
Under review as submission to TMLR

Closed-Form Diffusion Models

Anonymous authors
Paper under double-blind review

Abstract

Score-based generative models (SGMs) sample from a target distribution by iteratively
transforming noise using the score function of the perturbed target. For any finite training
set, this score function can be evaluated in closed form, but the resulting SGM memorizes
its training data and does not generate novel samples. In practice, one approximates the
score by training a neural network via score-matching. The error in this approximation
promotes generalization, but neural SGMs are costly to train and sample, and the effective
regularization this error provides is not well-understood theoretically. In this work, we instead
explicitly smooth the closed-form score to obtain an SGM that generates novel samples
without training. We analyze our model and propose an efficient nearest-neighbor-based
estimator of its score function. Using this estimator, our method achieves competitive
sampling times while running on consumer-grade CPUs.

1 Introduction

Score-based generative models (SGMs) draw samples from a target distribution ρ1 by sampling Gaussian
noise and flowing it through a possibly noisy velocity field vt. This velocity field depends on the score function
of the perturbed target distribution ρt, which existing SGMs parameterize as a neural network and learn via
score-matching (Hyvärinen & Dayan, 2005) or denoising (Vincent, 2011; Ho et al., 2020). Although the target
distribution ρ1 (for example, the distribution over human face images) is typically assumed to be continuous,
in practice score-matching and denoising problems are solved using an empirical approximation ρ̂1 to the
target distribution constructed from a finite training set.

When ρ̂1 is the empirical distribution over a finite training set {xi}N
i=1, the perturbed target distribution ρt

is a mixture of Gaussians, whose score function ∇ log ρt(z) has a simple closed-form expression. This score
function is a vector pointing from z toward a distance-weighted average of all N rescaled training points and
is the exact solution to the score-matching problem (Miyasawa, 1961; Raphan & Simoncelli, 2011; Karras
et al., 2022). By evaluating this closed-form score during sampling, one obtains a training-free sampler for ρ̂1.
While this approach seems tempting at first glance, two flaws render it unsuitable for real-world applications:

1. Many applications involve large training sets, prohibiting O(N) computation of the closed-form score.

2. Flowing base samples through the closed-form velocity field simply outputs training samples xi,
which is not useful in practice.

Existing work avoids these issues by neurally approximating the score of ρt. By compressing training data into
the score model’s weights, neural score functions replace a sum over N training points with a neural network
evaluation whose complexity does not depend directly on N . Moreover, neural SGMs generate novel samples
given finite training data thanks to approximation error (from limited model capacity) and optimization error
(from undertraining) in learning the score (Pidstrigach, 2022; Yoon et al., 2023; Yi et al., 2023). While neural
SGMs are successful, they are costly to train, and sampling them requires many (typically GPU-bound)
neural network evaluations. Furthermore, the form of the error that enables neural SGMs to generalize is
unknown, making it difficult to characterize the distribution from which these models sample in practice.

Our key insight is that the flaws of naïve closed-form SGMs (in particular, lack of generalization and poor
scalability) can be addressed without resorting to costly black-box neural approximations. To this end, we

1

Under review as submission to TMLR

make use of a well-known score formula and introduce smoothed closed-form diffusion models (smoothed
CFDMs), a class of training-free diffusion models that require only access to the training set at sampling time.
Smoothed CFDMs generate novel samples from a finite training set by flowing Gaussian noise through a
velocity field built from a smoothed closed-form score. Our method is efficient, has few hyperparameters, and
generates plausible samples in high-dimensional tasks such as image generation. By developing this algorithm,
we demonstrate that a closed-form score formula can be adapted to build a non-neural sampler that scales to
non-trivial generative tasks.

Our specific contributions are as follows:

1. In Section 4, we show that smoothing the exact solution to the score-matching problem promotes
generalization by encouraging the score function to point towards barycenters of training samples.

2. Using our smoothed score, in Section 5.1 we construct a closed-form sampler that generates novel
samples without requiring any training, and characterize the support of its samples.

3. In Section 5.4, we accelerate our sampler using a nearest-neighbor-based estimator of our smoothed
score, and show in Section 6.2 that in practice, one can aggressively approximate our smoothed score
at little cost to sample accuracy.

4. In Section 6, we scale our method to high-dimensional tasks such as image generation. By operating
in the latent space of a pretrained autoencoder, we generate novel samples from popular image
datasets at speeds competitive with existing GPU-bound methods while running on a consumer-grade
laptop with no dedicated GPU.

2 Related work

Diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) have recently achieved state
of the art performance in image (Rombach et al., 2022; Zhang & Agrawala, 2023) and video generation (Ho
et al., 2022a;b). They have also shown promise in 3D synthesis (Luo & Hu, 2021; Poole et al., 2022; Watson
et al., 2022; Lukoianov et al., 2024) and in crucial steps of the drug discovery pipeline such as molecular
docking (Corso et al., 2023) and generation (Hoogeboom et al., 2022; Schneuing et al., 2022). Despite this
progress, however, diffusion models remain costly to train and sample from (Shih et al., 2023). Prior work
has sought to accelerate the sampling of diffusion models via model distillation (Salimans & Ho, 2022),
operating in a pre-trained autoencoder’s latent space (Vahdat et al., 2021; Rombach et al., 2022), modifying
the generative process (Song et al., 2020), using alternative time discretizations for sampling (Zhang & Chen,
2023; Liu et al., 2022; Wu et al., 2023), or by parallelizing sampling steps (Shih et al., 2023). Latent diffusion
models also benefit from lower training expenses (Rombach et al., 2022), but publicly-reported training costs
for state-of-the-art diffusion models remain high (Bastian, 2022).

Recent works propose alternative diffusion-like models that discard the Markov chain and SDE formalisms
from earlier work. Liu et al. (2023) introduce a unified framework for flow-based generative modeling that
subsumes diffusion models and show that straightening their model’s flows enables few-step sample generation.
Heitz et al. (2023) use a similar objective to construct a straightforward graphics-inspired sampler, and
Delbracio & Milanfar (2023) concurrently generalize this framework to arbitrary data perturbations and
apply it to image restoration and generation tasks. All of these methods parametrize their flows by neural
networks that require extensive training.

While diffusion models draw inspiration from mathematical theory (Feller, 1949; Stroock & Varadhan, 1969a;b;
1972), there have been limited attempts to develop a theoretical understanding. Salmona et al. (2022); Koehler
et al. (2023) study the statistical limitations of diffusion models trained via score-matching, De Bortoli et al.
(2021); Lee et al. (2023) present convergence results for diffusion models with absolutely continuous targets,
and De Bortoli (2022) extends these results to manifold-supported distributions. However, as diffusion models
are trained on an empirical approximation to their target distributions, these results can only show that a
diffusion model converges to the empirical distribution of its training set, whereas one is typically interested
in generating novel samples.

2

Under review as submission to TMLR

Pidstrigach (2022) takes an initial step in this direction by studying the support of an SGM’s model distribution
and providing conditions under which an SGM memorizes its training data or learns to sample from the true
data manifold. Oko et al. (2023) further show that diffusion models can attain nearly minimax estimation
rates for the true data distribution provided its density lies in an appropriate function class. Yoon et al.
(2023) propose and empirically test a memorization-generalization dichotomy, which states that diffusion
models may only generalize when they are parametrized by neural networks with insufficient capacity relative
to the size of their training set. Yi et al. (2023) note that standard training objectives for diffusion models
have closed-form optima given finite training sets and show via experiments that the approximation error of
neural score functions enables existing diffusion models to generalize. Recently, Kadkhodaie et al. (2024)
study generalization in diffusion models using techniques from applied harmonic analysis, and demonstrate
that SGMs trained on sufficiently large datasets learn a distribution that is effectively independent of the
training set. Whereas these works study the generalization of existing SGMs, we construct a novel SGM that
explicitly perturbs the closed-form score to generalize without the indeterminate approximation error and
training costs of a neural score.

Recent works in graphics and vision have also noted that neural networks are unnecessary for tasks such as
novel view synthesis, where neural radiance fields (NeRFs) had previously achieved SOTA results (Barron
et al., 2022). In light of this, Kerbl et al. (2023) use efficiently optimized 3D Gaussian scene representations
to achieve SOTA visual quality in novel view synthesis while operating in real time. In this work, we adopt a
similar perspective and investigate the extent to which neural networks can be replaced with efficient and
well-understood classical approaches in generative modeling.

3 Preliminaries: The closed-form score

Flow-based generative models draw samples from a target distribution ρ1 by sampling from a known base
distribution ρ0 (typically N (0, I)) and flowing these samples through a velocity field vt from t = 0 to t = 1.
For an appropriately-chosen vt, the samples will be distributed according to the target distribution ρ1 at t = 1.
SGMs employ a vt that depends on the score function ∇ log ρt of the perturbed data distribution ρt. For
example, when ρ0 = N (0, I), one velocity field satisfying this property is v∗

t (z) = 1
t (z + (1− t)∇ log ρ∗

t (z))
(Liu et al., 2023), where ρ∗

t is the marginal distribution of the random variable z = tx + (1 − t)ϵ, whose
samples are target samples x ∼ ρ1 that have been rescaled by t and perturbed by Gaussian noise (1− t)ϵ ∼
N (0, (1− t)2I). The score function ∇ log ρ∗

t (z) is typically learned via score-matching or denoising.

