
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEEDTHINK: TEST-TIME CONTROL VIA SEED-
THOUGHT INITIALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large reasoning models (LRMs) achieve impressive performance through ex-
tended chains of thought, but this substantially increases inference overhead, mak-
ing efficiency a critical bottleneck. In this paper, we first show that initializing the
reasoning process with high-quality seed thoughts can steer the model away from
unproductive “overthinking” and produce more efficient reasoning trajectories.
Critically, we find that the optimal granularity of this seed — from a high-level
outline to a detailed solution — depends on problem difficulty. Motivated by this,
we propose SeedThink, a novel framework that adaptively selects the seed granu-
larity based on an estimate of problem difficulty. Specifically, SeedThink features
two core innovations: (1) a difficulty-aware seeding policy that dynamically
generates seed thoughts to reduce repetitive verification and prune unproductive
branches; and (2) seamless integration with enhanced speculative decoding,
where seed thoughts are repurposed as a model-free draft corpus to achieve dual-
path acceleration — shorter reasoning traces and faster token generation. Our ex-
periments show that SeedThink significantly reduces inference costs while largely
preserving performance. Notably, our method achieves up to a 4.1× end-to-end
speedup and a 68% reduction in generation length with minimal accuracy degra-
dation, highlighting the promise of adaptive initialization for balancing reasoning
quality and efficiency.

1 INTRODUCTION

Large language models increasingly benefit from test-time compute, a phenomenon known as test-
time scaling (Snell et al., 2024; Muennighoff et al., 2025). Recent large reasoning models (LRMs),
such as OpenAI o1 (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025), and Qwen3 (Yang
et al., 2025), demonstrate that extended chains of thought (Wei et al., 2022a), paired with reflec-
tion, backtracking, and self-verification techniques, significantly enhance performance on complex
reasoning problems. Given a query, these models generate a deliberate think trajectory before pro-
ducing a concise final solution, thereby yielding better results across mathematical and scientific
reasoning benchmarks (Cobbe et al., 2021; Hendrycks et al., 2021; He et al., 2024; Rein et al.,
2024; Lewkowycz et al., 2022).

However, these advances introduce two significant and interconnected challenges: the inherent in-
efficiency and path dependence of test-time computation. While extended chains of thought can
substantially improve performance, they often lead to “overthinking” — expending extra tokens on
repetitive verification, unproductive branching, and exploration long after a sufficient solution has
been found (Chen et al., 2024; Cuadron et al., 2025). A single Thinking trajectory is typically
five times longer than a direct No-Thinking response, even on simple problems where both modes
produce the same correct answer (Zhang et al., 2025a; Fan et al., 2025; Liang et al., 2025).

A natural approach to improving efficiency is the mode-switching paradigm, widely studied in recent
works (Zhang et al., 2025a;b; Li et al., 2025a; Luo et al., 2025; Liang et al., 2025; Ha et al., 2025;
Xing et al.). It switches between the efficient No-Thinking mode for easy problems and the effective
Thinking mode for hard ones. However, this paradigm has a critical limitation: its efficacy declines
sharply as problem difficulty increases. It gains efficiency only on problems that are already within
the No-Thinking mode’s capability, failing to address the core inefficiency and path dependence of
“Thinking” on truly challenging tasks. An emerging direction to bridge this gap is to integrate the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Question: What is the smallest positive multiple of 450 whose digits are all zeroes and ones?

No Thinking

Total Tokens: 1852

Thinking

Total Tokens: 9694

Thinking with Seed

<think>Think finished</think>
We are asked to find the smallest
positive multiple of 450 whose...
 (90 tokens)
Step 1: Find prime factorization of
450. 450=5*90... (320 tokens)
Step 2: Search for the smallest
number made of only 0s and1s,
ending in 00, and divisible by 9.

 (650 tokens)
Step 3: Check the smallest
number made of only 0s and 1s
that is divisible by ... (800 tokens)

Final answer: boxed{100100}

<think>Okay, so I need to find the
smallest positive multiple of 450
whose digits are ... (1870 tokens)
But wait ... (1700 tokens)
Let me check... (2400 tokens)
Let me think of another approach
that... </think> (2600 tokens)

To determine the smallest positive
multiple of 450... we must
consider the divisibility rules and
the digit composition constraints...
 (710 tokens)

Answer: boxed{11111111100}

Total Tokens: 5209

Here is a seed solution for
this question...
Step 1: Use Prime Factor...
Step 2: Apply Digit Cons...

<think>Okay, I should follow
the detailed steps provided in
the seed solution...
Step 1: Use Prime Factor...
Step 2: Apply Digit Constrains...
Step 3: Find final ans...</think>

Answer: boxed{11111111100}

Total Tokens: 342

Efficient but ineffective Inefficient but effective Efficient and effective

Figure 1: Qwen3-32B’s Thinking and No-Thinking mode generating process for an example from
the MATH (Hendrycks et al., 2021) benchmark. No Thinking executes a single-pass, myopic tra-
jectory that under-explores the solution space, while Thinking broadens coverage via multi-pass,
multi-angle checks, but spends many tokens on unproductive trajectories. Thinking with Seed ini-
tializes the reasoning process with a concise seed that steers the trajectory to productive regions,
shortens the reasoning path, and prunes unnecessary branches, thereby improving the efficiency of
model reasoning.

two modes or multiple agents into a cooperative pipeline (Fan et al., 2025; Pan et al., 2025; Wang
et al., 2025d).

The inefficiency is further compounded by the highly path-dependent nature of the reasoning tra-
jectory — the same thought budget can produce dramatically different outcomes depending on how
the reasoning process is initialized. Both empirically and intuitively, early steps constrain what the
model explores next, so the initial state of the reasoning process can determine whether the model
converges quickly on a correct explanation or wanders into unproductive regions, and can even af-
fect the model’s instruct-following and safety performance (Fan et al., 2025; Lin et al., 2025; Wu
et al., 2025c).

To address these challenges, in this paper, we investigate a test-time steering technique via seed-
thought initialization: how to start the thinking process so that limited test-time compute is steered
toward productive regions of the search space. We operationalize this idea using seed thoughts:
concise, high-quality initial trajectories that shape the early steps of reasoning. As shown in Fig-
ure 1, No-Thinking is fast but myopic, while standard Thinking broadens coverage at a significant
token cost. Our Thinking with Seed initializes reasoning with a concise seed that captures essen-
tial pivot reasoning anchors (e.g., subgoals, key lemmas, variable definitions, candidate equation
forms), which can steer exploration toward productive regions and prune unnecessary branches.

The thought generation process in LRMs can be conceptualized as a non-convex search
through language space. This search is initialized with the user prompt and a seed thought. The
resulting thought trajectories — sequences of tokens evaluated by either process reward models
(PRMs) or outcome reward models (ORMs) — represent the model’s paths to a solution. Therefore,
our method fundamentally alters the search dynamics: rather than starting from scratch, the Think-
ing with Seed mode is initialized at a point already oriented toward a promising basin in the search
space. This head start significantly shortens the reasoning trajectory. Furthermore, the seed acts
as a lightweight greedy backbone that effectively constrains the branching factor during subsequent
exploration, yet remains revisable. By pruning vast regions of the search space that are unproduc-
tive from the outset, the method improves efficiency and mitigates path dependence by steering the
reasoning process toward high-probability solution basins, thereby increasing the chances of rapid
and correct convergence.

