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ABSTRACT

Large reasoning models (LRMs) achieve impressive performance through ex-
tended chains of thought, but this substantially increases inference overhead, mak-
ing efficiency a critical bottleneck. In this paper, we first show that initializing the
reasoning process with high-quality seed thoughts can steer the model away from
unproductive “overthinking” and produce more efficient reasoning trajectories.
Critically, we find that the optimal granularity of this seed — from a high-level
outline to a detailed solution — depends on problem difficulty. Motivated by this,
we propose SeedThink, a novel framework that adaptively selects the seed granu-
larity based on an estimate of problem difficulty. Specifically, SeedThink features
two core innovations: (1) a difficulty-aware seeding policy that dynamically
generates seed thoughts to reduce repetitive verification and prune unproductive
branches; and (2) seamless integration with enhanced speculative decoding,
where seed thoughts are repurposed as a model-free draft corpus to achieve dual-
path acceleration — shorter reasoning traces and faster token generation. Our ex-
periments show that SeedThink significantly reduces inference costs while largely
preserving performance. Notably, our method achieves up to a 4.1× end-to-end
speedup and a 68% reduction in generation length with minimal accuracy degra-
dation, highlighting the promise of adaptive initialization for balancing reasoning
quality and efficiency.

1 INTRODUCTION

Large language models increasingly benefit from test-time compute, a phenomenon known as test-
time scaling (Snell et al., 2024; Muennighoff et al., 2025). Recent large reasoning models (LRMs),
such as OpenAI o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025), and Qwen3 (Yang
et al., 2025), demonstrate that extended chains of thought (Wei et al., 2022a), paired with reflec-
tion, backtracking, and self-verification techniques, significantly enhance performance on complex
reasoning problems. Given a query, these models generate a deliberate think trajectory before pro-
ducing a concise final solution, thereby yielding better results across mathematical and scientific
reasoning benchmarks (Cobbe et al., 2021; Hendrycks et al., 2021; He et al., 2024; Rein et al.,
2024; Lewkowycz et al., 2022).

However, these advances introduce two significant and interconnected challenges: the inherent in-
efficiency and path dependence of test-time computation. While extended chains of thought can
substantially improve performance, they often lead to “overthinking” — expending extra tokens on
repetitive verification, unproductive branching, and exploration long after a sufficient solution has
been found (Chen et al., 2024; Cuadron et al., 2025). A single Thinking trajectory is typically
five times longer than a direct No-Thinking response, even on simple problems where both modes
produce the same correct answer (Zhang et al., 2025a; Fan et al., 2025; Liang et al., 2025).

A natural approach to improving efficiency is the mode-switching paradigm, widely studied in recent
works (Zhang et al., 2025a;b; Li et al., 2025a; Luo et al., 2025; Liang et al., 2025; Ha et al., 2025;
Xing et al.). It switches between the efficient No-Thinking mode for easy problems and the effective
Thinking mode for hard ones. However, this paradigm has a critical limitation: its efficacy declines
sharply as problem difficulty increases. It gains efficiency only on problems that are already within
the No-Thinking mode’s capability, failing to address the core inefficiency and path dependence of
“Thinking” on truly challenging tasks. An emerging direction to bridge this gap is to integrate the
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Question: What is the smallest positive multiple of 450 whose digits are all zeroes and ones? 

No Thinking

Total Tokens: 1852

Thinking

Total Tokens: 9694

Thinking with Seed

<think>Think finished</think>
We are asked to find the smallest 
positive multiple of 450 whose... 
                                     (90 tokens)
Step 1: Find prime factorization of 
450. 450=5*90...         (320 tokens) 
Step 2: Search for the smallest 
number made of only 0s and1s, 
ending in 00, and divisible by 9.                                                              

                (650 tokens)
Step 3: Check the smallest 
number made of only 0s and 1s 
that is divisible by ...   (800 tokens)

Final answer:  boxed{100100}

<think>Okay, so I need to find the 
smallest positive multiple of 450 
whose digits are ...   (1870 tokens)
But wait ...                (1700 tokens)
Let me check...         (2400 tokens)
Let me think of another approach 
that... </think>          (2600 tokens)

To determine the smallest positive 
multiple of 450... we must 
consider the divisibility rules and 
the digit composition constraints...
                                   (710 tokens)

Answer: boxed{11111111100}

Total Tokens: 5209

Here is a seed solution for 
this question...
Step 1: Use Prime Factor...
Step 2: Apply Digit Cons...

<think>Okay, I should follow 
the detailed steps provided in 
the seed solution...
Step 1: Use Prime Factor...
Step 2: Apply Digit Constrains...
Step 3: Find final ans...</think>

Answer: boxed{11111111100}

Total Tokens: 342

Efficient but ineffective Inefficient but effective Efficient and effective

Figure 1: Qwen3-32B’s Thinking and No-Thinking mode generating process for an example from
the MATH (Hendrycks et al., 2021) benchmark. No Thinking executes a single-pass, myopic tra-
jectory that under-explores the solution space, while Thinking broadens coverage via multi-pass,
multi-angle checks, but spends many tokens on unproductive trajectories. Thinking with Seed ini-
tializes the reasoning process with a concise seed that steers the trajectory to productive regions,
shortens the reasoning path, and prunes unnecessary branches, thereby improving the efficiency of
model reasoning.

two modes or multiple agents into a cooperative pipeline (Fan et al., 2025; Pan et al., 2025; Wang
et al., 2025d).

The inefficiency is further compounded by the highly path-dependent nature of the reasoning tra-
jectory — the same thought budget can produce dramatically different outcomes depending on how
the reasoning process is initialized. Both empirically and intuitively, early steps constrain what the
model explores next, so the initial state of the reasoning process can determine whether the model
converges quickly on a correct explanation or wanders into unproductive regions, and can even af-
fect the model’s instruct-following and safety performance (Fan et al., 2025; Lin et al., 2025; Wu
et al., 2025c).