In practice, one learns an SGM from a finite training set {xi}N
i=1. In this case, the target distribution ρ̂1 is

the empirical distribution over {xi}N
i=1, and for the field v∗

t defined above, the perturbed target distribution
ρ∗

t is a mixture of Gaussians with means txi and common covariance matrix (1− t)2I. (We will subsequently
use the fact that ρ∗

t is a mixture of Gaussians to accelerate our sampler in Sections 5.2 and 6.2.) Its score
∇ log ρ∗

t (z) has a closed-form expression:

∇ log ρ∗
t (z) = 1

(1− t)2 (kt(z)− z) , (1)

where kt(z) =
N∑

i=1
softmax

(
−∥z − tX∥2

2(1− t)2

)
i

txi, (2)

in which we let ∥z − tX∥2 denote the vector whose i-th entry is ∥z − txi∥2. This ∇ log ρ∗
t (z) is a vector

pointing from z toward a distance-weighted average kt(z) of all N rescaled training points and is the exact
solution to the score-matching problem given finite training data. Equation 1 is well-known, having appeared
in the empirical Bayes literature as early as in Miyasawa (1961) and more recently in works such as Raphan
& Simoncelli (2011) and Karras et al. (2022, Appendix B.3). It has also inspired machine learning methods
such as denoising score-matching (Vincent, 2011) and score interpolation (Dieleman et al., 2022).

We define a closed-form diffusion model (CFDM) to be the SGM that flows N (0, I) base samples through
this v∗

t (z) while evaluating the score ∇ log ρ∗
t (z) in closed form as needed during sampling. As this model can

only generate samples from the empirical distribution over training data, CFDMs are not useful in practice.

3

Under review as submission to TMLR

4 Smoothed closed-form diffusion models

Pidstrigach (2022); Yi et al. (2023) find that existing diffusion models generalize due to approximation error
incurred during score-matching. Rather than studying the generalization of neural SGMs, we take inspiration
from this observation and construct a training-free SGM that generalizes by explicitly inducing error in the
closed-form score.

4.1 Definition

Deep neural networks fit the low-frequency components of their target functions first during training, a
phenomenon known as “spectral bias” that results in excessively smooth approximations to the target
function (Rahaman et al., 2019). Hence, to model the bias of a neural SGM, we induce error in the score
function by smoothing it. To smooth a function f , one chooses a zero-mean noise distribution pϵ and replaces
f(z) with the convolution f̃(z) = E

ϵ∼pϵ

[f(z + ϵ)]. In practice, we compute the smoothed score function sσ,t(z)
by fixing a smoothing parameter σ ≥ 0, drawing M noise samples ϵm ∼ pϵ, and computing

sσ,t(z) = 1
(1− t)2

(
1

M

M∑
m=1

kt(z + σϵm)− z

)
. (3)

That is, we average the weights kt in Equation 2 over M small perturbations σϵm of z; as σ → 0, we approach
the unsmoothed score in Equation 1. We do not add noise to the −z term in the score because it vanishes in
expectation. The smoothing procedure in Equation 3 is the key ingredient enabling our model to generalize
without a learned approximation to the score function. The smoothed score sσ,t can then be inserted into an
SGM sampling loop to yield a closed-form sampler that generates novel samples.

To develop intuition for why this simple modification of the closed-form score promotes generalization, we
consider the behavior of the closed-form score as t→ 1. Figure 1 depicts the closed-form score (Equation 1)
and its smoothed counterpart (Equation 3) at t = 0.95 for a simple case where the training data consists of
two points x0 (in blue) and x1 (in red). In this regime, the temperature (1− t)2 of the softmax in Equation 2
is low, and kt(z) is effectively equal to the nearest neighbor of z within the training set. Flowing points
z through a velocity field such as Liu et al. (2023)’s v∗

t (z) = 1
t (z + (1− t)∇ log ρ∗

t (z)) causes them to flow
towards their nearest training sample. As a result, an SGM based on this score function simply outputs
training data.

On the other hand, the small perturbations σϵm in Equation 3 occasionally push points z near the Voronoi
boundary between x0 and x1 into their neighboring Voronoi cell. Averaging kt over these perturbations yields
a score function that instead points towards the line segment connecting x0 and x1. An SGM based on the
smoothed score function will hence cause samples to flow towards weighted barycenters of the training points,
which promotes generalization, especially when the data lie on a manifold of sufficiently low curvature. We

(a) Closed-form score (b) Smoothed score

Figure 1: Effect of smoothing on the closed-form score (yellow streamplot). Colors represent distance weights
in kt(z); blue regions of space are drawn to the blue point on the left, and vice-versa.

4

Under review as submission to TMLR

will make these intuitions rigorous in the following section by proving Proposition 4.1, which will enable us to
constrain the support of our model’s samples.

4.2 Effect of smoothing the score

In this section, we show that as t → 1, the smoothed score points towards barycenters of these tuples
rather than towards training points, thereby enabling our sampler to generalize. We first note that via a
straightforward computation,

kt(z + σϵm) =
N∑

i=1
softmax

(
−∥z − tX∥2 + σtui,m

2(1− t)2

)
i

txi, (4)

where ui,m = −2⟨ϵm, xi⟩ is a scalar random variable. This shows that smoothing the score acts by perturbing
the distance weights −∥z − txi∥, so one can directly add scalar noise ui,m ∼ pu to these weights instead of
perturbing the inputs z with noise ϵm ∼ pϵ. To simplify our exposition, we will frame the remainder of our
results from this perspective.

We now show that smoothing the closed-form score yields a function sσ,t(z) that points from z towards a
convex combination kσ,t(z) of barycenters tc̄k = 1

M

∑M
m=1 txi(k,m) of tuples tCk = (txi(k,m) : m = 1, ..., M)

of rescaled training points. The weights of this convex combination depend not only on the distance
∥z − tc̄k∥ between z and the barycenters tc̄k, but also on the variance of the tuples tCk and the noise terms
ūk = 1

M

∑M
m=1 ui(k,m). Tuples of tightly-clustered points have low variance and hence receive large weights

in kσ,t(z), whereas tuples of distant points have high variance and receive small weights in kσ,t(z). We prove
the following proposition in Appendix B.1.
Proposition 4.1 (sσ,t points towards barycenters of training points). The smoothed score sσ,t(z) can be
expressed as:

sσ,t(z) = 1
(1− t)2 (kσ,t(z)− z) , where

kσ,t(z) =
NM∑
k=1

softmax
(
−

M
(
∥z − tc̄k∥2 + Var(tCk) + σtūk

)
2(1− t)2

)
k

tc̄k. (5)

5 Sampling algorithm

5.1 Forward Euler scheme for sampling

Armed with the smoothed score sσ,t, we are now in position to define our sampler. Following Liu et al. (2023),
we draw N (0, I) base samples and flow them through

vσ,t(z) = 1
t

(z + (1− t)sσ,t(z)) , (6)

from t = 0 to t = 1. We discretize this ODE using a forward Euler scheme, leading to Algorithm 1 for
sampling using the smoothed score.

The smoothed score in Equation 3 and Algorithm 1 jointly define our smoothed closed-form diffusion model;
given a smoothing parameter σ, we call this a σ-CFDM. Using Algorithm 1, we can sample from a σ-CFDM
given access only to the training data {xi}N

i=1 and noise samples. Notably, no training phase or neural
network is needed for this procedure. By explicitly smoothing the closed-form score rather than relying on
a neural network’s approximation error, we can determine the support of our σ-CFDM’s distribution. For
sufficiently small step sizes, our model’s samples will lie at the barycenters of tuples of training points.
Theorem 5.1 (Support of σ-CFDM samples). All samples returned by Algorithm 1 are of form zS =

S
S−1 kσ, S−1

S
(zS−1). As the number of sampling steps S →∞ (equivalently, as the step size 1

S → 0), the model
samples converge towards barycenters zS = c̄k of M -tuples of training points.

5

Under review as submission to TMLR

Algorithm 1 Sampling
Input: Training set {xi}N

i=1, noise {ui,m}, step size h = 1
S , initial sample z0 ∼ N (0, I)

for n = 0, ..., S − 1 do
tn = n

S
zn+1 ← zn + hvσ,tn

(zn)
end for
return zT

We prove this theorem in Appendix B.2. While our sampler is easy to implement and training-free, it may
be costly if the number of training samples N and the number of sampling steps S are large. We address
these issues in the following sections. In Section 5.4, we show how to approximate our smoothed score using
efficient nearest-neighbor search. In Section 6.2, we demonstrate that one may take fewer sampling steps by
initializing the sampler at a non-zero start time at little cost to sample accuracy, and provide complementary
analysis in Section 5.2. This will permit our method to scale to high-dimensional real-world datasets while
achieving sampling times competitive with existing methods and running on consumer-grade CPUs.

