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Memory Disagreement: A Pseudo-Labeling Measure
from Training Dynamics for Semi-supervised Graph Learning

Anonymous Author(s)∗

ABSTRACT
In the realm of semi-supervised graph learning, pseudo-labeling is
a pivotal strategy to utilize both labeled and unlabeled nodes for
model training. Currently, confidence score is the most frequently
used pseudo-labeling measure, however, it suffers from poor calibra-
tion and issues in out-of-distribution data. In this paper, we propose
memory disagreement (MoDis for short), a novel uncertainty mea-
sure for pseudo-labeling. We uncover that training dynamics offer
significant insights into prediction uncertainty —if a graph model
makes consistent predictions for an unlabeled node throughout train-
ing, the corresponding predicted label is likely to be correct. Thus, the
node should be suitable for pseudo-labeling.We implement MoDis
as the entropy of an accumulated distribution that summarizes the
disagreement of the model’s predictions throughout training. We
further enhance and analyze MoDis in case studies, which show
nodes with low MoDis are suitable for pseudo-labeling as these
nodes tend to be distant from boundaries in both graph and rep-
resentation space. We design MoDis based pseudo-label selection
algorithm and corresponding pseudo-labeling algorithm, which are
applicable to various graph neural networks. We empirically vali-
date MoDis on eight benchmark graph datasets. The experimental
results show that pseudo labels given by MoDis have better quality
in correctness and information gain, and the algorithm benefits var-
ious graph neural networks, achieving an average improvement of
3.11% and reaching up to 30.24% when compared to the wildly-used
uncertainty measure, confidence score. Moreover, we demonstrate
the efficacy of MoDis on out-of-distribution nodes. All code will
be released after reviewing, according to the conference policy.

CCS CONCEPTS
• Computing methodologies → Learning latent representa-
tions; Neural networks; • Theory of computation → Social
networks; Semi-supervised learning.
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1 INTRODUCTION
Pseudo-labeling is a widely adopted strategy in semi-supervised
graph learning (SSGL) to overcome the challenge of very limited
number of labeled nodes in practice [9, 17, 21, 35]. It uses pre-
dicted labels as pseudo-labels to augment the limited labeled nodes,
thereby decreasing epistemic uncertainty and facilitating graph
model training. Theoretically, pseudo-labeling is a kind of entropy
minimization that seeks to reduce the density of data embeddings
near decision boundaries, thereby promoting the establishment of
robust boundaries in low-density embedding regions [6, 13].

The effectiveness of pseudo-labeling based SSGL heavily relies
on the correctness of pseudo-labels. Incorrect pseudo-labels can
significantly degrade model performance because they inject noise
andmisleading patterns into graphmodel. Existingmethods [34, 42–
44] usually employ uncertainty measures of prediction, to act as
proxies for generalization risk, in selecting pseudo-labels, such as
confidence score and Bayesian uncertainty. However, these uncer-
tainty measures are not effective indicators of the generalization
risk. This issue has been highlighted in recent studies [27, 40].

In literature, the most frequently used uncertainty measure for
selecting pseudo-labeled nodes is confidence score [5, 15, 35]. How-
ever this measure suffers from poor calibration, whereby high con-
fidence scores are often assigned to incorrect predictions, resulting
in incorrect pseudo-labels [14]. Here, the calibration measures the
discrepancy between the model’s confidence score in its predic-
tions and the actual correctness of these predictions [8]. Despite
several attempts to calibrate models for SSGL, the problem remains
largely unresolved [38, 39]. Additionally, there is an argument that
the confidence score should not be trusted for out-of-distribution
data [10]. The confidence score is susceptible to manipulation by
adversarial examples [24], and it is even possible to produce an
incorrect prediction with arbitrarily high confidence by magnifying
the input to a ReLU network [16]. The weaknesses further reduce
the reliability of confidence score for pseudo-labeling. Therefore, it
is of great value to explore new uncertainty measures, so as to provide
robust alternatives for pseudo-labeling in SSGL.

In this paper, we propose a novel uncertainty measure, named
Memory Disagreement (MoDis for short), which aims to iden-
tify pseudo-labeled nodes for semi-supervised graph learning. The
MoDis is defined on training dynamics, which captures the dis-
agreement among model predictions at different training epochs.
The rationale behind using MoDis as a measure of prediction un-
certainty is intuitive—if a model makes consistent predictions for an
unlabeled node throughout training, the corresponding predicted label
is likely to be correct. Thus, the node should be a suitable candidate
for pseudo-labeling. In contrast, if predictions fluctuate significantly,
there is a high generalization risk associated with the predictions.

Our basic idea is inspired by two intriguing observations about
training dynamics. One observation is the complexity of decision
boundary of deep networks gradually increases with the number
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of training epochs, which suggests the networks first learn simple
hypotheses and gradually learn complex hypotheses [2]; Another
observation is deep networks first learn simple and general patterns
in typical samples, during training, before fitting noise [31]. From
the two observations, we can deduce that typical samples, charac-
terized by simple and general patterns, are those predicted consis-
tently by model during training. These typical samples are suitable
for pseudo-labeling due to two properties: (i) High correctness.
Typical samples characterized by simple patterns are likely to be
predicted correctly. (ii) Significant information gain. Typical
samples with general pattern are informative and can benefit to
establishing decision boundaries for other samples. We validated
this hypothesis in our first experiment on graph datasets.

We implement the memory disagreement MoDis by modeling
the prediction uncertainty as the entropy of an accumulated pre-
diction distribution that summarizes the disagreement of model’s
predictions throughout training. We further improve the discrimi-
native ability of MoDis by incorporating the trajectory of softmax
distribution of predictions during training. The softmax distribu-
tion can be considered as data uncertainty, although it is not a
reliable estimator of prediction uncertainty [12]. Our case studies
demonstrate that nodes with low MoDis tend to be distant from
boundaries in both graph and representation space. The character-
istics indicate the nodes are suitable for pseudo-labeling in SSGL.

We then design MoDis based pseudo-label selection algorithm
and the corresponding pseudo-labeling algorithm, both of which
are applicable to various graph neural networks. Our validations
are conducted on 8 benchmark graph datasets, which show: (i)
Pseudo labels given by MoDis have high quality in correctness
and information gain; (ii) Graph neural networks equipped with
MoDis based pseudo-labeling consistently yield superior perfor-
mance, achieving an average improvement of 3.11% and reaching
up to 30.24% compared to the wildly-used confidence score. (iii)
MoDis is effective for out-of-distribution nodes.

In summary, our contribution in this paper is three-fold:
• We uncover that training dynamics provide significant in-
sights into prediction uncertainty, from which we propose a
novel uncertainty measure, memory disagreement MoDis,
to identify pseudo-labeled nodes in SSGL.
• We analyze the rationale of MoDis in case studies, and ac-
cordingly design MoDis based pseudo-labeling algorithm
that are applicable to various graph neural networks.
• We conduct extensive experiments to thoroughly validate
the MoDis on eight benchmark graph datasets, establishing
a new state-of-the-art for pseudo-labeling in SSGL.

