Under review as a conference paper at ICLR 2026

SEEDTHINK: TEST-TIME CONTROL VIA SEED-
THOUGHT INITIALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large reasoning models (LRMs) achieve impressive performance through ex-
tended chains of thought, but this substantially increases inference overhead, mak-
ing efficiency a critical bottleneck. In this paper, we first show that initializing the
reasoning process with high-quality seed thoughts can steer the model away from
unproductive “overthinking” and produce more efficient reasoning trajectories.
Critically, we find that the optimal granularity of this seed — from a high-level
outline to a detailed solution — depends on problem difficulty. Motivated by this,
we propose SeedThink, a novel framework that adaptively selects the seed granu-
larity based on an estimate of problem difficulty. Specifically, SeedThink features
two core innovations: (1) a difficulty-aware seeding policy that dynamically
generates seed thoughts to reduce repetitive verification and prune unproductive
branches; and (2) seamless integration with enhanced speculative decoding,
where seed thoughts are repurposed as a model-free draft corpus to achieve dual-
path acceleration — shorter reasoning traces and faster token generation. Our ex-
periments show that SeedThink significantly reduces inference costs while largely
preserving performance. Notably, our method achieves up to a 4.1x end-to-end
speedup and a 68% reduction in generation length with minimal accuracy degra-
dation, highlighting the promise of adaptive initialization for balancing reasoning
quality and efficiency.

1 INTRODUCTION

Large language models increasingly benefit from test-time compute, a phenomenon known as test-
time scaling (Snell et al.,|2024; [Muennighoff et al.,[2025). Recent large reasoning models (LRMs),
such as OpenAl ol (Jaech et al,, |2024), DeepSeek-R1 (Guo et al,, [2025), and Qwen3 (Yang
et al., |2025)), demonstrate that extended chains of thought (Wei et al.l [2022a), paired with reflec-
tion, backtracking, and self-verification techniques, significantly enhance performance on complex
reasoning problems. Given a query, these models generate a deliberate think trajectory before pro-
ducing a concise final solution, thereby yielding better results across mathematical and scientific
reasoning benchmarks (Cobbe et al., 2021; Hendrycks et al.l |2021; [He et al., |2024; Rein et al.,
2024; Lewkowycz et al., [2022]).

However, these advances introduce two significant and interconnected challenges: the inherent in-
efficiency and path dependence of test-time computation. While extended chains of thought can
substantially improve performance, they often lead to “overthinking” — expending extra tokens on
repetitive verification, unproductive branching, and exploration long after a sufficient solution has
been found (Chen et al,, [2024; |Cuadron et al., |2025). A single Thinking trajectory is typically
five times longer than a direct No-Thinking response, even on simple problems where both modes
produce the same correct answer (Zhang et al.,2025a; |[Fan et al., [2025] Liang et al., [2025)).

A natural approach to improving efficiency is the mode-switching paradigm, widely studied in recent
works (Zhang et al.,[2025a3b; [Li et al., 2025a; [Luo et al., [2025} Liang et al.| 2025} |[Ha et al.| 2025
Xing et al.). It switches between the efficient No-Thinking mode for easy problems and the effective
Thinking mode for hard ones. However, this paradigm has a critical limitation: its efficacy declines
sharply as problem difficulty increases. It gains efficiency only on problems that are already within
the No-Thinking mode’s capability, failing to address the core inefficiency and path dependence of
“Thinking” on truly challenging tasks. An emerging direction to bridge this gap is to integrate the

Under review as a conference paper at ICLR 2026

Question: What is the smallest positive multiple of 450 whose digits are all zeroes and ones?

o~

e No Thinking ™ Thinking ™\ / Thinking with Seed

<think>Okay, so I need to find the
smallest positive multiple of 450

whose digits are ... (1870 tokens)

Here is a seed solution for N
this question...

Step 1: Use Prime Factor...

Step 2: Apply Digit Cons...

<think>Think finished</think>

We are asked to find the smallest
positive multiple of 450 whose...

(90 tokens) But wait ... (1700 tokens)
Step 1: Find prime factorization of Let me check... (2400 tokens) Total Tokens: J
450. 450=5*90... (320 tokens) Let me think of another approach

that... </think> (2600 tokens) <think>Okay, I should follow
the detailed steps provided in
the seed solution...

Step 1: Use Prime Factor...
Step 2: Apply Digit Constrains...

Step 3: Find final ans...</think>

|
|
|
|
|
|
|
|
|
I
Step 2: Search for the smallest :
number made of only 0s andls, : To determine the smallest positive

| multiple of 450... we must

: consider the divisibility rules and

| the digit composition constraints...

: (710 tokens)

|

|

|

|

|

]

ending in 00, and divisible by 9.
(650 tokens)

Step 3: Check the smallest

number made of only 0s and s

that is divisible by ... (800 tokens)

Final answer: boxed{100100}

Answer: boxed{11111111100}

\/ v
\ \ a

AN Efficient but ineffective ./ < Inefficient but effective ,/ _ Efficient and effective _/

Answer: boxed{11111111100}

1
[
|
|
|
|
|
|
|
|
|
:
! ®
|
|
|
|
|
|
|
|
|
|
|
|
|

Total Tokens: 1852 Total Tokens: 9694

|

Figure 1: Qwen3-32B’s Thinking and No-Thinking mode generating process for an example from
the MATH (Hendrycks et all [2021) benchmark. No Thinking executes a single-pass, myopic tra-
jectory that under-explores the solution space, while Thinking broadens coverage via multi-pass,
multi-angle checks, but spends many tokens on unproductive trajectories. Thinking with Seed ini-
tializes the reasoning process with a concise seed that steers the trajectory to productive regions,
shortens the reasoning path, and prunes unnecessary branches, thereby improving the efficiency of
model reasoning.

two modes or multiple agents into a cooperative pipeline (Fan et al.| 2025} [Pan et al., 2025; Wang
et al.| [2025d).

The inefficiency is further compounded by the highly path-dependent nature of the reasoning tra-
jectory — the same thought budget can produce dramatically different outcomes depending on how
the reasoning process is initialized. Both empirically and intuitively, early steps constrain what the
model explores next, so the initial state of the reasoning process can determine whether the model
converges quickly on a correct explanation or wanders into unproductive regions, and can even af-
fect the model’s instruct-following and safety performance (Fan et al.| 2025} [Lin et al., 2025} [Wu
et al., [2025c).

