains its performance
advantage over the hard deduplication method. Under the extensive near-duplicate contents in Twitter,
FedRW achieves a relative reduction of approximately 26.57% in perplexity compared to the baseline.

Table 9: Model Perplexity (↓) on test set on the Non-IID settings
Method IID Quantity Skew Label Skew Feature Skew
Baseline 1.71 2.02 2.44 3.43
FedRW (Ours) 1.59 1.96 1.66 2.70

To evaluate the efficacy of FedRW under Non-IID data distributions, a major challenge in FL, we
conduct experiments on Qwen3-0.6B under three scenarios: Quantity Skew, Label Skew, and Feature
Skew. For Quantity and Label Skew, we categorized the Rotten Tomatoes dataset by the binary (0/1)
labels across 5 clients, with proportions set to [40%, 20%, 20%, 10%, 10%] and label distributions as
[(0.5, 0.5), (0.6, 0.4), (0.4, 0.6), (0.9, 0.1), (0.1, 0.9)], respectively. To simulate Feature Skew, we
allocate Poetry, Sonnets, and Plays to separate clients, as these datasets differ distinctly in terms of
text structure, sentence length, and lexical and syntactic complexity. The results in Table 9 confirm
FedRW’s robustness to provide a stable training process across heterogeneous data distributions.

6 Conclusion

In this work, we introduce FedRW, a novel and principled framework designed to tackle the
widespread challenge of data duplication in federated language model training. At its core is PPMPR,
a secure and efficient protocol for data reweighting. PPMPR enables soft deduplication methods
without compromising data privacy or introducing substantial computational and communication
costs. Crucially, our protocol works without a trusted third party, enhancing security and achieving
notable improvements in efficiency and scalability.

Our comprehensive experiments across diverse text datasets show that FedRW consistently improves
model generalization under redundancy, outperforming the state-of-the-art method across varying
duplication levels, dataset settings, and model configurations. Beyond simply discarding duplication,
FedRW effectively harnesses redundancy to foster more robust representation learning. These
compelling results establish FedRW as a practical, privacy-preserving solution for robust federated
training in noisy data scenarios. Moreover, its lightweight modular design allows for seamless
integration into broader applications, including multimodal learning pipelines and flexible reweighting
strategies, highlighting its potential as a fundamental building block for future federated LLM systems.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction align with the proposed
method (FedRW), its design (PPMPR), and empirical results, including privacy guarantees
and performance benefits. See Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The discussion in Section 5.2 acknowledges limitations such as scenarios
where baseline performs comparable. Section 6 and Appendix E indicate possible future
developments.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Theoretical assumptions and proofs for PPMPR’s security are provided in
Appendix A, clearly defining the threat model and formal guarantees.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Sections 4 and 5, and Appendix C detail protocol implementations, datasets,
and experimental settings sufficient to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: All datasets are publicly available with citations provided in Appendix C. We
are working hard to promote the process of open source.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports the average performance after repeated experiments for
consistency.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper complies with NeurIPS Code of Ethics in
all aspects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The research conducted in the paper is to enhance privacy-preserving federated
training of language models, without negative societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of the assets used in the paper have been
appropriately recognized, and the licenses and terms of use have been explicitly mentioned
and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Security

A.1 Security Proof

Modern cryptographic protocols are typically analyzed under the simulation-based security paradigm,
which formalizes security by comparing a protocol’s behavior in the real world to that in an ideal
world.

In the ideal world, a trusted third party honestly executes the desired functionality. All parties submit
their inputs to the trusted third party, and the trusted third party returns the correct outputs to the
designated parties. In contrast, the real world involves actual protocol execution among potentially
adversaries without a trusted third party.

A protocol is said to be secure if for every adversary in the real world, there exists a simulator in the
real world such that no external environment can tell whether it is interacting with a real world or an
ideal functionality. This paradigm ensures that the protocol leaks no more information than what is
inherently revealed by the output of the ideal functionality.