2 PROBLEM DEFINITION
We first present a definition of SSGL by focusing on transductive
node classification as a specific task, and then formulate the problem
of pseudo-label selection in context of pseudo-labeling based SSGL.

Semi-supervised graph learning (SSGL). Consider a graph
G = (V,A,X), where the node set V = V𝐿 ∪ V𝑈 consists of a
labeled node setV𝐿 with labelsY𝐿 = {𝒚𝑣 |𝑣 ∈ V𝐿} and an unlabeled
node setV𝑈 . Each node 𝑣 ∈ V belongs to one of 𝐶 categories and
can be labeled with a 𝐶-dimensional one-hot vector 𝒚𝑣 ∈ R𝐶 . Here,
𝑛𝐿 = |V𝐿 | and 𝑛𝑈 = |V𝑈 | represent the number of nodes in the
respective sets. In SSGL, only a limited number of labeled nodes are

available and most nodes are unlabeled, i.e., 𝑛𝐿 ≪ 𝑛𝑈 . Adjacency
matrixA characterizes edges connecting nodes inV , and attribute
matrix X ∈ R(𝑛𝐿+𝑛𝑈 )×𝑑𝑥 denotes node attribute, where 𝑑𝑥 denotes
the dimension. SSGL aims to learn a parameterized model 𝑓𝜃 : 𝑣 →
�̂�𝑣, 𝑣 ∈ V𝑈 that predicts the label of unlabeled nodes based on both
the limited labeled nodes and other information in G.

Pseudo-labeling based SSGL. In pseudo-labeling based SSGL,
the label set Y𝐿 is augmented with predicted pseudo-labels Y𝑃 =

{�̂�𝑣 |𝑣 ∈ V𝑃 }, where the setV𝑃 consists of unlabeled nodes with a
high probability of being correctly predicted by the model 𝑓𝜃 . Then,
the model 𝑓𝜃 can be re-trained on the augmented label set,Y𝐿 ∪Y𝑃 ,
resulting in updated parameters 𝜃∗. In multi-stage pseudo-labeling
based SSGL, the process of label augmentation and model retraining
are repeated iteratively until convergence is achieved.

Pseudo-label selection. Pseudo-label selection is fundamen-
tal to pseudo-labeling based SSGL. It identifies unlabeled nodes
that have high probabilities of being correctly predicted as pseudo-
labeled nodes. Let 𝑔𝑣 ∈ {0, 1} be a binary indicator that signifies
whether the node 𝑣 ∈ V𝑈 is selected for pseudo-labeling or not.
Here, 𝑔𝑣 = 1 when node 𝑣 is selected for pseudo-labeling, i.e., 𝑣 is in
V𝑃 , and 𝑔𝑣 = 0 when 𝑣 is not selected. The pseudo-label selection
is to obtain a indicator vector 𝒈 = {𝑔𝑣 |𝑣 ∈ V𝑈 } ∈ {0, 1}𝑛𝑈 for un-
labeled nodes. This indicator can be obtained by a risk evaluation,
𝑔𝑣 = 𝑅𝑓𝜃 (𝑣) < 𝜏 , where 𝑅𝑓𝜃 (𝑣) denotes generalization risk, i.e., the
probability of node 𝑣 being incorrectly predicted by the model 𝑓𝜃 .
A pseudo-labeled node can be identified if its generalization risk is
less than the threshold 𝜏 . However, the generalization risk is com-
putationally intractable because real data distribution is unknown
in practice. Therefore, the pseudo-label selection becomes a problem
of designing an effective measure that can estimate the generalization
risk and act as a proxy of the risk for identifying pseudo-labeled nodes.

3 METHOD
We first propose a novel uncertainty measure, memory disagree-
ment MoDis, and then analyze the rationale of MoDis in case stud-
ies, and finally design MoDis based pseudo-labeling algorithm.

3.1 Memory Disagreement MoDis
The MoDis is proposed from the perspective of training dynam-
ics and can serve as a proxy for the generalization risk to iden-
tify pseudo-labeled nodes in SSGL effectively. The computation of
MoDis is illustrated in Fig. 1, in which we use training dynamics
of three nodes in the Cora dataset as examples.

Firstly, we record the training dynamics for an unlabeled node,
i.e., the predictions made by model for the node at different training
epochs, as shown in the left panel of Fig. 1. Next, we summarize the
recorded training dynamics as a prediction distribution by calculat-
ing the relative frequency of categories in the predictions. Finally,
we compute the entropy of the prediction distribution, which we
define as the MoDis of the node, as shown in the right panel.

The proposedMoDis effectively captures the disagreement among
predictions made by the model during training. This is because en-
tropy quantifies the heterogeneity of the prediction distribution,
and this heterogeneity reflects the diversity of predictions made
by the model during training. The larger the disagreement among
predictions, the higher the MoDis becomes. This relationship is
clearly demonstrated by the comparison of the three nodes in Fig. 1.
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Figure 1: An illustration to compute memory disagreement
MoDis. The left panel shows the prediction dynamics made
by the model during training for three nodes in the Cora
dataset. The right panel then summarizes these dynamics
into distributions of predicted categories. The MoDis is de-
fined as the entropy of the distributions.

Mathematically, the MoDis is defined as follows:

MoDis(𝑣) := H[𝑃𝑣] = −
∑𝐶

𝑐=1
𝑃𝑣 (𝑐) log 𝑃𝑣 (𝑐), (1)

where H[𝑃𝑣] denotes the entropy of distribution 𝑃𝑣 , and the 𝑃𝑣
is the distribution of predicted categories for node 𝑣 . Each entry
𝑃𝑣 (𝑐) is the relative frequency of category 𝑐 in multiple predictions
during training. Specifically, 𝑃𝑣 (𝑐) is calculated through

𝑃𝑣 (𝑐) =
1
|M𝑣 |

∑
�̂�𝑣 ∈M𝑣

1[�̂�𝑣 = 𝑐], (2)

where the memory bankM𝑣 records predicted labels �̂�𝑣 for each
node 𝑣 at several selected training epochs, |M𝑣 | denotes the size of
the memory bank, and 1[·] is an indicator function used to verify
whether predicted label �̂�𝑣 is equal to a certain category 𝑐 or not.

The memory bankM𝑣 is leveraged to record training dynamics
by storing representative predictions �̂� at several specific epochs.
Specifically, we define the memory bank as follows,

M𝑣 = {�̂� (𝑡 )𝑣 |𝑣 ∈ V𝑈 , 𝑡 ∈ T }. (3)

Here �̂� (𝑡 )𝑣 denotes the predicted label of node 𝑣 by the model 𝑓𝜃 at
training epoch 𝑡 , and set T contains the epochs selected to record.
During training, we begin with an emptyM𝑣 for each node and
progressively add the predicted labels �̂� (𝑡 )𝑣 at selected epochs in T .

For better practicality in real-world applications, we streamline
the epoch set T into a sequence of consecutive epochs during
training. This sequence can be easily determined using two hyper-
parameters: the starting epoch for recording and the number of
epochs to be recorded. In experiments, we empirically analyze
how to construct an effective M by the two hyper-parameters.
This simplifying method can capture the primary trajectory of
predictions throughout training, with minimized computational
and storage overhead, enabling the efficient computation of MoDis.