Having established the importance of seed thoughts, a natural question arises: does a one-size-fits-
all seed exist?. In practice, seed granularity is a direct lever on the trade-off between guidance

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and flexibility. In our pilot experiments, we consistently observed that for easier problems, more
detailed seeds collapse the search and improve efficiency without increasing error, because even
imperfect specifics rarely mislead the model. For harder problems, however, higher-level seeds are
preferable, because they provide strategic scaffolding and flexibility without locking the model into
potentially misleading, concrete steps. These findings motivate a difficulty-aware seeding policy
that adjusts seed granularity to dynamically shape the reasoning trajectory, instead of relying on
fixed initialization strategies.

The utility of the generated seed thoughts extends beyond guiding the reasoning search. We further
show that the two-stage generation paradigm naturally lends itself to Speculative Decoding (SD)
(Leviathan et al., 2023; Li et al., 2024; Cai et al., 2024; Liu et al., 2024; Gloeckle et al., 2024; Li
et al., 2025b; Sun et al., 2025) by producing highly compatible token sequences. Since the second-
stage Thinking with Seed generation is explicitly conditioned on the first-stage seed thoughts, the
outputs exhibit strong token-level alignment — a critical factor for speculative acceleration. As
shown in Figure 1, the Thinking with Seed trajectory closely follows the reasoning path established
by the seed, resulting in higher token acceptance rates than standard auto-regressive drafting or
corpus-based suffix matching.

Our contributions are as follows.

• We conduct a systematic study of how the granularity of seed thoughts affects the perfor-
mance of LRMs.

• We propose a difficulty-aware seed-thought generation framework that adaptively selects
granularity based on problem difficulty.

• To the best of our knowledge, we are the first to integrate Thinking and No-Thinking mode
with speculative decoding, achieving dual-path speedups — shorter deliberative traces and
faster token generation enabled by reusing seed thoughts as a model-free speculative corpus
— within a single cohesive framework.

• Our experiments show up to 3.1× end-to-end acceleration and 45.0% reduction in gen-
eration tokens with only 2.4% accuracy degradation on the MATH500 dataset on Qwen3
models, delivering superior efficiency–accuracy trade-offs compared to existing methods
and advancing the state of the art. Seed thoughts effectively warm-up speculative decod-
ing corpora, obtaining 16% additional reasoning acceleration than the hybrid SAM with
EAGLE3.

2 RELATED WORKS

Chain-of-Thought and Reasoning Models. Chain-of-Thought (CoT) reasoning denotes a
paradigm for enhancing the transparency and accuracy of large language models (LLMs) in com-
plex reasoning tasks by explicitly generating intermediate logical steps that culminate in a final
output (Wei et al., 2022b). Early foundational works (Wei et al., 2022b; Kojima et al., 2022) demon-
strated that CoT prompting — either via few-shot examples or zero-shot instructions — significantly
improves LLM performance on mathematical and logical benchmarks. After that, diverse CoT vari-
ants, including structured CoT (Li et al., 2023), ToT (Yao et al., 2023a), self-reflection (Ji et al.,
2023), and self-correction (Huang et al., 2023), are proposed to enhance traceability and accuracy.

Chain-of-Thought and its variants guide LLMs to learn from in-context prompts and generate inter-
nal reasoning before generating the final answers. These works establish the cornerstones of recent
reasoning models, agent, and Agentic AI, where models are trained to obtain the intrinsic capabil-
ity of generating CoTs (Yao et al., 2023b; Jaech et al., 2024; Muennighoff et al., 2025; Guo et al.,
2025; Yang et al., 2025). However, the initial solution or guidance generated during thinking may
be inefficient and ineffective, resulting in overthinking and underthinking (Cuadron et al., 2025).

Efficient Reasoning. Recently, many training-free or training-based methods are proposed to re-
duce the number of generated tokens, improving the efficiency of test-time scaling. Auto-thinking
utilizes external classifiers or LRMs’ intrinsic task complexity classification capabilities to automat-
ically switch between fast and slow thinking (Zhang et al., 2025c; Xing et al.). Self-evaluation
methods prompt LRMs to assess their own confidence and decide when to stop reasoning (Wang
et al., 2025c). Model merging directly merge LLM weights to trade-off the reasoning capability and
cost (Team et al., 2025; Wu et al., 2025a). Multi-model frameworks use auxiliary evaluation mod-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

els, reward models, or thought proposers to guide decoding (Fu et al., 2024; Kuhn et al., 2023; Sun
et al., 2024). There are also concurrent works on improve LRM efficiency by generating thoughts
with smaller reasoning models for speculative reasoning (Pan et al., 2025; Wang et al., 2025b;d).
CoThink (Fan et al., 2025) leverages an instruction model to guide reasoning and reduce reasoning
steps. Supervised Fine-Tuning (SFT) or Reinforcement Learning (RL) based methods train LRMs
to with compact reasoning trajectories or length-aware rewards, respectively (Chen et al., 2024; Hou
et al., 2025; Xia et al., 2025; Zhang et al., 2025a; Chen et al., 2025; Fang et al., 2025).

Speculative Decoding. Due to the lossless advantage, speculative decoding emerged as a widely
studied latency mitigation paradigm by introducing a ”draft-verify” pipeline: a lightweight draft
model proposes candidate token sequences, and the target LLM verifies these candidates in parallel,
accepting valid tokens to reduce sequential computation(Leviathan et al., 2023; Chen et al., 2023).
After that, n-gram based drafter (He et al., 2023; Zhao et al., 2024; Luo et al., 2024; Hu et al., 2024;
Oliaro et al., 2025), and auxiliary lightweight trained model(Li et al., 2024; 2025b; Cai et al., 2024;
Liu et al., 2024; Gloeckle et al., 2024) based methods, infrastructure optimization (Miao et al., 2024)
are proposed to improve the practical inference. Sun et al. (2025) systemically compared different
existing speculative decoding methods for reasoning acceleration. Recently, He et al. (2025) pro-
posed to accelerate RL training with SD enhanced with rollout responses tokens in adjacent training
epochs.

Our work differs from prior studies in two key respects: 1) We focus on the synergy between Think-
ing and No-Thinking modes, rather than simply switching between them. Seed thoughts are gen-
erated in the No-Thinking mode and capture critical constraints and pivot reasoning anchors of
the searching trajectories. They serve as additional hints that improve LRM confidence, speedup
search convergence, and guide effective and efficient thinking, rather than searching from scratch.
2) We study how to leverage additional contexts, including seed thoughts, to warm-up speculative
decoding corpora to further accelerate LRMs.

3 PRELIMINARY AND OBSERVATIONS

3.1 BACKGROUND AND NOTATIONS

To ground our setting, we first fix notation and delineate the generation paradigms considered in this
work. Let M denote a standard LRM. Given an input question q, the model generates a response
sequence r. Two special tokens, ⟨BOT⟩ and ⟨EOT⟩, are used to demarcate the beginning and end of
the explicit reasoning block.

Thinking Mode. The model generates a full chain-of-thought reasoning process before producing
the final answer. The generation can be formally described as:

rthinking = M(q + ⟨BOT⟩) = ⟨BOT⟩[Thoughts]⟨EOT⟩[Conclusion]

No-Thinking Mode. The model is prompted to bypass the explicit reasoning process and generate
the final answer directly. This is achieved by prepending a specific instruction inside the reasoning
block that forces an immediate conclusion (Ma et al., 2025). The generation is:

rnothinking = M(q + ⟨BOT⟩+ sskip + ⟨EOT⟩) = ⟨BOT⟩sskip⟨EOT⟩[Conclusion]

where sskip is a fixed string (e.g., “Okay, I think I have finished thinking.”) that signals the model to
skip deliberative thinking .