A.2 Universal Composability Model

The Universal Composability (UC) [48] framework provides a rigorous model for analyzing the
security of cryptographic protocols under arbitrary adversarial conditions. It ensures that a protocol
remains secure even when composed with other protocols, making it robust against complex attack
scenarios.

In the ideal world, all parties interact through a TTP that computes the desired functionality f ,
ensuring privacy and correctness. In the real world, parties execute a protocol Π without a TTP. A
semi-honest adversary A may observe internal states but not deviate from the protocol.

A protocol Π is UC-secure if, for any adversary A in the real world, there exists a simulator S that
produces a view indistinguishable from A’s view in the ideal world. This ensures that the protocol’s
behavior in the real world is as secure as the ideal world.

A.3 Threat Model

In this work, we consider a semi-honest adversary model in federated learning (FL), where all
participants follow the protocol honestly but may attempt to infer additional information from
observations. For the scope of this work, we assume no active collusion among parties. While more
active or malicious threats—such as inference, backdoor, or reconstruction attacks—exist, these are
considered orthogonal to the primary objective of this study.

A protocol Π securely computes a functionality f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where
f = (f1, f2). For inputs (x, y), outputs (f1(x, y), f2(x, y)) are returned to respective parties.
Extensions to multi-party settings are implied.

A protocol Π is secure against semi-honest adversaries if:
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Definition 1 (Security). For any semi-honest adversary A, there exist probabilistic polynomial-time
(PPT) simulators Sim1, Sim2 such that:

{Sim1(x, f1(x, y))}x,y ≡c {ViewΠ,A
1 (x, y)}x,y, (10)

{Sim2(y, f2(x, y))}x,y ≡c {ViewΠ,A
2 (x, y)}x,y. (11)

Here, Simi(w, fi(x, y)) denotes a view based on simulator i’s input w ∈ (x, y) and Π’s output
fi(x, y). ViewΠ,A

i (x, y) represents A’s observation on party i’s view during protocol execution.
≡c denotes computational indistinguishability, meaning no PPT algorithm can distinguish the two
distributions.

A.4 Formal Definition of Ideal Functionality

We provide the formal definitions of the ideal functionalities employed in Section 4, as detailed
in tables 10 to 12.

Table 10: Ideal functionality fTwo-Party PSI

Parameters: Client P1 holds input X1 = {x1
1, ..., x

1
m}, and client P2 holds input X2 =

{x2
1, ..., x

2
n}.

Functionality: • Input X1 = {x1
1, ..., x

1
m} from P1, and X2 = {x2

1, ..., x
2
n} from P2.

• Output X1 ∩X2.

Table 11: Ideal functionality f2PC

Parameters: Client P1 holds input X1 = {x1
1, ..., x

1
m}, and client P2 holds input X2 =

{x2
1, ..., x

2
n}.

Functionality: • Input X1 = {x1
1, ..., x

1
m} from P1, and X2 = {x2

1, ..., x
2
n} from P2.

• Output C⃗1 and C⃗2.

Table 12: Ideal functionality fPPMPR

Parameters: Each client Pi holds a local dataset Xi = {xi
1, . . . , x

i
mi
}, where i ∈ {1, . . . , n}.

Functionality: • Input Xi = {x1
1, ..., x

1
mi
} from Pi.

• Output C⃗i.

A.5 Security of Protocols

Theorem 1. Π2PC securely implements the ideal functionality f2PC in the semi-honest model.

Proof. As described in f2PC, we construct a simulator to simulate the behavior of the corrupted party.

Case 1: P1 is corrupted.

The simulator Sim1 receives P1’s input X1 and its output from f2PC, which is C⃗1 =
[freqX2

(x1
1), ..., freqX2

(x1
m1

)].

1. During the PSI phase, P1 acts as the sender and receives nothing. As PSI protocol securely
implements corresponding ideal functionality, then P1 learns nothing about X2 beyond what is
revealed by the intersection X1 ∩X2. Sim1 can simulate this as an empty view with its own inputs
X1.