To address these challenges, in this paper, we investigate a test-time steering technique via seed-
thought initialization: how to start the thinking process so that limited test-time compute is steered
toward productive regions of the search space. We operationalize this idea using seed thoughts:
concise, high-quality initial trajectories that shape the early steps of reasoning. As shown in Fig-
ure 1, No-Thinking is fast but myopic, while standard Thinking broadens coverage at a significant
token cost. Our Thinking with Seed initializes reasoning with a concise seed that captures essen-
tial pivot reasoning anchors (e.g., subgoals, key lemmas, variable definitions, candidate equation
forms), which can steer exploration toward productive regions and prune unnecessary branches.

The thought generation process in LRMs can be conceptualized as a non-convex search
through language space. This search is initialized with the user prompt and a seed thought. The
resulting thought trajectories — sequences of tokens evaluated by either process reward models
(PRMs) or outcome reward models (ORMs) — represent the model’s paths to a solution. Therefore,
our method fundamentally alters the search dynamics: rather than starting from scratch, the Think-
ing with Seed mode is initialized at a point already oriented toward a promising basin in the search
space. This head start significantly shortens the reasoning trajectory. Furthermore, the seed acts
as a lightweight greedy backbone that effectively constrains the branching factor during subsequent
exploration, yet remains revisable. By pruning vast regions of the search space that are unproduc-
tive from the outset, the method improves efficiency and mitigates path dependence by steering the
reasoning process toward high-probability solution basins, thereby increasing the chances of rapid
and correct convergence.

Having established the importance of seed thoughts, a natural question arises: does a one-size-fits-
all seed exist?. In practice, seed granularity is a direct lever on the trade-off between guidance
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and flexibility. In our pilot experiments, we consistently observed that for easier problems, more
detailed seeds collapse the search and improve efficiency without increasing error, because even
imperfect specifics rarely mislead the model. For harder problems, however, higher-level seeds are
preferable, because they provide strategic scaffolding and flexibility without locking the model into
potentially misleading, concrete steps. These findings motivate a difficulty-aware seeding policy
that adjusts seed granularity to dynamically shape the reasoning trajectory, instead of relying on
fixed initialization strategies.

The utility of the generated seed thoughts extends beyond guiding the reasoning search. We further
show that the two-stage generation paradigm naturally lends itself to Speculative Decoding (SD)
(Leviathan et al., 2023; Li et al., 2024; Cai et al., 2024; Liu et al., 2024; Gloeckle et al., 2024; Li
et al., 2025b; Sun et al., 2025) by producing highly compatible token sequences. Since the second-
stage Thinking with Seed generation is explicitly conditioned on the first-stage seed thoughts, the
outputs exhibit strong token-level alignment — a critical factor for speculative acceleration. As
shown in Figure 1, the Thinking with Seed trajectory closely follows the reasoning path established
by the seed, resulting in higher token acceptance rates than standard auto-regressive drafting or
corpus-based suffix matching.

Our contributions are as follows.

• We conduct a systematic study of how the granularity of seed thoughts affects the perfor-
mance of LRMs.

• We propose a difficulty-aware seed-thought generation framework that adaptively selects
granularity based on problem difficulty.

• To the best of our knowledge, we are the first to integrate Thinking and No-Thinking mode
with speculative decoding, achieving dual-path speedups — shorter deliberative traces and
faster token generation enabled by reusing seed thoughts as a model-free speculative corpus
— within a single cohesive framework.

• Our experiments show up to 3.1× end-to-end acceleration and 45.0% reduction in gen-
eration tokens with only 2.4% accuracy degradation on the MATH500 dataset on Qwen3
models, delivering superior efficiency–accuracy trade-offs compared to existing methods
and advancing the state of the art. Seed thoughts effectively warm-up speculative decod-
ing corpora, obtaining 16% additional reasoning acceleration than the hybrid SAM with
EAGLE3.

2 RELATED WORKS

Chain-of-Thought and Reasoning Models. Chain-of-Thought (CoT) reasoning denotes a
paradigm for enhancing the transparency and accuracy of large language models (LLMs) in com-
plex reasoning tasks by explicitly generating intermediate logical steps that culminate in a final
output (Wei et al., 2022b). Early foundational works (Wei et al., 2022b; Kojima et al., 2022) demon-
strated that CoT prompting — either via few-shot examples or zero-shot instructions — significantly
improves LLM performance on mathematical and logical benchmarks. After that, diverse CoT vari-
ants, including structured CoT (Li et al., 2023), ToT (Yao et al., 2023a), self-reflection (Ji et al.,
2023), and self-correction (Huang et al., 2023), are proposed to enhance traceability and accuracy.

Chain-of-Thought and its variants guide LLMs to learn from in-context prompts and generate inter-
nal reasoning before generating the final answers. These works establish the cornerstones of recent
reasoning models, agent, and Agentic AI, where models are trained to obtain the intrinsic capabil-
ity of generating CoTs (Yao et al., 2023b; Jaech et al., 2024; Muennighoff et al., 2025; Guo et al.,
2025; Yang et al., 2025). However, the initial solution or guidance generated during thinking may
be inefficient and ineffective, resulting in overthinking and underthinking (Cuadron et al., 2025).

Efficient Reasoning. Recently, many training-free or training-based methods are proposed to re-
duce the number of generated tokens, improving the efficiency of test-time scaling. Auto-thinking
utilizes external classifiers or LRMs’ intrinsic task complexity classification capabilities to automat-
ically switch between fast and slow thinking (Zhang et al., 2025c; Xing et al.). Self-evaluation
methods prompt LRMs to assess their own confidence and decide when to stop reasoning (Wang
et al., 2025c). Model merging directly merge LLM weights to trade-off the reasoning capability and
cost (Team et al., 2025; Wu et al., 2025a). Multi-model frameworks use auxiliary evaluation mod-
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els, reward models, or thought proposers to guide decoding (Fu et al., 2024; Kuhn et al., 2023; Sun
et al., 2024). There are also concurrent works on improve LRM efficiency by generating thoughts
with smaller reasoning models for speculative reasoning (Pan et al., 2025; Wang et al., 2025b;d).
CoThink (Fan et al., 2025) leverages an instruction model to guide reasoning and reduce reasoning
steps. Supervised Fine-Tuning (SFT) or Reinforcement Learning (RL) based methods train LRMs
to with compact reasoning trajectories or length-aware rewards, respectively (Chen et al., 2024; Hou
et al., 2025; Xia et al., 2025; Zhang et al., 2025a; Chen et al., 2025; Fang et al., 2025).