3.2 Enhancing MoDis via Softmax Trajectory
We further enhance memory disagreement by incorporating the
trajectory of softmax distribution of predictions during training. In
preliminary studies, we observe a resolution limitation of MoDis
defined in Eq. (1). That is, different nodes sometimes get the same
accumulated distribution of predicted categories, and then they
have identical MoDis values, rendering them indistinguishable.

To improve the discriminative ability of MoDis, instead of using
the distribution of predicted categories in Eq. (2), we refine 𝑃𝑣 by
accumulating the softmax distributions during training as

𝑃𝑣 (𝑐) =
1
|M𝑣 |

∑
𝝈𝑣 ∈M𝑣

𝝈𝑣 (𝑐), (4)

where the memory bankM𝑣 is used to record softmax distribu-
tions 𝝈𝑣 of prediction during training. For a selected epoch 𝑡 ∈ T ,
𝝈 (𝑡 )𝑣 = softmax(𝒛 (𝑡 )𝑣 ) represents the softmax distribution with 𝒛 (𝑡 )𝑣

being the logits of node 𝑣 . This refined 𝑃𝑣 is an average of the
softmax distributions, which characterizes subtle variances in pre-
dictions and captures richer information of training dynamics. Al-
though softmax distribution is not a reliable estimator of prediction
uncertainty, it can be considered as data uncertainty [12].

Additionally, we introduce a sharpening step to the softmax
distributions inspired by the efficacy of entropy minimization in
SSL [3]. Given the softmax distributions, we apply a sharpening
function to enhance the decisiveness of the distribution by reducing
its entropy, which is achieved through a sharpening function,

Sharpen(𝒑, 𝛾) := 𝒑
1/𝛾
𝑖
/𝑍, 𝑍 =

∑𝐿

𝑙=1
𝒑
1/𝛾
𝑙

.

Here, the sharpening function is defined on each category. Vector
𝒑 denotes an 𝐿-dimensional categorical distribution, which is the
predicted softmax distribution 𝝈𝑣 in the context of memory dis-
agreement. The “temperature” hyperparameter 𝛾 is used to adjust
the shape of the distribution. For 𝛾 = 1, the sharpening function
retains the original shape of the distribution. As 𝛾→ 0, the result
of Sharpen(𝒑, 𝛾) becomes a one-hot distribution, making the 𝑃𝑣
in Eq. (2) degraded to its form in Eq. (4). The sharpening function
amplifies more probable predictions while decaying less probable
ones, thereby emphasizing confident predictions more strongly.

3.3 Case Study Analysis of MoDis
We design two case studies to demonstrate the characteristics of
nodes with a low MoDis value, as well as analyze the rationale of
these nodes as candidates for pseudo-labeling in SSGL. We visualize
these nodes in both the graph and representation spaces for an
intuitive understanding. A notable observation is that these nodes
tend to be distant from two kinds of boundaries.

In graph space, nodes with low MoDis predominantly are not
positioned on the boundary. For clarification, we define boundary
nodes in the graph as nodes whose labels differ from those of their
neighbors, as illustrated in Fig. 2(A). We conducted an analysis on
five graph datasets. In this study, we compute the proportion of
boundary nodes in three groups: the top 100 nodes with the lowest
MoDis, those with the highest MoDis, and overall nodes in graph.
The proportion of boundary nodes was significantly lower among
nodes with low MoDis when compared to those with high MoDis,
as shown in Fig. 2(B). Nodes with a low MoDis are more internally

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 2: In graph space, nodes with low MoDis predomi-
nantly are not positioned on the boundary. (A) An illustra-
tion of boundary nodes in graph. (B) Comparative propor-
tions of boundary nodes of three different node groups.

Figure 3: In representation space, nodeswith lowMoDis clus-
ter in areas distanced from decision boundaries. Node rep-
resentations are visualized in a 2D space. Red triangles indi-
cate the top 20 nodes in each categorywith the lowestMoDis.

consistent with their neighbors. This consistency suggests they are
more reliable candidates for pseudo-labeling, as their representations
are less likely to be mixed with irrelevant messages from nodes with
different label during the aggregation in GNNs.

In representation space, nodes with low MoDis exhibit spatial
clustering at positions removed from decision boundaries, as shown
in Fig. 3. Here, we visualize node representations in a 2D space,
which are extracted by the last layer of GCN [18] on the Cora
dataset, and further mapped using t-SNE [36]. The nodes with low
MoDis are distant from decision boundaries, which implies they are
a safe choice as pseudo-labeling, as they have a relatively low risk
of being incorrectly predicted. These nodes distanced from decision
boundaries are safer candidates for pseudo-labeling, as they have a
lower risk of misclassification, ensuring minimal noise introduction
to the model in pseudo-labeling.

3.4 MoDis based Pseudo-labeling Algorithm
In this section, we first propose a MoDis based pseudo-label selec-
tion algorithm, as illustrated in Algorithm 1. We then incorporate
the pseudo-label selection algorithm into a pseudo-labeling frame-
work for SSGL, as presented in Algorithm 2.

Algorithm 1 MoDis based Pseudo-label Selection

Input: Graph G = (V,A,X), label set Y𝐿 , graph model 𝑓𝜃
Output: Pseudo-label set Y𝑃
Parameter: Epoch index set T
1: Initialize model parameters 𝜃 , memory bankM𝑣 ← ∅ for each

node 𝑣 ∈ V𝑈 , and Y𝑃 ← ∅
2: for training epoch 𝑡 = 1 to max_epoch do
3: Update 𝜃 using the gradient calculated on Y𝐿
4: if 𝑡 ∈ T then
5: for each node 𝑣 ∈ V𝑈 do
6: Compute 𝝈 (𝑡 )𝑣 by model 𝑓𝜃 (A, 𝒙𝑣)
7: M𝑣 ←M𝑣 ∪ {𝝈 (𝑡 )𝑣 }
8: for each node 𝑣 ∈ V𝑈 do
9: Calculate MoDis(𝑣) using Eq. (1) and (4)
10: if MoDis(𝑣) < 𝜏 then
11: �̂�𝑣 = 𝑓𝜃 (A, 𝒙𝑣); Y𝑃 ← Y𝑃 ∪ {�̂�𝑣}
12: return Y𝑃

In Algorithm 1, a training process for the graph neural network
𝑓𝜃 is performed on graph data G firstly. Throughout the training,
we use a memory bankM to capture the softmax distributions of
predictions at specific epochs, 𝑡 ∈ T . Subsequently, the recorded
training dynamics are used to calculate MoDis for every unlabeled
node using Eq. (1) and (4). Finally, unlabeled nodes with a MoDis
value below the threshold 𝜏 are selected as pseudo-labeled nodes.
The output pseudo-labels are predicted by the fully-trained model,
and they are then used to augment the limited real labels in G.