To address these challenges, in this paper, we investigate a test-time control technique via seed-
thought initialization: how to start the thinking process so that limited test-time compute is steered
toward productive regions of the search space. We operationalize this idea using seed thoughts:
concise, high-quality initial trajectories that shape the early steps of reasoning. As shown in Fig-
ure 1} No-Thinking is fast but myopic, while standard Thinking broadens coverage at a significant
token cost. Our Thinking with Seed initializes reasoning with a concise seed that captures essen-
tial pivot reasoning anchors (e.g., subgoals, key lemmas, variable definitions, candidate equation
forms), which can steer exploration toward productive regions and prune unnecessary branches.

The thought generation process in LRMs can be conceptualized as a non-convex search
through language space. This search is initialized with the user prompt and a seed thought. The
resulting thought trajectories — sequences of tokens evaluated by either process reward models
(PRMs) or outcome reward models (ORMs) — represent the model’s paths to a solution. Therefore,
our method fundamentally alters the search dynamics: rather than starting from scratch, the Think-
ing with Seed mode is initialized at a point already oriented toward a promising basin in the search
space. This head start significantly shortens the reasoning trajectory. Furthermore, the seed acts
as a lightweight greedy backbone that effectively constrains the branching factor during subsequent
exploration, yet remains revisable. By pruning vast regions of the search space that are unproduc-
tive from the outset, the method improves efficiency and mitigates path dependence by steering the
reasoning process toward high-probability solution basins, thereby increasing the chances of rapid
and correct convergence.

Having established the importance of seed thoughts, a natural question arises: does a one-size-fits-
all seed exist?. In practice, seed granularity is a direct lever on the trade-off between guidance

Under review as a conference paper at ICLR 2026

and flexibility. In our pilot experiments, we consistently observed that for easier problems, more
detailed seeds collapse the search and improve efficiency without increasing error, because even
imperfect specifics rarely mislead the model. For harder problems, however, higher-level seeds are
preferable, because they provide strategic scaffolding and flexibility without locking the model into
potentially misleading, concrete steps. These findings motivate a difficulty-aware seeding policy
that adjusts seed granularity to dynamically shape the reasoning trajectory, instead of relying on
fixed initialization strategies.

The utility of the generated seed thoughts extends beyond guiding the reasoning search. We further
show that the two-stage generation paradigm naturally lends itself to Speculative Decoding (SD)
(Leviathan et al.l 2023} [L1 et al., [2024; |Cai1 et al., 2024 [Liu et al.| 2024} |Gloeckle et al., [2024; L1
et al.,|2025b; [Sun et al.} 2025) by producing highly compatible token sequences. Since the second-
stage Thinking with Seed generation is explicitly conditioned on the first-stage seed thoughts, the
outputs exhibit strong token-level alignment — a critical factor for speculative acceleration. As
shown in Figure 1, the Thinking with Seed trajectory closely follows the reasoning path established
by the seed, resulting in higher token acceptance rates than standard auto-regressive drafting or
corpus-based suffix matching.

Our contributions are as follows.

* We conduct a systematic study of how the granularity of seed thoughts affects the perfor-
mance of LRMs.

* We propose a difficulty-aware seed-thought generation framework that adaptively selects
granularity based on problem difficulty.

* To the best of our knowledge, we are the first to integrate Thinking and No-Thinking mode
with speculative decoding, achieving dual-path speedups — shorter deliberative traces and
faster token generation enabled by reusing seed thoughts as a model-free speculative corpus
— within a single cohesive framework.

* Our experiments show up to 3.1x end-to-end acceleration and 45.0% reduction in gen-
eration tokens with only 2.4% accuracy degradation on the MATHS500 dataset on Qwen3
models, delivering superior efficiency—accuracy trade-offs compared to existing methods
and advancing the state of the art. Seed thoughts effectively warm-up speculative decod-
ing corpora, obtaining 16% additional reasoning acceleration than the hybrid SAM with
EAGLES3.

2 RELATED WORKS

Chain-of-Thought and Reasoning Models. Chain-of-Thought (CoT) reasoning denotes a
paradigm for enhancing the transparency and accuracy of large language models (LLMs) in com-
plex reasoning tasks by explicitly generating intermediate logical steps that culminate in a final
output (Wei et al.,2022b). Early foundational works (Wei et al., 2022b; [Kojima et al.,2022)) demon-
strated that CoT prompting — either via few-shot examples or zero-shot instructions — significantly
improves LLM performance on mathematical and logical benchmarks. After that, diverse CoT vari-
ants, including structured CoT (L1 et al., [2023), ToT (Yao et al.l 2023a), self-reflection (Ji et al.,
2023)), and self-correction (Huang et al.| 2023)), are proposed to enhance traceability and accuracy.

Chain-of-Thought and its variants guide LLMs to learn from in-context prompts and generate inter-
nal reasoning before generating the final answers. These works establish the cornerstones of recent
reasoning models, agent, and Agentic Al, where models are trained to obtain the intrinsic capabil-
ity of generating CoTs (Yao et al., [2023b; Jaech et al., 2024; [Muennighoff et al., 2025} |Guo et al.,
2025} | Yang et al., |2025). However, the initial solution or guidance generated during thinking may
be inefficient and ineffective, resulting in overthinking and underthinking (Cuadron et al.| [2025).

