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Abstract
To address the enormous size of Large Language
Models (LLMs), model compression methods,
such as quantization and pruning, are often de-
ployed, especially on edge devices. In this work,
we focus on layer-wise post-training quantiza-
tion and pruning. Drawing connections between
activation-aware weight pruning and sparse ap-
proximation problems, and motivated by the suc-
cess of Iterative Hard Thresholding (IHT), we
propose a unified method for Activation-aware
Weight pruning and quantization via Projected
gradient descent (AWP). Our experiments demon-
strate that AWP outperforms state-of-the-art LLM
pruning and quantization methods. Theoretical
convergence guarantees of the proposed method
for pruning are also provided.

1. Introduction
Large transformer-based models have demonstrated supe-
rior performance in many tasks, including natural language
processing and computer vision. However, their enormous
size poses significant challenges for efficient deployment es-
pecially on the edge devices. Quantization and pruning are
promising approaches for model compression. For example,
it was found1 that the 4-bit quantized Llama2-13B model
achieves better perplexity, smaller size, and faster inference
speed than the unquantized Llama2-7B model.

We consider Post-Training Quantization (PTQ) and prun-
ing/sparsification. This is in contrast to Quantization-Aware
Training (QAT) and sparse network training of large mod-
els which are still resource intensive, and many applica-
tions only consider leveraging pre-trained foundation mod-
els instead of training a model from scratch. In the post-
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training compression setup (Nagel et al., 2020; Li et al.,
2021; Hubara et al., 2021; Liang et al., 2021), a trained but
uncompressed model is given, together with a small amount
of calibration data, with the aim to produce an accurate com-
pressed model without retraining. As the foundation models
are very large, which may exceed the hardware memory
limit during compression, recent works, such as Wang et al.
(2020); Nagel et al. (2020); Hubara et al. (2021), further
break the compression task into layer-wise sub-tasks, iden-
tifying a compressed weight approximation for each layer,
given a sub-sample of the layer’s inputs and outputs based
on calibration data. This approach is the focus of our work.

We introduce a new compression framework based on pro-
jected gradient descent (PGD), inspired by compressive
sensing and sparse approximation methods. The contribu-
tions of our paper are listed below:

• We pose the LLM compression problem as a sparse
approximation problem.

• We show that PGD is a viable solution to unify
pruning and quantization problems without requiring
computationally-intensive operations such as SVD.

• The proposed method outperforms state-of-the-art
LLM compression methods on several benchmarks.

• We provide theoretical convergence guarantees for the
proposed method (details are found in Appendix).

2. Related Work and Background
For the post-training quantization and pruning, activation-
aware methods, e.g., Lybrand & Saab (2021); Lin et al.
(2024); Frantar et al. (2022a); Wang et al. (2024a); Frantar
& Alistarh (2023); Sun et al. (2023); Frantar et al. (2022b);
Zhang & Saab (2025), demonstrate superior performance
as they consider the input activation statistics to guide the
quantization and pruning. The traditional magnitude based
weight pruning solves a sparse approximation problem, with-
out considering input activations:

min
Wsparse∈Csparse

[
L(Wsparse) := ∥W −Wsparse∥2F

]
, (1)

where W ∈ Rdout×din is the original uncompressed model
weight, Wsparse ∈ Rdout×din is the pruned/sparsified weight,
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and Csparse is a constraint set, which could be the ratio of
zero elements in Wsparse and/or its sparsity patterns.

For transformer-based models, the linear layer takes in input
activations X ∈ Rdin×n, where n is a total token length
given calibration data. In contrast, activation-aware pruning
changes the minimization objective to

L′(Wsparse) := ∥WX−WsparseX∥2F (2)

= ∥WC
1
2 −WsparseC

1
2 ∥2F, (3)

where C = XX⊤ ∈ Rdin×din is the auto-correlation of the
input activation, and C

1
2 is the matrix square root of C.

However, there is no closed-form solution to the above
problem and several heuristic methods have been proposed.
Wanda (Sun et al., 2023) computes the ℓ2-norm of each
row of X, i.e., ∥X[i, :]∥2, for i = 1, . . . , din, to scale the
corresponding column of W, and then performs magnitude
based pruning on this scaled matrix to obtain the pruning
mask for the weight W. It can be viewed as approximat-
ing C

1
2 only by its diagonal in Equation (3). Therefore,

the cross-correlation information of the input activations X
between each dimension is completely discarded.