In Algorithm 2, we present MoDis pseudo-labeling based SSGL
by incorporating Algorithm 1 into a multi-stage self-training frame-
work. This algorithm consists of𝐾 stages.Within each stage, pseudo
labels Y𝑃 are first produced by Algorithm 1 leveraging currently
available labels inY𝐿 . Following this, the label setY𝐿 is augmented
by these pseudo labels, and the augmented label set serves as the
foundation for the next round of pseudo-label generation. To avoid
the issue of label imbalance, we add an equal number of pseudo
labels for each category in every stage.

After iterating through the 𝐾 stages, the final model is trained
using the ultimately augmented label set Y𝐿 , and is used to predict
labels for all unlabeled nodes in the graph G. Notably, for unlabeled
nodes that have previously been associatedwith pseudo labels in the
𝐾 stages, those pseudo labels are retained as their final predictions.

Algorithm 2 MoDis Pseudo-labeling based SSGL

Input: Graph G = (V,A,X), label set Y𝐿 , graph model 𝑓𝜃
Output: Predicted label set Y∗ for all unlabeled nodes
Parameter: Number of stage 𝐾
1: Initialize Y∗ ← ∅
2: for each stage 𝑘 = 1 to 𝐾 do
3: Y𝑃 = Algorithm 1(G, Y𝐿 , 𝑓𝜃 )
4: Y𝐿 ← Y𝐿 ∪ Y𝑃 ; Y∗ ← Y∗ ∪ Y𝑃
5: UpdateV𝐿 andV𝑈 in G according to Y𝐿
6: Train model 𝑓𝜃 on augmented Y𝐿
7: for each node 𝑣 ∈ V𝑈 do
8: �̂�𝑣 = 𝑓𝜃 (A, 𝒙𝑣); Y∗ ← Y∗ ∪ {�̂�𝑣}
9: return Y∗
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Table 1: Dateset statistics

Dataset # Nodes # Edges # Categories # Features

Cora [28] 2,708 5,429 7 1,433
Citeseer [28] 3,327 4,732 6 3,703
Pubmed [23] 19,717 44,338 3 500
CoraFull [4] 19,793 65,331 70 8,710

AmazonCS [30] 13,752 245,778 10 767
AmazonPhoto [30] 7,650 119,043 8 745
CoauthorCS [30] 18,333 81,894 15 6,805
CoauthorPhy. [30] 34,493 495,924 5 8,415

4 EXPERIMENTS
We empirically validate the effectiveness of our proposed MoDis
by answering the following four questions.

Q1: Does MoDis outperform competitors (state-of-the-art un-
certainty measures) in selecting pseudo-labeled nodes?

Q2: Does graph neural networks equipped with MoDis pseudo-
labeling outperform that with competitors in SSGL?

Q3: Is MoDis effective for out-of-distribution nodes?
Q4: How does the training dynamics, captured in the memory

bankM, affect performance of MoDis based pseudo-labeling?
Baselines. We choose the following two state-of-the-art baselines
as competitors of MoDis in experiments.
• Confidence score: The most frequently used uncertainty mea-
sure for selecting pseudo-labeled nodes in SSGL [5, 15].
• Area Under the Margin (AUM): A recent measure that has
been successfully applied to semi-supervised learning in
natural language processing [33].

Datasets.We conducted experiments on eight benchmark graph
datasets, namely, Cora, Citeseer [28], Pubmed [23], CoraFull [4],
AmazonComputers, AmazonPhoto, CoauthorCS, and Coauthor-
Physics [30]. The statistics of the datasets are summarized in Table
1. The detailed experiment protocol can be found in Appendix.

4.1 Quality of Pseudo Labels (Q1)
We first examine whether the proposed MoDis can select better
pseudo-labeled nodes than the competitors. We evaluate the quality
of pseudo labels from two perspectives: correctness and information
gain. This experiment is also designed to validate our selected
pseudo-labeled nodes contained simple patterns (high correctness)
and general patterns (large information gain). We employ GCN as
the base model 𝑓𝜃 , following hyper-parameter settings in [18]. To
simulate a challenging scenario with minimal label information,
we only set 3 labeled nodes per category, i.e., 𝐿/𝐶 = 3, in six graphs.
Pseudo labels are produced by Algorithm 1 or its variants in which
uncertainty measure MoDis is substituted with the competitors.

4.1.1 Correctness of Pseudo Labels. We first evaluate the correct-
ness of produced pseudo labels in terms of error ratio. Specifically,
the error ratio is defined as the proportion of nodes for which the
pseudo label and true label do not match, in entire pseudo-labeled
nodes. We generate pseudo labels for all unlabeled nodes in a graph,
subsequently sorting these nodes based on the three uncertainty
measures. The nodes are then orderly partitioned into 10 evenly
groups, and independently computed the error ratio for each group.

Fig. 4 shows the error ratio for the first 5 groups, as these nodes
are more likely to be selected for pseudo-labeling in practice. From

Figure 4: The error ratios of pseudo-labeled nodes on six
graphs. The proposed MoDis selects pseudo-labeled nodes
with the lowest error ratios in most scenarios compared to
confidence and AUM. The 𝑥-axis denotes node groups that
imply priority of nodes being selected for pseudo-labeling.

the results, we make two observations: (i) The error ratio consis-
tently increases as we progress through successive groups, which
corresponds to the order of pseudo-labeled nodes. This increasing
trend indicates the efficacy of the 3 uncertainty measures: lower
uncertainty correlates with higher correctness. (ii) our proposed
MoDis outperforms confidence score and AUM in most scenarios,
providing pseudo-labeled nodes with the lowest error ratios.
4.1.2 Information Gain from Pseudo Labels. We also evaluate the
information gained from pseudo labels to the model. Base on the
concept of expected gradient length in active learning [29], we de-
sign model perturbation 𝜌 to measure the information gain, which
is the change in the gradient caused by adding pseudo labels,

𝜌 = ∥∇ℓ (Y𝐿 ∪ Y𝑃 ; 𝑓𝜃 )∥𝐹 − ∥∇ℓ (Y𝐿 ; 𝑓𝜃 )∥𝐹 ,
where ∇ℓ (·) denotes the gradient of model 𝑓𝜃 , Y𝐿 and Y𝑃 denote
real label set and pseudo label set, respectively. Frobenius norm
∥ · ∥𝐹 is used to quantify the gradient. For simplicity, we first train
the model using labels inY𝐿 until it converges. As a result, the value
of ∥∇ℓ (Y𝐿 ;𝜃 )∥𝐹 approaches zero, which allows us to approximate

Table 2: The model perturbation caused by pseudo labels

CPL/C 20 30 20 30 20 30

Dataset Cora Citeseer Pubmed

Confidence 181.1 278.4 157.2 235.7 45.4 68.5
AUM 179.9 272.1 155.9 240.8 39.8 55.9
MoDis 187.3 302.2 172.2 257.8 45.4 68.5

Dataset CoraFull AmazonCS AmazonPhoto

Confidence 4568 6010 1742 2528 1320 1880
AUM 4492 5926 1652 2470 1224 1795
MoDis 4869 6797 2108 5869 1392 1970
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Table 3: The node classification accuracy of pseudo-labeling algorithms on citation graphs (%)