2. P1 receives the intersection set I and the frequency set F2 from P2. Sim1 can construct a
simulated intersection I ′ and a simulated frequency set F ′

2 based on X1 and C⃗1. For each x1
k ∈ X1:
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• If freqX2(x
1
k) > 0 , then x1

k is added to I ′, and its corresponding frequency in F ′
2 is set to

freqX2
(x1

k).
• If freqX2

(x1
k) = 0, then x1

k is not in I ′.

The outputs (I ′,F ′
2) in the ideal world are indistinguishable from the outputs (I,F2) in the real

world, as they perfectly match P1’s output C⃗1.

3. P1 sends its frequency set F1 to P2. Sim1 can generate F1 using X1 and the intersection set I (or
I ′).
The view of P1 consists of its input X1, messages sent (F1), and messages received (I,F2). The sim-
ulated view (X1, I ′,F1,F ′

2) is computationally indistinguishable from the real view (X1, I,F1,F2).

Case 2: P2 is corrupted.

The simulator Sim2 receives P2’s input X2 and its output from f2PC, which is C⃗2 =
[freqX1

(x2
1), ..., freqX1

(x2
m2

)].

1. During the PSI phase, P2 acts as the receiver and receives the intersection set I . Given the security
of the PSI protocol, P2 learns nothing about X1 beyond what is revealed by the intersection X1 ∩X2.
Sim2 can construct a simulated intersection I ′ based on X2 and C⃗2. For each x2

k ∈ X2:

• If freqX1
(x2

k) > 0, then x2
k is added in I ′.

• If freqX1
(x2

k) = 0, then x2
k is not in I ′.

2. P2 sends I (or I ′) and F2 to P1. Sim2 can perfectly simulate this using X2 and I ′.

3. P2 receives F1 from P1. Sim2 can construct a simulated F ′
1 based on C⃗2 and I ′. For each x ∈ I ′,

the corresponding frequency in F ′
1 would be freqX1(x).

The view of P2 consists of its input X2, messages sent (I,F2), and messages received (F1). The sim-
ulated view (X2, I ′,F2,F ′

1) is computationally indistinguishable from the real view (X2, I,F2,F1).

Since the view of both corrupted parties can be simulated given their input and output from f2PC,
Π2PC securely realizes f2PC in the semi-honest model.

Theorem 2. ΠPPMPR securely implements the ideal functionality fPPMPR in the semi-honest model.

Proof. We construct a simulator SimPPMPR for a corrupted Pk that receives Pk’s input Xk and its
final output the global frequency vector C⃗k. from the ideal functionality fPPMPR

1. Pk initializes C⃗k using its local frequencies freqXk
(x). This is a local computation, and SimPPMPR

can perform the same step.

2. Pk performs Π2PC with every other client Pj (for j ̸= k). After each execution, Pk receives a
vector C⃗k and updates C⃗k ← C⃗k + C⃗k.

• For each interaction between Pk and an honest Pj , the security proof for Π2PC guarantees
that a simulator Sim2PC can generate a view for Pk that is indistinguishable from the real
view, using only Xk and the output C⃗k.

• Since the final C⃗k is the sum of Pk’s local frequencies and pairwise learned frequencies, the
overall view of Pk is the collection of views with the n− 1 executions of Π2PC. SimPPMPR
can invoke Sim2PC for each interaction between Pk and Pj to generate a view to simulate
this combination.

• Since fPPMPR only outputs the final C⃗k, SimPPMPR cannot obtain each partial C⃗k. However, it
can generate intermediate C⃗ ′

k for each interaction such that their sum (plus the initial vector)
equals the known final C⃗k. Given that Π2PC securely reveals only freqXj (x) for intersecting
samples, the exact distribution does not leak additional information to Pk beyond what
fPPMPR allows.