Thinking with Seed. To mitigate the inefficiency and path-dependence inherent in the standard
Thinking mode, we introduce a hybrid generation strategy termed Thinking with Seed. This mode
leverages a concise, high-quality seed thought sseed to initialize and guide the subsequent deliber-
ative reasoning process. The seed sseed acts as structured scaffolding that shapes the subsequent
reasoning trajectory by providing an initial sketch of the solution path. The model is then prompted
to generate a full reasoning trajectory, explicitly conditioned on the seed s. The generation is for-
malized as:

rSeedThink = M(q + sseed + ⟨BOT⟩) = ⟨BOT⟩[Extended Thoughts]⟨EOT⟩[Conclusion]

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Thinking SeedThink-outline SeedThink-step SeedThink-general SeedThink-detailed

level-I level-II level-III level-IV level-V
0
1
2
3
4
5
6
7
8

Tokens (K)

(a) Qwen3-8B’s Tokens v.s. Difficulty

level-I level-II level-III level-IV level-V
0.8

0.85

0.90

0.95

1.0

Accuracy

(b) Qwen3-8B’s Accuracy v.s. Difficulty

level-I level-II level-III level-IV level-V
0

1

2

3

4

5

6

Tokens (K)

(c) Distill-LLaMA-8B’s Tokens v.s. Difficulty

level-I level-II level-III level-IV level-V
0.75

0.8

0.85

0.90

0.95

1.0

Accuracy

(d) Distill-LLaMA-8B’s Accuracy v.s. Difficulty

Figure 2: Comparison of Thinking mode and four different Thinking with Seed Thoughts (Seed-
Think) variants using Qwen3-8B and DeepSeek-R1-Distill-LLaMA-8B across different difficulty
levels of MATH500 dataset.

3.2 OBSERVATION

In this section, we investigate how the level of detail in seed thoughts affects the reasoning trajecto-
ries of LRMs, revealing opportunities for optimization in LRMs’ reasoning efficiency.

Experimental settings. We conduct a pilot study using the MATH500 datasets (Hendrycks et al.,
2021) to analyze the impact of seed granularity on the performance of two widely used LRMs:
Qwen3-8B and DeepSeek-R1-Distill-LLaMA-8B. We define four levels of seed granularity:

• Outline seed: High-level strategic breakdown focusing only on outline without numbers,
formulas, or calculations

• Key-steps seed: Main reasoning steps with important formulas/concepts mentioned.

• General-approach seed: Step-by-step plan with brief explanations, including formulas and
concepts, but avoiding extensive calculations

• Detailed-Steps seed: Near-complete solution with formulas, initial setups, and simple cal-
culations, leaving only complex reasoning for completion

We compare these against the baseline Thinking approach (no seed). For each problem, we generate
seeds at each granularity level using specialized prompts. More details about parameter settings and
prompts can be found in Appendix B.

Results and analysis. Our pilot study yields a clear central finding: the optimal granularity of a seed
thought follows a non-monotonic relationship with problem difficulty. As illustrated in Figure 2, we
observe a striking pattern: on the simplest problems (level-I/II), the most detailed seeds achieve
the highest accuracy alongside the greatest efficiency gains; for problems of intermediate difficulty
(level-III/IV), a balanced general approach seed proves most accurate; while on the hardest problems
(level-V), high-level outline seeds become most robust, outperforming detailed alternatives.

This tri-phasic pattern highlights a sophisticated trade-off between guidance and flexibility. On
simple problems, a highly specific seed provides strong, beneficial constraints that focus the search
without causing harm. At medium difficulty, an intermediate level of guidance offers the ideal
balance of direction and flexibility. For the most complex problems, however, high-level strategic
scaffolding becomes essential to avoid leading the model down incorrect, overly constrained paths.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Difficulty Estimator Seed Thought Generator

High-level outline
step1 → step2→ step3 ...

Detailed solution
formulas, concepts, derivations

Seed Guided Reasoning with Speculative Decoding
Shorten reasoning path
Ø Reduce repetitive verification
Ø Pruning unproductive branch

Enhance speculative decoding
Ø Reuse thought as high-quality draft
Ø Highly token level alignment

Dual-path speedups

Figure 3: The SeedThink framework comprises three core modules: (1) Difficulty Estimator: As-
sesses problem complexity; (2) Seed Thought Generator: Produces a difficulty-aware seed solution;
(3) Seed-Guided Reasoning: Utilizes the seed for focused reasoning and as a high-quality draft for
speculative decoding, achieving dual-path acceleration.

The universal efficiency gains of SeedThink (23%-59% token reduction at all levels) confirm its
value for efficient test-time control. The dramatic shift in the relative performance of seed types
across the difficulty spectrum, however, reveals that a static seeding strategy is fundamentally sub-
optimal. This finding directly motivates our subsequent proposal of a difficulty-aware seeding pol-
icy, which dynamically modulates seed granularity to track this shifting optimum, as detailed in the
next section.

4 METHOD

As visualized in Figure 3, SeedThink improves reasoning efficiency by proposing difficulty-aware
seed thoughts as additional thinking hints and token corpora to improve thinking generation confi-
dence and enhance speculative decoding acceptance rate, respectively. The framework consists of
three modules: 1) Difficulty estimator for more accurate alignment with problem difficulties in Sec-
tion 4.2, 2) Seed thought generator, which generate suitable seed granularity based on the previous
prompt difficulty estimation, in Section 4.3, 3) Seed guided reasoning with enhanced speculative
decoding for shorter and faster test-time scaling in Section 4.4.

4.1 PROBLEM FORMULATION

Our SeedThink framework involves a two-stage generation process: (1) generating a seed thought
with appropriate granularity, and (2) producing the final reasoning trajectory conditioned on the seed
as formulated in Section 3.1. Thus, the key to this process is selecting the suitable seed granularity
for diverse prompt difficulties to trade-off efficiency and performance.

We formulate the seed thought selection as an optimization problem that maximizes a composite
objective function balancing efficiency against accuracy. Given a problem q with estimated difficulty
d, we select the optimal seed granularity g∗ ∈ G from our predefined seed set.

Formally, for a problem with difficulty d, the ideal seed granularity g∗ ∈ G should maximize:
g∗(d) = argmax

g∈G
[E(g, d) + λ · A(g, d)]

where E(g, d) = Tthink(d)−Tg(d)
Tthink(d)

represents relative efficiency gain, A(g, d) =
Ag(d)−Athink(d)

Athink(d)
repre-

sents relative accuracy change, and λ ≥ 0 is a trade-off coefficient. Here, Tg(d) and Ag(d) are the
number of tokens and accuracy under granularity g at difficulty d, while Tthink(d) and Athink(d) are
the corresponding quantities under the original Thinking mode.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 DIFFICULTY ESTIMATOR

Existing research from Liu et al. (2025) indicates that LRMs fundamentally lack the capacity for ac-
curate, autonomous difficulty cognition. Equipping models with this metacognitive ability typically
necessitates carefully designed SFT or RL, which entail significant computational expense. For the
sake of efficiency, we avoid this training overhead by introducing a separate difficulty estimator as
a crucial first step in our methodology. Accordingly, we frame the problem of difficulty assess-
ment as a text classification task that is decoupled from the LRM’s own reasoning process. The
specific architecture, detailed training procedure, and an evaluation of the estimator’s effectiveness
are provided in Appendix D. The difficulty estimator module assesses the complexity level of input
problems to determine the appropriate seeding strategy. Formally, it maps a problem q to a difficulty
level d ∈ D, where D = {Simple,Moderate,Hard} is the set of difficulty categories.