5.2 Taking fewer sampling steps

As a CFDM’s distribution ρ∗
t is simply a time-dependent mixture of Gaussians centered at the training points,

it can be directly sampled at any time t by uniformly sampling a mixture mean txi and then sampling from a
Gaussian centered at txi. We use this fact to sample a σ-CFDM with fewer steps by starting at T > 0 with
samples from its corresponding unsmoothed CFDM. As a σ-CFDM does not have the same distribution as
an unsmoothed CFDM, this approximation incurs some error, which we bound in the following theorem.
Theorem 5.2 (Approximation error from starting at T > 0). Let ρT

1−ϵ be the model distribution at t = 1− ϵ
obtained by starting sampling a σ-CFDM at T > 0 with samples from the unsmoothed CFDM, and let ρ0

σ,1−ϵ

be the corresponding σ-CFDM model distribution when sampling starting at T = 0. Then for any fixed T and
ϵ,

W2(ρ0
σ,1−ϵ, ρT

σ,1−ϵ) = O(σ). (7)

where W2 is the 2-Wasserstein distance.

Following De Bortoli (2022), we stop sampling at time 1− ϵ for some truncation parameter ϵ > 0 to account
for the fact that the smoothed score sσ,t blows up as t→ 1 due to division by (1− t)2. We prove this theorem
in Appendix B.3.

This result shows that initializing a σ-CFDM with samples from the unsmoothed CFDM ρ∗
T at time T > 0

results in bounded error that scales linearly with σ. Intuitively, increasing σ causes the unsmoothed velocity
field v∗

t to be a worse approximation to the smoothed velocity field vσ,t at any time t; Theorem 5.2 confirms
that the cost to sample accuracy is linear in σ.

5.3 Distribution of one-step samples under Gumbel weight perturbations

When the scalar noise ui,m perturbing the distance weights in Equation 4 is drawn from a Gumbel(0, 1)
distribution, we can precisely characterize the smoothed model’s distribution when performing single-step
sampling by starting sampling at the final Euler iteration in Algorithm 1.
Proposition 5.3. Suppose we begin sampling a smoothed CFDM at iteration S − 1 of Algorithm 1 using
samples zS−1 ∼ ρ∗

tS−1
from the unsmoothed CFDM at tS−1. Suppose also that the perturbations ui,m to the

distance weights in Equation 4 are drawn from a Gumbel(0, 1) distribution. Then, as the number of Euler
steps S →∞, the model samples zS are of the form zS = 1

M XIσ, where X ∈ RD×N is the matrix whose i-th
column is training sample xi ∈ RD and Iσ ∼ Multinomial(πσ, M). The probability πi

σ of training point xi is
given by πi

σ = softmax
(
− 1

σ∥zS−1 − xi∥2).
6

Under review as submission to TMLR

We prove this proposition in Appendix B.4. This result provides further intuition on the role of the smoothing
parameter σ in determining the distribution of a smoothed CFDM’s samples: It is the temperature of the
softmax determining πi

σ = softmax
(
− 1

σ∥zS−1 − xi∥2). When σ = 0, the softmax simply picks out the
training sample xi that is closest to zS−1. Conversely, as σ →∞, the event probabilities πi

σ become uniform
and zS becomes the barycenter of M uniformly-sampled training points.

5.4 Fast score computation via approximate nearest-neighbor search

Each sampling step in Algorithm 1 requires the evaluation of the smoothed score sσ,t(z) and hence a sum
over O(N) terms. For large datasets, each evaluation of sσ,t(z) is therefore costly and places substantial
demands on memory.

In the t→ 1 regime, the temperature of the softmax in Equation 4 is low, and the large sum is dominated by
the handful of terms corresponding to the smallest values of ∥z − txi∥2 − σtui,m. If σ is sufficiently small,
these terms correspond to the nearest neighbors of z among the rescaled training points txi. This suggests
that we can approximate the smoothed score sσ,t by subsampling terms in the O(N) sum while ensuring that
the nearest neighbors of z are included with high probability.

Noting that the closed-form score ∇ log ρ∗
t (z) = ∇ρ∗

t (z)
ρ∗

t (z) is the score of a Gaussian kernel density estima-
tor (KDE) ρ∗

t , we employ Karppa et al. (2022)’s unbiased nearest-neighbor estimator for KDEs to estimate
the denominator, and take its gradient to obtain an unbiased estimate of the numerator. We provide details
on this estimator in Appendix A. Our estimator is computed using the K nearest neighbors of z in the
training set and L random samples from the remainder of the training set; we study the accuracy tradeoffs
associated with K and L in Section 6.2.

Given this estimator for the closed-form score, we estimate the smoothed score ŝσ,t via convolution against a
smoothing kernel as in Section 4.1. By using the approximate nearest neighbor search algorithms implemented
in Faiss (Douze et al., 2024), we are able to scale our method to high-dimensional real-world datasets and
achieve sampling times competitive with neural SGMs while running on consumer-grade CPUs; see Sections
6.3 and 6.4 for examples and runtime metrics.

6 Results

6.1 Impact of σ on generalization

Figure 2: W2 between σ-CFDM model
samples and true samples. We depict
model samples for σ ∈ {0, 0.26, 1}.

We now show that a σ-CFDM’s model distribution approaches the
true distribution ρ1 of its training samples xi ∼ ρ1 for appropriate
values of σ. We fix a continuous target distribution ρ1 and draw
N = 5000 samples yi to serve as a discrete approximation to ρ1.
We then draw a smaller subset of n = 500 training samples xi and
construct a σ-CFDM on these samples while varying σ.

For each σ, we measure the 2-Wasserstein distance W2 between the
σ-CFDM’s generated samples and the true samples yi ∼ ρ1, and use
this as a tractable proxy for the distance between the σ-CFDM’s
model distribution and the true distribution ρ1. We present the
results of this experiment for the “Checkerboard” distribution in
Figure 2.

When σ = 0, the support of our model’s samples (left side of Figure
2) coincides with the training samples xi. The 2-Wasserstein distance
between the model samples and true samples yi decreases for small
values of σ as the model samples become convex combinations of
nearby points in the training set; we depict model samples for σ = 0.26
in the center of Figure 2. However, as σ grows large, the model samples spread out to fill the convex hull of
the training set (right side of Figure 2) and the distance between our model’s samples and true samples yi

7

Under review as submission to TMLR

grows rapidly. These results suggest that for appropriate values of σ, our method can use a fixed training set
{xi}N

i=1 to generate novel samples that remain close to the target distribution ρ1.

In Figure 3, we demonstrate that with an appropriate choice of σ, our method can sample from a 2D
surface embedded in R3 given a sparse blue noise sampling of the surface; this is a low-dimensional case of a
manifold-supported distribution, which is typical in machine learning applications. Our method’s samples
(blue points) fill in the gaps between the sparse training samples (red points) while remaining close to the
true manifold. This occurs because σ-CFDM samples are barycenters of tuples of nearby training points,
with σ controlling the variance of these tuples. For appropriate values of σ and sufficiently dense samplings
of training points, these barycenters will approximately lie on tangent planes to the surface, and hence lie
near the surface but away from the training data.

(a) σ = 0.2: 28.9% ↓ in W2 (b) σ = 0.375: 13.4% ↓ in W2 (c) σ = 0.4: 34.1% ↓ in W2

Figure 3: Sampling a σ-CFDM (blue points) yields a dense point cloud given sparse mesh samples (red
points). We report % drop in W2 distance to a dense mesh sampling when using our σ-CFDM’s samples
relative to the sparse training samples. We render these point clouds in Polyscope (Sharp et al., 2019).

6.2 Ablation and computational trade-offs

In this section, we investigate the impact of the start time T and the parameters of our nearest-neighbor-based
score estimator (9) on the distribution of our model’s samples.

Figure 4: % change in W2 between σ-
CFDM model samples generated start-
ing at T = 0 and samples generated
starting at T > 0.

Impact of T . As a CFDM’s distribution ρ∗
t is simply a time-

dependent mixture of Gaussians centered at training points, it can
be directly sampled at any time t by uniformly sampling a mixture
mean txi and then sampling from a Gaussian centered at txi. We
use this fact to sample a σ-CFDM with fewer steps by starting at
T > 0 with samples from its corresponding unsmoothed CFDM. We
show here that for practical values of σ, one can begin sampling at
T close to 1 with little accuracy loss.

We fix a continuous target distribution ρ1, draw n = 500 training
samples xi, and construct a σ-CFDM on these samples for σ ∈
{0, 0.2, 0.4, 0.6, 0.8, 1.0}. We then vary the initial sampling times T
and compute the 2-Wasserstein distance W2 between model samples
generated starting at T = 0 and at T > 0. We compare this to the
average W2 distance between batches of σ-CFDM samples generated
by starting at T = 0 (which is nonzero due to randomness in sampling)
and report the percent change in W2 relative to this baseline value.
We present the results of this experiment for the “Checkerboard”
distribution in Figure 4.

For σ < 0.4, there is little accuracy loss when starting at T > 0, even for start times close to 1. When
σ ≥ 0.4, the accuracy of this approximation begins to decline for start times T ≥ 0.4, with large reductions

8

Under review as submission to TMLR

in approximation quality when both σ and T are large. As we have found that our model has performed
best with σ ≤ 0.4 in the applications considered in this work, this section’s results support the use of few
sampling steps in practice. The results in Sections 6.3 and 6.4 further support the use of late start times
T for image generation; we find in these experiments that we can start sampling as late as T = 0.98 while
maintaining good sample quality.

Figure 5: W2 between σ-CFDM
model samples generated using
the full score and our NN-based
estimator for varying # of NN
K (horizontal axis) and # of ran-
dom samples L (vertical axis).