Similar to Wanda, the state-of-the-art Activation-aware
Weight Quantization (AWQ) method (Lin et al., 2024) com-
putes the scaled ℓ1-norm of each row of X, i.e., ∥X[i, :
]∥1/n, for i = 1, . . . , din, to scale the corresponding col-
umn of W, and performs quantization on the scaled matrix.
We also note that Wanda empirically found that, given a
target pruning ratio p, better performance is achieved with a
semi-structured pruning, i.e., by specifically requiring uni-
form pruning ratio p for each row of Wsparse, instead of
restricting sparsity at only the whole matrix level.

The Optimal Brain Compression (OBC) method (Frantar
et al., 2022b) simplifies the original Optimal Brain Sur-
geon (OBS) (LeCun et al., 1989; Hassibi et al., 1993) by
breaking the compression task into layer-wise sub-problems.
For each layer, they use a greedy solver that sequentially
prunes (or quantizes) weights. To prune each row of W,
they iteratively zero out the entry that results in the smallest
increase to approximation loss. However, their follow-up
work (Frantar & Alistarh, 2023) mentions that this method is
hard to scale to models with billions of parameters, and fur-
ther propose several approximations (e.g., prune the weights
from left to right and only recalculate approximation loss
impact for the weights to the right) for speedup, leading to
the SparseGPT (Frantar & Alistarh, 2023) for pruning, and
the GPTQ (Frantar et al., 2022a) for quantization. Similarly,
GPFQ (Lybrand & Saab, 2021; Zhang et al., 2023) uses a
greedy path-following mechanism to quantize and/or prune
weights from left to right, but has theoretical guarantees.

We refer interested readers to Zhu et al. (2024); Gholami
et al. (2022); Nagel et al. (2021); Kim et al. (2023); Wan

et al. (2023) for a comprehensive overview of weight quan-
tization and pruning methods. Another line of work on
structured pruning, e.g., Ma et al. (2023); Xia et al. (2024),
removes entire structured components of a network, but
usually involves post-training to recover the performance.

3. Motivation and Method
We further decompose (3) as

L′(Wsparse) =

dout∑
i=1

∥W[i, :]C
1
2 −Wsparse[i, :]C

1
2 ∥22. (4)

Interestingly, when optimizing under the constraint

Crow :=
{
Θ : ∀i ∈ {1, . . . , dout}, ∥Θ[i, :]∥0 ≤ k

}
, (5)

the problem for each term of (4) becomes exactly a well-
studied sparse approximation problem2 of the following
general form:

min
θ

[
f(θ) := ∥y −Aθ∥22

]
, (6)

s.t. ∥θ∥0 ≤ k := (1− p) · din,

where y = (W[i, :]C
1
2 )⊤, A = [C

1
2 ]⊤ = C

1
2 , and θ is the

corresponding Wsparse[i, :]
⊤ which has p · din zeros that we

want to find. ∥θ∥0 is the ℓ0 pseudo norm of θ that counts
the total number of nonzero elements in θ.

Many existing sparse approximation and compressive sens-
ing algorithms can be used to solve this problem, such
as Matching Pursuit (Mallat & Zhang, 1993), Orthogonal
Matching Pursuit (OMP) (Cai & Wang, 2011), Iterative
Hard Thresholding (IHT) (Blumensath & Davies, 2009),
CoSaMP (Tropp & Needell, 2008), Basis Pursuit (Chen
et al., 2001), Sparse Bayesian Learning methods (Tipping,
2001; Wipf & Rao, 2004). In fact, the OBC can be viewed
as the OMP in reverse order. However, it is well-known in
Compressive Sensing that such methods are too greedy and
often outperformed by IHT and ℓ1 type methods.