Speculative Decoding. Due to the lossless advantage, speculative decoding emerged as a widely
studied latency mitigation paradigm by introducing a ”draft-verify” pipeline: a lightweight draft
model proposes candidate token sequences, and the target LLM verifies these candidates in parallel,
accepting valid tokens to reduce sequential computation(Leviathan et al., 2023; Chen et al., 2023).
After that, n-gram based drafter (He et al., 2023; Zhao et al., 2024; Luo et al., 2024; Hu et al., 2024;
Oliaro et al., 2025), and auxiliary lightweight trained model(Li et al., 2024; 2025b; Cai et al., 2024;
Liu et al., 2024; Gloeckle et al., 2024) based methods, infrastructure optimization (Miao et al., 2024)
are proposed to improve the practical inference. Sun et al. (2025) systemically compared different
existing speculative decoding methods for reasoning acceleration. Recently, He et al. (2025) pro-
posed to accelerate RL training with SD enhanced with rollout responses tokens in adjacent training
epochs.

Our work differs from prior studies in two key respects: 1) We focus on the synergy between Think-
ing and No-Thinking modes, rather than simply switching between them. Seed thoughts are gen-
erated in the No-Thinking mode and capture critical constraints and pivot reasoning anchors of
the searching trajectories. They serve as additional hints that improve LRM confidence, speedup
search convergence, and guide effective and efficient thinking, rather than searching from scratch.
2) We study how to leverage additional contexts, including seed thoughts, to warm-up speculative
decoding corpora to further accelerate LRMs.

3 PRELIMINARY AND OBSERVATIONS

3.1 BACKGROUND AND NOTATIONS

To ground our setting, we first fix notation and delineate the generation paradigms considered in this
work. Let M denote a standard LRM. Given an input question q, the model generates a response
sequence r. Two special tokens, ⟨BOT⟩ and ⟨EOT⟩, are used to demarcate the beginning and end of
the explicit reasoning block.

Thinking Mode. The model generates a full chain-of-thought reasoning process before producing
the final answer. The generation can be formally described as:

rthinking = M(q + ⟨BOT⟩) = ⟨BOT⟩[Thoughts]⟨EOT⟩[Conclusion]

No-Thinking Mode. The model is prompted to bypass the explicit reasoning process and generate
the final answer directly. This is achieved by prepending a specific instruction inside the reasoning
block that forces an immediate conclusion (Ma et al., 2025). The generation is:

rnothinking = M(q + ⟨BOT⟩+ sskip + ⟨EOT⟩) = ⟨BOT⟩sskip⟨EOT⟩[Conclusion]

where sskip is a fixed string (e.g., “Okay, I think I have finished thinking.”) that signals the model to
skip deliberative thinking .

Thinking with Seed. To mitigate the inefficiency and path-dependence inherent in the standard
Thinking mode, we introduce a hybrid generation strategy termed Thinking with Seed. This mode
leverages a concise, high-quality seed thought sseed to initialize and guide the subsequent deliber-
ative reasoning process. The seed sseed acts as structured scaffolding that shapes the subsequent
reasoning trajectory by providing an initial sketch of the solution path. The model is then prompted
to generate a full reasoning trajectory, explicitly conditioned on the seed s. The generation is for-
malized as:

rSeedThink = M(q + sseed + ⟨BOT⟩) = ⟨BOT⟩[Extended Thoughts]⟨EOT⟩[Conclusion]
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Thinking SeedThink-outline SeedThink-step SeedThink-general SeedThink-detailed

level-I level-II level-III level-IV level-V
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Tokens (K)

(a) Qwen3-8B’s Tokens v.s. Difficulty
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(b) Qwen3-8B’s Accuracy v.s. Difficulty
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(d) Distill-LLaMA-8B’s Accuracy v.s. Difficulty

Figure 2: Comparison of Thinking mode and four different Thinking with Seed Thoughts (Seed-
Think) variants using Qwen3-8B and DeepSeek-R1-Distill-LLaMA-8B across different difficulty
levels of MATH500 dataset.

3.2 OBSERVATION

In this section, we investigate how the level of detail in seed thoughts affects the reasoning trajecto-
ries of LRMs, revealing opportunities for optimization in LRMs’ reasoning efficiency.

Experimental settings. We conduct a pilot study using the MATH500 datasets (Hendrycks et al.,
2021) to analyze the impact of seed granularity on the performance of two widely used LRMs:
Qwen3-8B and DeepSeek-R1-Distill-LLaMA-8B. We define four levels of seed granularity:

• Outline seed: High-level strategic breakdown focusing only on outline without numbers,
formulas, or calculations

• Key-steps seed: Main reasoning steps with important formulas/concepts mentioned.

• General-approach seed: Step-by-step plan with brief explanations, including formulas and
concepts, but avoiding extensive calculations

• Detailed-Steps seed: Near-complete solution with formulas, initial setups, and simple cal-
culations, leaving only complex reasoning for completion

We compare these against the baseline Thinking approach (no seed). For each problem, we generate
seeds at each granularity level using specialized prompts. More details about parameter settings and
prompts can be found in Appendix B.

Results and analysis. Our pilot study yields a clear central finding: the optimal granularity of a seed
thought follows a non-monotonic relationship with problem difficulty. As illustrated in Figure 2, we
observe a striking pattern: on the simplest problems (level-I/II), the most detailed seeds achieve
the highest accuracy alongside the greatest efficiency gains; for problems of intermediate difficulty
(level-III/IV), a balanced general approach seed proves most accurate; while on the hardest problems
(level-V), high-level outline seeds become most robust, outperforming detailed alternatives.

This tri-phasic pattern highlights a sophisticated trade-off between guidance and flexibility. On
simple problems, a highly specific seed provides strong, beneficial constraints that focus the search
without causing harm. At medium difficulty, an intermediate level of guidance offers the ideal
balance of direction and flexibility. For the most complex problems, however, high-level strategic
scaffolding becomes essential to avoid leading the model down incorrect, overly constrained paths.
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Difficulty Estimator Seed Thought Generator

High-level outline
step1 → step2→ step3 ...