Impact of K and L on the NN-based score estimator. In Section
5.4, we proposed an efficient score estimator based on fast nearest-neighbor
search. We now study the impact of the number of nearest neighbors K
and the number of random samples L from the remainder of the training
set on our model’s samples.

We fix a continuous target distribution ρ1, draw n = 500 training samples
xi, and construct a σ-CFDM on these samples for σ = 0.3; this value is
typical for real-world applications. We then vary the number of nearest
neighbors K and the number of random samples L used to compute
the score estimator Equation 9 and measure the 2-Wasserstein distance
between model samples generated using the full smoothed score and using
the estimator Equation 9. We present the results of this experiment for
the “Checkerboard” distribution in Figure 5. We center the diverging
color scheme at the W2 distance between two batches of samples from a
σ-CFDM using the full smoothed score; this noise threshold encodes the
inherent randomness in our model’s samples across batches.

The error arising from the NN-based estimator is decreasing in K and L,
with especially poor approximation quality when using a single random
sample xℓ. However, the accuracy of the model samples approaches the
noise threshold for small values of K, L. For example, with K = L = 15
(which samples just 6% of the terms in kσ,t), the W2 distance between samples generated using the full score
and the NN-based estimator is 0.1865, a value close to the noise threshold of 0.1791. In Sections 6.3 and 6.4,
we additionally show that one can generate high-quality images while subsampling kσ,t at a far lower rate,
thereby enabling our method to scale to real-world datasets.

(a) Ground truth images (b) DDPM samples (c) σ-CFDM samples

Figure 6: Ground truth images from Smithsonian Butterflies (left), DDPM samples (center), and σ-CFDM
samples (right).

9

Under review as submission to TMLR

6.3 Image generation in pixel space

In this section, we use our σ-CFDM to sample images in pixel space that are similar to images from the
“Smithsonian Butterflies” dataset,1 rescaled to 128× 128. We benchmark our model’s sample quality, training
time, and sampling time against a denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) and
provide training details in Appendix C.1.

We display images from a held-out test set along with DDPM samples and our model’s samples in Figure 6.
Both our model and the DDPM generate images that qualitatively resemble the test images, but as our
model can only output barycenters of training samples (see Theorem 5.1), our samples exhibit softer details
than the test and DDPM samples. Table 1 records sample quality metrics and training and generation times
for our method and the DDPM baseline. Our training-free method achieves comparable sample quality to a
DDPM that has been trained for 5.34 hours on a single V100 GPU, and achieves over 2.9 times the sample
throughput of a DDPM running on a V100 GPU while running on a Macbook M1 Pro CPU with 16 GB of
RAM.

As 128× 128 RGB images lie in 49,152-dimensional space, this experiment demonstrates that our method
scales to high-dimensional problems. As our method is able to generate plausible samples despite being
restricted to outputting barycenters of training samples, it also demonstrates that there exist image manifolds
for which our σ-CFDM’s inductive bias is reasonable. However, we do not expect this inductive bias to be
suitable for most real-world image data. To narrow this gap between theory and practice, we show in the
following section that by sampling in the latent space of an autoencoder, our method can generate plausible
and diverse images of human faces.

Table 1: Metrics for sample quality and generation time in pixel space. Our σ-CFDM achieves competitive
sample quality and generation time while requiring no costly training.

Method Metric Butterflies

DDPM

Inception score ↑ 1.87± 0.225
KID ↓ 0.0220± 0.0038

Training time 5.24 h
Sampling time (GPU) 1.20 s

σ-CFDM

Inception score ↑ 2.20± 0.150
KID ↓ 0.0114± 0.0048

Training time 0 h
Sampling time (CPU) 0.4124 s

6.4 Image generation in latent space

Theorem 5.1 shows that in the limit of small step sizes, a σ-CFDM’s samples are barycenters of nearby training
points. This is typically a poor prior for images in pixel space, but an appropriately-chosen autoencoder
may map the training data to a latent manifold that more closely satisfies this local linearity assumption.
To this end, we train the nuclear norm-regularized autoencoder proposed by Scarvelis & Solomon (2024),
which encourages latent vectors to lie on a low-dimensional manifold. We then sample from a σ-CFDM
in the latent space of this pretrained autoencoder for the CelebA dataset (Liu et al., 2015) and discard
samples that are identical to their nearest latents from the training set. As our method relies on tractable
nearest-neighbor queries in the training set at sampling time, this is a feasible post-processing step for our
sampler. We benchmark our method against a Variational AutoEncoder (VAE) (Kingma, 2013) trained for
the same number of epochs and employing the same architecture as the nuclear norm-regularized autoencoder.
We train both autoencoders using the log hyperbolic cosine reconstruction loss, which has been found to
improve sample quality in VAEs (Chen et al., 2019).

A VAE is an appropriate baseline for a latent σ-CFDM because both models train a regularized autoencoder
to obtain well-structured latent representations, and then employ a training-free process to generate new

1Dataset available on Hugging Face: huggan/smithsonian_butterflies_subset

10

Under review as submission to TMLR

(a) Ground truth samples (b) VAE samples (c) σ-CFDM samples

Figure 7: Ground truth images from CelebA (left), VAE samples (center), and σ-CFDM samples (right).

samples in latent space. A VAE’s sampling procedure is simple and data-independent: One draws a
normally-distributed latent and decodes it. However, one must use heavy regularization to ensure the
latent distribution is nearly Gaussian, and VAEs suffer from poor sample quality as a result. In contrast, a
σ-CFDM’s data-dependent sampling procedure merely requires that the latent distribution be supported on
a manifold of sufficiently low curvature, so that barycenters of nearby latents continue to lie on this manifold.
We consequently expect that one may sample a σ-CFDM in a weakly regularized latent space to obtain
better-quality decoded samples than a VAE while preserving the ability to sample on CPU without requiring
additional training.

We display our model’s samples, along with VAE samples and ground truth samples from the CelebA dataset
in Figure 7. Barycenters of natural images in pixel space typically do not resemble natural images unless they
are well-registered (as with the butterflies in Section 6.3), but operating in an autoencoder’s latent space
allows our method to generate plausible and diverse images of human faces. In particular, our method’s
samples exhibit greater qualitative diversity than the VAE samples, at times including features such as hats
and glasses that seldom or never appear in the VAE baseline’s samples.

Table 2: Metrics for sample quality and generation time in latent space. Our σ-CFDM improves significantly
on a VAE’s sample quality at a marginal sampling cost on CPU.

Method Metric CelebA

VAE
Inception score ↑ 1.68± 0.08

KID ↓ 0.108± 0.0066
Sampling time (CPU) –

σ-CFDM
Inception score ↑ 2.22± 0.19

KID ↓ 0.092± 0.0075
Sampling time (CPU) 44 ms

We report sample quality and generation time metrics, including inception scores (Salimans et al., 2016)
and kernel inception distances (KID) (Bińkowski et al., 2018) between generated samples and samples from
the CelebA test partition in Table 2. Our σ-CFDM results in a 15.0% improvement in KID and 32.4%
improvement in inception score compared to the VAE baseline. While the VAE’s sampling cost, which
amounts to the cost of generating Gaussian noise, is negligible, our method’s sampling time is just 44 ms
per sample. For the sake of fairness, this cost is amortized over the number of σ-CFDM samples left after
discarding nearest neighbors to ensure novelty.

11

Under review as submission to TMLR

7 Conclusion and future work

In this work, we introduced smoothed closed-form diffusion models (smoothed CFDMs): a class of training-free
diffusion models requiring only access to the training set at sampling time. Smoothed CFDMs leverage the
availability of an exact solution to the score-matching problem—which alone does not yield generalization—
and explicitly induce error by smoothing. This results in a model that generalizes by provably outputting
barycenters of training points. Our method is efficient and scalable, and runs on a consumer-grade laptop
with no dedicated GPU.

Our results suggest that it is possible to design SGMs that generalize without relying on neural score
approximations. They also suggest that smoothness is among the inductive biases enabling neural SGMs
to generalize in spite of the uninteresting global optimum of their training objective, which only allows for
memorization.

However, state-of-the-art SGMs are typically built upon convolutional architectures with self-attention layers,
which both feature unique inductive biases. Concurrent work by Kamb & Ganguli (2024) investigates the
impact of locality and equivariance constraints on the optimum of the score-matching objective, and Niedoba
et al. (2024) empirically investigate whether a locality bias can explain the behavior of neural denoisers.
Combining these constraints with our smoothing approach and explicitly modeling the inductive biases of
self-attention layers may yield further insights into the generalization of neural diffusion models and lead to
new strategies for building training-free diffusion models that generalize.

Most interesting image generation tasks are conditional. For instance, a user may provide a text prompt and
seek an image whose subject and style match the prompt. While state-of-the-art diffusion models typically
employ classifier-free guidance (Ho & Salimans, 2021) to introduce conditioning information, it is unclear how
to extend our training-free method to include an analogous form of guidance. On the other hand, Dhariwal &
Nichol (2021)’s classifier guidance would likely be a feasible addition to our method, amounting to augmenting
our velocity field (6) with the gradient of a pretrained classifier. As classifier guidance is known to improve
diffusion models’ sample quality, this may have the additional benefit of narrowing the gap between our
samples and those generated by state-of-the-art neural methods.

References
Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360:

Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5470–5479, 2022.