4.3 SEED THOUGHT GENERATOR

Based on our empirical findings in Section 3.2, we propose a deterministic seeding policy π(d) that
directly maps difficulty to seed granularity:

π(d) =


detailed steps if d = Simple
key steps if d = Moderate
outline if d = Hard

The seed generator then produces:

Seedπ(d) = M(Tπ(d)(q)) (1)

where Tg is the prompt template for granularity g.

4.4 SEED GUIDED REASONING WITH ENHANCED SPECULATIVE DECODING

Building upon the difficulty-aware generation of the seed thought Seedπ(d), the seed guided reason-
ing process produces the final output by explicitly conditioning on the seed:

rSeedThink = M(q, Seedπ(d)) (2)

The sequential dependency between Eq. (1) and Eq. (2) is the cornerstone of our method. The final
reasoning output rSeedThink is explicitly conditioned on the Seedπ(d), creating a strong path depen-
dence. Combined with the model consistency of using the same model M for both generations,
this design ensures a high degree of token-level alignment between the two sequences. It is this
inherent alignment that makes the seed from Eq. (1) a naturally high-quality draft for speculative
decoding, as the verification of the seed tokens during the generation of Eq. (2) achieves higher ac-
ceptance rates than drafts lacking such a causal link. Thus, the seed thought serves a dual purpose:
it structures the reasoning path deterministically, while its token sequence functions as an internal,
optimized draft for accelerated generation.

We formally analyze why this conditioning leads to high token-level alignment in Appendix F,
providing theoretical guarantees for our method’s efficiency.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate on three math datasets of increasing difficulty: GSM8K(1,319 grade-school
problems) (Cobbe et al., 2021), MATH500 (a 500-problem subset of the MATH benchmark con-
taining high-school competition problems) (Hendrycks et al., 2021), and AIME 2024 (30 challeng-
ing Olympiad-level problems). We report solution accuracy, wall time, and the average number of
generated tokens (response length) as key metrics. We report accuracy as Pass@1 (percentage of
problems solved correctly by the first sample). All generated answers are checked using Hugging-
Face’s official Math-Verify1 for fairness and reproducibility. Due to the small size of AIME 2024,

1https://github.com/huggingface/Math-Verify

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Accuracy, average response length (Length), and average runtime of different methods on
three math benchmarks. The best and second results are bolded and underlined, respectively. For
ease of comparison, the results include absolute accuracy differences, speedup ratios relative to the
Think baseline, and relative length differences.

GSM8K MATH 500 AIME 2024Method Accuracy ↑ Runtime (s) ↓ Length ↓ Accuracy ↑ Runtime (s) ↓ Length ↓ Accuracy ↑ Runtime (s) ↓ Length ↓
DeepSeek-R1-Distill-LLaMA-8B

Think 76.50% 113.9 4029 87.60% 104.6 3627 46.67% 299.1 11288
NoThink 76.80% +0.3% 12.0 9.5× 320 -92.1% 66.20% -21.4% 19.7 5.3× 682 -81.2% 10.00% -36.7% 60.6 4.9× 1917 -83.0%

JointThink 80.12% +3.6% 143.2 0.8× 4968 +23.3% 90.20% +2.6% 144.2 0.7× 5018 +24.5% 43.33% -3.3% 478.0 0.6× 15220 +34.8%

CoThink 77.64% +1.1% 98.1 1.2× 3433 -14.8% 81.20% -6.4% 85.7 1.2× 2890 -19.9% 40.00% -6.6% 233.0 1.3× 8630 -23.5%

SeedThink (ours) 78.22% +1.7% 61.3 1.9× 3647 -9.5% 82.80% -4.8% 45.1 2.3× 2611 -28.0% 43.33% -3.3% 131.3 2.3× 9049 -19.9%

Qwen3-8B

Think 95.00% 94.6 2405 96.20% 191.4 5432 64.16% 358.6 11863
NoThink 90.22% -4.8% 10.3 9.2× 956 -89.0% 83.80% -12.4% 36.2 5.3× 956 -82.4% 26.67% -37.5% 116.1 3.1× 3634 -69.4%

JointThink 95.83% +0.8% 109.4 0.9× 2783 +15.7% 97.00% 0.8% 251.4 0.8× 7040 +29.6% 60.00% -4.16% 568.1 0.6× 17823 +50.2%

CoThink 94.62% -0.4% 37.6 2.5× 865 -64.0% 94.20% -2.0% 146.4 1.3× 4015 -26.1% 63.33% -0.8% 401.6 0.9× 12730 +7.3%

SeedThink (ours) 94.84% -0.2% 24.9 3.8× 801 -66.7% 94.40% -1.8% 72.2 2.7× 3630 -33.2% 61.16% -3.0% 176.4 2.0× 10268 -13.5%

Qwen3-14B

Think 95.53% 75.5 1881 96.80% 176.9 4741 66.67% 395.6 11291
NoThink 90.85% -4.7% 11.9 6.3× 277 -85.3% 86.40% -10.4% 34.5 5.1× 896 -81.1% 33.33% -33.3% 159.5 2.5× 4453 -60.6%

JointThink 96.12% +0.6% 96.7 0.8× 2388 +27.0% 97.40% +0.6% 232.3 0.8× 6076 +28.2% 66.67% -0.0% 611.4 0.6× 17057 +51.1%

CoThink 93.86% -1.7% 28.2 2.7× 680 -63.8% 93.80% -3.0% 114.5 1.5× 2959 -38.0% 72.50% +5.83% 350.5 1.1× 9879 -12.5%

SeedThink (ours) 94.39% -1.1% 18.4 4.1× 588 -68.7% 94.60% -2.2% 60.7 2.9× 2761 -42.0% 70.83% +4.16% 188.5 2.1× 8744 -22.4%

Qwen3-32B

Think 95.30% 101.6 1731 97.20% 282.6 4657 75.00% 836.3 12571
NoThink 91.52% -3.8% 18.4 5.5× 286 -83.5% 86.40% -10.8% 46.9 6.0× 774 -83.4% 26.67% -48.3% 170.9 4.9× 2769 -78.0%

JointThink 96.41% +1.1% 123.6 0.8× 2099 +21.3% 97.60% +0.4% 358.3 0.8× 5924 +27.2% 75.00% -0.0% 1267.9 0.7× 19337 +53.8%

CoThink 94.47% -0.8% 42.3 2.4× 620 -64.2% 94.40% -2.8% 163.0 1.7× 2891 -38.0% 73.33% -1.7% 588.6 1.4× 9416 -25.1%

SeedThink (ours) 93.93% -1.4% 24.6 4.1× 560 -67.6% 94.80% -2.4% 90.1 3.1× 2559 -45.0% 72.50% -2.5% 301.7 2.8× 8408 -33.1%

we generate 4 responses per problem and report the average performance. For all models, we use
a 16K context window. Following the recommendations to balance diversity and coherence in the
official model cards, we set the temperature to 0.6 for Thinking mode and 0.7 for No-Thinking mode,
respectively.

Models. We conduct our main experiments on four publicly available Large Reasoning Models
(LRMs) of varying scales: DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025), Qwen3-8B, Qwen3-
14B, and Qwen3-32B (Yang et al., 2025). These models are specifically designed for complex
reasoning and Qwen3 natively support both Thinking and No-Thinking generation modes, making
them ideal testbeds for our proposed efficiency improvements.