Detailed solution
formulas, concepts, derivations

Seed Guided Reasoning with Speculative Decoding  
Shorten reasoning path 
Ø Reduce repetitive verification 
Ø Pruning unproductive branch 

Enhance speculative decoding 
Ø Reuse thought as high-quality draft
Ø Highly token level alignment 

Dual-path speedups

Figure 3: The SeedThink framework comprises three core modules: (1) Difficulty Estimator: As-
sesses problem complexity; (2) Seed Thought Generator: Produces a difficulty-aware seed solution;
(3) Seed-Guided Reasoning: Utilizes the seed for focused reasoning and as a high-quality draft for
speculative decoding, achieving dual-path acceleration.

The universal efficiency gains of SeedThink (23%-59% token reduction at all levels) confirm its
value for efficient test-time control. The dramatic shift in the relative performance of seed types
across the difficulty spectrum, however, reveals that a static seeding strategy is fundamentally sub-
optimal. This finding directly motivates our subsequent proposal of a difficulty-aware seeding pol-
icy, which dynamically modulates seed granularity to track this shifting optimum, as detailed in the
next section.

4 METHOD

As visualized in Figure 3, SeedThink improves reasoning efficiency by proposing difficulty-aware
seed thoughts as additional thinking hints and token corpora to improve thinking generation confi-
dence and enhance speculative decoding acceptance rate, respectively. The framework consists of
three modules: 1) Difficulty estimator for more accurate alignment with problem difficulties in Sec-
tion 4.2, 2) Seed thought generator, which generate suitable seed granularity based on the previous
prompt difficulty estimation, in Section 4.3, 3) Seed guided reasoning with enhanced speculative
decoding for shorter and faster test-time scaling in Section 4.4.

4.1 PROBLEM FORMULATION

Our SeedThink framework involves a two-stage generation process: (1) generating a seed thought
with appropriate granularity, and (2) producing the final reasoning trajectory conditioned on the seed
as formulated in Section 3.1. Thus, the key to this process is selecting the suitable seed granularity
for diverse prompt difficulties to trade-off efficiency and performance.

We formulate the seed thought selection as an optimization problem that maximizes a composite
objective function balancing efficiency against accuracy. Given a problem q with estimated difficulty
d, we select the optimal seed granularity g∗ ∈ G from our predefined seed set.

Formally, for a problem with difficulty d, the ideal seed granularity g∗ ∈ G should maximize:
g∗(d) = argmax

g∈G
[E(g, d) + λ · A(g, d)]

where E(g, d) = Tthink(d)−Tg(d)
Tthink(d)

represents relative efficiency gain, A(g, d) =
Ag(d)−Athink(d)

Athink(d)
repre-

sents relative accuracy change, and λ ≥ 0 is a trade-off coefficient. Here, Tg(d) and Ag(d) are the
number of tokens and accuracy under granularity g at difficulty d, while Tthink(d) and Athink(d) are
the corresponding quantities under the original Thinking mode.
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4.2 DIFFICULTY ESTIMATOR

Existing research from Liu et al. (2025) indicates that LRMs fundamentally lack the capacity for ac-
curate, autonomous difficulty cognition. Equipping models with this metacognitive ability typically
necessitates carefully designed SFT or RL, which entail significant computational expense. For the
sake of efficiency, we avoid this training overhead by introducing a separate difficulty estimator as
a crucial first step in our methodology. Accordingly, we frame the problem of difficulty assess-
ment as a text classification task that is decoupled from the LRM’s own reasoning process. The
specific architecture, detailed training procedure, and an evaluation of the estimator’s effectiveness
are provided in Appendix D. The difficulty estimator module assesses the complexity level of input
problems to determine the appropriate seeding strategy. Formally, it maps a problem q to a difficulty
level d ∈ D, where D = {Simple,Moderate,Hard} is the set of difficulty categories.

4.3 SEED THOUGHT GENERATOR

Based on our empirical findings in Section 3.2, we propose a deterministic seeding policy π(d) that
directly maps difficulty to seed granularity:

π(d) =


detailed steps if d = Simple
key steps if d = Moderate
outline if d = Hard

The seed generator then produces:

Seedπ(d) = M(Tπ(d)(q)) (1)

where Tg is the prompt template for granularity g.

4.4 SEED GUIDED REASONING WITH ENHANCED SPECULATIVE DECODING

Building upon the difficulty-aware generation of the seed thought Seedπ(d), the seed guided reason-
ing process produces the final output by explicitly conditioning on the seed:

rSeedThink = M(q, Seedπ(d)) (2)

The sequential dependency between Eq. (1) and Eq. (2) is the cornerstone of our method. The final
reasoning output rSeedThink is explicitly conditioned on the Seedπ(d), creating a strong path depen-
dence. Combined with the model consistency of using the same model M for both generations,
this design ensures a high degree of token-level alignment between the two sequences. It is this
inherent alignment that makes the seed from Eq. (1) a naturally high-quality draft for speculative
decoding, as the verification of the seed tokens during the generation of Eq. (2) achieves higher ac-
ceptance rates than drafts lacking such a causal link. Thus, the seed thought serves a dual purpose:
it structures the reasoning path deterministically, while its token sequence functions as an internal,
optimized draft for accelerated generation.

We formally analyze why this conditioning leads to high token-level alignment in Appendix F,
providing theoretical guarantees for our method’s efficiency.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on three math datasets of increasing difficulty: GSM8K(1,319 grade-school
problems) (Cobbe et al., 2021), MATH500 (a 500-problem subset of the MATH benchmark con-
taining high-school competition problems) (Hendrycks et al., 2021), and AIME 2024 (30 challeng-
ing Olympiad-level problems). We report solution accuracy, wall time, and the average number of
generated tokens (response length) as key metrics. We report accuracy as Pass@1 (percentage of
problems solved correctly by the first sample). All generated answers are checked using Hugging-
Face’s official Math-Verify1 for fairness and reproducibility. Due to the small size of AIME 2024,

1https://github.com/huggingface/Math-Verify
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Table 1: Accuracy, average response length (Length), and average runtime of different methods on
three math benchmarks. The best and second results are bolded and underlined, respectively. For
ease of comparison, the results include absolute accuracy differences, speedup ratios relative to the
Think baseline, and relative length differences.