Efficient Reasoning. Recently, many training-free or training-based methods are proposed to re-
duce the number of generated tokens, improving the efficiency of test-time scaling. Auto-thinking
utilizes external classifiers or LRMs’ intrinsic task complexity classification capabilities to automat-
ically switch between fast and slow thinking (Zhang et al.l 2025¢c; (Xing et al.). Self-evaluation
methods prompt LRMs to assess their own confidence and decide when to stop reasoning (Wang
et al.| [2025c). Model merging directly merge LLM weights to trade-off the reasoning capability and
cost (Team et al., [2025; |Wu et al.| 2025a). Multi-model frameworks use auxiliary evaluation mod-

Under review as a conference paper at ICLR 2026

els, reward models, or thought proposers to guide decoding (Fu et al.| [2024; Kuhn et al., 2023} Sun
et al., 2024). There are also concurrent works on improve LRM efficiency by generating thoughts
with smaller reasoning models for speculative reasoning (Pan et al., 2025; Wang et al.l |2025byd).
CoThink (Fan et al} [2025) leverages an instruction model to guide reasoning and reduce reasoning
steps. Supervised Fine-Tuning (SFT) or Reinforcement Learning (RL) based methods train LRMs
to with compact reasoning trajectories or length-aware rewards, respectively (Chen et al., 2024} Hou
et al.| 20255 Xia et al.} 2025} [Zhang et al.,2025a} |Chen et al., 2025}, |Fang et al., [2025)).

Speculative Decoding. Due to the lossless advantage, speculative decoding emerged as a widely
studied latency mitigation paradigm by introducing a “draft-verify” pipeline: a lightweight draft
model proposes candidate token sequences, and the target LLM verifies these candidates in parallel,
accepting valid tokens to reduce sequential computation(Leviathan et al., 2023} |Chen et al., |2023).
After that, n-gram based drafter (He et al.|[2023;|Zhao et al., [2024; |[Luo et al., 2024} Hu et al.,|2024),
and auxiliary lightweight trained model(Li et al.| 2024} 2025b; |Cai et al., 2024} [Liu et al., |2024;
Gloeckle et al., [2024)) based methods, infrastructure optimization (Miao et al.,[2024])) are proposed to
improve the practical inference. |Sun et al.|(2025)) systemically compared different existing specula-
tive decoding methods for reasoning acceleration. Recently, [He et al.| (2025)) proposed to accelerate
RL training with SD enhanced with rollout responses tokens in adjacent training epochs.

Our work differs from prior studies in two key respects: 1) We focus on the synergy between Think-
ing and No-Thinking modes, rather than simply switching between them. Seed thoughts are gen-
erated in the No-Thinking mode and capture critical constraints and pivot reasoning anchors of
the searching trajectories. They serve as additional hints that improve LRM confidence, speedup
search convergence, and guide effective and efficient thinking, rather than searching from scratch.
2) We study how to leverage additional contexts, including seed thoughts, to warm-up speculative
decoding corpora to further accelerate LRMs.

3 PRELIMINARY AND OBSERVATIONS

3.1 BACKGROUND AND NOTATIONS

To ground our setting, we first fix notation and delineate the generation paradigms considered in this
work. Let M denote a standard LRM. Given an input question ¢, the model generates a response
sequence 7. Two special tokens, (BOT) and (EOT), are used to demarcate the beginning and end of
the explicit reasoning block.

Thinking Mode. The model generates a full chain-of-thought reasoning process before producing
the final answer. The generation can be formally described as:

Tthinking = M (¢ + (BOT)) = (BOT)[Thoughts|(EOT) [Conclusion]

No-Thinking Mode. The model is prompted to bypass the explicit reasoning process and generate
the final answer directly. This is achieved by prepending a specific instruction inside the reasoning
block that forces an immediate conclusion (Ma et al.,|2025). The generation is:

Tnothinking = M (¢ + (BOT) + sgip + (EOT)) = (BOT) sgip (EOT) [Conclusion]
where s, is a fixed string (e.g., “Okay, I think I have finished thinking.”) that signals the model to
skip deliberative thinking .

Thinking with Seed. To mitigate the inefficiency and path-dependence inherent in the standard
Thinking mode, we introduce a hybrid generation strategy termed Thinking with Seed. This mode
leverages a concise, high-quality seed thought s,..q to initialize and guide the subsequent deliber-
ative reasoning process. The seed sg..q acts as structured scaffolding that shapes the subsequent
reasoning trajectory by providing an initial sketch of the solution path. The model is then prompted
to generate a full reasoning trajectory, explicitly conditioned on the seed s. The generation is for-
malized as:

T'seedThink = M (q + Sseea + (BOT)) = (BOT)[Extended Thoughts](EOT)[Conclusion]

3.2 OBSERVATION

In this section, we investigate how the level of detail in seed thoughts affects the reasoning trajecto-
ries of LRMs, revealing opportunities for optimization in LRMs’ reasoning efficiency.

Under review as a conference paper at ICLR 2026

E== Thinking BB SeedThink-outline [[A227] SeedThink-step [AA4] SeedThink-general [Z227 SeedThink-detailed

Tokens (K) Accuracy

8 I — 1.0

7 N [M

6 = - 0.95 | =

5 B y : g

4 =i B - 0.90 = =

3 & el 3 : g

2 - = = lI - 0.85 | =

1 o |] B I] H

0 o Il 85 = N 0.8 B =l | I Iy I

level-1 level-Il level-IIl level-IV level-V level-1 level-Il level-IIl level-IV level-V
(a) Tokens v.s. Difficulty (b) Accuracy v.s. Difficulty

Figure 2: Comparison of Qwen3-8B using the Thinking mode and four different Thinking with Seed
Thoughts (SeedThink) variants across different difficulty levels of MATHS00 dataset.

Experimental settings. We conduct a pilot study using the MATHS500 datasets (Hendrycks et al.
2021) to analyze the impact of seed granularity on the performance of a widely used LRM Qwen3-
8B. We define four levels of seed granularity:

* Qutline seed: High-level strategic breakdown focusing only on outline without numbers,
formulas, or calculations

* Key-steps seed: Main reasoning steps with important formulas/concepts mentioned.

* General-approach seed: Step-by-step plan with brief explanations, including formulas and
concepts, but avoiding extensive calculations

* Detailed-Steps seed: Near-complete solution with formulas, initial setups, and simple cal-
culations, leaving only complex reasoning for completion

We compare these against the baseline Thinking approach (no seed). For each problem, we generate
seeds at each granularity level using specialized prompts. More details about parameter settings and
prompts can be found in Appendix

Results and analysis. Our pilot study yields a clear central finding: the optimal granularity of a seed
thought follows a non-monotonic relationship with problem difficulty. As illustrated in Figure[2] we
observe a striking pattern: on the simplest problems (level-I/Il), the most detailed seeds achieve
the highest accuracy alongside the greatest efficiency gains; for problems of intermediate difficulty
(level-III/IV), a balanced Key steps seed proves most accurate; while on the hardest problems (level-
V), high-level seeds become most robust, outperforming detailed alternatives.