Baselines. We compare our approach against four representative baseline methods:

• Think: The standard Thinking mode, where the model generates a full, multi-step reasoning
trace before producing a final answer. This represents the high-cost, high-performance
upper bound for LRMs.

• NoThink: The standard No-Thinking mode, where the model generates a direct, concise an-
swer without an explicit reasoning trace. This represents the low-cost, lower-performance
baseline.

• JointThink (Wu et al., 2025b): A calibration-based method that first generates answers in
parallel using both Thinking and No-Thinking modes. If the answers from two modes are
inconsistent, it triggers a second Thinking round conditioned on both candidates’ answers
to improve robustness.

• CoThink (Fan et al., 2025): A two-stage pipeline where an Instruct model first creates a
very short reasoning outline, which is then refined by a reasoning model.

5.2 MAIN RESULTS

Superior Efficiency-Effectiveness Trade-off. As shown in Table 1, our proposed SeedThink
method achieves a remarkable balance between computational efficiency and reasoning accuracy
across all model scales and benchmarks, achieving up to 4.1× reasoning acceleration. On the chal-
lenging MATH 500 dataset, SeedThink maintains competitive accuracy while accelerating inference
by 2.3 ∼ 3.1× and reducing token length by 28.0%-45.0% compared to standard Thinking mode,
outperforming the state-of-the-art (SOTA) baseline CoThink (Fan et al., 2025) in all three metrics.
While CoThink utilizes only coarse-grain outlines, which proves sub-optimal across diverse diffi-
culty levels, our method dynamically selects seed granularity based on the problem difficulty. This
adaptability allows SeedThink to provide detailed guidance for simple problems where specificity is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

beneficial, while maintaining the flexibility of high-level outlines for complex problems where rigid
guidance may be detrimental.

The advantages of SeedThink become particularly evident when compared to alternative efficiency-
oriented methods. While JointThink achieves modest accuracy improvements of 0.4%-2.6% on
MATH500, it leads to 20 ∼ 30% slowdown and requires 24 ∼ 29% longer reasoning trajectories. In
contrast, SeedThink delivers substantially greater efficiency gains while maintaining accuracy loss
within 2.4% of the standard Thinking baseline. On the more challenging AIME 2024 benchmark,
SeedThink consistently outperforms both alternatives, often matching or even improving accuracy
while improving efficiency more than 2× across all model scales. These results demonstrate that
SeedThink achieves a superior efficiency-effectiveness trade-off, providing the practical benefits of
dramatically reduced computational costs while preserving the reasoning quality of LRMs.

Dual-path speedups. SeedThink achieves up to 4.1× acceleration through two complementary
mechanisms: (1) reduced reasoning trajectory length via strategic seed thought guidance, and (2)
speculative decoding acceleration enabled by high token-level alignment between seed thoughts and
final reasoning paths. The 9.5 ∼ 68.8% token length reductions directly translate to proportionally
fewer decoding steps, while the even greater speedup of 1.9 ∼ 4.1× indicates additional gains
from the reused seed thought as high-quality drafts for speculative decoding. We further conduct an
ablation study in Section 5.3 about the effect of reusing them for warming up SD corpora.

5.3 ABLATION STUDY ON SPECULATIVE DECODING

To validate the core hypothesis from Section 4.4—that the path dependence between seed gen-
eration and final reasoning creates superior token-level alignment for speculative decoding—we
conduct a carefully designed ablation study comparing three distinct paradigms.

First, we reproduce existing speculative decoding approaches: Think + SAM (Hu et al., 2024) and
Think + SAM + Eagle3 (Li et al., 2025b), which represent SOTA model-free and model-based
methods applied to standard reasoning trajectories (Sun et al., 2025). Second, we test a warm-up
setting where seeds serve only as external draft corpora for SAM, isolating the pure speculative
utility of seeds from our path-dependent generation paradigm in Eq. (2).

Table 2 reveals a clear but modest distinction: while the warm-up configuration brings gains (1.45×
and 2.08× speedups), these are consistently lower than SeedThink’s 1.56× and 2.24× speedups with
the same components.

Method MAT Throughput Speed up
Think 1.00 28.4 –

+ SAM 1.75 38.8 1.37×
+ SAM + w 1.88 41.2 1.45×
+ SAM + Eagle3 3.26 54.5 1.92×
+ all components 3.41 59.0 2.08×

SeedThink 1.00 28.6 1.00×
+ SAM 1.94 44.2 1.56×
+ SAM + Eagle3 3.65 63.6 2.24×

Table 2: Ablation study on MATH500 using Qwen3-
4B, comparing speculative decoding performance. ”w”
denotes warm-up. MAT: Mean Accepted Tokens;
Throughput: tokens per second. Speed up are normal-
ized to baseline Thinking.

This performance gap provides direct evidence
for our theoretical claim: the sequential depen-
dence between Eqs. (1) and (2) is the cor-
nerstone of our method’s effectiveness. When
seed thoughts are used only as external cor-
pora for warm-up, MAT gains remain limited.
In contrast, explicitly conditioning final rea-
soning on seed thoughts creates genuine path
dependence and yields measurably higher
MAT.

In addition, we investigated how the length of
the seed affects speculative performance. The
corresponding experimental results and analy-
sis are provided in the appendix E.

The results conclusively demonstrate that it is not merely about supplying extra corpora from seed
thoughts, but their integrated role in the generation process that enables superior speculative
performance.

Our two-stage framework creates a cohesive reasoning trajectory where each step naturally follows
from the previous, producing the high-quality token alignment that enhances both model-free and
model-based speculative decoding approaches.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reflection(Think) Reflection(SeedThink) Branch(Think) Branch(SeedThink)

Qwen3-8B Qwen3-14B Qwen3-32B
0

5

10

15

20

25

30

Times per query

(a) Reflection

Qwen3-8B Qwen3-14B Qwen3-32B
0

2

4

6

8

10

12

Times per query

(b) Branch exploration

Figure 4: Comparison of Reflection token and Branch exploration tokens of Think and SeedThink
on Qwen3-8B, Qwen3-14B, Qwen3-32B

5.4 ANALYSIS OF REASONING TRAJECTORY OPTIMIZATION

The inefficiency of current LRMs is largely driven by two unproductive behaviors: repetitive veri-
fication and redundant branching explorations. These behaviors can be measured with the number
of reflection and branch tokens, which are defined below:

Reflection represents self-verification behaviors where the model double-checks its reasoning
through repetitive validation cycles. This manifests linguistically through phrases like “wait”, “let
me check”, and “let me verify”—indicators of conservative reasoning patterns that often continue
well after a solution has been adequately established (Wang et al., 2025a).

Branch exploration encompasses the model’s tendency to consider alternative solution paths, sig-
naled by terms like “alternatively”, “another way”, and “different approach”. While potentially
valuable for complex problem-solving, uncontrolled branching frequently leads to computational
inefficiency as the model explores unpromising directions.

Our analysis reveals that SeedThink significantly reduces these two inefficient reasoning behaviors.
As shown in Figure 4, for Qwen3-8B, reflection tokens decrease by 58.9% while branch tokens drop
by 72.6%. This pattern holds consistently across model scales, with Qwen3-32B models showing
the most dramatic reductions: 69.5% fewer reflection tokens and 80.6% fewer branch tokens.