GSM8K MATH 500 AIME 2024Method Accuracy ↑ Runtime (s) ↓ Length ↓ Accuracy ↑ Runtime (s) ↓ Length ↓ Accuracy ↑ Runtime (s) ↓ Length ↓
DeepSeek-R1-Distill-LLaMA-8B

Think 76.50% 113.9 4029 87.60% 104.6 3627 46.67% 299.1 11288
NoThink 76.80% +0.3% 12.0 9.5× 320 -92.1% 66.20% -21.4% 19.7 5.3× 682 -81.2% 10.00% -36.7% 60.6 4.9× 1917 -83.0%

JointThink 80.12% +3.6% 143.2 0.8× 4968 +23.3% 90.20% +2.6% 144.2 0.7× 5018 +24.5% 43.33% -3.3% 478.0 0.6× 15220 +34.8%

CoThink 77.64% +1.1% 98.1 1.2× 3433 -14.8% 81.20% -6.4% 85.7 1.2× 2890 -19.9% 40.00% -6.6% 233.0 1.3× 8630 -23.5%

SeedThink (ours) 78.22% +1.7% 61.3 1.9× 3647 -9.5% 82.80% -4.8% 45.1 2.3× 2611 -28.0% 43.33% -3.3% 131.3 2.3× 9049 -19.9%

Qwen3-8B

Think 95.00% 94.6 2405 96.20% 191.4 5432 64.16% 358.6 11863
NoThink 90.22% -4.8% 10.3 9.2× 956 -89.0% 83.80% -12.4% 36.2 5.3× 956 -82.4% 26.67% -37.5% 116.1 3.1× 3634 -69.4%

JointThink 95.83% +0.8% 109.4 0.9× 2783 +15.7% 97.00% 0.8% 251.4 0.8× 7040 +29.6% 60.00% -4.16% 568.1 0.6× 17823 +50.2%

CoThink 94.62% -0.4% 37.6 2.5× 865 -64.0% 94.20% -2.0% 146.4 1.3× 4015 -26.1% 63.33% -0.8% 401.6 0.9× 12730 +7.3%

SeedThink (ours) 94.84% -0.2% 24.9 3.8× 801 -66.7% 94.40% -1.8% 72.2 2.7× 3630 -33.2% 61.16% -3.0% 176.4 2.0× 10268 -13.5%

Qwen3-14B

Think 95.53% 75.5 1881 96.80% 176.9 4741 66.67% 395.6 11291
NoThink 90.85% -4.7% 11.9 6.3× 277 -85.3% 86.40% -10.4% 34.5 5.1× 896 -81.1% 33.33% -33.3% 159.5 2.5× 4453 -60.6%

JointThink 96.12% +0.6% 96.7 0.8× 2388 +27.0% 97.40% +0.6% 232.3 0.8× 6076 +28.2% 66.67% -0.0% 611.4 0.6× 17057 +51.1%

CoThink 93.86% -1.7% 28.2 2.7× 680 -63.8% 93.80% -3.0% 114.5 1.5× 2959 -38.0% 72.50% +5.83% 350.5 1.1× 9879 -12.5%

SeedThink (ours) 94.39% -1.1% 18.4 4.1× 588 -68.7% 94.60% -2.2% 60.7 2.9× 2761 -42.0% 70.83% +4.16% 188.5 2.1× 8744 -22.4%

Qwen3-32B

Think 95.30% 101.6 1731 97.20% 282.6 4657 75.00% 836.3 12571
NoThink 91.52% -3.8% 18.4 5.5× 286 -83.5% 86.40% -10.8% 46.9 6.0× 774 -83.4% 26.67% -48.3% 170.9 4.9× 2769 -78.0%

JointThink 96.41% +1.1% 123.6 0.8× 2099 +21.3% 97.60% +0.4% 358.3 0.8× 5924 +27.2% 75.00% -0.0% 1267.9 0.7× 19337 +53.8%

CoThink 94.47% -0.8% 42.3 2.4× 620 -64.2% 94.40% -2.8% 163.0 1.7× 2891 -38.0% 73.33% -1.7% 588.6 1.4× 9416 -25.1%

SeedThink (ours) 93.93% -1.4% 24.6 4.1× 560 -67.6% 94.80% -2.4% 90.1 3.1× 2559 -45.0% 72.50% -2.5% 301.7 2.8× 8408 -33.1%

we generate 4 responses per problem and report the average performance. For all models, we use
a 16K context window. Following the recommendations to balance diversity and coherence in the
official model cards, we set the temperature to 0.6 for Thinking mode and 0.7 for No-Thinking mode,
respectively.

Models. We conduct our main experiments on four publicly available Large Reasoning Models
(LRMs) of varying scales: DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025), Qwen3-8B, Qwen3-
14B, and Qwen3-32B (Yang et al., 2025). These models are specifically designed for complex
reasoning and Qwen3 natively support both Thinking and No-Thinking generation modes, making
them ideal testbeds for our proposed efficiency improvements.

Baselines. We compare our approach against four representative baseline methods:

• Think: The standard Thinking mode, where the model generates a full, multi-step reasoning
trace before producing a final answer. This represents the high-cost, high-performance
upper bound for LRMs.

• NoThink: The standard No-Thinking mode, where the model generates a direct, concise an-
swer without an explicit reasoning trace. This represents the low-cost, lower-performance
baseline.

• JointThink (Wu et al., 2025b): A calibration-based method that first generates answers in
parallel using both Thinking and No-Thinking modes. If the answers from two modes are
inconsistent, it triggers a second Thinking round conditioned on both candidates’ answers
to improve robustness.

• CoThink (Fan et al., 2025): A two-stage pipeline where an Instruct model first creates a
very short reasoning outline, which is then refined by a reasoning model.