This tri-phasic pattern highlights a sophisticated trade-off between guidance and flexibility. On
simple problems, a highly specific seed provides strong, beneficial constraints that focus the search
without causing harm. At medium difficulty, an intermediate level of guidance offers the ideal
balance of direction and flexibility. For the most complex problems, however, high-level strategic
scaffolding becomes essential to avoid leading the model down incorrect, overly constrained paths.

The universal efficiency gains of SeedThink (23%-59% token reduction at all levels) confirm its
value for efficient test-time control. The dramatic shift in the relative performance of seed types
across the difficulty spectrum, however, reveals that a static seeding strategy is fundamentally sub-
optimal. This finding directly motivates our subsequent proposal of a difficulty-aware seeding pol-
icy, which dynamically modulates seed granularity to track this shifting optimum, as detailed in the
next section.

4 METHOD

As visualized in Figure 3] SeedThink improves reasoning efficiency by proposing difficulty-aware
seed thoughts as additional thinking hints and token corpora to improve thinking generation confi-
dence and enhance speculative decoding acceptance rate, respectively. The framework consists of
three modules: 1) Difficulty estimator for more accurate alignment with problem difficulties in Sec-
tion[d.2] 2) Seed thought generator, which generate suitable seed granularity based on the previous

Under review as a conference paper at ICLR 2026

e e

. N\
(/ \Difficulty Estimator __ "\ |’/ Seed Thought Generator \
VX_ V l '
: = >0 » ’ XX {.L N > 0 — | Detailed solution :
: " oo ,’ ﬁ...y) : : O— formulas, concepts, derivations |
Ly aE <) |
= !)

: = —OM= \ [X_ : : > ‘ V == High-level outline I
l\ Gl& > Oz ||_LY o V - stepl — step2— step3 ... Il
. Tir_d___?__/// \\ _________________________________ v
P a A LT T 8 o T8 T A ~
I Seed Guided Reasoning with Speculative Decodin N
| |
]| ce® (. . |
| o = _. S 5, _--> Shorten reasoning path :
: a=_||)= \\\ o I > Reduce repetitive verification I
I @= Dual-path speedups ,I' » Pruning unproductive branch !
[I 1&» e -l :
: VX : - @ (5 ‘\ Enhance speculative decoding]
| (x#)= - -’ @ i & / ~~» > Reusethought as high-quality draft |
| = =] '
\ » Highly token level alignment)
\ 7/

R R R N N ——————————_—————

Figure 3: The SeedThink framework comprises three core modules: (1) Difficulty Estimator: As-
sesses problem complexity; (2) Seed Thought Generator: Produces a difficulty-aware seed solution;
(3) Seed-Guided Reasoning: Ultilizes the seed for focused reasoning and as a high-quality draft for
speculative decoding, achieving dual-path acceleration.

prompt difficulty estimation, in Section 3) Seed guided reasoning with enhanced speculative
decoding for shorter and faster test-time scaling in Section4.4]

4.1 PROBLEM FORMULATION

Our SeedThink framework involves a two-stage generation process: (1) generating a seed thought
with appropriate granularity, and (2) producing the final reasoning trajectory conditioned on the seed
as formulated in Section Thus, the key to this process is selecting the suitable seed granularity
for diverse prompt difficulties to trade-off efficiency and performance.

We formulate the seed thought selection as an optimization problem that maximizes a composite
objective function balancing efficiency against accuracy. Given a problem ¢ with estimated difficulty
d, we select the optimal seed granularity g* € G from our predefined seed set.

Formally, for a problem with difficulty d, the ideal seed granularity g* € G should maximize:

g*(d) = arg max [£(g,d) + X A(g,d)]

where £(g,d) = W represents relative efficiency gain, A(g,d) = %W repre-

sents relative accuracy change, and A > 0 is a trade-off coefficient. Here, T;;(d) and A,4(d) are the
number of tokens and accuracy under granularity g at difficulty d, while Tipink(d) and Aini(d) are
the corresponding quantities under the original Thinking mode.

4.2 DIFFICULTY ESTIMATOR

Existing research from|Liu et al.|(2025)) indicates that LRMs fundamentally lack the capacity for ac-
curate, autonomous difficulty cognition. Equipping models with this metacognitive ability typically
necessitates carefully designed SFT or RL, which entail significant computational expense. For the
sake of efficiency, we avoid this training overhead by introducing a separate difficulty estimator as
a crucial first step in our methodology. Accordingly, we frame the problem of difficulty assess-
ment as a text classification task that is decoupled from the LRM’s own reasoning process. The
specific architecture, detailed training procedure, and an evaluation of the estimator’s effectiveness
are provided in Appendix D] The difficulty estimator module assesses the complexity level of input
problems to determine the appropriate seeding strategy. Formally, it maps a problem q to a difficulty
level d € D, where D = {Simple, Moderate, Hard} is the set of difficulty categories.

Under review as a conference paper at ICLR 2026

4.3 SEED THOUGHT GENERATOR

Based on our empirical findings in Section we propose a deterministic seeding policy 7 (d) that
directly maps difficulty to seed granularity:

detailed steps if d = Simple
m(d) = < key steps if d = Moderate
outline if d = Hard

The seed generator then produces:
Seedray = M(Tr(a)(q)) (1

where 7T is the prompt template for granularity g.