We adopt the IHT method, since it is efficient to run and also
has recovery guarantees (Blumensath & Davies, 2009). IHT
is a special form of the projected gradient descent (PGD)
method. Each iteration of PGD involves calculating the
gradient3 of f(θ), i.e., ∇f(θ(t)), and projecting the updated
weights (θ(t)−η∇f(θ(t))) onto the constraint set. For IHT,
the projection onto the constraint ∥θ∥0 ≤ k is simply hard-
thresholding, i.e., keeping the k largest-magnitude elements
of (θ(t) − η∇f(θ(t)), and setting the remaining elements to
0. Actually all the terms in (4) can be solved independently

2Since C
1
2 is a square matrix, this is also a sparse linear regres-

sion problem.
3Using the fact that y = (W[i, :]C

1
2 )⊤ can simplify the gra-

dient computation without doing SVD of C, as explained later.
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Algorithm 1 Activation-Aware Projected Gradient Descent
Input: original weight W ∈ Rdout×din , input activation covari-
ance C = 1

n
XX⊤, constraints C, step size η

Initialize: Θ(0) ∈ C
Repeat

Z(t) = Θ(t) + η(W −Θ(t))C;
Θ(t+1) = ProjC(Z

(t));
until a stopping criterion is met
Output compressed weight Θ

and in parallel. This can also be viewed as minimizing the
following objective, with the constraint of (5) that each row
of Ŵ is k-sparse:

min
Ŵ∈Crow

[
f1(Ŵ) := ∥WC

1
2 − ŴC

1
2 ∥2F

]
. (7)

For this general objective f1 in (7), its gradient w.r.t. Ŵ is:

∇f1(Ŵ) =− 2(WC
1
2 − ŴC

1
2 )(C

1
2 )⊤ (8)

=− 2(W − Ŵ)C. (9)

Fortunately, even though the objective in Equation (7) has
C

1
2 , the actual gradient calculation in (9) only has C, i.e.,

we can avoid calculating C
1
2 and its expensive SVD com-

putation.

The overall activation-aware PGD method for compressing
the weight is described in Algorithm 1, which we refer to as
Activation-aware Weight pruning and quantization via PGD
(AWP). For semi-structured pruning, i.e., where each row
is k-sparse, with Crow as given by (5), ProjCrow

(Z) simply
keeps the k largest-magnitude elements in each row of Z
and sets the remaining elements to 0. For quantization, e.g.,
in INT4, ProjCINT4

(Z) would quantize Z into INT4.

Furthermore, Algorithm 1 allows joint pruning and quantiza-
tion, where the constraint set C becomes the intersection of
Csparse and CINT4. One can either prune the quantized version
of Z, or first prune Z and obtain the corresponding sparsity
mask, then quantize the pruned version and finally apply the
sparsity mask.

Note that the main computational cost of Algorithm 1 is
the gradient descent, which involves multiplication between
(W −Θ(t)) and C, incurring O(dout × d2in). This is com-
putationally more efficient than inverting XX⊤ required in
OBC, SparseGPT, GPTQ, etc., and can be run in parallel on
the GPU.

4. Experiments
We compare the proposed AWP method with state-of-the-art
methods on pruning, quantization, as well as joint pruning
and quantization. As in AWQ and Wanda, we evaluate
the perplexity of the compressed model on the held-out
WikiText-2 (Merity et al., 2016) validation set.

4.1. Pruning
To compare with Wanda, SparseGPT, and Magnitude-based
pruning, we follow the exact setup of the experiments
in Wanda4. More specifically, we tested on the Llama-2
7B and 13B models. The calibration data X is 128 se-
quences (each has 2048 tokens) sampled from the C4 train-
ing set (Raffel et al., 2020). We test pruning ratios from
{50%, 60%, 70%, 80%, 90%}. Note that larger pruning ra-
tio corresponds to higher compression rate. For AWP, the
iteration stops when the Frobenius norm of the gradient
normalized by the Frobenius norm of the original weight
is less than 0.0001, or 200 iterations is reached. The step
size η is set as 2/∥C∥F. As problem (3) is nonconvex, we
initialize Θ(0) as the solution of Wanda, since a good initial
point helps nonconvex optimization.