5.2 MAIN RESULTS

Superior Efficiency-Effectiveness Trade-off. As shown in Table 1, our proposed SeedThink
method achieves a remarkable balance between computational efficiency and reasoning accuracy
across all model scales and benchmarks, achieving up to 4.1× reasoning acceleration. On the chal-
lenging MATH 500 dataset, SeedThink maintains competitive accuracy while accelerating inference
by 2.3 ∼ 3.1× and reducing token length by 28.0%-45.0% compared to standard Thinking mode,
outperforming the state-of-the-art (SOTA) baseline CoThink (Fan et al., 2025) in all three metrics.
While CoThink utilizes only coarse-grain outlines, which proves sub-optimal across diverse diffi-
culty levels, our method dynamically selects seed granularity based on the problem difficulty. This
adaptability allows SeedThink to provide detailed guidance for simple problems where specificity is
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beneficial, while maintaining the flexibility of high-level outlines for complex problems where rigid
guidance may be detrimental.

The advantages of SeedThink become particularly evident when compared to alternative efficiency-
oriented methods. While JointThink achieves modest accuracy improvements of 0.4%-2.6% on
MATH500, it leads to 20 ∼ 30% slowdown and requires 24 ∼ 29% longer reasoning trajectories. In
contrast, SeedThink delivers substantially greater efficiency gains while maintaining accuracy loss
within 2.4% of the standard Thinking baseline. On the more challenging AIME 2024 benchmark,
SeedThink consistently outperforms both alternatives, often matching or even improving accuracy
while improving efficiency more than 2× across all model scales. These results demonstrate that
SeedThink achieves a superior efficiency-effectiveness trade-off, providing the practical benefits of
dramatically reduced computational costs while preserving the reasoning quality of LRMs.

Dual-path speedups. SeedThink achieves up to 4.1× acceleration through two complementary
mechanisms: (1) reduced reasoning trajectory length via strategic seed thought guidance, and (2)
speculative decoding acceleration enabled by high token-level alignment between seed thoughts and
final reasoning paths. The 9.5 ∼ 68.8% token length reductions directly translate to proportionally
fewer decoding steps, while the even greater speedup of 1.9 ∼ 4.1× indicates additional gains
from the reused seed thought as high-quality drafts for speculative decoding. We further conduct an
ablation study in Section 5.3 about the effect of reusing them for warming up SD corpora.

5.3 ABLATION STUDY ON SPECULATIVE DECODING

To validate the core hypothesis from Section 4.4—that the path dependence between seed gen-
eration and final reasoning creates superior token-level alignment for speculative decoding—we
conduct a carefully designed ablation study comparing three distinct paradigms.

First, we reproduce existing speculative decoding approaches: Think + SAM (Hu et al., 2024) and
Think + SAM + Eagle3 (Li et al., 2025b), which represent SOTA model-free and model-based
methods applied to standard reasoning trajectories (Sun et al., 2025). Second, we test a warm-up
setting where seeds serve only as external draft corpora for SAM, isolating the pure speculative
utility of seeds from our path-dependent generation paradigm in Eq. (2).

Table 2 reveals a clear but modest distinction: while the warm-up configuration brings gains (1.45×
and 2.08× speedups), these are consistently lower than SeedThink’s 1.56× and 2.24× speedups with
the same components.

Method MAT Throughput Speed up
Think 1.00 28.4 –

+ SAM 1.75 38.8 1.37×
+ SAM + w 1.88 41.2 1.45×
+ SAM + Eagle3 3.26 54.5 1.92×
+ all components 3.41 59.0 2.08×

SeedThink 1.00 28.6 1.00×
+ SAM 1.94 44.2 1.56×
+ SAM + Eagle3 3.65 63.6 2.24×

Table 2: Ablation study on MATH500 using Qwen3-
4B, comparing speculative decoding performance. ”w”
denotes warm-up. MAT: Mean Accepted Tokens;
Throughput: tokens per second. Speed up are normal-
ized to baseline Thinking.

This performance gap provides direct evidence
for our theoretical claim: the sequential depen-
dence between Eqs. (1) and (2) is the cor-
nerstone of our method’s effectiveness. When
seed thoughts are used only as external cor-
pora for warm-up, MAT gains remain limited.
In contrast, explicitly conditioning final rea-
soning on seed thoughts creates genuine path
dependence and yields measurably higher
MAT.

In addition, we investigated how the length of
the seed affects speculative performance. The
corresponding experimental results and analy-
sis are provided in the appendix E.

The results conclusively demonstrate that it is not merely about supplying extra corpora from seed
thoughts, but their integrated role in the generation process that enables superior speculative
performance.

Our two-stage framework creates a cohesive reasoning trajectory where each step naturally follows
from the previous, producing the high-quality token alignment that enhances both model-free and
model-based speculative decoding approaches.
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Figure 4: Comparison of Reflection token and Branch exploration tokens of Think and SeedThink
on Qwen3-8B, Qwen3-14B, Qwen3-32B

5.4 ANALYSIS OF REASONING TRAJECTORY OPTIMIZATION

The inefficiency of current LRMs is largely driven by two unproductive behaviors: repetitive veri-
fication and redundant branching explorations. These behaviors can be measured with the number
of reflection and branch tokens, which are defined below:

Reflection represents self-verification behaviors where the model double-checks its reasoning
through repetitive validation cycles. This manifests linguistically through phrases like “wait”, “let
me check”, and “let me verify”—indicators of conservative reasoning patterns that often continue
well after a solution has been adequately established (Wang et al., 2025a).

Branch exploration encompasses the model’s tendency to consider alternative solution paths, sig-
naled by terms like “alternatively”, “another way”, and “different approach”. While potentially
valuable for complex problem-solving, uncontrolled branching frequently leads to computational
inefficiency as the model explores unpromising directions.

Our analysis reveals that SeedThink significantly reduces these two inefficient reasoning behaviors.
As shown in Figure 4, for Qwen3-8B, reflection tokens decrease by 58.9% while branch tokens drop
by 72.6%. This pattern holds consistently across model scales, with Qwen3-32B models showing
the most dramatic reductions: 69.5% fewer reflection tokens and 80.6% fewer branch tokens.

The mechanism behind this optimization lies in the seed’s role as a reasoning anchor. By provid-
ing high-quality initial guidance, SeedThink preemptively addresses the uncertainties that typically
trigger verification cycles and alternative path exploration. The seed establishes a focused solution
trajectory, reducing the need for extensive backtracking and minimizing unproductive branching.