Matthias Bastian. Training cost for stable diffusion was just $600,000 and that is a good sign for ai progress.
https://the-decoder.com/training-cost-for-stable-diffusion-was-just-600000-and-that-i
s-a-good-sign-for-ai-progress/, 2022.

Mikołaj Bińkowski, Dougal J. Sutherland, Michael Arbel, and Arthur Gretton. Demystifying MMD GANs.
In International Conference on Learning Representations, 2018. URL https://openreview.net/forum?i
d=r1lUOzWCW.

Pengfei Chen, Guangyong Chen, and Shengyu Zhang. Log hyperbolic cosine loss improves variational
auto-encoder, 2019. URL https://openreview.net/forum?id=rkglvsC9Ym.

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi S. Jaakkola. Diffdock: Diffusion
steps, twists, and turns for molecular docking. In The Eleventh International Conference on Learning
Representations, 2023.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis. Transactions
on Machine Learning Research, 2022. ISSN 2835-8856. URL https://openreview.net/forum?id=MhK5
aXo3gB. Expert Certification.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger bridge with
applications to score-based generative modeling. Advances in Neural Information Processing Systems, 34:
17695–17709, 2021.

12

https://the-decoder.com/training-cost-for-stable-diffusion-was-just-600000- and-that-is-a-good-sign-for-ai-progress/
https://the-decoder.com/training-cost-for-stable-diffusion-was-just-600000- and-that-is-a-good-sign-for-ai-progress/
https://openreview.net/forum?id=r1lUOzWCW
https://openreview.net/forum?id=r1lUOzWCW
https://openreview.net/forum?id=rkglvsC9Ym
https://openreview.net/forum?id=MhK5aXo3gB
https://openreview.net/forum?id=MhK5aXo3gB

Under review as submission to TMLR

Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising
diffusion for image restoration. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=VmyFF5lL3F. Featured Certification.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image synthesis. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=AAWuCvzaVt.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H Richemond,
Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffusion for categorical data.
arXiv preprint arXiv:2211.15089, 2022.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.

William Feller. On the theory of stochastic processes, with particular reference to applications. 1949.

Eric Heitz, Laurent Belcour, and Thomas Chambon. Iterative α-(de)blending: A minimalist deterministic
diffusion model. In ACM SIGGRAPH 2023 Conference Proceedings, SIGGRAPH ’23, New York, NY, USA,
2023. Association for Computing Machinery. ISBN 9798400701597. doi: 10.1145/3588432.3591540. URL
https://doi.org/10.1145/3588432.3591540.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep
Generative Models and Downstream Applications, 2021. URL https://openreview.net/forum?id=qw8A
KxfYbI.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey A. Gritsenko, Diederik P.
Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High definition
video generation with diffusion models. ArXiv, abs/2210.02303, 2022a. URL https://api.semanticscho
lar.org/CorpusID:252715883.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J. Fleet. Video
diffusion models. ArXiv, abs/2204.03458, 2022b. URL https://api.semanticscholar.org/CorpusID:
248006185.

Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion for
molecule generation in 3D. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang
Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 8867–8887. PMLR, 17–23 Jul 2022.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization in diffusion
models arises from geometry-adaptive harmonic representations. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=ANvmVS2Yr0.

Mason Kamb and Surya Ganguli. An analytic theory of creativity in convolutional diffusion models. arXiv
preprint arXiv:2412.20292, 2024.

Matti Karppa, Martin Aumüller, and Rasmus Pagh. DEANN: speeding up kernel-density estimation using
approximate nearest neighbor search. In AISTATS, volume 151 of Proceedings of Machine Learning
Research, pp. 3108–3137. PMLR, 2022.

13

https://openreview.net/forum?id=VmyFF5lL3F
https://openreview.net/forum?id=AAWuCvzaVt
https://doi.org/10.1145/3588432.3591540
https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=qw8AKxfYbI
https://api.semanticscholar.org/CorpusID:252715883
https://api.semanticscholar.org/CorpusID:252715883
https://api.semanticscholar.org/CorpusID:248006185
https://api.semanticscholar.org/CorpusID:248006185
https://openreview.net/forum?id=ANvmVS2Yr0

Under review as submission to TMLR

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=k7FuTOWMOc7.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on Graphics (ToG), 42(4):1–14, 2023.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Frederic Koehler, Alexander Heckett, and Andrej Risteski. Statistical efficiency of score matching: The view
from isoperimetry. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=TD7AnQjNzR6.

Dohyun Kwon, Ying Fan, and Kangwook Lee. Score-based generative modeling secretly minimizes the
wasserstein distance. Advances in Neural Information Processing Systems, 35:20205–20217, 2022.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for general data
distributions. In International Conference on Algorithmic Learning Theory, pp. 946–985. PMLR, 2023.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on manifolds.
ArXiv, abs/2202.09778, 2022. URL https://api.semanticscholar.org/CorpusID:247011732.

Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=XVjTT1nw5z.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2017. URL https://api.semanticscholar.org/CorpusID:53592270.

Artem Lukoianov, Haitz Sáez de Ocáriz Borde, Kristjan Greenewald, Vitor Campagnolo Guizilini, Timur
Bagautdinov, Vincent Sitzmann, and Justin Solomon. Score distillation via reparametrized DDIM. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=4DcpFagQ9e.

Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2837–2845, 2021.

Koichi Miyasawa. An empirical bayes estimator of the mean of a normal population. Bulletin of the
International Statistical Institute, 38(4):181–188, 1961.

Matthew Niedoba, Berend Zwartsenberg, Kevin Murphy, and Frank Wood. Towards a mechanistic explanation
of diffusion model generalization. arXiv preprint arXiv:2411.19339, 2024.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribution
estimators. ArXiv, abs/2303.01861, 2023. URL https://api.semanticscholar.org/CorpusID:
257353832.

Jakiw Pidstrigach. Score-based generative models detect manifolds. Advances in Neural Information Processing
Systems, 35:35852–35865, 2022.

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d diffusion.
arXiv, 2022.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio,
and Aaron Courville. On the spectral bias of neural networks. In International Conference on Machine
Learning, pp. 5301–5310. PMLR, 2019.

14

https://openreview.net/forum?id=k7FuTOWMOc7
https://openreview.net/forum?id=TD7AnQjNzR6
https://api.semanticscholar.org/CorpusID:247011732
https://openreview.net/forum?id=XVjTT1nw5z
https://api.semanticscholar.org/CorpusID:53592270
https://openreview.net/forum?id=4DcpFagQ9e
https://openreview.net/forum?id=4DcpFagQ9e
https://api.semanticscholar.org/CorpusID:257353832
https://api.semanticscholar.org/CorpusID:257353832

Under review as submission to TMLR

Martin Raphan and Eero P Simoncelli. Least squares estimation without priors or supervision. Neural
computation, 23(2):374–420, 2011.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10684–10695, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=TIdIXIpzhoI.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. Advances in neural information processing systems, 29, 2016.

Antoine Salmona, Valentin De Bortoli, Julie Delon, and Agnès Desolneux. Can push-forward generative
models fit multimodal distributions? In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/f
orum?id=Tsy9WCO_fK1.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkäuser, NY, 55(58-63):94, 2015.

Christopher Scarvelis and Justin Solomon. Nuclear norm regularization for deep learning. arXiv preprint
arXiv:2405.14544, 2024.

Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom Blundell, Pietro
Lió, Carla Gomes, Max Welling, Michael Bronstein, and Bruno Correia. Structure-based drug design with
equivariant diffusion models. arXiv preprint arXiv:2210.13695, 2022.

Nicholas Sharp et al. Polyscope, 2019. www.polyscope.run.

Andy Shih, Suneel Belkhale, Stefano Ermon, Dorsa Sadigh, and Nima Anari. Parallel sampling of diffusion
models, 2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv:2010.02502,
October 2020. URL https://arxiv.org/abs/2010.02502.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Daniel W Stroock and SR Srinivasa Varadhan. Diffusion processes with continuous coefficients, i. Communi-
cations on Pure and Applied Mathematics, 22(3):345–400, 1969a.

Daniel W Stroock and SR Srinivasa Varadhan. Diffusion processes with continuous coefficients, ii. Communi-
cations on Pure and Applied Mathematics, 22(4):479–530, 1969b.

Daniel W Stroock and SR Srinivasa Varadhan. Diffusion processes. In Proc. Sixth Berkeley Symp. Math.
Statist. Probab, volume 3, pp. 361–368, 1972.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. Advances in
Neural Information Processing Systems, 34:11287–11302, 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23
(7):1661–1674, 2011.

15

https://openreview.net/forum?id=TIdIXIpzhoI
https://openreview.net/forum?id=Tsy9WCO_fK1
https://openreview.net/forum?id=Tsy9WCO_fK1
https://arxiv.org/abs/2010.02502

Under review as submission to TMLR

Daniel Watson, William Chan, Ricardo Martin-Brualla, Jonathan Ho, Andrea Tagliasacchi, and Mohammad
Norouzi. Novel view synthesis with diffusion models. ArXiv, abs/2210.04628, 2022. URL https:
//api.semanticscholar.org/CorpusID:252780361.

Zike Wu, Pan Zhou, Kenji Kawaguchi, and Hanwang Zhang. Fast diffusion model. ArXiv, abs/2306.06991,
2023. URL https://api.semanticscholar.org/CorpusID:259138469.