3. After n− 1 rounds, Pk outputs the final C⃗k.
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The view of Pk consists of its input Xk, its initial local frequencies, and the collection of outputs from
all n− 1 pairwise Π2PC executions. Since each Π2PC is secure against semi-honest adversaries and its
view can be simulated, the collection of these simulated views can be combined by SimPPMPR securely.
Therefore, SimPPMPR constructs a view for Pk that is computationally indistinguishable from its view
in a real execution. Thus, ΠPPMPR securely realizes fPPMPR in the semi-honest model.

B Parallel Ochestration Algorithm

To support the parallel acceleration strategy introduced in Section 4.3, we formally describe the
orchestration logic in Algorithm 1. The algorithm organizes client pairs in a structured matrix manner,
ensuring that each client performs 2PC protocols with all others while maximizing concurrency.
Specifically, it proceeds in ⌈log2 n⌉ hierarchical levels, where clients are iteratively grouped into
blocks and scheduled to engage in pairwise protocols via index cyclic rotation. The orchestration
guarantees correctness while enabling efficient parallelization.

Algorithm 1 Parallel Orchestration for Efficient Execution of PPMPR

1: Input: n clients P1, . . . , Pn with local datasets X1, . . . , Xn

2: Output: Global frequency vectors C⃗1, . . . , C⃗n for samples of each client
3: Initialize local frequencies: C⃗i ← freqXi(·) for all i
4: Let m← ⌈log2 n⌉ ▷ Total number of levels
5: for l = 1 to m do
6: Partition clients into 2m−l contiguous blocks of equal size
7: for all pairs of blocks (A,B) do
8: Let a⃗← indices in A, b⃗← indices in B
9: for k = 0 to |⃗b| − 1 do

10: b⃗′ ← RotL(⃗b, k) ▷ Left-rotate indices in b⃗
11: for i = 1 to |⃗a| do
12: in parallel: run Π2PC(Pa⃗i

, P
b⃗′i
) to update C⃗a⃗i

, C⃗
b⃗′i

13: end for
14: end for
15: end for
16: end for
17: return {C⃗1, . . . , C⃗n}

C Experimental Details

Datasets. In this section, we summarize the detailed information of each dataset used in the
experiment. As illustrated in Table 13, these datasets span diverse text domains and reflect a wide
range of structural and lexical properties. The table presents the source, sample size, average sequence
length, and a brief description for each dataset.

Table 13: Basic information of experimental datasets
Dataset # Samples Avg. Sequence Length Description
Haiku [34] 15,281 100 Short-form structured 3-line poems
Short Jokes [36] 231,657 100 Concise User-written short jokes
Rotten Tomatoes [35] 10,662 200 Movie review snippets expressing sentiment
IMDB [38] 49,999 500 Full-length movie reviews with richer narrative structure
Sonnets [39] 460 400 William Shakespeare’s 14-line poems
Poetry [37] 573 1000 Modern and classic free-form poems by various authors
Plays [40] 521 1000 Dramatic scripts from William Shakespeare with dialogic structure
Twitter [41] 74,000 50 Tweets labeled with sentiment categories

For all datasets, we adopt a standard 80/20 train/test split. For movie review datasets, only the review
texts are retained, and the sentiment labels are discarded during training. For the Short Jokes dataset,
we randomly sample 50,000 entries to ensure tractable training time across 10 clients. In cases where
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datasets such as IMDB already contain a predefined test set, we merge the original training and test
partitions, shuffle the combined set, and then re-split it according to the 80/20 ratio.

Environments. We conduct all secure protocol procedures, including Π2PC and ΠPPMPR, on a
virtualized server equipped with a 4-core Intel Xeon 2.20GHz CPU and 32GB RAM. For model
training, we utilize a machine with a 20-core Intel Xeon Platinum 8457C CPU, 200GB RAM, and
an NVIDIA H20 GPU with 96GB memory. All software is executed under the Linux environment.
Each experiment in preprocessing is repeated four times, and we report the average performance for
consistency.