6 CONCLUSIONS

In this work, we addressed the dual challenges of inefficiency and path dependence in large rea-
soning models (LRMs) that leverage test-time compute. Our proposed solution, SeedThink, funda-
mentally reframes the initialization of the reasoning process. By generating a concise, high-quality
”seed thought” to guide the LRM, we steer its exploration toward productive regions of the search
space. We demonstrated that the granularity of these seeds is critical and introduced a difficulty-
aware seeding policy that adapts seed detail to problem complexity—using high-level seeds for hard
problems to maintain flexibility and detailed seeds for easier ones to maximize efficiency.

This two-stage framework provides a dual-path acceleration. First, it shortens the reasoning tra-
jectory by pruning unproductive branches, reducing token generation by up to 45.0%. Second, we
showed for the first time that this paradigm naturally integrates with speculative decoding, using the
seed thought as a highly quality draft. This synergy resulted in up to a 4.1× end-to-end speedup,
achieving a state-of-the-art efficiency-accuracy trade-off. Our findings underscore the importance of
guided initialization in complex, multi-step generation tasks. Future work could explore learning the
optimal seeding policy directly, rather than relying on a difficulty classifier. Ultimately, by shaping
the start of the journey, seed thoughts enable LRMs to reason more efficiently, making powerful
deliberative reasoning more practical for real-world applications.
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Figure 5: Different seed prompt and it’s generated seed length of Qwen3-14B on Math500 dataset.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed solely for the purpose of enhancing the linguistic
clarity and stylistic refinement of this manuscript.

B SUPPLEMENTARY MATERIALS FOR SECTION 3.2

As described in Section 3.2, we conduct a pilot study using the MATH500 datasets to analyze the
impact of seed granularity on the performance of two widely used LRMs Qwen3-8B and DeepSeek-
R1-Distill-LLaMA-8B. For seed thought generation, we use the No-Thinking mode with four differ-
ent prompt to control the seed granularity. For the second round of generation, we use the thinking
mode while providing the seed as an additional reference through the thinking with seed prompt.
Both the seed generation prompt and the thinking with seed prompt can be found in C.

We use an 8K context window for seed thought generation and 16K context window for thinking
with seed reasoning process. Following the recommendations to balance diversity and coherence in
the official model cards, we set the temperature to 0.6 for Thinking mode and 0.7 for No-Thinking
mode,respectively.

The generated seed length of four different SeedThink variants are reported in 5.

C DETAILS ON PROMPT

Outline seed generation prompt

<|User|>You are a reasoning assistant. Your job is to break
down a complex problem into 2 to 4 high-level reasoning steps.
Focus only on outlining the general approach or strategy. Do not
include any numbers, formulas, or final answers. Avoid specific
calculations or details|only describe the logic behind solving the
problem. Please break down the following problem. [question]
<|Assistant|><think></think> \n

key steps seed generation prompt

<|User|>You are a reasoning assistant. Your task is to rapidly
provide key steps for solving the given math problem. Include the
main reasoning steps without performing detailed calculations.
Mention any important formulas or concepts needed, but do not
compute numerical results or give the final answer. [question]
<|Assistant|><think></think> \n

General approach seed generation prompt
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<|User|>You are a reasoning assistant. Quickly provide a general
approach to solve the given math problem. Include a step-by-step
plan with brief explanations of each step. You may mention
formulas and concepts, but avoid extensive calculations. The goal
is to set up the problem for detailed reasoning later. [question]
<|Assistant|><think></think> \n

Detailed steps seed generation prompt

<|User|>You are a reasoning assistant. Your task is to promptly
provide detailed steps for solving the given math problem. Include
necessary formulas, initial setups, and perform simple calculations
if needed. However, leave the most complex calculations or
reasoning for the next stage. Provide as much detail as possible
without giving the final answer. [question]
<|Assistant|><think></think> \n

Thinking with seed generation prompt

<|User|> Reference Seed solution from a instruct model:
[Reference answer]
It is crucial to critically evaluate the information provided in
the reference, recognizing that it may be biased or incorrect. If
you think the reference is incorrect, try to correct it to become
your answer.
[question]
<|Assistant|><think>\n

D DIFFICULTY ESTIMATOR AS A TEXT CLASSIFICATION TASK

To implement this classifier, we employ a RoBERTa model (Liu et al., 2019). This choice is mo-
tivated by RoBERTa’s well-established and outstanding performance on a wide range of text clas-
sification benchmarks, where it consistently delivers robust and accurate predictions. Furthermore,
compared to the large reasoning models that are the focus of our study, a RoBERTa-based classifier
is relatively lightweight, allowing for efficient inference without introducing significant computa-
tional burden. This combination of high classification accuracy and operational efficiency makes it
an ideal candidate for our difficulty estimation step.

We formulate difficulty estimation as a 3-class classification task. Specifically, we train the model
on a mathematical dataset comprising 12,500 samples with inherent difficulty annotations. The
original fine-grained labels (on a scale of 1-5) are mapped to three broader categories: labels 1-
2 are grouped as easy, labels 3-4 as moderate, and label 5 as hard. This categorization captures
meaningful distinctions in problem complexity while maintaining sufficient data for each class.

Our implementation uses the RoBERTa-base architecture, which contains 125 million parameters
configured with 12 transformer layers, a hidden state size of 768, and 12 attention heads. The model
is trained for 10 epochs with a batch size of 16. This demonstrates the model’s strong capability in
reliably assessing problem difficulty.

The analysis below provide a comprehensive breakdown of the estimator’s performance on the
Math500 dataset. It shows that even when the estimator misclassifies a problem, it does not lead
to a catastrophic failure. Instead, it results in a predictable and often acceptable trade-off between
computational cost and solution accuracy. As the table3 shows, we can analyze the two distinct
types of misclassification scenarios.

The first type occurs when a harder problem is misclassified as easier (e.g., a True Hard problem
predicted as Medium). In this case, the model receives a seed that is more detailed than opti-
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Table 3: A comprehensive breakdown of the estimator’s performance on the Math500 dataset.