Dataset Cora Citeseer Pubmed CoraFull

L/C 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20

Pseudo-labeling algorithms with GCN

Base model 64.47 74.06 77.85 80.88 58.04 63.73 70.84 72.02 67.93 71.52 74.98 79.78 41.83 49.90 56.20 62.07
Confidence 63.09 72.51 77.01 80.01 60.22 64.41 69.39 71.57 63.41 71.46 72.01 77.90 43.66 50.72 56.93 61.64

AUM 64.28 71.84 76.74 79.89 58.99 64.99 70.13 71.42 63.51 70.84 70.51 77.00 43.85 51.14 57.46 61.86
MoDis 64.92 74.52 79.29 81.00 59.89 65.16 69.97 71.75 67.87 71.89 74.90 79.73 43.97 51.21 57.68 61.88

Confidence-MS 63.09 72.47 76.95 79.64 62.10 65.65 71.04 72.31 60.19 67.01 70.04 76.86 42.77 51.26 56.98 61.53
AUM-MS 63.88 72.03 76.98 79.63 61.90 66.09 71.05 72.44 59.55 66.35 69.58 73.72 42.16 51.16 56.87 61.54
MoDis-MS 69.00 75.36 79.84 81.58 65.24 68.59 71.19 72.37 70.32 72.54 75.05 79.84 44.70 51.30 57.93 62.26

Pseudo-labeling algorithms with GAT

Base model 63.84 70.38 78.65 81.78 43.77 56.94 67.91 70.65 66.45 68.94 74.63 77.39 39.17 47.09 53.12 59.65
Confidence 73.99 74.67 78.34 81.42 64.02 67.27 69.15 70.65 64.52 65.68 69.10 72.05 39.90 48.22 55.57 60.06

AUM 67.77 75.01 78.63 80.94 61.13 66.62 70.15 71.11 67.34 68.51 70.10 72.57 40.01 49.40 54.97 60.56
MoDis 72.90 74.72 78.93 81.54 59.31 67.52 70.25 71.50 68.20 69.16 71.98 74.11 41.11 49.07 54.58 60.23

Confidence-MS 73.24 75.13 78.34 81.42 64.02 67.27 69.15 70.65 64.52 65.68 69.10 72.05 39.34 48.30 54.83 60.16
AUM-MS 67.18 74.52 78.53 79.64 63.15 66.99 69.45 70.40 64.69 67.75 67.53 70.01 38.67 48.83 54.33 59.96
MoDis-MS 75.17 75.90 78.95 82.05 65.22 67.90 70.97 72.56 68.86 70.05 72.82 76.63 43.82 50.72 55.57 61.09

Pseudo-labeling algorithms with APPNP

Base model 65.66 74.05 79.76 81.99 44.49 60.29 66.54 70.69 66.83 72.29 75.59 78.78 40.74 48.94 55.37 61.01
Confidence 73.39 76.70 80.56 81.86 60.63 68.51 71.28 71.98 69.40 71.35 75.80 78.36 43.05 49.96 55.51 58.46

AUM 71.35 77.50 80.03 81.94 59.50 67.30 70.44 71.84 69.73 72.31 74.21 76.66 43.09 49.92 56.17 59.65
MoDis 74.26 76.56 80.00 82.10 61.04 66.71 71.52 72.45 70.14 71.71 76.79 79.21 42.68 48.49 54.62 59.62

Confidence-MS 73.48 76.69 80.76 82.08 63.74 66.46 71.22 71.31 69.34 69.35 73.23 74.49 40.96 48.52 54.55 57.85
AUM-MS 70.11 76.72 80.70 82.05 64.22 69.23 71.30 71.30 69.55 69.91 70.84 71.80 40.48 49.12 54.69 59.37
MoDis-MS 75.85 77.79 80.95 83.32 65.13 69.62 71.58 72.70 70.23 72.39 77.02 79.37 43.23 50.15 56.18 60.00

Pseudo-labeling algorithms with GCNII

Base model 64.61 71.25 78.62 84.75 50.83 61.57 69.23 72.69 64.35 70.55 75.96 78.39 43.08 49.35 56.52 61.08
Confidence 65.11 70.90 79.60 84.45 51.69 61.24 69.40 72.26 67.79 68.94 74.09 78.44 41.63 47.59 55.03 59.30

AUM 63.22 73.34 79.75 84.45 53.24 56.37 68.98 72.21 69.28 71.06 74.01 78.50 41.56 48.62 56.46 61.22
MoDis 65.11 75.94 80.04 84.45 55.06 61.24 69.40 72.26 71.35 72.22 74.09 78.50 42.45 49.90 57.15 61.22

Confidence-MS 63.55 71.75 79.88 84.52 49.96 60.07 70.25 71.68 66.87 69.54 75.86 79.25 41.93 48.87 55.31 59.56
AUM-MS 63.06 74.65 79.90 84.65 51.94 57.68 68.24 72.75 67.92 70.65 71.67 79.38 42.64 49.40 56.78 61.07
MoDis-MS 77.55 78.14 80.45 85.08 65.07 68.54 71.43 72.86 69.28 71.31 76.13 79.43 43.26 50.28 57.68 61.57

model perturbation 𝜌 as ∥∇ℓ (Y𝑃 ;𝜃 )∥𝐹 directly. Here, the model
perturbation 𝜌 is calculated on a given number of correct pseudo-
labeled nodes produced. Only correct pseudo labels are used, as
what incorrect pseudo labels introduce is harmful information.
CPL/C denotes the number of correct pseudo labels per class.

Table 2 shows the model perturbation caused by adding pseudo-
labeled nodes given by the three uncertainty measures. It can be
observed that in all scenarios, pseudo-labeled nodes given byMoDis
cause greater perturbations on gradient, which suggests the model
gains more information from these pseudo labels.

From the evaluation of correctness and information gain, it can
be concluded that our proposed MoDis outperforms confidence score
and AUM, as the pseudo-labeled nodes slected by MoDis are not only
more correct but alsomore informative.

4.2 Comparisons on Node Classification (Q2)
We further validate the efficacy of our proposed MoDis by eval-
uating the performance of graph neural networks equipped with
MoDis based pseudo-labeling. The experiments are conducted on
eight benchmark graph datasets on inductive node classification
tasks. We adopt classification accuracy as evaluation metric.

Node labels are predicted by using Algorithm 2, and pseudo
labels are produced by Algorithm 1 or its variants in which MoDis
is replaced with confidence score or AUM. We adopt four widely-
used graph neural networks, GCN [18], GAT [37], APPNP[11] and
GCNII [7], as the base model 𝑓𝜃 in Algorithm 2, following the same
hyper-parameter settings in their original papers.

The extensive comparative results are summarized in Table 3
and 4. In these tables, “Base model” denotes the corresponding base
model without pseudo-labeling; “Confidence”, “AUM”, and “MoDis”
represent the base model equipped with respective pseudo-labeling
methods; an “MS" suffix indicates a multi-stage pseudo-labeling,
i.e., 𝐾 > 1 in Algorithm 2. In the absence of this suffix, 𝐾 = 1.