The mechanism behind this optimization lies in the seed’s role as a reasoning anchor. By provid-
ing high-quality initial guidance, SeedThink preemptively addresses the uncertainties that typically
trigger verification cycles and alternative path exploration. The seed establishes a focused solution
trajectory, reducing the need for extensive backtracking and minimizing unproductive branching.

6 CONCLUSIONS

In this work, we addressed the dual challenges of inefficiency and path dependence in large rea-
soning models (LRMs) that leverage test-time compute. Our proposed solution, SeedThink, funda-
mentally reframes the initialization of the reasoning process. By generating a concise, high-quality
”seed thought” to guide the LRM, we steer its exploration toward productive regions of the search
space. We demonstrated that the granularity of these seeds is critical and introduced a difficulty-
aware seeding policy that adapts seed detail to problem complexity—using high-level seeds for hard
problems to maintain flexibility and detailed seeds for easier ones to maximize efficiency.

This two-stage framework provides a dual-path acceleration. First, it shortens the reasoning tra-
jectory by pruning unproductive branches, reducing token generation by up to 45.0%. Second, we
showed for the first time that this paradigm naturally integrates with speculative decoding, using the
seed thought as a highly quality draft. This synergy resulted in up to a 4.1× end-to-end speedup,
achieving a state-of-the-art efficiency-accuracy trade-off. Our findings underscore the importance of
guided initialization in complex, multi-step generation tasks. Future work could explore learning the
optimal seeding policy directly, rather than relying on a difficulty classifier. Ultimately, by shaping
the start of the journey, seed thoughts enable LRMs to reason more efficiently, making powerful
deliberative reasoning more practical for real-world applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri
Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Qiguang Chen, Dengyun Peng, Jinhao Liu, HuiKang Su, Jiannan Guan, Libo Qin, and Wanxiang
Che. Aware first, think less: Dynamic boundary self-awareness drives extreme reasoning effi-
ciency in large language models. arXiv preprint arXiv:2508.11582, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking
of o1-like llms. arXiv preprint arXiv:2412.21187, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao Wang, Yichuan Wang, Siyuan Zhuang, Shu
Liu, Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, et al. The danger of overthinking: Examin-
ing the reasoning-action dilemma in agentic tasks. arXiv preprint arXiv:2502.08235, 2025.

Siqi Fan, Peng Han, Shuo Shang, Yequan Wang, and Aixin Sun. Cothink: Token-efficient reasoning
via instruct models guiding reasoning models. arXiv preprint arXiv:2505.22017, 2025.

Gongfan Fang, Xinyin Ma, and Xinchao Wang. Thinkless: Llm learns when to think. arXiv preprint
arXiv:2505.13379, 2025.

Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang.
Efficiently serving llm reasoning programs with certaindex. arXiv preprint arXiv:2412.20993,
2024.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Rui Ha, Chaozhuo Li, Rui Pu, and Sen Su. From” aha moments” to controllable thinking: Toward
meta-cognitive reasoning in large reasoning models via decoupled reasoning and control. arXiv
preprint arXiv:2508.04460, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Jingkai He, Tianjian Li, Erhu Feng, Dong Du, Qian Liu, Tao Liu, Yubin Xia, and Haibo
Chen. History rhymes: Accelerating llm reinforcement learning with rhymerl. arXiv preprint
arXiv:2508.18588, 2025.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Yuxuan Hu, Ke Wang, Xiaokang Zhang, Fanjin Zhang, Cuiping Li, Hong Chen, and Jing Zhang.
Sam decoding: Speculative decoding via suffix automaton. arXiv preprint arXiv:2411.10666,
2024.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating
llm hallucination via self reflection. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 1827–1843, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proc. Int. Conf. Machine Learning, 2023.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. Structured chain-of-thought prompting for code generation,
2023. URL https://arxiv.org/abs/2305.06599.

Yang Li, Youssef Emad, Karthik Padthe, Jack Lanchantin, Weizhe Yuan, Thao Nguyen, Jason We-
ston, Shang-Wen Li, Dong Wang, Ilia Kulikov, et al. Naturalthoughts: Selecting and distilling
reasoning traces for general reasoning tasks. arXiv preprint arXiv:2507.01921, 2025a.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle: Speculative sampling requires
rethinking feature uncertainty. arXiv preprint arXiv:2401.15077, 2024.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-3: Scaling up inference acceler-
ation of large language models via training-time test. arXiv preprint arXiv:2503.01840, 2025b.

Guosheng Liang, Longguang Zhong, Ziyi Yang, and Xiaojun Quan. Thinkswitcher: When to think
hard, when to think fast. arXiv preprint arXiv:2505.14183, 2025.

Zhengkai Lin, Zhihang Fu, Ze Chen, Chao Chen, Liang Xie, Wenxiao Wang, Deng Cai, Zheng
Wang, and Jieping Ye. Controlling thinking speed in reasoning models. arXiv preprint
arXiv:2507.03704, 2025.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

12

https://arxiv.org/abs/2305.06599

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yongjiang Liu, Haoxi Li, Xiaosong Ma, Jie Zhang, and Song Guo. Think how to think: Mitigating
overthinking with autonomous difficulty cognition in large reasoning models. arXiv preprint
arXiv:2507.02663, 2025.

Haotian Luo, Haiying He, Yibo Wang, Jinluan Yang, Rui Liu, Naiqiang Tan, Xiaochun Cao,
Dacheng Tao, and Li Shen. Ada-r1: Hybrid-cot via bi-level adaptive reasoning optimization.
arXiv preprint arXiv:2504.21659, 2025.

Xianzhen Luo, Yixuan Wang, Qingfu Zhu, Zhiming Zhang, Xuanyu Zhang, Qing Yang, and
Dongliang Xu. Turning trash into treasure: Accelerating inference of large language models
with token recycling. arXiv preprint arXiv:2408.08696, 2024.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Zhengxin Zhang, Rae
Ying Yee Wong, Alan Zhu, Lijie Yang, Xiaoxiang Shi, et al. Specinfer: Accelerating large lan-
guage model serving with tree-based speculative inference and verification. In Proceedings of the
29th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, pp. 932–949, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Gabriele Oliaro, Zhihao Jia, Daniel F Campos, and Aurick Qiao. Suffixdecoding: Extreme specu-
lative decoding for emerging ai applications. In The Thirty-ninth Annual Conference on Neural
Information Processing Systems, 2025.

Rui Pan, Yinwei Dai, Zhihao Zhang, Gabriele Oliaro, Zhihao Jia, and Ravi Netravali. Specrea-
son: Fast and accurate inference-time compute via speculative reasoning. arXiv preprint
arXiv:2504.07891, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. arXiv preprint
arXiv:2410.20290, 2024.

Shengyin Sun, Yiming Li, Xing Li, Yingzhao Lian, Weizhe Lin, Hui-Ling Zhen, Zhiyuan Yang,
Chen Chen, Xianzhi Yu, Mingxuan Yuan, et al. Scaling up, speeding up: A benchmark of specu-
lative decoding for efficient llm test-time scaling. arXiv preprint arXiv:2509.04474, 2025.

Kimi Team, A Du, B Gao, B Xing, C Jiang, C Chen, C Li, C Xiao, C Du, C Liao, et al. Kimi k1. 5:
Scaling reinforcement learning with llms, 2025. URL https://arxiv. org/abs/2501.12599, 2025.

Chenlong Wang, Yuanning Feng, Dongping Chen, Zhaoyang Chu, Ranjay Krishna, and Tianyi
Zhou. Wait, we don’t need to” wait”! removing thinking tokens improves reasoning efficiency.
arXiv preprint arXiv:2506.08343, 2025a.