Table 1 shows the perplexity of the pruned Llama-2-7B
model for different methods and pruning ratios, and Table 2
shows the corresponding results for the Llama-2-13B model.
The results of SparseGPT and Magnitude-based pruning are
from Sun et al. (2023). As a reference, the perplexity of
the original Llama-2-7B dense model (i.e., pruning ratio =
0%) is 5.12 and the perplexity of the original Llama-2-13B
dense model is 4.57.

Table 1. Perplexity on WikiText2 of pruned Llama-2-7B model by
different methods under different pruning ratios.

50% 60% 70% 80% 90%

MAGNITUDE 14.89 4e3 - NAN -
SPARSEGPT 6.51 9.58 - 1e2 -
WANDA 6.48 10.09 70.04 4e3 1e4
AWP 6.42 9.44 22.10 83.28 8e2

Table 2. Perplexity on WikiText2 of pruned Llama-2-13B model
by different methods under different pruning ratios.

50% 60% 70% 80% 90%

MAGNITUDE 6.37 11.23 - 5e4 -
SPARSEGPT 5.63 7.80 - 1e2 -
WANDA 5.59 7.97 43.06 1e3 2e4
AWP 5.54 7.49 16.57 75.68 1e3

We can see that for all methods, the perplexity gets
worse when the pruning ratio increases. Nonetheless, the
activation-aware methods, i.e., SparseGPT, Wanda, and pro-
posed AWP perform significantly better than the magnitude
based pruning, which is not activation-aware. The proposed
AWP method has the best perplexity under all pruning ratios,
especially when the pruning ratio is over 60%.

4.2. Quantization
We compare with state-of-the-art layer-wise weight quanti-
zation methods AWQ5 and GPTQ6. We follow the experi-

4https://github.com/locuslab/wanda
5https://github.com/mit-han-lab/llm-awq
6https://github.com/AutoGPTQ/AutoGPTQ/tree/main
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ment setups of AWQ, which focus on weight-only grouped
quantization with a group size of 128. As in AWQ, we
use a small calibration set from the Pile dataset (Gao et al.,
2020) in order not to overfit to a specific downstream do-
main. Besides INT4 and INT3 quantization, we additionally
experiment with INT2 quantization.

For the proposed AWP method, the step size η is set to
1.5/∥C∥F, and we only run 10 iterations. We simply initial-
ize Θ(0) to be the straightforward (i.e., not activation-aware)
Round-To-Nearest (RTN) quantized version of W.

Table 3 shows the perplexity of the INT4/INT3/INT2 quan-
tized Llama-3.1-8B model by GPTQ, AWQ, and our pro-
posed AWP method. AWP quantized INT4 and INT3 mod-
els have better perplexity than corresponding INT4 and
INT3 models quantized by GPTQ and AWQ. For INT2
quantization, the resulting perplexities of all methods are
very poor, although GPTQ has the lowest perplexity.

Table 3. Perplexity on WikiText2 of quantized Llama-3.1-8B
model by different methods.

INT4 INT3 INT2

GPTQ 9.95 12.54 2e3
AWQ 6.64 8.14 3e4
AWP 6.55 8.06 1e6

4.3. Joint Pruning and Quantization
Note that, as shown in Table 3, INT4 quantization by AWP
achieves good perplexity (much better than INT2). Fur-
ther, Table 1 and Table 2 show that pruning the original
model up to 70% has moderate perplexity degradation using
the proposed AWP method. This motivates us to consider
combining pruning with quantization to further compress
the model, instead of solely pushing the quantization to
extremely low-bits.

Note that the proposed AWP method naturally allows joint
pruning and quantization. We further compare it with
sequential quantization and pruning using state-of-the-art
methods AWQ+Wanda, as well as sequential pruning and
quantization using Wanda+AWQ. We use INT4 quantiza-
tion for all methods and test pruning ratios of 25%, 50%,
and 75%.

For AWP, we fix the step size η = 1.5/∥C∥F as in the
quantization setting. Instead of directly compressing the
model into the target bits and pruning ratio, we first gradu-
ally increase the pruning ratio without quantization for 50
iterations, then perform 50 joint pruning and INT4 quantiza-
tion iterations. More specifically, in the first 25 iterations of
purely pruning, we linearly increase the pruning ratio from
0% to the target pruning ratio, then keep this pruning ratio
unchanged in the remaining 75 iterations. In each iteration
of our joint pruning and INT4 quantization, the projection
is ProjCINT4

(ProjCrow
(Z)). At the end of iterations, the corre-

Table 4. Perplexity on WikiText2 of pruned and INT4 quantized
Llama-3.1-8B model by different methods.