Mingyang Yi, Jiacheng Sun, and Zhenguo Li. On the generalization of diffusion model. arXiv preprint
arXiv:2305.14712, 2023.

TaeHo Yoon, Joo Young Choi, Sehyun Kwon, and Ernest K. Ryu. Diffusion probabilistic models generalize
when they fail to memorize. In ICML 2023 Workshop on Structured Probabilistic Inference & Generative
Modeling, 2023. URL https://openreview.net/forum?id=shciCbSk9h.

Lvmin Zhang and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. ArXiv,
abs/2302.05543, 2023. URL https://api.semanticscholar.org/CorpusID:256827727.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator. In The
Eleventh International Conference on Learning Representations, 2023. URL https://openreview.net/f
orum?id=Loek7hfb46P.

16

https://api.semanticscholar.org/CorpusID:252780361
https://api.semanticscholar.org/CorpusID:252780361
https://api.semanticscholar.org/CorpusID:259138469
https://openreview.net/forum?id=shciCbSk9h
https://api.semanticscholar.org/CorpusID:256827727
https://openreview.net/forum?id=Loek7hfb46P
https://openreview.net/forum?id=Loek7hfb46P

Under review as submission to TMLR

A Details on nearest-neighbor estimator of closed-form score

Karppa et al. (2022) propose an unbiased estimator of a kernel density estimate KDE(z). Given a kernel
function Kh(z) with bandwidth h > 0 and a dataset {xi}N

i=1, their estimator first searches for the K-nearest
neighbors {xk}K

k=1 of z in the dataset, then draws L random samples {xℓ}L
ℓ=1 from the remainder of the

dataset, and approximates KDE(z) as follows:

K̂DE(z) = 1
N

K∑
k=1

Kh(xk, z) + N −K

LN

L∑
ℓ=1

Kh(xℓ, z) (8)

This estimator is unbiased for any subset of points xk ∈ {xi}N
i=1 drawn in the first stage. In particular, using

approximate nearest-neighbors (ANNs) rather than exact nearest neighbors of z increases the variance of
Equation 8 but does not introduce bias.

As the closed-form score ∇ρ∗
t is the score of a Gaussian KDE ρ∗

t with bandwidth h = 2(1−t)2, we approximate
the closed-form score using the following ratio estimator:

̂∇ log ρ∗
t (z) =

̂(
∇ρ∗

t (z)
ρ∗

t (z)

)
= ∇ρ̂∗

t (z)
ρ̂∗

t (z)
, (9)

where ρ̂∗
t (z) is Karppa et al. (2022)’s estimator Equation 8. Since the gradient operator is linear, both the

numerator and denominator in Equation 9 are unbiased estimates of their respective terms in the closed-form
score.

B Proofs

B.1 Proof of Proposition 4.1

For each k = 1, ..., NM , let tCk = (txi(k,m) : m = 1, ..., M) be an M -tuple of rescaled training points txi.
(The same point txi can appear multiple times in an M -tuple.)

Define the barycenters and variances of these tuples as follows:

tc̄k = 1
M

M∑
m=1

txi(k,m), ūk = 1
M

M∑
m=1

ui(k,m), Var(tCk) = 1
M

M∑
m=1
∥txi(k,m) − tc̄k∥2. (10)

We will show that up to a constant factor, the smoothed score Equation 3 is itself the score of a mixture of
NM Gaussians. Rewriting the smoothed score in gradient form, we have:

17

Under review as submission to TMLR

sσ,t(z) = 1
(1− t)2

1
M

M∑
m=1

N∑
i=1

softmax
(
−∥z − tX∥2 + σtui,m

2(1− t)2

)
i

(txi − z)

= ∇z
1

M

M∑
m=1

log
N∑

i=1
exp

(
−∥z − txi∥2 + σtui,m

2(1− t)2

)

= ∇z
1

M
log

M∏
m=1

N∑
i=1

exp
(
−∥z − txi∥2 + σtui,m

2(1− t)2

)

= ∇z
1

M
log

NM∑
k=1

exp
(
−
∑M

m=1(∥z − txi(k,m)∥2 + σtui(k,m))
2(1− t)2

)

= ∇z
1

M
log

NM∑
k=1

exp
(
−

M
(
∥z − tc̄k∥2 + Var(tCk) + σtūk

)
2(1− t)2

)
(∗)

= 1
M
∇z log

NM∑
k=1

exp
(
−M(Var(tCk) + σtūk)

2(1− t)2

)
exp

(
−M∥z − tc̄k∥2

2(1− t)2

)

= 1
M
∇z log

NM∑
k=1

wk(t) exp
(
−M∥z − tc̄k∥2

2(1− t)2

)
= 1

M
∇z log qt(z)

This shows that up to a constant factor 1
M , the smoothed score sσ,t(z) is the score of a large mixture of

Gaussians qt(z) =
∑NM

k=1 wk(t) exp
(
−M(∥z−tc̄k∥2)

2(1−t)2

)
. The mean of each Gaussian is the barycenter tc̄k of some

M -tuple tC̃k of training points txi(k,m), and its common covariance matrix is (1−t)2

M I. The time-dependent
mixture weights wk(t) ∝ exp

(
−M(Var(tCk)+σtūk)

2(1−t)2

)
are decreasing in the variance of the M -tuples tCk but

are subject to the presence of noise terms σtūk = σt
M

∑
m ui(k,m).

Finally, by expanding the gradient in (∗), we straightforwardly obtain:

sσ,t(z) = 1
(1− t)2

NM∑
k=1

softmax
(
− M

2(1− t)2

(
∥z − tc̄k∥2 + Var(tCk) + σtūk

))
k

tc̄k − z



B.2 Proof of Theorem 5.1

Define

k̃σ,t(z) =
NM∑
k=1

softmax
(
− M

2(1− t)2

(
∥z − tc̄k∥2 + Var(tC̃k) + σtūk

))
k

tc̄k (11)

so that sσ,t(z) = 1
(1−t)2 (k̃σ,t(z)− z). Then

18

Under review as submission to TMLR

vσ,t(z) = 1
t

(z + (1− t)sσ,t(z))

= 1
t

(
z + 1

(1− t) (k̃σ,t(z)− z)
)

= 1
1− t

(
1
t
k̃σ,t(z)− z

)

Expanding the formula for the final Euler step using this expression for vσ,t(z) and tS−1 = S−1
S , we obtain:

zS = zS−1 + 1
S

vσ,tS−1(zS−1)

= zS−1 + 1
S
· 1

1− S−1
S

(
1

S−1
S

k̃σ, S−1
S

(zS−1)− zS−1

)

= zS−1 + S

S − 1 k̃σ, S−1
S

(zS−1)− zS−1

= S

S − 1 k̃σ, S−1
S

(zS−1)

= S

S − 1

NM∑
k=1

softmax
(
−MS2

2

(
∥zS−1 −

S − 1
S

c̄k∥2 + Var(S − 1
S

C̃k) + σ
S − 1

S
ūk

))
k

S − 1
S

c̄k

→
S→∞

c̄k∗

In the final line, we use the fact that as S →∞, the temperature of the softmax goes to 0 and picks out a
single index k∗ such that

k∗ = argmax
k

−
(
∥zS−1 − c̄k∥2 + Var(C̃k) + σūk

)
= argmin

k

(
∥zS−1 − c̄k∥2 + Var(C̃k) + σūk

)
B.3 Proof of Theorem 5.2

We divide the proof of this theorem into three propositions. We first sketch the proof and state the propositions,
and then prove each proposition in subsections below.

Our first result shows that flowing ρ0 through two similar velocity fields v∗
t , vσ,t yields similar model

distributions ρ∗
T , ρσ,T at some terminal time T :

Proposition B.1. Suppose a measure ρ0 is pushed through velocity fields v∗
t , vσ,t, and denote the respective

pushforward measures at time t by ρ∗
t , ρσ,t. Then,

W2(ρ∗
T , ρσ,T) ≤

∫ T

0
β(t)

√
E

z∼ρ∗
t

∥v∗
t (z)− vσ,t(z)∥2dt (12)

where β(t) := exp
(∫ T

t
Lv∗

s
ds
)

and Lv∗
s
≥ 0 is the Lipschitz constant of v∗

s .

The result above applies to any two velocity fields, subject to some weak regularity conditions. To apply this
result to the unsmoothed and smoothed velocity fields v∗

t and vσ,t, we bound β(t) and E∥v∗
t (z)− vσ,t(z)∥2 in

terms of σ:

19

Under review as submission to TMLR

Proposition B.2. Let v∗
t be velocity field of an unsmoothed CFDM, and let v∗

σ,t be the velocity field Equation 6
of the corresponding σ-CFDM. Then,

β(t) ≤ exp
(

C0

(1− T)2

)
· 1− t

1− T
(13)

and

√
E

z∼ρ∗
t

∥v∗
t (z)− vt(z)∥2 ≤ C1

σt

2(1− t)3 (14)

where C0, C1 are constants depending on the training data and the distribution pu of the scalar noise ui,m

perturbing the distance weights in Equation 4.

Combining these results, we obtain the following bound on W2(ρ∗
T , ρσ,T):

W2(ρ∗
T , ρσ,T) = O(σ). (15)

This shows that one can approximate a σ-CFDM’s model samples at some time T > 0 by model samples from
its corresponding unsmoothed CFDM (i.e. a mixture of Gaussians) when the smoothing parameter σ is small.