Jikai Wang, Juntao Li, Lijun Wu, and Min Zhang. Efficient reasoning for llms through speculative
chain-of-thought. arXiv preprint arXiv:2504.19095, 2025b.

Yiming Wang, Pei Zhang, Siyuan Huang, Baosong Yang, Zhuosheng Zhang, Fei Huang, and Rui
Wang. Sampling-efficient test-time scaling: Self-estimating the best-of-n sampling in early de-
coding. arXiv preprint arXiv:2503.01422, 2025c.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhihai Wang, Jie Wang, Jilai Pan, Xilin Xia, Huiling Zhen, Mingxuan Yuan, Jianye Hao, and
Feng Wu. Accelerating large language model reasoning via speculative search. arXiv preprint
arXiv:2505.02865, 2025d.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen,
Tao Zhong, and Mingxuan Yuan. Unlocking efficient long-to-short llm reasoning with model
merging. arXiv preprint arXiv:2503.20641, 2025a.

Haotian Wu, Bo Xu, Yao Shu, Menglin Yang, and Chengwei Qin. Thinking with nothinking cali-
bration: A new in-context learning paradigm in reasoning large language models. arXiv preprint
arXiv:2508.03363, 2025b.

Tong Wu, Chong Xiang, Jiachen T Wang, G Edward Suh, and Prateek Mittal. Effectively controlling
reasoning models through thinking intervention. arXiv preprint arXiv:2503.24370, 2025c.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Zeyu Xing, Xing Li, Huiling Zhen, Xianzhi Yu, Mingxuan Yuan, and Sinno Jialin Pan. Large
reasoning models know how to think efficiently. In ES-FoMo III: 3rd Workshop on Efficient
Systems for Foundation Models.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think. arXiv preprint arXiv:2505.13417, 2025a.

Shengjia Zhang, Junjie Wu, Jiawei Chen, Changwang Zhang, Xingyu Lou, Wangchunshu Zhou,
Sheng Zhou, Can Wang, and Jun Wang. Othink-r1: Intrinsic fast/slow thinking mode switching
for over-reasoning mitigation. arXiv preprint arXiv:2506.02397, 2025b.

Wencheng Zhang, Shiqin Qiao, Lingjie Luo, Yinfeng Li, Chuanyang Zheng, Qian Xu, Meng Li,
Yong Gui, Yijun He, Jianing Qiu, et al. Synapseroute: An auto-route switching framework on
dual-state large language model. arXiv preprint arXiv:2507.02822, 2025c.

Yao Zhao, Zhitian Xie, Chen Liang, Chenyi Zhuang, and Jinjie Gu. Lookahead: An inference
acceleration framework for large language model with lossless generation accuracy. In Proceed-
ings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’24, pp. 6344–6355. Association for Computing Machinery, 2024. ISBN 9798400704901. doi:
10.1145/3637528.3671614.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

SeedThink-outline SeedThink-step SeedThink-general SeedThink-detailed

level-I level-II level-III level-IV level-V
0

200
400
600
800

1000
1200
1400
1600

Tokens

(a) Tokens v.s. Difficulty

Figure 5: Different seed prompt and it’s generated seed length of Qwen3-14B on Math500 dataset.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed solely for the purpose of enhancing the linguistic
clarity and stylistic refinement of this manuscript.

B SUPPLEMENTARY MATERIALS FOR SECTION 3.2

As described in Section 3.2, we conduct a pilot study using the MATH500 datasets to analyze the
impact of seed granularity on the performance of two widely used LRMs Qwen3-8B and DeepSeek-
R1-Distill-LLaMA-8B. For seed thought generation, we use the No-Thinking mode with four differ-
ent prompt to control the seed granularity. For the second round of generation, we use the thinking
mode while providing the seed as an additional reference through the thinking with seed prompt.
Both the seed generation prompt and the thinking with seed prompt can be found in C.

We use an 8K context window for seed thought generation and 16K context window for thinking
with seed reasoning process. Following the recommendations to balance diversity and coherence in
the official model cards, we set the temperature to 0.6 for Thinking mode and 0.7 for No-Thinking
mode,respectively.

The generated seed length of four different SeedThink variants are reported in 5.

C DETAILS ON PROMPT

Outline seed generation prompt

<|User|>You are a reasoning assistant. Your job is to break
down a complex problem into 2 to 4 high-level reasoning steps.
Focus only on outlining the general approach or strategy. Do not
include any numbers, formulas, or final answers. Avoid specific
calculations or details|only describe the logic behind solving the
problem. Please break down the following problem. [question]
<|Assistant|><think></think> \n

key steps seed generation prompt

<|User|>You are a reasoning assistant. Your task is to rapidly
provide key steps for solving the given math problem. Include the
main reasoning steps without performing detailed calculations.
Mention any important formulas or concepts needed, but do not
compute numerical results or give the final answer. [question]
<|Assistant|><think></think> \n

General approach seed generation prompt

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

<|User|>You are a reasoning assistant. Quickly provide a general
approach to solve the given math problem. Include a step-by-step
plan with brief explanations of each step. You may mention
formulas and concepts, but avoid extensive calculations. The goal
is to set up the problem for detailed reasoning later. [question]
<|Assistant|><think></think> \n

Detailed steps seed generation prompt

<|User|>You are a reasoning assistant. Your task is to promptly
provide detailed steps for solving the given math problem. Include
necessary formulas, initial setups, and perform simple calculations
if needed. However, leave the most complex calculations or
reasoning for the next stage. Provide as much detail as possible
without giving the final answer. [question]
<|Assistant|><think></think> \n

Thinking with seed generation prompt

<|User|> Reference Seed solution from a instruct model:
[Reference answer]
It is crucial to critically evaluate the information provided in
the reference, recognizing that it may be biased or incorrect. If
you think the reference is incorrect, try to correct it to become
your answer.
[question]
<|Assistant|><think>\n

D DIFFICULTY ESTIMATOR AS A TEXT CLASSIFICATION TASK

To implement this classifier, we employ a RoBERTa model (Liu et al., 2019). This choice is mo-
tivated by RoBERTa’s well-established and outstanding performance on a wide range of text clas-
sification benchmarks, where it consistently delivers robust and accurate predictions. Furthermore,
compared to the large reasoning models that are the focus of our study, a RoBERTa-based classifier
is relatively lightweight, allowing for efficient inference without introducing significant computa-
tional burden. This combination of high classification accuracy and operational efficiency makes it
an ideal candidate for our difficulty estimation step.

We formulate difficulty estimation as a 3-class classification task. Specifically, we train the model
on a mathematical dataset comprising 12,500 samples with inherent difficulty annotations. The
original fine-grained labels (on a scale of 1-5) are mapped to three broader categories: labels 1-
2 are grouped as easy, labels 3-4 as moderate, and label 5 as hard. This categorization captures
meaningful distinctions in problem complexity while maintaining sufficient data for each class.

Our implementation uses the RoBERTa-base architecture, which contains 125 million parameters
configured with 12 transformer layers, a hidden state size of 768, and 12 attention heads. The model
is trained for 10 epochs with a batch size of 16. This demonstrates the model’s strong capability in
reliably assessing problem difficulty.

The analysis below provide a comprehensive breakdown of the estimator’s performance on the
Math500 dataset. It shows that even when the estimator misclassifies a problem, it does not lead
to a catastrophic failure. Instead, it results in a predictable and often acceptable trade-off between
computational cost and solution accuracy. As the table3 shows, we can analyze the two distinct
types of misclassification scenarios.