Predicted: Easy Predicted: Medium Predicted: Hard
Label Cnt. Acc. Length Cnt. Acc. Length Cnt. Acc. Length
Easy 125 96.8% 1,206 7 100.0% 1,676 1 100.0% 2,853

Medium 30 90.0% 1,950 191 97.9% 2,067 12 100.0% 2,222
Hard 2 50.0% 3,105 26 84.6% 3,705 106 92.5% 5,257

mal. While this can lead to a decrease in accuracy—for instance, ’Hard’ problems misclassified
as ’Medium’ see their accuracy drop from 92.5% to 84.6%—this is coupled with a corresponding
reduction in generation length. The average generation length for these same problems plum-
mets from 5258 to 3705 tokens. This outcome represents a clear trade-off: a modest reduction in
accuracy for a substantial improvement in computational speed.

The second type of error is when an easier problem is misclassified as more difficult (e.g., a True
Easy problem predicted as Medium). Here, the model is given a higher-level, more abstract seed
than necessary. This prompts a more cautious reasoning process, which our data shows actually
increases accuracy. All those misclassified types achieve 100% accuracy, an improvement over
the 96.8% for those classified correctly. This gain in robustness comes at the expected cost of effi-
ciency, with the average token length increasing from 1206 to 1676. This scenario again illustrates
a trade-off: sacrificing efficiency for a gain in accuracy.

In summary, The vast majority of samples (422/500, or 84.4%) are classified correctly, achieving a
high accuracy of 96.2%. On the 78 misclassified instances, performance remains strong at 89.7%
accuracy.

E ABLATION STUDY ON SEED LENGTH

To investigate whether longer or more abstract seeds lead to saturation in speculative gains, we
conducted additional experiments. As shown in Table 4, rather than observing saturation, we find
that longer seeds generally increase speculative gains (speed up from 1.47 to 1.64 and MAT from
1.65 to 1.96), as they produce more opportunities for suffix matches. We do not observe saturation
within the studied range, and we note that seed length is intentionally constrained: excessively long
seeds would undermine the two-stage pipeline’s efficiency. Within this realistic range, speculative
gains (Mean accept tokens) grow monotonically.

Table 4: Speculative gains (using SAM decoding) of different seed prompt Qwen3-14B on the
Math500 dataset. MAT short for Mean Accept Token.

Seeds MAT Throughput
(tokens/s)

Speed up
from SD Length Accuracy

Think (w/o SAM) 0 28.44 – 4,741 96.8%
Think (w/ SAM) 1.65 40.26 × 1.42 4,776 96.8%
SeedThink (outline seed) 1.73 41.72 × 1.47 2,959 93.8%
SeedThink (key steps seed) 1.82 43.88 × 1.54 2,847 93.4%
SeedThink (general approach seed) 1.88 45.04 × 1.58 2,735 95.6%
SeedThink (detailed steps seed) 1.96 46.87 × 1.64 2,650 94.4%

F TOKEN-LEVEL ALIGNMENT: n-GRAM PRESERVATION UNDER
SEED-GUIDED REASONING

We provide a theoretical justification for why n-grams appearing in the seed sequence tend to reap-
pear with high probability in the final reasoning trace. The key assumption is that the change of
prompt template between seed generation and reasoning introduces only a small perturbation in the
model’s input representation.
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F.1 PRELIMINARIES

Let the seed sequence be
s = (s1, s2, . . . , sk),

generated by the model M under a seed template. The final reasoning sequence is

r = (r1, r2, . . . ),

generated by the same model M but conditioned on (q, s).

For any prefix u, denote the next-token distributions by

ps(· | u), pr(· | u),
corresponding respectively to the seed-generation context and the final-reasoning context. We define
the stepwise total variation distance

εt(u) =
∥∥ps(· | u)− pr(· | u)

∥∥
TV

.

We further define its expectation with respect to prefixes encountered during reasoning:

ε̄t = Er<t∼Pr [εt(r<t)] .

Assumption (Template Stability). The difference between the seed template and the reasoning
template induces at most a small perturbation δ in the model’s internal embeddings. Together with
the Lipschitz continuity of the model’s logit mapping and the stability of the softmax function, this
implies the existence of a constant ε such that

ε̄t ≤ ε for all t.

F.2 MAIN LEMMA: n-GRAM ALIGNMENT AT MATCHED POSITIONS

Lemma 1. For any n-gram g = si:i+n−1 appearing in the seed, the probability that the final
reasoning sequence reproduces the same n-gram at the same position satisfies

Pr
[
ri:i+n−1 = g

]
≥

i+n−1∏
t=i

(
1− ε̄t

)
.

Under the uniform bound ε̄t ≤ ε, this becomes

Pr
[
ri:i+n−1 = g

]
≥ (1− ε)n ≥ 1− nε.

Proof. Condition on the event that ri:t−1 = si:t−1. Under this condition, the total variation distance
between ps(· | r<t) and pr(· | r<t) is at most εt(r<t). By the optimal coupling characterization of
total variation distance,

Pr
[
rt = st | ri:t−1 = si:t−1

]
≥ 1− εt(r<t).

Taking expectation over possible prefixes and applying the chain rule yields

Pr
[
ri:i+n−1 = g

]
≥

i+n−1∏
t=i

(1− ε̄t).

The uniform bound follows immediately.

F.3 COROLLARY: APPEARANCE AT ANY POSITION

Let J ⊆ {1, 2, . . . , T} be any candidate set of positions. By applying a union bound to Lemma 1,
we obtain:
Corollary 1. For any n-gram g in the seed,

Pr
[
∃j ∈ J : rj:j+n−1 = g

]
≥ 1−

∑
j∈J

(
1−

j+n−1∏
t=j

(1− ε̄t)
)
.

Under the assumption ε̄t ≤ ε,

Pr
[
∃j ∈ J : rj:j+n−1 = g

]
≥ 1− |J |

(
1− (1− ε)n

)
≈ 1− |J |nε.
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F.4 INTERPRETATION

Under the Template Stability Assumption—which bounds the embedding perturbation δ between the
seed-generation and reasoning-generation contexts— the resulting bound on stepwise total variation
distance guarantees that short and medium-length n-grams in the seed are preserved with high prob-
ability in the model’s subsequent reasoning. The alignment arises directly from the shared model
parameters and the strong causal dependence between the seed and the final reasoning trace.
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