The results presented in Table 3 and 4 highlight that our proposed
MoDis consistently outperforms the competitors in most scenarios.
Specifically, we have the following three observations:

• The performance of GCN, GAT, APPNP, and GCNII models de-
creases significantly as the number of labeled nodes per category
(L/C) decreases. This indicates that pseudo-labeling algorithms
bring performance improvement compared to base models, espe-
cially when the number of labeled nodes is very limited.
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Table 4: The node classification accuracy of pseudo-labeling algorithms on citation and co-purchasing graphs (%)

Dataset AmazonCS AmazonPhoto CoauthorCS CoauthorPhysics

L/C 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20

Pseudo-labeling algorithms with GCN

Base model 66.59 76.68 80.41 82.80 87.08 87.53 91.39 93.42 88.83 90.72 91.52 92.34 84.20 85.59 88.50 89.78
Confidence 67.18 77.26 80.58 82.43 86.60 88.67 91.23 93.21 87.75 90.71 92.39 92.84 85.39 86.93 88.75 90.10

AUM 68.25 77.01 80.27 82.64 86.61 88.59 91.14 93.56 87.99 90.68 92.32 92.86 85.86 87.15 88.54 90.00
MoDis 68.72 76.74 81.00 82.76 87.30 88.19 91.68 93.62 89.01 90.68 92.31 92.89 85.65 87.35 88.87 90.10

Confidence-MS 66.89 77.08 80.72 82.01 86.41 88.21 91.15 93.20 87.08 90.83 92.10 92.72 85.75 87.36 88.81 90.13
AUM-MS 66.54 78.38 80.84 82.34 85.85 88.42 90.91 93.12 87.94 90.94 92.11 92.84 85.71 87.40 88.65 90.11
MoDis-MS 68.97 77.37 81.19 83.06 88.03 89.23 91.87 93.79 89.91 92.54 93.34 93.62 86.46 88.00 91.00 92.36

Pseudo-labeling algorithms with GAT

Base model 63.80 72.09 80.59 82.45 81.27 89.33 91.98 92.58 90.60 91.34 92.25 92.66 80.64 82.70 88.82 89.89
Confidence 63.84 75.79 80.64 82.03 87.11 88.74 91.27 92.91 88.30 90.79 92.10 92.81 83.44 85.74 88.04 88.68

AUM 64.58 75.70 79.73 81.72 88.79 87.55 92.10 93.10 89.35 90.60 92.26 92.89 84.84 85.84 88.47 89.83
MoDis 67.99 76.85 81.15 82.36 87.99 89.12 91.79 93.27 90.35 90.72 92.35 92.94 83.30 85.89 88.44 90.11

Confidence-MS 66.75 75.46 79.67 81.99 87.66 89.11 91.20 93.04 90.01 91.09 91.65 92.86 83.01 86.20 87.78 89.88
AUM-MS 67.68 75.72 79.78 82.19 87.59 88.81 91.94 93.29 89.86 91.29 92.24 92.91 83.62 87.32 87.84 89.70
MoDis-MS 70.85 78.91 81.16 82.52 88.19 89.45 92.06 93.46 91.16 91.54 92.57 93.09 87.97 88.89 89.10 90.30

Pseudo-labeling algorithms with APPNP

Base model 68.50 76.60 80.45 81.78 87.04 88.78 91.43 93.52 89.85 90.97 91.94 92.75 86.18 87.52 88.34 90.03
Confidence 68.67 76.37 78.29 81.31 87.10 89.27 92.26 93.82 87.65 90.80 92.23 93.03 87.83 88.41 89.63 90.95

AUM 68.73 75.59 79.93 81.45 87.74 89.53 92.26 93.87 89.95 91.10 92.52 93.11 87.41 88.47 89.64 90.63
MoDis 70.09 76.31 80.63 82.33 87.73 89.65 92.43 93.92 91.39 92.11 92.72 93.16 87.69 89.53 89.87 91.05

Confidence-MS 65.17 75.96 80.18 80.99 86.14 89.96 92.19 93.45 87.33 91.14 91.87 92.68 87.74 88.25 89.60 90.81
AUM-MS 66.14 75.18 79.94 81.44 87.75 88.54 91.77 93.51 89.50 91.12 92.47 92.95 86.78 87.63 89.22 90.19
MoDis-MS 70.26 78.58 81.12 82.46 89.03 90.04 92.52 93.97 92.04 92.18 92.79 93.28 88.32 89.62 89.95 91.32

Pseudo-labeling algorithms with GCNII

Base model 62.92 74.07 78.86 80.87 84.84 86.58 91.78 92.85 91.26 91.57 93.19 94.00 87.94 88.96 89.62 90.88
Confidence 61.30 73.94 76.88 79.26 82.71 84.46 91.05 91.71 90.38 91.50 93.11 94.06 88.36 88.31 89.51 91.34

AUM 61.56 74.16 77.79 79.94 83.32 85.67 91.65 92.96 90.87 91.89 93.26 94.06 87.92 88.41 89.20 91.03
MoDis 62.66 74.57 78.81 80.19 84.77 86.32 91.93 93.13 91.39 92.38 93.33 94.09 88.45 88.65 89.81 91.34

Confidence-MS 63.74 69.69 77.27 78.95 82.87 85.13 91.44 91.19 90.61 91.53 92.44 93.66 88.37 89.39 90.00 91.80
AUM-MS 62.00 76.38 78.61 79.96 84.81 86.36 92.35 93.21 91.62 92.00 93.04 93.82 88.28 88.15 90.33 91.43
MoDis-MS 64.52 76.67 78.95 81.02 85.06 86.79 92.83 93.54 91.95 92.42 93.83 94.55 89.91 90.89 91.05 92.27

• Employing MoDis based pseudo-labeling algorithm always re-
sults in better classification accuracy than competitors, com-
pared to the wildly-used confidence score, achieving an average
improvement of 3.11% (the average performance gap between
MoDis-MS and Confidence-MS in all columns of Table 3 and
4) and reaching up to 30.24% (L/C = 3, GCNII model, Citeseer
dataset). This again demonstrates the efficacy of MoDis.
• Multi-stage pseudo-labeling algorithms offer significant benefits
when working with very limited labeled nodes. However, the
benefits seem to reduce as the quantity of labeled nodes increases.

4.3 Validation on OOD Nodes (Q3)
In this section, we validate the proposed MoDis in handling out-
of-distribution (OOD) nodes. We integrate the proposed pseudo-
labeling algorithm with OODGAT [32] that is a model specifically
designed for OOD tasks in graphs. We adopt the same experimental
setup in the original paper, except for the number of labeled nodes
per category 𝐿/𝐶 = 3. We divide nodes into in-distribution and
out-of-distribution classes, as detailed in Appendix.