We now show that flowing two similar distributions ρ∗
T and ρσ,T through a σ-CFDM’s velocity field from time

T to 1− ϵ yields similar terminal distributions ρT
σ,1−ϵ, ρ0

σ,1−ϵ. Following De Bortoli (2022), we stop sampling
at time 1− ϵ for some truncation parameter ϵ > 0 to account for the fact that the smoothed score sσ,t blows
up as t→ 1 due to division by (1− t)2.
Proposition B.3. Suppose ρ∗

T and ρσ,T are pushed through the velocity field vσ,t of a σ-CFDM, and let
ρT

σ,1−ϵ, ρ0
σ,1−ϵ denote their respective terminal distributions at time 1− ϵ. Then

W2(ρT
σ,1−ϵ, ρ0

σ,1−ϵ) ≤ O

(
1
ϵ2

)
W2(ρ∗

T , ρσ,T). (16)

By combining Equation 15 and Equation 16 and treating the truncation parameter ϵ as fixed, we finally
obtain a global upper bound on W2(ρT

σ,1−ϵ, ρ0
σ,1−ϵ):

W2(ρT
σ,1−ϵ, ρ0

σ,1−ϵ) = O(σ) (17)

where ρT
σ,1−ϵ is the model distribution obtained by starting sampling at T > 0 with samples from the

unsmoothed CFDM and ρ0
σ,1−ϵ is true model distribution of the σ-CFDM.

B.3.1 Proof of Proposition B.1

Our proof for this proposition employs techniques similar to those used to prove Theorem 1 and Proposition
1 in Kwon et al. (2022).

We begin with the following well-known result (Santambrogio, 2015, Corollary 5.25):

Suppose that two measures ρ∗ and ρ are each pushed through velocity fields v∗
t , vt respectively and denote

the pushforward measures at time t by ρ∗
t , = ρ∗

t . Then:

1
2

d
dt

W 2
2 (ρ∗

t , ρt) = E
(x,y)∼γt

⟨y − x, v∗
t (y)− vt(x)⟩ (18)

where γt is the W2 coupling between ρ∗
t and ρt.

20

Under review as submission to TMLR

For any x, y we can use Cauchy-Schwarz and the triangle inequality to obtain the following bound:

⟨y − x, v∗
t (y)− vt(x)⟩ ≤ ∥y − x∥ · (∥v∗

t (y)− v∗
t (x)∥+ ∥v∗

t (x)− vt(x)∥) (19)

We can then bound ∥v∗
t (y) − v∗

t (x)∥ in terms of maximum of the Jacobian Dv∗
t of v∗

t on the line segment
[x, y] := {ty + (1− t)x : 0 ≤ t ≤ 1} to obtain:

⟨y − x, v∗
t (y)− vt(x)⟩ ≤

(
max

p∈[x,y]
∥Dv∗

t ∥
)
∥y − x∥2 + ∥y − x∥ · ∥v∗

t (x)− vt(x)∥ (20)

This constant is in turn upper-bounded by the Lipschitz constant Lv∗
t

of v∗
t on the convex hull of supp(ρ∗

t) ∪
supp(ρt), so we in fact have:

⟨y − x, v∗
t (y)− vt(x)⟩ ≤ Lv∗

t
∥y − x∥2 + ∥y − x∥ · ∥v∗

t (x)− vt(x)∥ (21)

Adding E
(x,y)∼γt

back in, we get:

1
2

d
dt

W 2
2 (ρ∗

t , ρt) = E
(x,y)∼γt

⟨y − x, v∗
t (y)− vt(x)⟩

≤ Lv∗
t

E
(x,y)∼γt

∥y − x∥2 + E
(x,y)∼γt

∥y − x∥ · ∥v∗
t (x)− vt(x)∥

= Lv∗
t
W 2

2 (ρ∗
t , ρt) + E

(x,y)∼γt

∥y − x∥ · ∥v∗
t (x)− vt(x)∥

≤ Lv∗
t
W 2

2 (ρ∗
t , ρt) +

√
E

(x,y)∼γt

∥y − x∥2 ·
√

E
(x,y)∼γt

∥v∗
t (x)− vt(x)∥2

= Lv∗
t
W 2

2 (ρ∗
t , ρt) + W2(ρ∗

t , ρt) ·
√

E
x∼ρ∗

t

∥v∗
t (x)− vt(x)∥2

where we use Cauchy-Schwarz for random variables in passing from the third to fourth lines and then the fact
that ρ∗

t is one of the marginals of γt. Using the chain rule on the LHS and cancelling a factor of W2(ρ∗
t , ρt)

from both sides, we obtain the following differential inequality:

d
dt

W2(ρ∗
t , ρt) ≤ Lv∗

t
W2(ρ∗

t , ρt) +
√

E
x∼ρ∗

t

∥v∗
t (x)− vt(x)∥2 (22)

We can now solve the differential inequality Equation 22 to obtain:

W2(ρ∗
T , ρT) ≤

∫ T

0
β(t)

√
E

x∼ρ∗
t

∥v∗
t (x)− vt(x)∥2 (23)

where

β(t) := exp
(∫ T

t

Lv∗
s
ds

)
(24)

B.3.2 Proof of Proposition B.2

We first estimate β(t) = exp
(∫ T

t
Lv∗

s
ds
)

. As

21

Under review as submission to TMLR

v∗
t (z) = 1

t(1− t)k∗
t (z)− 1

1− t
z, (25)

we can bound its Lipschitz constant by Lv∗
t
≤ max

{
1

t(1−t) Lkt
, 1

1−t

}
. Our next step is therefore to bound

Lk∗
t
.

If X ∈ RD×N is the matrix of training data and w(z) = softmax
(
−∥z−tx∥2

2(1−t)2

)
∈ RN is the vector of weights,

then k∗
t (z) = tXw∗(z), so Lkt

≤ t∥X∥Lw∗(z).

This softmax function is 1
2(1−t)2 -Lipschitz with respect to ∥z − txi∥2. If ∥z − txi∥ ≤ A for all z and all txi,

then ∥z − txi∥2 is 2A-Lipschitz with respect to z and we can conclude that:

Lk∗
t
≤ t∥X∥Lw∗(z)

≤ t∥X∥ 2A

2(1− t)2

= t∥X∥ A

(1− t)2

Hence Lv∗
t
≤ max

{
A∥X∥
(1−t)3 , 1

1−t

}
.

We now use this bound on Lv∗
t

to estimate β(t). Let s̄ ∈ [0, T] denote the time from which A∥X∥
(1−s̄)3 ≥ 1

1−s̄ .
Then s̄ = max{0, 1−

√
A∥X∥}. Decomposing the integral that defines log β(t), we obtain:

∫ T

t

Lv∗
s
ds =

∫ s̄t

t

Lv∗
s
ds +

∫ T

s̄

Lv∗
s
ds

≤
∫ s̄

t

1
1− s

ds + A∥X∥
∫ T

s̄

1
(1− s)3 ds

= log
(

1− t

1− s̄

)
+ A∥X∥

2

(
1

(1− T)2 −
1

(1− s̄)2

)
≤ log

(
1− t

1− T

)
+
(

A∥X∥
2(1− T)2 −

1
2

)

Substituting this bound into β(t) = exp(
∫ T

t
Lv∗

s
) and simplifying, we obtain:

β(t) ≤ C(T) · 1− t

1− T
(26)

where C(T) = exp
(

A∥X∥
2(1−T)2 − 1

2

)
.

We now estimate
√

E
x∼ρ∗

t

∥v∗
t (x)− vt(x)∥2.

We first observe that v∗
t (z) − vt(z) = 1

t(1−t) (k∗
t (z) − kt(z)). Once again letting X ∈ RD×N be the matrix

of training data and w∗(z) = softmax
(
−∥z−tx∥2

2(1−t)2

)
∈ RN , w̃m(z) = softmax

(
−∥z−tx∥2+σtui,m

2(1−t)2

)
∈ RN be the

vector of weights, we have that k∗
t (z) = tXw∗(z) and hence

∥v∗
t (z)− vt(z)∥ = 1

1− t
∥X(w∗(z)− 1

M

M∑
m=1

w̃m(z))∥ ≤ 1
1− t

∥X∥ · 1
M

M∑
m=1
∥w∗(z)− w̃m(z)∥. (27)

22

Under review as submission to TMLR

Once again using the Lipschitz continuity of w(z), we obtain the bound

∥w∗(z)− w̃m(z)∥ ≤ σtui,m

2(1− t)2 , (28)

and by substituting this into our bound for ∥v∗
t (z)− vt(z)∥, we obtain:

∥v∗
t (z)− vt(z)∥2 ≤ t2σ2∥X∥2ū2

i

4(1− t)6 , (29)

where ūi = 1
M

∑
m ui,m. As this bound holds for all z, it also holds in expectation, so we finally conclude that

√
E

x∼ρ∗
t

∥v∗
t (x)− vt(x)∥2 ≤ tσ∥X∥ūi

2(1− t)3 . (30)

B.3.3 Proof of Proposition B.3

We now begin with the differential inequality

d
dt

W2(ρ∗
t , ρt) ≤ Lv∗

t
W2(ρ∗

t , ρt) +
√

E
x∼ρ∗

t

∥v∗
t (x)− vt(x)∥2, (31)

that we derived in the proof of Proposition B.1, which bounds the rate of change in W2(ρ∗
t , ρt) when flowing