PRUNING RATIO: 25% 50% 75%

AWQ+WANDA 6.93 9.71 3e2
WANDA+AWQ 6.81 9.46 2e2
AWP 6.81 9.32 1e2

Table 5. Perplexity on WikiText2 of pruned and INT4 quantized
Llama-3.2-1B model by different methods.

PRUNING RATIO: 25% 50% 75%

AWQ+WANDA 11.63 23.95 2e3
WANDA+AWQ 11.30 21.90 1e3
AWP 11.20 18.41 3e2

sponding sparsity mask is applied to ensure that the final
weight is both sparsified and quantized.

We first test on the Llama-3.1-8B model. Table 4 shows
the perplexity of pruned and INT4 quantized models by
different methods under different pruning ratios. We can see
that Wanda+AWQ (pruning first) is consistently better than
AWQ+Wanda (quantization first) under different pruning
ratios. The proposed AWP achieves best performance under
all pruning ratios, especially when pruning ratio is high.

An interesting finding is that, compared with INT2 quan-
tization in Table 3, INT4 quantization with 75% pruning
ratio achieves significantly better perplexity. Note that 4
bits combined with 75% pruning rate is roughly equivalent
to 2 bits, as we need 1 bit to store the pruning mask. As
recent efforts try to push the quantization to extremely low
bits, e.g., 1.58 bit (Ma et al., 2024; Wang et al., 2024b), our
results show that combining quantization with pruning may
achieve much better performance.

5. Conclusion and Discussion
We have proposed a layer-wise activation-aware post-
training quantization and pruning method based on PGD.
We provided a new insight from the compressive sensing
framework to compress large foundation models. Empir-
ical studies show that the proposed method outperforms
the state-of-the-art LLM pruning and quantization methods.
We hope our work will inspire more advanced LLM com-
pression methods by leveraging cutting-edge compressive
sensing techniques.

Our future directions include extending pruning to struc-
tured sparsity, e.g., NVIDIA’s 2:4 sparsity (Mishra et al.,
2021), though the current unstructured sparsity can already
be accelerated by GPUs like Cerebras Wafer-Scale Engine7.
Another direction is to provide theoretical guarantees of the
proposed method for quantization.

7https://www.cerebras.net/blog/harnessing-the-power-of-
sparsity-for-large-gpt-ai-models
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A. Theoretical Justifications of AWP for Pruning
A.1. Convergence under Restricted Isometry Property (RIP)

We first recall the theoretical guarantees of IHT algorithm (Blumensath & Davies, 2009), which uses the iteration:

θ(t+1) = Hk(θ
(t) +A⊤(y −Aθ(t)))

where Hk(·) is the hard-thresholding operator that keeps k largest-magnitude elements of the input vector and sets the
remaining elements to 0.

Theorem A.1. [Blumensath & Davies (2009)] Given a noisy observation y = Aθk + e, where θk is k-sparse. If A has
the restricted isometry property with β3k < 1/8, then, at iteration t, IHT will recover an approximation θ(t) satisfying

∥θ(t) − θk∥2 ≤ ∥θk∥2/2t + 4∥e∥2.

Furthermore, after at most t′ = ⌈log2(∥θk∥2/∥e∥2)⌉ iterations,

∥θ(t′) − θk∥2 ≤ 5∥e∥2.

The definition of β3k in RIP can be found in Equation (6) of Blumensath & Davies (2009).

Note that running AWP Algorithm 1 for pruning with Crow = {Θ : ∥Θ[i, :]∥0 ≤ k, i = 1, ..., dout} and step size η = 1
is equivalent to running IHT for each row of the weight matrix in parallel. Recall that in our semi-structured pruning
(i.e., each row is targeted to be k-sparse), Crow = {Θ : ∥Θ[i, :]∥0 ≤ k, i = 1, ..., dout} and ProjCrow

(Z) simply keeps k
largest-magnitude elements in each row of Z and set remaining elements to 0.