4.4 SEED GUIDED REASONING WITH ENHANCED SPECULATIVE DECODING

Building upon the difficulty-aware generation of the seed thought Seedr(4), the seed guided reason-
ing process produces the final output by explicitly conditioning on the seed:

TSeedThink = M (q, Seedy(ay) 2)

The sequential dependency between Eq. (1) and Eq. (2) is the cornerstone of our method. The final
reasoning output 7seeqrhink 1S explicitly conditioned on the Seedﬂ(d), creating a strong path depen-
dence. Combined with the model consistency of using the same model M for both generations,
this design ensures a high degree of token-level alignment between the two sequences. It is this
inherent alignment that makes the seed from Eq. (1) a naturally high-quality draft for speculative
decoding, as the verification of the seed tokens during the generation of Eq. (2) achieves higher ac-
ceptance rates than drafts lacking such a causal link. Thus, the seed thought serves a dual purpose:
it structures the reasoning path deterministically, while its token sequence functions as an internal,
optimized draft for accelerated generation.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on three math datasets of increasing difficulty: GSM8K(1,319 grade-school
problems) (Cobbe et al., 2021), MATHS00 (a 500-problem subset of the MATH benchmark con-
taining high-school competition problems) (Hendrycks et al., 2021), and AIME 2024 (30 challeng-
ing Olympiad-level problems). We report solution accuracy, wall time, and the average number of
generated tokens (response length) as key metrics. We report accuracy as Pass@1 (percentage of
problems solved correctly by the first sample). All generated answers are checked using Hugging-
Face’s official Math-Verify'| for fairness and reproducibility. Due to the small size of AIME 2024,
we generate 4 responses per problem and report the average performance. For all models, we use
a 16K context window. Following the recommendations to balance diversity and coherence in the
official model cards, we set the temperature to 0.6 for Thinking mode and 0.7 for No-Thinking mode,
respectively.

Models. We conduct our main experiments on four publicly available Large Reasoning Models
(LRMs) of varying scales: DeepSeek-R1-Distill-Llama-8B (Guo et al., [2025), Qwen3-8B, Qwen3-
14B, and Qwen3-32B (Yang et al.l [2025). These models are specifically designed for complex
reasoning and Qwen3 natively support both Thinking and No-Thinking generation modes, making
them ideal testbeds for our proposed efficiency improvements.

Baselines. We compare our approach against four representative baseline methods:
* Think: The standard Thinking mode, where the model generates a full, multi-step reasoning

trace before producing a final answer. This represents the high-cost, high-performance
upper bound for LRMs.

"https://github.com/huggingface/Math- Verify

Under review as a conference paper at ICLR 2026

Table 1: Accuracy, average response length (Length), and average runtime of different methods on
three math benchmarks. The best and second results are bolded and underlined, respectively. For
ease of comparison, the results include absolute accuracy differences, speedup ratios relative to the
Think baseline, and relative length differences.

Method GSMS8K MATH 500 AIME 2024
5 Accuracy T Runtime (s) | Length | Accuracy T Runtime (s) | Length | Accuracy T Runtime (s) | Length | \
DeepSeek-R1-Distill-LLaMA-8B
Think 76.50% 1139 4029 87.60% 104.6 3627 46.67% 299.1 11288
NoThink 76.80% +0.3% 12.09.5x 320 921% | 66.20% -21.4% 19.7 53 682 812% 10.00% -36.7% 60.6 4.9 1917 -83.0%
JointThink 80.12% + 1432 08x 4968 +233% | 90.20% +2 1442 07x % | 43.33% 478.0 0.6 15220 +34
CoThink 77.64% + 98.1 1.2x 3433 14.8% 81.20% 6 85.7 12 40.00% -6 233.013 8630
SeedThink (ours) | 78.22% +1.7% 61319 3647 95% 82.80% -4.8% 45.1 23x 43.33% 1313 23x 9049 -19.9%
Qwen3-8B
Think 95.00% 94.6 2405 96.20% 191.4 64.16% 358.6
NoThink 90.22% -4.8% 10.3 9.2 956 80.0% | 83.80% -12.4% 36.253x 26.67% -3 116.1 3.1 ¢
JointThink 95.83% 109.4 09x 2783 97.00% 251.4 08x 60.00% -+ 568.1 0.6x
CoThink 94.62% -0. 37.6 25x 865 - 94.20% 146.4 13 63.33% -0. 401.6 0.9
SeedThink (ours) 94.84% -0.2% 24.9 38x 801 -66.7% 94.40% -1.8% 72.227x 61.16% 176.4 20x
Qwen3-14B
Think 95.53% 75.5 1881 96.80% 176.9 66.67% 395.6
NoThink 90.85% -4.7% 11.9 63 53% | 86.40% -104% 34.55.0x% 33.33% 159.5 25%
JointThink 96.12% +0.6% 96.7 0.8x & 232.3 0.8 66.67% 611.4 06x
CoThink 93.86% -1.7% 28.227x 1145 15% 72.50% + 350.5 1.1x
SeedThink (ours) | 94.39% -1.1% 18.4 4.1% 60.7 29x 70.83% + 188.5 2.1
Qwen3-32B
Think 95.30% 101.6 97.20% 282.6 75.00% 836.3
NoThink 91.52% -3.8% 18455 86.40% -10.8% 46.9 6.0x 26.67% -48.3% 170.9 4.9
JointThink 96.41% +11% 123.6 0.8x 97.60% +0.4% 358.3 0.8x 75.00% -o. 1267.9 0.7x
CoThink 94.47% -0.8% 42304 94.40% -2 163.0 1.7 73.33% -1 588.6 1.4x
SeedThink (ours) | 93.93% -1.4% 24.6 4.1x 94.80% -2.4% 90.1 3.1 2559 45.0% 72.50% -2 301.7 28

* NoThink: The standard No-Thinking mode, where the model generates a direct, concise an-
swer without an explicit reasoning trace. This represents the low-cost, lower-performance
baseline.

* JointThink (Wu et al.| |2025b)): A calibration-based method that first generates answers in
parallel using both Thinking and No-Thinking modes. If the answers from two modes are
inconsistent, it triggers a second Thinking round conditioned on both candidates’ answers
to improve robustness.

* CoThink (Fan et al||2025): A two-stage pipeline where an Instruct model first creates a
very short reasoning outline, which is then refined by a reasoning model.