ρ∗
t and ρt through two velocity fields v∗

t and vt, respectively. As we now consider the case where ρ∗
T and ρσ,t

both flow through the smoothed velocity field vσ,t from time T to 1− ϵ,
√

E
x∼ρ∗

t

∥v∗
t (x)− vt(x)∥2 = 0 and the

differential inequality becomes:

d
dt

W2(ρ∗
t , ρσ,t) ≤ Lvσ,t

W2(ρ∗
t , ρσ,t). (32)

Solving this differential inequality, we obtain

W2(ρT
σ,1−ϵ, ρ0

σ,1−ϵ) := W2(ρ∗
1−ϵ, ρσ,1−ϵ) ≤ β̃(T)W2(ρ∗

T , ρσ,T) (33)

where β̃(T) =
∫ 1−ϵ

T
Lvs,σ ds. Using the same bounds as in our proof of Proposition B.2 while noting that vσ,t

is at least as smooth as v∗
t , we obtain

β̃(T) ≤ log(1
ϵ

) + A∥X∥
2ϵ2 − 1

2 = O

(
1
ϵ2

)
. (34)

Substituting this into Equation 33, we obtain

W2(ρT
σ,1−ϵ, ρ0

σ,1−ϵ) ≤ O

(
1
ϵ2

)
W2(ρ∗

T , ρσ,T). (35)

B.4 Proof of Proposition 5.3

We showed in Theorem 5.1 (see Appendix B.2) that as the number of sampling steps S →∞, the samples
from a smoothed CFDM converge towards barycenters zS = c̄k∗ of M -tuples of training points for indices k∗

such that:

23

Under review as submission to TMLR

k∗(zS−1) = argmax
k

−
(
∥zS−1 − c̄k∥2 + Var(C̃k) + σūk

)
(36)

Using an equivalent expression for k̃σ,t, these barycenters can also be written as

zS = c̄k∗ = 1
M

M∑
m=1

xi∗(zS−1,m), (37)

where

i∗(zS−1, m) = argmax
i
−
(
∥zS−1 − xi∥2 + σui,m

)
= argmax

i
−
(

1
σ
∥zS−1 − xi∥2 + ui,m

)

If ui,m ∼ Gumbel(0, 1), then by applying the Gumbel max-trick, we conclude that i∗(zS−1, m) ∼
Categorical(πi

σ). This is a distribution over the indices i = 1, ..., N of training samples, with event probabilities
given by

πi
σ = softmax

(
− 1

σ
∥zS−1 − xi∥2

)
i

(38)

If we represent xi∗ as Xei∗ , where X ∈ RD×N is the matrix whose i-th column is training sample xi and
ei∗ ∈ RN is the i∗-th standard basis vector, then

zS = 1
M

M∑
m=1

xi∗(zS−1,m)

= 1
M

M∑
m=1

(Xei∗)

= 1
M

X

M∑
m=1

ei∗

= 1
M

XIσ

But Iσ :=
∑M

m=1 ei∗ is a realization of a Multinomial(πσ, M) random variable; this fact completes the proof
of Proposition 5.3.

C Additional Experimental Details and Results

In this appendix, we provide details for our pixel space and latent space image generation experiments.

C.1 Pixel space DDPM training details

Our training data is drawn from the dataset huggan/smithsonian_butterflies_subset, which is publicly
available on huggingface and contains 1000 images of butterflies. We extract RGB images from the image
column of their dataset and reshape them to 128× 128 before using them in our experiments. We construct

24

Under review as submission to TMLR

an 80/20 train-test split and use the train partition to train the DDPM and to construct our σ-CFDM, and
use the test partition to compute metrics.

We use the DDPM implemented in the lucidrains library denoisingdiffusionpytorch as our baseline.
We use their UNet with dim_mults=(1, 2, 4, 8) as a backbone. We use 1000 time steps during training,
and use DDIM sampling with 100 time steps during sample generation. We train the diffusion model with a
batch size of 8 at a learning rate of 5× 10−5 for 20,000 iterations.

We center and normalize the training data to lie in the unit ball before using it to construct our σ-CFDM.
We set M = 2 and σ = 0.1 for this experiment, and compute the smoothed score exactly rather than using
our nearest neighbor-based estimator from Section 5.4 due to this dataset’s relatively small size. We start
sampling at T = 0.98 and use step size 0.01. We filter out model samples whose Euclidean distance is within
10−6 of their nearest neighbor in the training set; with these hyperparameters, roughly 60% of the model
samples remain after this filtering step.

We compute our metrics using the torchmetrics implementation of the kernel inception distance (KID) and
inception score. We compute KID scores with subset_size=50 between 500 randomly-chosen images from
the test partition and our CFDM and DDPM samples.

C.2 CelebA latent space generation details

Our method uses the nuclear norm-regularized autoencoder from Scarvelis & Solomon (2024). This autoencoder
operates on 256× 256 images from the CelebA dataset. To reduce the memory and compute costs of our
autoencoder, we perform a discrete cosine transform (DCT) using the torch-dct package and keep only the
first 80 DCT coefficients. We then pass these coefficients into the autoencoder.

The autoencoder consists of an encoder fθ followed by a decoder gϕ. The encoder fθ is parametrized as a
two-layer MLP with 10,000 hidden units; the latent space is 700-dimensional. The decoder gϕ consists of a
two-layer MLP with 10,000 hidden units and 3 ∗ 80 ∗ 80 = 19200 output dimensions, followed by an inverse
DCT, and finally a UNet. We set the regularization parameter to η = 4 (see (Scarvelis & Solomon, 2024,
Appendix B.3) for details on the training objective) and use a log-cosh reconstruction loss (Chen et al., 2019)
for improved sample quality. We train for 100 epochs at a learning rate of 10−4 using the AdamW optimizer
(Loshchilov & Hutter, 2017).

We then sample our σ-CFDM in the latent space of this pre-trained autoencoder. We center and normalize
the training data to lie in the unit ball before using it to construct our σ-CFDM. We set M = 2 and σ = 0.025
for this experiment and use the nearest neighbor-based score estimator described in Section 5.4. We start
sampling at T = 0.99 and use step size 0.01. We filter out model samples whose Euclidean distance is within
10−6 of their nearest neighbor in the training set; with these hyperparameters, roughly 34% of the model
samples remain after this filtering step.

Our baseline is a VAE with the same architecture as the nuclear norm-regularized autoencoder and the
same log-cosh reconstruction loss. We set the regularization strength at 10−3 and train for 100 epochs at a
learning rate of 10−4 using the AdamW optimizer. At sampling time, we decode Gaussian samples drawn
from N (0, 10I); we find that this results in improved sample quality relative to sampling from a standard
normal distribution.

We compute our metrics using the torchmetrics implementation of the kernel inception distance (KID) and
inception score. We compute KID scores with subset_size=50 between 500 randomly-chosen images from
the test partition and our CFDM and DDPM samples.

D Impact of M on model samples

In this appendix, we demonstrate the impact of M – the number of noise samples used to computed the
smoothed score Equation 3 – on a σ-CFDM’s model samples. In Figure 8, we use a simple training set of
2 points (in blue), fix σ = 1, generate 100 σ-CFDM samples (in red) for different values of M . Note in
particular that for large values of M , the model samples cluster around the centroid of the two training

25

Under review as submission to TMLR

points. We conjecture that this phenomenon may be explained by the law of large numbers: As M →∞,
1

M

∑M
m=1 kt(x + σϵm)→ Eϵkt(x + σϵ), which is a deterministic quantity lying on the line segment connecting

the two training points. In this regime, the reasoning used in the proof of Theorem 5.1 suggests that
conditional on the second-to-last sampling iterate zS−1, the output of a σ-CFDM becomes deterministic and
all randomness in the model samples originates from zS−1.

In Figure 9, we carry out a similar experiment with a training set consisting of 500 samples from the
checkerboard distribution and σ = 0.3. Note that for large values of M , the model samples recede from
boundary of the convex hull of the training data; we conjecture that this is an instance of the same phenomenon
as in Figure 8.

Figure 8: σ-CFDM samples (in red) generated given two training points (in blue) for various M .

26

Under review as submission to TMLR

Figure 9: σ-CFDM samples (in red) generated given 500 training samples from the checkerboard distribution
(in blue) for various M .

27

	Introduction
	Related work
	Preliminaries: The closed-form score
	Smoothed closed-form diffusion models
	Definition
	Effect of smoothing the score

	Sampling algorithm
	Forward Euler scheme for sampling
	Taking fewer sampling steps
	Distribution of one-step samples under Gumbel weight perturbations
	Fast score computation via approximate nearest-neighbor search

	Results
	Impact of on generalization
	Ablation and computational trade-offs
	Image generation in pixel space
	Image generation in latent space

	Conclusion and future work
	Details on nearest-neighbor estimator of closed-form score
	Proofs
	Proof of Proposition 4.1
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Proposition B.1
	Proof of Proposition B.2
	Proof of Proposition B.3

	Proof of Proposition 5.3

	Additional Experimental Details and Results
	Pixel space DDPM training details
	CelebA latent space generation details

	Impact of M on model samples