This validation consists of two tasks, in-distribution node classi-
fication and out-of-distribution detection. Two metrics are adopted

Table 5: The experimental results in OOD setting

Dataset Cora AmazonCS AmazonPhoto CoauthorCS

Metric ACC↑ (in-distribution) / FPR@95↓ (out-of-distribution)

Base model 74.2/64.7 68.7/56.9 93.5/25.5 70.7/14.2
Confidence 79.1/53.6 71.2/54.6 95.5/27.5 70.8/21.5

AUM 80.1/48.5 71.8/54.5 95.2/26.8 73.3/13.6
MoDis 82.1/43.4 73.9/52.9 97.3/18.8 76.5/14.7

to evaluate the two tasks, respectively. Specifically, classification
accuracy (ACC) is used on node classification, and false positive rate
at 95% true positive rate (FPR@95) are used on out-of-distribution
detection. In experiments, node labels are predicted by using Al-
gorithm 2, in which we adopt OODGAT-ATT as the base model 𝑓𝜃 .
Pseudo labels are produced by Algorithm 1 or its variants in which
MoDis is replaced with confidence score or AUM.

The experimental results in OOD setting are summarized in Table
5. We can observe that the model OODGAT-ATT equipped with
MoDis based pseudo-labeling algorithm markedly improves the
accuracy of in-distribution node classification on the four datasets.
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Figure 5: The results of grid search — accuracies of node clas-
sification in different settings of the two hyper-parameters.

Remarkably, MoDis also demonstrate efficacy in detecting out-of-
distribution nodes, outperforming competitors in most scenarios.

We also observe confidence score achieves improvements. This
likely be attributed to the high homophily in the graphs [26]. The
graph neural network, owing to the inherent smoothing effect of
propagation, tends to be more confident for ID nodes.

4.4 Analysis on Training Dynamics (Q4)
We further investigate memory bank, which is fundamental in the
proposed method and is used to captures training dynamics. To
this end, we execute a grid search on two hyper-parameters that
exactly determines the memory bank, i.e., the starting epoch for
recording and the number of epochs to be recorded. Specifically,
the starting epoch signifies the training epoch at which we start to
record predictions to construct the memory bank; the number of
epochs indicates the total number of training epochs during which
predictions are recorded. The grid search is conducted on node
classification task and adopt GCN as the base model in Algorithm 2.

Fig 5 summarize the results of grid search in terms of classifica-
tion accuracy on three citation graphs. We can observe that if the
starting epoch is too early or the number of epochs is not sufficient,
performance may be suboptimal. It is because, during the early
phases of training, the model changes dramatically, potentially in-
troducing errors when computing MoDis. A limited number of
epochs fails to fully capture training dynamics. Therefore, a simple
yet effective strategy to determine the hyper-parameters is to en-
large the memory bank by increasing the number of epochs, which
however increases computational overhead, reducing efficiency.

5 RELATEDWORK AND DISCUSSION
5.1 Comparisons to Existing Methods
Pseudo-labeling [20] was introduced as an effective and widely
adopted strategy in semi-supervised learning, which predicted la-
bels of unlabeled data, as a data augmentation of limited labeled
data. Considering extensive unlabeled nodes in a single graph, espe-
cially for transductive graph learning task, [21] and [35] extended
pseudo-labeling algorithms to the field of SSGL. The wildly-used
uncertainty measure for pseudo-labeling is confidence score, and a
comprehensive overview of uncertainty is given in the survey [12].
Based on confidence score, recent works attempt to improve the
quality of pseudo labels by using topological information in[42]
and [34], and by refining training framework in [22] and [44].

Theprincipal novelty of our proposedMoDis, distinct from
existing methods, is the perspective of training dynamics,

which introduces a novel way for estimating prediction un-
certainty. In essence, the most significant contribution of this
paper lies in revealing that training dynamics contain valuable in-
formation regarding prediction uncertainty in graph learning. In
contrast, the confidence score is calculated from a softmax prob-
ability distribution provided by the model after training; Monte-
Carlo dropout [10], another popular method for measuring un-
certainty, enables dropout during testing and performs multiple
forward passes through the network after training. The proposed
MoDis is orthogonal to the existing uncertainty measures.

According to taxonomy in recent surveys on uncertainty in deep
learning [1, 12], the proposed MoDis can be viewed as a special
ensemble method, where models at different training epochs are
treated as ensemble members. The ensemble method derives a
prediction based on the aggregated predictions from multiple en-
semble members (models), whose assumption is that a group of
decision-makers typically makes better decisions than an individual.
In addition, ensemble methods provide a way to estimate predic-
tion uncertainty by evaluating the variety among the member’s
predictions [19]. A similar self-ensembling strategy is employed to
filter out noise labels [25]. Ensemble-based uncertainty estimation
requires training multiple models as members, while the calcula-
tion of MoDis is only based on a single training process. Thus,
one important advantage of the proposed MoDis is computational
efficiency, compared to classical ensemble-based methods.

5.2 Algorithm Limitation — No Free Lunch
The proposed algorithm also follows the “no free lunch” theorem
[41]. Although MoDis based pseudo-labeling algorithm has time
complexity comparable to popular confidence score-based methods,
it introduces additional space complexity due to the usage of the
memory bankM to capture training dynamics. The space complex-
ity ofM is O(𝑛 |T |), where 𝑛 denotes the number of nodes in graph
and |T | represents the number of sampled epochs to constructM.
In practice, 𝑛 substantially exceeds |T |, rendering the additional
complexity to be O(|𝑛 |), linearly with the size of graph.

6 CONCLUSION
In this study, we uncover that training dynamics offer significant
insights into prediction uncertainty in graph learning. Leverag-
ing training dynamics, we proposed a novel uncertainty measure,
memory disagreement (MoDis) for pseudo-labeling, which is able
to identify both correct and informative pseudo-labeled nodes in
SSGL. This presents an alternative way to avoid the limitations of
the widely-used confidence score. The implementation of MoDis
showcases its adaptability, as evidenced by its successful application
across various graph neural networks and its superior performance
on multiple benchmark graph datasets. The enhanced correctness
and information gain of pseudo labels offered by MoDis herald a
promising future for its widespread adoption. This paper sets a new
benchmark in pseudo-labeling based SSGL.

Our future work includes three parts: (i) Developing the theoret-
ical foundations of MoDis, especially a guidance for constructing
an effective memory bank; (ii) Designing MoDis uncertainty aware
graph neural networks to deal with noise in graph data; (iii) Ex-
panding the application of MoDis from graph learning to other
domains of semi-supervised learning, such as computer vision.
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APPENDIX
This appendix consists of two sections. We describe experimental
details in the first section, and analyze number of pseudo-labeled
nodes required for semi-supervised learning in the second section.

A EXPERIMENTAL DETAILS
The following four subsections present details of the four corre-
sponding experiments in the main paper, respectively. The details
mainly include experiment protocols and hyper-parameter settings.

A.1 Details of Experiment 1
Experiment 1 is to evaluate the quality of pseudo labels given by
the proposed MoDis. We evaluate the quality from two beforemen-
tioned aspects, correctness and information gain. We adopt GCN as
base model with the same hyper-parameters in [18]. Datasets includ
Cora, Citeseer, Pubmed, CoraFull, AmazonCS, and AmazonPhoto.
We only assign 3 labeled nodes per class in training, i.e., 𝐿/𝐶 = 3.