The first type occurs when a harder problem is misclassified as easier (e.g., a True Hard problem
predicted as Medium). In this case, the model receives a seed that is more detailed than opti-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 3: A comprehensive breakdown of the estimator’s performance on the Math500 dataset.

Predicted: Easy Predicted: Medium Predicted: Hard
Label Cnt. Acc. Length Cnt. Acc. Length Cnt. Acc. Length
Easy 125 96.8% 1,206 7 100.0% 1,676 1 100.0% 2,853

Medium 30 90.0% 1,950 191 97.9% 2,067 12 100.0% 2,222
Hard 2 50.0% 3,105 26 84.6% 3,705 106 92.5% 5,257

mal. While this can lead to a decrease in accuracy—for instance, ’Hard’ problems misclassified
as ’Medium’ see their accuracy drop from 92.5% to 84.6%—this is coupled with a corresponding
reduction in generation length. The average generation length for these same problems plum-
mets from 5258 to 3705 tokens. This outcome represents a clear trade-off: a modest reduction in
accuracy for a substantial improvement in computational speed.

The second type of error is when an easier problem is misclassified as more difficult (e.g., a True
Easy problem predicted as Medium). Here, the model is given a higher-level, more abstract seed
than necessary. This prompts a more cautious reasoning process, which our data shows actually
increases accuracy. All those misclassified types achieve 100% accuracy, an improvement over
the 96.8% for those classified correctly. This gain in robustness comes at the expected cost of effi-
ciency, with the average token length increasing from 1206 to 1676. This scenario again illustrates
a trade-off: sacrificing efficiency for a gain in accuracy.

In summary, The vast majority of samples (422/500, or 84.4%) are classified correctly, achieving a
high accuracy of 96.2%. On the 78 misclassified instances, performance remains strong at 89.7%
accuracy.

E ABLATION STUDY ON SEED LENGTH

To investigate whether longer or more abstract seeds lead to saturation in speculative gains, we
conducted additional experiments. As shown in Table 4, rather than observing saturation, we find
that longer seeds generally increase speculative gains (speed up from 1.47 to 1.64 and MAT from
1.65 to 1.96), as they produce more opportunities for suffix matches. We do not observe saturation
within the studied range, and we note that seed length is intentionally constrained: excessively long
seeds would undermine the two-stage pipeline’s efficiency. Within this realistic range, speculative
gains (Mean accept tokens) grow monotonically.

Table 4: Speculative gains (using SAM decoding) of different seed prompt Qwen3-14B on the
Math500 dataset. MAT short for Mean Accept Token.

Seeds MAT Throughput
(tokens/s)

Speed up
from SD Length Accuracy

Think (w/o SAM) 0 28.44 – 4,741 96.8%
Think (w/ SAM) 1.65 40.26 × 1.42 4,776 96.8%
SeedThink (outline seed) 1.73 41.72 × 1.47 2,959 93.8%
SeedThink (key steps seed) 1.82 43.88 × 1.54 2,847 93.4%
SeedThink (general approach seed) 1.88 45.04 × 1.58 2,735 95.6%
SeedThink (detailed steps seed) 1.96 46.87 × 1.64 2,650 94.4%

F TOKEN-LEVEL ALIGNMENT: n-GRAM PRESERVATION UNDER
SEED-GUIDED REASONING

We provide a theoretical justification for why n-grams appearing in the seed sequence tend to reap-
pear with high probability in the final reasoning trace. The key assumption is that the change of
prompt template between seed generation and reasoning introduces only a small perturbation in the
model’s input representation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F.1 PRELIMINARIES

Let the seed sequence be
s = (s1, s2, . . . , sk),

generated by the model M under a seed template. The final reasoning sequence is

r = (r1, r2, . . .),

generated by the same model M but conditioned on (q, s).

For any prefix u, denote the next-token distributions by

ps(· | u), pr(· | u),
corresponding respectively to the seed-generation context and the final-reasoning context. We define
the stepwise total variation distance

εt(u) =
∥∥ps(· | u)− pr(· | u)

∥∥
TV

.

We further define its expectation with respect to prefixes encountered during reasoning:

ε̄t = Er<t∼Pr [εt(r<t)] .

Assumption (Template Stability). The difference between the seed template and the reasoning
template induces at most a small perturbation δ in the model’s internal embeddings. Together with
the Lipschitz continuity of the model’s logit mapping and the stability of the softmax function, this
implies the existence of a constant ε such that

ε̄t ≤ ε for all t.

F.2 MAIN LEMMA: n-GRAM ALIGNMENT AT MATCHED POSITIONS

Lemma 1. For any n-gram g = si:i+n−1 appearing in the seed, the probability that the final
reasoning sequence reproduces the same n-gram at the same position satisfies

Pr
[
ri:i+n−1 = g

]
≥

i+n−1∏
t=i

(
1− ε̄t

)
.

Under the uniform bound ε̄t ≤ ε, this becomes

Pr
[
ri:i+n−1 = g

]
≥ (1− ε)n ≥ 1− nε.

Proof. Condition on the event that ri:t−1 = si:t−1. Under this condition, the total variation distance
between ps(· | r<t) and pr(· | r<t) is at most εt(r<t). By the optimal coupling characterization of
total variation distance,

Pr
[
rt = st | ri:t−1 = si:t−1

]
≥ 1− εt(r<t).

Taking expectation over possible prefixes and applying the chain rule yields

Pr
[
ri:i+n−1 = g

]
≥

i+n−1∏
t=i

(1− ε̄t).

The uniform bound follows immediately.

F.3 COROLLARY: APPEARANCE AT ANY POSITION

Let J ⊆ {1, 2, . . . , T} be any candidate set of positions. By applying a union bound to Lemma 1,
we obtain:
Corollary 1. For any n-gram g in the seed,

Pr
[
∃j ∈ J : rj:j+n−1 = g

]
≥ 1−

∑
j∈J

(
1−

j+n−1∏
t=j

(1− ε̄t)
)
.

Under the assumption ε̄t ≤ ε,

Pr
[
∃j ∈ J : rj:j+n−1 = g

]
≥ 1− |J |

(
1− (1− ε)n

)
≈ 1− |J |nε.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F.4 INTERPRETATION

Under the Template Stability Assumption—which bounds the embedding perturbation δ between the
seed-generation and reasoning-generation contexts— the resulting bound on stepwise total variation
distance guarantees that short and medium-length n-grams in the seed are preserved with high prob-
ability in the model’s subsequent reasoning. The alignment arises directly from the shared model
parameters and the strong causal dependence between the seed and the final reasoning trace.

19

	INTRODUCTION
	RELATED WORKS
	Preliminary and Observations
	Background and Notations
	Observation

	Method
	Problem Formulation
	Difficulty Estimator
	Seed Thought Generator
	Seed Guided Reasoning with Enhanced Speculative Decoding

	EVALUATION
	EXPERIMENTAL SETUP
	MAIN RESULTS
	Ablation Study on Speculative Decoding
	Analysis of Reasoning Trajectory Optimization

	CONCLUSIONS
	The Use of Large Language Models (LLMs)
	Supplementary materials for observation
	Details on prompt
	Difficulty estimator as a text classification task
	Ablation study on seed length
	Token-Level Alignment: n-Gram Preservation Under Seed-Guided Reasoning
	Preliminaries
	Main Lemma: n-Gram Alignment at Matched Positions
	Corollary: Appearance at Any Position
	Interpretation