Hyperparameters. We adopt FedAvg [24] as the underlying federated optimization algorithm. For
GPT-2 Large and DistilGPT2, we train each client for 1–2 and 1–5 local epochs, respectively, until
convergence, with a total of 3–5 communication rounds. For Qwen3-0.6B, Qwen2.5-0.5B-Instruct,
and Llama-3.2-1B-Instruct, we train each client for 2 local epochs with a total of 2-5 communication
rounds. For Qwen2.5-3B-Instruct and Qwen2.5-7B-Instruct, we train each client for 1–2 local epochs
with a total of 1-2 communication rounds to avoid overfitting. The models are optimized using
AdamW [49] with learning rates ranging from 1-5× 10−5. A linear warm-up schedule is applied,
reserving 10% of training steps for warm-up. To stabilize training, we apply ℓ2-norm gradient clipping
with a threshold of 1.0. The maximum sequence length is set between 50 and 1000, depending on the
dataset, and batch sizes range from 2 to 8 with gradient accumulation steps adjusted accordingly to
maintain effective batch size.

Baseline. We follow the baseline implementation proposed in [25], which proposes a hard dedu-
plication approach by pre-filtering duplicated training samples. Specifically, each client performs
local deduplication to remove identical samples, which assumes that redundant data is uniformly
detrimental, and the resulting datasets are used to train the model without further adjustment.

To ensure fair comparison, we utilize the official open-sourced code3 and apply the same preprocessing
pipeline and training settings as in FedRW. All datasets, tokenization schemes, model architectures,
and evaluation metrics remain consistent across the baseline and our proposed method.

D Sensitivity Analysis

The discussion on sensitivity analysis focuses on the learning rate to assess FedRW’s robustness. The
analysis of epochs is omitted as we typically utilize a small number as standard practice to prevent
overfitting.

We evaluated the model perplexity on DistilGPT2 and Qwen2.5-0.5B-Instruct under learning rates
of 1e-3, 5e-4, 3e-4, 1e-4, 5e-5, and 3e-5. We selected the Plays dataset to investigate FedRW’s
generalizability, as it exhibited a significant performance gap in the main results .

Table 14: Model perplexity (↓) on Plays test set across various learning rates

Model Method Learning Rate
1e-3 5e-4 3e-4 1e-4 5e-5 3e-5

DistilGPT2 Baseline 16.12 16.38 16.13 14.21 15.07 14.18
FedRW (Ours) 14.42 14.79 14.74 13.17 14.50 12.76

Qwen2.5-0.5B-
Instruct

Baseline 12.86 11.07 10.63 11.50 11.77 10.67
FedRW (Ours) 11.48 9.35 8.15 8.14 9.92 9.81

As shown in Table 14, FedRW robustly maintains its superior performance compared to the baseline
and exhibits stable training behavior across the entire range of tested learning rates. This confirms
that FedRW’s advantage is not overly sensitive to the learning rate selection.

3https://github.com/vdasu/deduplication
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E Future Work

Advanced Paradigms. FedRW’s lightweight, modular design enables seamless integration into
broader applications, including multimodal learning pipelines and flexible reweighting strategies.
Integration with personalized FL (e.g., diverse model architectures or personalization strategies) and
dynamic client adaptation (where clients join, leave, or exhibit varying computational capabilities)
are also valuable aspects for future research.

Optimizations. Addressing semantic redundancy is a significant issue in large-scale real-world
corpora for LLMs. It is prospective to leverage the representation learning capability of transformer-
based architectures to extract semantic duplication.

Adversarial Security. FedRW primarily operates under a semi-honest threat model, which is
standard and foundational for practical privacy-preserving protocols. Extending FedRW to resist
malicious adversaries would be an interesting research direction. This could involve integrating
mechanisms like Differential Privacy on sample frequencies or utilizing Zero-Knowledge Proofs
to verify client consistency during pre-processing and training. These potential schemes trade off
between model accuracy, data privacy, and computational overhead.
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