5.2 MAIN RESULTS

Superior Efficiency-Effectiveness Trade-off. As shown in Table [} our proposed SeedThink
method achieves a remarkable balance between computational efficiency and reasoning accuracy
across all model scales and benchmarks, achieving up to 4.1x reasoning acceleration. On the chal-
lenging MATH 500 dataset, SeedThink maintains competitive accuracy while accelerating inference
by 2.3 ~ 3.1x and reducing token length by 28.0%-45.0% compared to standard Thinking mode,
outperforming the state-of-the-art (SOTA) baseline CoThink (Fan et al.l |2025) in all three metrics.
While CoThink utilizes only coarse-grain outlines, which proves sub-optimal across diverse diffi-
culty levels, our method dynamically selects seed granularity based on the problem difficulty. This
adaptability allows SeedThink to provide detailed guidance for simple problems where specificity is
beneficial, while maintaining the flexibility of high-level outlines for complex problems where rigid
guidance may be detrimental.

The advantages of SeedThink become particularly evident when compared to alternative efficiency-
oriented methods. While JointThink achieves modest accuracy improvements of 0.4%-2.6% on
MATHS500, it leads to 20 ~ 30% slowdown and requires 24 ~ 29% longer reasoning trajectories. In
contrast, SeedThink delivers substantially greater efficiency gains while maintaining accuracy loss
within 2.4% of the standard Thinking baseline. On the more challenging AIME 2024 benchmark,
SeedThink consistently outperforms both alternatives, often matching or even improving accuracy
while improving efficiency more than 2x across all model scales. These results demonstrate that
SeedThink achieves a superior efficiency-effectiveness trade-off, providing the practical benefits of
dramatically reduced computational costs while preserving the reasoning quality of LRMs.

Dual-path speedups. SeedThink achieves up to 4.1x acceleration through two complementary
mechanisms: (1) reduced reasoning trajectory length via strategic seed thought guidance, and (2)
speculative decoding acceleration enabled by high token-level alignment between seed thoughts and

Under review as a conference paper at ICLR 2026

final reasoning paths. The 9.5 ~ 68.8% token length reductions directly translate to proportionally
fewer decoding steps, while the even greater speedup of 1.9 ~ 4.1x indicates additional gains
from the reused seed thought as high-quality drafts for speculative decoding. We further conduct an
ablation study in Section [5.3]about the effect of reusing them for warming up SD corpora.

5.3 ABLATION STUDY ON SPECULATIVE DECODING

To validate the core hypothesis from Section [d.4}—that the path dependence between seed gen-
eration and final reasoning creates superior token-level alignment for speculative decoding—we
conduct a carefully designed ablation study comparing three distinct paradigms.

First, we reproduce existing speculative decoding approaches: Think + SAM (Hu et al.| |2024) and
Think + SAM + Eagle3 (Li et al.l 2025b), which represent SOTA model-free and model-based
methods applied to standard reasoning trajectories (Sun et alJ, 2025). Second, we test a warm-up
setting where seeds serve only as external draft corpora for SAM, isolating the pure speculative
utility of seeds from our path-dependent generation paradigm in Eq. (2).

Table Pl reveals a clear but quest djstinctign: Method MAT Throughput Speed up
while the warm-up configuration brings gains

(1.45% and 2.08x speedups), these are consis- Thims(AM %(7)(5) %gg | 3_7><
tently lower' than SeedThink’s 1.56x and 2.24x +SAM + w 188 112 L 45%
speedups with the same components. +SAM + Eagle3 3.26 54.5 1.92%
This performance gap provides direct evidence + all components 3.41 59.0 2.08%
for our theoretical claim: the sequential depen- SeedThink 1.00 28.6 1.00x
dence between Eqgs. (1) and (2) is the cor- +SAM 1.94 44.2 1.56x
nerstone of our method’s effectiveness. When +SAM + Eagle3 3.65 63.6 2.24x

seed thoughts are used only as external cor- Table 2: Ablation study on MATHS00 using Qwen3-
pora for warm-up, MAT gains remain limited. 4B, comparing speculative decoding performance. "w”
In contrast, explicitly conditioning final rea- denotes warm-up. MAT: Mean Accepted Tokens;
soning on seed thoughts creates genuine path Throughput: tokens per second. Speed up are normal-
dependence and yields measurably higher ized to baseline Thinking.

MAT.

The results conclusively demonstrate that it is not merely about supplying extra corpora from seed
thoughts, but their integrated role in the generation process that enables superior speculative
performance. Our two-stage framework creates a cohesive reasoning trajectory where each step
naturally follows from the previous, producing the high-quality token alignment that enhances both
model-free and model-based speculative decoding approaches.

5.4 ANALYSIS OF REASONING TRAJECTORY OPTIMIZATION

The inefficiency of current LRMs is largely driven by
two unproductive behaviors: repetitive verification and
redundant branching explorations. These behaviors can w0 Q E %E b::thﬁh:hkl;:k)
be measured with the number of reflection and branch to- \
N

kens, which are defined in Appendix [E} Our analysis re-

veals that SeedThink significantly reduces these two inef- \§
ficient reasoning behaviors. As shown in Figure [for
Qwen3-8B, reflection tokens decrease by 58.9% while
branch tokens drop by 72.6%. This pattern holds con-
sistently across model scales, with Qwen3-32B models
showing the most dramatic reductions: 69.5% fewer re- .

#Tokens reflection and branch per-prompt

Qwen3-88

flection tokens and 80.6% fewer branch tokens. s

Qwen3-14B Qwen3-328

Figure 4: Reflection and branch token
counts analysis of SelfThink and the
Thinking baseline.

The mechanism behind this optimization lies in the seed’s
role as a reasoning anchor. By providing high-quality
initial guidance, SeedThink preemptively addresses the
uncertainties that typically trigger verification cycles and
alternative path exploration. The seed establishes a focused solution trajectory, reducing the need
for extensive backtracking and minimizing unproductive branching.

Under review as a conference paper at ICLR 2026

REFERENCES

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple Ilm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Qiguang Chen, Dengyun Peng, Jinhao Liu, HuiKang Su, Jiannan Guan, Libo Qin, and Wanxiang
Che. Aware first, think less: Dynamic boundary self-awareness drives extreme reasoning effi-
ciency in large language models. arXiv preprint arXiv:2508.11582, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examin-
ing the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

Siqi Fan, Peng Han, Shuo Shang, Yequan Wang, and Aixin Sun. Cothink: Token-efficient reasoning
via instruct models guiding reasoning models. arXiv preprint arXiv:2505.22017, 2025.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. arXiv preprint
arXiv:2505.13379, 2025.

Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang.
Efficiently serving llm reasoning programs with certaindex. arXiv preprint arXiv:2412.20993,
2024.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Rui Ha, Chaozhuo Li, Rui Pu, and Sen Su. From” aha moments” to controllable thinking: Toward
meta-cognitive reasoning in large reasoning models via decoupled reasoning and control. arXiv
preprint arXiv:2508.04460, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Jingkai He, Tianjian Li, Erhu Feng, Dong Du, Qian Liu, Tao Liu, Yubin Xia, and Haibo
Chen. History thymes: Accelerating llm reinforcement learning with thymerl. arXiv preprint
arXiv:2508.18588, 2025.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

10

Under review as a conference paper at ICLR 2026

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Yuxuan Hu, Ke Wang, Xiaokang Zhang, Fanjin Zhang, Cuiping Li, Hong Chen, and Jing Zhang.
Sam decoding: Speculative decoding via suffix automaton. arXiv preprint arXiv:2411.10666,
2024.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
lIm hallucination via self reflection. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 1827-1843, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,

35:22199-22213, 2022.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proc. Int. Conf. Machine Learning, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843-3857, 2022.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation,
2023. URL https://arxiv.org/abs/2305.06599.

Yang Li, Youssef Emad, Karthik Padthe, Jack Lanchantin, Weizhe Yuan, Thao Nguyen, Jason We-
ston, Shang-Wen Li, Dong Wang, Ilia Kulikov, et al. Naturalthoughts: Selecting and distilling
reasoning traces for general reasoning tasks. arXiv preprint arXiv:2507.01921, 2025a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference acceler-
ation of large language models via training-time test. arXiv preprint arXiv:2503.01840, 2025b.

Guosheng Liang, Longguang Zhong, Ziyi Yang, and Xiaojun Quan. Thinkswitcher: When to think
hard, when to think fast. arXiv preprint arXiv:2505.14183, 2025.

Zhengkai Lin, Zhihang Fu, Ze Chen, Chao Chen, Liang Xie, Wenxiao Wang, Deng Cai, Zheng
Wang, and Jieping Ye. Controlling thinking speed in reasoning models. arXiv preprint
arXiv:2507.03704, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike

Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

11

https://arxiv.org/abs/2305.06599

Under review as a conference paper at ICLR 2026

Yongjiang Liu, Haoxi Li, Xiaosong Ma, Jie Zhang, and Song Guo. Think how to think: Mitigating
overthinking with autonomous difficulty cognition in large reasoning models. arXiv preprint
arXiv:2507.02663, 2025.

Haotian Luo, Haiying He, Yibo Wang, Jinluan Yang, Rui Liu, Naiqgiang Tan, Xiaochun Cao,
Dacheng Tao, and Li Shen. Ada-rl: Hybrid-cot via bi-level adaptive reasoning optimization.
arXiv preprint arXiv:2504.21659, 2025.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming Zhang, Xuanyu Zhang, Qing Yang, and
Dongliang Xu. Turning trash into treasure: Accelerating inference of large language models
with token recycling. arXiv preprint arXiv:2408.08696, 2024.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large lan-
guage model serving with tree-based speculative inference and verification. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, pp. 932-949, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specrea-
son: Fast and accurate inference-time compute via speculative reasoning. arXiv preprint
arXiv:2504.07891, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Shengyin Sun, Yiming Li, Xing Li, Yingzhao Lian, Weizhe Lin, Hui-Ling Zhen, Zhiyuan Yang,
Chen Chen, Xianzhi Yu, Mingxuan Yuan, et al. Scaling up, speeding up: A benchmark of specu-
lative decoding for efficient llm test-time scaling. arXiv preprint arXiv:2509.04474, 2025.

Kimi Team, A Du, B Gao, B Xing, C Jiang, C Chen, C Li, C Xiao, C Du, C Liao, et al. Kimi k1. 5:
Scaling reinforcement learning with llms, 2025. URL https://arxiv. org/abs/2501.12599, 2025.

Chenlong Wang, Yuanning Feng, Dongping Chen, Zhaoyang Chu, Ranjay Krishna, and Tianyi
Zhou. Wait, we don’t need to” wait”! removing thinking tokens improves reasoning efficiency.
arXiv preprint arXiv:2506.08343, 2025a.

Jikai Wang, Juntao Li, Lijun Wu, and Min Zhang. Efficient reasoning for llms through speculative
chain-of-thought. arXiv preprint arXiv:2504.19095, 2025b.

Yiming Wang, Pei Zhang, Siyuan Huang, Baosong Yang, Zhuosheng Zhang, Fei Huang, and Rui
Wang. Sampling-efficient test-time scaling: Self-estimating the best-of-n sampling in early de-
coding. arXiv preprint arXiv:2503.01422, 2025c.

Zhihai Wang, Jie Wang, Jilai Pan, Xilin Xia, Huiling Zhen, Mingxuan Yuan, Jianye Hao, and

Feng Wu. Accelerating large language model reasoning via speculative search. arXiv preprint
arXiv:2505.02865, 2025d.

12

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022b.

Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen,
Tao Zhong, and Mingxuan Yuan. Unlocking efficient long-to-short llm reasoning with model
merging. arXiv preprint arXiv:2503.20641, 2025a.

Haotian Wu, Bo Xu, Yao Shu, Menglin Yang, and Chengwei Qin. Thinking with nothinking cali-
bration: A new in-context learning paradigm in reasoning large language models. arXiv preprint
arXiv:2508.03363, 2025b.

Tong Wu, Chong Xiang, Jiachen T Wang, G Edward Suh, and Prateek Mittal. Effectively controlling
reasoning models through thinking intervention. arXiv preprint arXiv:2503.24370, 2025c.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Zeyu Xing, Xing Li, Huiling Zhen, Xianzhi Yu, Mingxuan Yuan, and Sinno Jialin Pan. Large
reasoning models know how to think efficiently. In ES-FoMo III: 3rd Workshop on Efficient
Systems for Foundation Models.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025a.