More specifically, recall that each term in (4) is:

∥W[i, :]C
1
2 −Wsparse[i, :]C

1
2 ∥22 = ∥ (W[i, :]C

1
2 )⊤︸ ︷︷ ︸

y

− (C
1
2 )⊤︸ ︷︷ ︸
A

Wsparse[i, :]
⊤︸ ︷︷ ︸

θ

∥22.

We can view y = (W[i, :]C
1
2 )⊤, A = (C

1
2 )⊤, and Wsparse[i, :]

⊤ corresponds to θ. Let us denote the global optimal
k-sparse solution Wsparse[i, :] to the above problem as W∗

sparse[i, :], which corresponds to θk, then we have the corresponding
optimal k-sparse approximation error e = (W[i, :]C

1
2 −W∗

sparse[i, :]C
1
2 )⊤, which is treated as a noise term.

Therefore, we have following guarantee of AWP pruning for each row:

Theorem A.2. If C
1
2 has restricted isometry property with β3k < 1/8, Algorithm 1 with Crow = {Θ : ∥Θ[i, :]∥0 ≤ k, i =

1, ..., dout} and η = 1 will recover an approximation Θ[i, :](t) satisfying

∥Θ[i, :](t) −W∗
sparse[i, :]∥2 ≤ ∥W∗

sparse[i, :]∥2/2t + 4∥W[i, :]C
1
2 −W∗

sparse[i, :]C
1
2 ∥2.

Furthermore, after at most t′ = maxi⌈log2(∥W∗
sparse[i, :]∥2/∥(W[i, :]C

1
2 −W∗

sparse[i, :]C
1
2 )⊤∥2)⌉ iterations,

∥Θ[i, :](t
′) −W∗

sparse[i, :]∥2 ≤ 5∥W[i, :]C
1
2 −W∗

sparse[i, :]C
1
2 ∥2.

Note that one can always scale the matrix C
1
2 in the activation-aware objective function (3).

Combining the error bounds from all rows, we have following corollary:

Corollary A.3. If C
1
2 has restricted isometry property with β3k < 1/8, running Algorithm 1 with Crow = {Θ : ∥Θ[i, :

]∥0 ≤ k, i = 1, ..., dout} and η = 1 after at most t′ = maxi⌈log2(∥Wsparse[i, :]
∗∥2/∥(W[i, :]C

1
2 −W∗

sparse[i, :]C
1
2 )⊤∥2)⌉

iterations, we have
∥Θ(t′) −W∗

sparse∥F ≤ 5∥WC
1
2 −W∗

sparseC
1
2 ∥F. (10)

Proof. From Theorem A.2, we have

∥Θ[i, :](t
′) −W∗

sparse[i, :]∥2 ≤ 5∥W[i, :]C
1
2 −W∗

sparse[i, :]C
1
2 ∥2.
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Squaring both sides, we have

∥Θ[i, :](t
′) −W∗

sparse[i, :]∥22 ≤ 25∥W[i, :]C
1
2 −W∗

sparse[i, :]C
1
2 ∥22.

Summing over all rows, we have

dout∑
i

∥Θ[i, :](t
′) −W∗

sparse[i, :]∥22 ≤ 25

dout∑
i

∥W[i, :]C
1
2 −W∗

sparse[i, :]C
1
2 ∥22.

So we have
∥Θ(t′) −W∗

sparse∥2F ≤ 25∥WC
1
2 −W∗

sparseC
1
2 ∥2F.

Finally, taking square root on both sides, we obtain Equation (10).

A.2. Convergence under Restricted Strong Convexity (RSC) and Restricted Smoothness (RSM) Property

On the other hand, instead of requiring the restricted isometry property (RIP) of C
1
2 , which is not easy to verify (Wang

et al., 2016), Jain et al. (2014) provided the recovery guarantee of IHT method based on Restricted Strong Convexity (RSC)
and Restricted Smoothness (RSM) properties defined below (Jain et al., 2014; Liu & Foygel Barber, 2019):

Definition A.4. (RSC Property) A differential function f : Rd → R satisfies restricted strong convexity with parameter α at
sparsity level k, abbreviated as (α, k)-RSC, if the following holds for all θ1,θ2 s.t. ∥θ1∥0 ≤ k and ∥θ2∥0 ≤ k:

f(θ1) ≥ f(θ2) + ⟨∇θf(θ2),θ1 − θ2⟩+
α

2
∥θ1 − θ2∥22.

Definition A.5. (RSM Property) A differential function f : Rd → R satisfies restricted strong smoothness with parameter β
at sparsity level k, abbreviated as (β, k)-RSM, if the following holds for all θ1,θ2 s.t. ∥θ1∥0 ≤ k and ∥θ2∥0 ≤ k:

f(θ1) ≤ f(θ2) + ⟨∇θf(θ2),θ1 − θ2⟩+
β

2
∥θ1 − θ2∥22.

Based on the above two properties, Liu & Foygel Barber (2019) states that for an objective function f satisfying (α, k)-RSC
and (β, k)-RSM, IHT with step size η ∝ 1/β, i.e., θ(t+1) = Hk(θ

(t) − η∇θf(θ
(t))), satisfies

f(θ(t)) ≤ min
∥θ∥0≤k/(32κ2)

[
f(θ) +

(
1− 1

12κ

)t · (f(θ(0))− f(θ)
)]
,

where κ = β/α, known as the condition number of Hessian of f . In other words, it shows linear convergence to the bound

lim
t→∞

f(θ(t)) ≤ min
∥θ∥0≤k/(32κ2)

f(θ).

For our quadratic objective f(θ) := ∥y −Aθ∥22 in Equation (6), we have exactly

f(θ1) = f(θ2) + ⟨∇θf(θ2),θ1 − θ2⟩+ (θ1 − θ2)
⊤Hf (θ2)

2
(θ1 − θ2) (11)

= f(θ2) + ⟨∇θf(θ2),θ1 − θ2⟩+ (θ1 − θ2)
⊤ 2A⊤A

2
(θ1 − θ2) (12)

= f(θ2) + ⟨∇θf(θ2),θ1 − θ2⟩+ (θ1 − θ2)
⊤ 2C

2
(θ1 − θ2). (13)

Therefore, one can simply use the smallest singular value of 2C, i.e., 2λmin(C) as α, and largest singular value of 2C, i.e.,
2λmax(C) as β. In other words, our objective (6) satisfies (2λmin(C), k)-RSC and (2λmax(C), k)-RSM, and AWP pruning
inherits above convergence and recovery guarantees with κ = λmax(C)/λmin(C), i.e., the condition number of C.
Remark A.6. Note that, in Definition A.4 and Definition A.5, ∥θ1∥0 ≤ k and ∥θ2∥0 ≤ k, therefore ∥θ1 − θ2∥0 ≤
min(2k, din), which is still a sparse vector when k < din/2. So 2λmin(C) and 2λmax(C) are usually loose lower and upper
bounds for α and β, respectively, and λmax(C)/λmin(C) is usually a loose upper bound for κ. One can see that, the smaller
the κ, the better the convergence guarantee and recovery guarantee.
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B. Activation-Aware Loss Derivation
The expression for the activation-aware loss in Equation (3) is derived as follows:

∥WX−WsparseX∥2F = tr
[
(W −Wsparse)(XX⊤)(W −Wsparse)

⊤]
= tr

[
(W −Wsparse)(XX⊤)1/2(XX⊤)1/2(W −Wsparse)

⊤]
= ∥(W −Wsparse)(XX⊤)1/2∥2F
= ∥W(XX⊤)1/2 −Wsparse(XX⊤)1/2∥2F.

C. Activation-aware Loss w.r.t. Iterations
Figure 1 shows an example of normalized activation-aware loss (7), i.e., ∥WC

1
2 −Θ(t)C

1
2 ∥F/∥W∥F, w.r.t. iteration t

during AWP pruning of a layer in the Llama-2 7B model. We can see that such activation-aware approximation loss is
effectively minimized by the proposed activation-aware projected gradient descent method described in Algorithm 1.

Figure 1. ∥WC
1
2 −Θ(t)C

1
2 ∥F/∥W∥F, w.r.t. iteration t during AWP pruning of a layer in the Llama-2 7B model.
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