Shengjia Zhang, Junjie Wu, Jiawei Chen, Changwang Zhang, Xingyu Lou, Wangchunshu Zhou,
Sheng Zhou, Can Wang, and Jun Wang. Othink-r1: Intrinsic fast/slow thinking mode switching
for over-reasoning mitigation. arXiv preprint arXiv:2506.02397, 2025b.

Wencheng Zhang, Shiqin Qiao, Lingjie Luo, Yinfeng Li, Chuanyang Zheng, Qian Xu, Meng Li,
Yong Gui, Yijun He, Jianing Qiu, et al. Synapseroute: An auto-route switching framework on
dual-state large language model. arXiv preprint arXiv:2507.02822, 2025¢.

Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang, and Jinjie Gu. Lookahead: An inference
acceleration framework for large language model with lossless generation accuracy. In Proceed-
ings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
24, pp. 6344-6355. Association for Computing Machinery, 2024. ISBN 9798400704901. doi:
10.1145/3637528.3671614.

13

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed solely for the purpose of enhancing the linguistic
clarity and stylistic refinement of this manuscript.

B SUPPLEMENTARY MATERIALS FOR SECTION

As described in Section [3.2] we conduct a pilot study using the MATH500 datasets to analyze
the impact of seed granularity on the performance of a widely used LRM Qwen3-8B. For seed
thought generation, we use the No-Thinking mode with four different prompt to control the seed
granularity. For the second round of generation, we use the thinking mode while providing the seed
as an additional reference through the thinking with seed prompt. Both the seed generation prompt
and the thinking with seed prompt can be found in

We use an 8K context window for seed thought generation and 16K context window for thinking
with seed reasoning process. Following the recommendations to balance diversity and coherence in
the official model cards, we set the temperature to 0.6 for Thinking mode and 0.7 for No-Thinking
mode, respectively.

C DETAILS ON PROMPT

Qutline seed generation prompt

a)

<|User|>You are a reasoning assistant. Your job is to break

down a complex problem into 2 to 4 high-level reasoning steps.
Focus only on outlining the general approach or strategy. Do not
include any numbers, formulas, or final answers. Avoid specific
calculations or details|only describe the logic behind solving the
problem. Please break down the following problem. [question]
<|Assistant|><think></think> \n

key steps seed generation prompt

{ '

<|User|>You are a reasoning assistant. Your task is to rapidly
provide key steps for solving the given math problem. Include the
main reasoning steps without performing detailed calculations.
Mention any important formulas or concepts needed, but do not
compute numerical results or give the final answer. [question]
<|Assistant|><think></think> \n

General approach seed generation prompt

{ '
<|User|>You are a reasoning assistant. Quickly provide a general

approach to solve the given math problem. Include a step-by-step
plan with brief explanations of each step. You may mention

formulas and concepts, but avoid extensive calculations. The goal
is to set up the problem for detailed reasoning later. [question]
<|Assistant|><think></think> \n

\ J

Detailed steps seed generation prompt

<|User|>You are a reasoning assistant. Your task is to promptly
provide detailed steps for solving the given math problem. Include
necessary formulas, initial setups, and perform simple calculations

14

Under review as a conference paper at ICLR 2026

if needed. However, leave the most complex calculations or
reasoning for the next stage. Provide as much detail as possible
without giving the final answer. [question]
<|Assistant|><think></think> \n

Thinking with seed generation prompt

{ '

<|User|> Reference Seed solution from a instruct model:

[Reference answer]

It is crucial to critically evaluate the information provided in
the reference, recognizing that it may be biased or incorrect. If
you think the reference is incorrect, try to correct it to become
your answer.

[question]

<|Assistant | ><think>\n

D DIFFICULTY ESTIMATOR AS A TEXT CLASSIFICATION TASK

To implement this classifier, we employ a RoBERTa model (Liu et al., 2019). This choice is mo-
tivated by RoBERTa’s well-established and outstanding performance on a wide range of text clas-
sification benchmarks, where it consistently delivers robust and accurate predictions. Furthermore,
compared to the large reasoning models that are the focus of our study, a RoOBERTa-based classifier
is relatively lightweight, allowing for efficient inference without introducing significant computa-
tional burden. This combination of high classification accuracy and operational efficiency makes it
an ideal candidate for our difficulty estimation step.

We formulate difficulty estimation as a 3-class classification task. Specifically, we train the model
on a mathematical dataset comprising 12,500 samples with inherent difficulty annotations. The
original fine-grained labels (on a scale of 1-5) are mapped to three broader categories: labels 1-
2 are grouped as easy, labels 3-4 as moderate, and label 5 as hard. This categorization captures
meaningful distinctions in problem complexity while maintaining sufficient data for each class.

Our implementation uses the ROBERTa-base architecture, which contains 125 million parameters
configured with 12 transformer layers, a hidden state size of 768, and 12 attention heads. The model
is trained for 5 epochs with a batch size of 32, achieving a classification accuracy of 0.85 on the test
set. This demonstrates the model’s strong capability in reliably assessing problem difficulty.

E DEFINITIONS OF REFLECTION AND BRANCH TOKENS

Reflection represents self-verification behaviors where the model double-checks its reasoning
through repetitive validation cycles. This manifests linguistically through phrases like “wait”, “let
me check”, and “let me verify”’—indicators of conservative reasoning patterns that often continue
well after a solution has been adequately established (Wang et al., [2025a)).

Branch exploration encompasses the model’s tendency to consider alternative solution paths, sig-
naled by terms like “alternatively”, “another way”, and “different approach”. While potentially
valuable for complex problem-solving, uncontrolled branching frequently leads to computational

inefficiency as the model explores unpromising directions.

15

	INTRODUCTION
	RELATED WORKS
	Preliminary and Observations
	Background and Notations
	Observation

	Method
	Problem Formulation
	Difficulty Estimator
	Seed Thought Generator
	Seed Guided Reasoning with Enhanced Speculative Decoding

	EVALUATION
	EXPERIMENTAL SETUP
	MAIN RESULTS
	Ablation Study on Speculative Decoding
	Analysis of Reasoning Trajectory Optimization

	The Use of Large Language Models (LLMs)
	Supplementary materials for observation
	Details on prompt
	Difficulty estimator as a text classification task
	Definitions of reflection and branch tokens