Correctness evaluation. In this experiment, we first predict
labels for all unlabeled nodes using a pre-trained GCN model. We
then rank these predicted labels according to the three uncertainty
measures in descending order, i.e., MoDis, confidence score, and
AUM, respectively. Each ranked label sequence is further segmented
into 10 equal groups. Intuitively, predicted labels in top groups
should be prioritized as pseudo labels because they have higher
correctness than the rest. We subsequently calculate correctness
of the top 5 groups of each sequences in terms of error ratio that is
defined in the main paper. Based on the calculated correctness, we
compare the quality of pseudo labels given by the three measures,
as shown in Fig. 4 in the main paper.

Information gain evaluation.We employ model perturbation
𝜌 to assess the information gain introduced by the pseudo-labeled
nodes. This metric measures gradient changes resulting from the
inclusion of pseudo-labeled nodes, and the detailed calculation of
𝜌 is presented in the main paper.

In this experiment, we first train a GCN model until it reaches
convergence. Then, we identify and select the a pre-given number,
CPL/C, of correct pseudo labels by using the three uncertainty
measures, i.e., MoDis, confidence score, and AUM, respectively. We
subsequently retrain the GCN model using these pseudo labels and
calculate the model perturbation 𝜌 . It’s important to note that for
a meaningful evaluation of information gain, only correct pseudo
labels are utilized. The model perturbations corresponding to the
three measures are summarized in Table 2 in the main paper.

A.2 Details of Experiment 2
In experiment 2, node classification is conducted on eight bench-
mark graph datasets. To thoroughly evaluate our proposed method,
we establish scenarios with various label information in data. We
adjust the number of labeled nodes per category, denoted as 𝐿/𝐶 , to
values of 3, 5, 10, and 20 in all datasets. When 𝐿/𝐶 = 20, we follow
the original partition provided by the datasets as referenced in the
main paper. For other 𝐿/𝐶 setting, we conduct 10 random splits.
Each of these splits involves randomly selecting a subset of nodes
from the training set where 𝐿/𝐶 = 20.

Utilizing the curated data, we employ Algorithm 1 to generate
pseudo labels and use Algorithm 2 for node label prediction. For

baseline comparisons, we substitute MoDis MoDis with either the
confidence score or AUM within the respective algorithm.

Utilizing the prepared data, we employ Algorithm 1 to gener-
ate pseudo labels and use Algorithm 2 for predicting node labels.
For baseline comparisons, we substitute MoDis with either the
confidence score or AUM in the corresponding algorithm. In the
algorithms, we adopt four widely used graph neural network mod-
els as the base model, namely GCN [18], GAT [37], APPNP[11] and
GCNII [7], following the same hyper-parameter settings in their
original papers. For all methods and settings, we run the experi-
ment 10 times and report the average accuracy, are summarized in
Table 3 and 4 in the main paper.

We employ grid search to determine the optimal hyper-parameters
for both our method and baseline methods. The specific hyper-
parameter configurations can be found in Table 6, 7, 8, and 9. In
these tables:

• "Hidden num" denotes the number of neurons in the net-
work’s hidden layer;
• "No. of layers" indicates the total number of layers within
the network;
• "Learning rate" specifies the learning rate utilized;
• "Weight decay" denotes the weight decay associated with
the L2 regularization term;
• "K" indicates the number of stage in the self-training algo-
rithm;
• "P" denotes the total number of pseudo-labeled nodes used
in each category;
• "Starting epoch" signifies the training epoch at which we
start to record predictions to construct the memory bank;
• "Number of epochs" indicates the total number of training
epochs during which predictions are recorded by the mem-
ory bank;
• "𝛾" represent the temperature coefficient in the Sharpen func-
tion.

A.3 Details of Experiment 3
Experiment 3 aims to validate our proposed method on OOD (Out-
of-Distribution) nodes in a graph. In this graph learning scenario
with OOD nodes, some unlabeled nodes originate from distributions
distinct from the labeled nodes. For clarity, we categorize unlabeled
nodes that share the same distribution with labeled nodes as ID (in-
distribution) nodes, commonly known as inliers. While, unlabeled
nodes from different distributions are identified as OOD (out-of-
distribution) nodes, or outliers. There are two tasks in this OOD
experiment: (1) semi-supervised node classification for the ID nodes,
and (2) OOD nodes detection. We use classification accuracy (ACC)
to evaluate the semi-supervised node classification task, and employ
false positive rate at 95% true positive rate (FPR@95) to evaluate
the OOD nodes detection task.

We leverage OODGAT, a graph attention network specially de-
signed for OOD data, as base model in our pseudo labeling algo-
rithms, following the same hyper-parameter setting specified in
OODGAT’s original paper [32]. The experiment is conducted on
four graph datasets, Cora, AmazonComputers, AmazonPhoto, and
CoauthorCS. For every dataset, nodes are partitioned into ID classes
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and OOD classes, with the specific configurations detailed in Ta-
ble 10. We form the training set by randomly choosing three nodes
from each ID class; the validation set is composed of ten randomly
selected nodes from ID classes. All remaining nodes constitute the
test set for the OOD node detection task; the remaining nodes in
ID classes for the semi-supervised node classification task.

We trainmodel on training set that only contains ID nodes.When
selecting pseudo-labeled nodes, we consider all unlabelled nodes
that are in ID or OOD classes. It’s evident that taking OOD nodes as
pseudo-labeled nodes can introduce large misleading information
to the model. For node classification, we follow the same experi-
ment protocols as that in experiment 2. For OOD detection, we use
the attention scores generated by OODGAT to identify whether
a unlabelled node belongs to ID or OOD classes, in an unsuper-
vised manner. The hyper-parameters used in this experiment are
summarized in Table 10. In this tables:

• "Hidden num" denotes the number of neurons in the net-
work’s hidden layer;
• "No. of layers" indicates the total number of layers within
the network;
• "Learning rate" specifies the learning rate utilized;
• "Weight decay" denotes the weight decay associated with
the L2 regularization term;
• "K" indicates the number of stage in the self-training algo-
rithm;
• "P" denotes the total number of pseudo-labeled nodes used
in each category;
• "Starting epoch" signifies the training epoch at which we
start to record predictions to construct the memory bank;
• "Number of epochs" indicates the total number of training
epochs during which predictions are recorded by the mem-
ory bank;
• "𝛾" represent the temperature coefficient in the Sharpen func-
tion.

A.4 Details of Experiment 4
The memory bank serves as the foundation of our proposed method,
facilitating the capture of training dynamics. Two key hyper-parameters
govern the memory bank: the starting epoch and the number of
epochs. The starting epoch signifies the training epoch at which
we start to record predictions to construct the memory bank; the
number of epochs indicates the total number of training epochs
during which predictions are recorded by the memory bank.

To analyze the influence of these hyper-parameters on the algo-
rithm performance, we conduct a grid search on node classification
on three citation graphs, Cora, Citeseer, and Pubmed. For the start-
ing epoch, the explored values span [0, 10, 20, 50, 100], and for
the number of epochs, the range includes [1, 10, 20, 50, 100, 150,
200, 300]. We adopt the GCN as base model in our algorithms, and
training set contains only three labeled node per catergory, 𝐿/𝐶 = 3.
We follow the same experiment protocols as that in experiment 2.
The outcomes of grid search are visualized via a heatmap in Fig. 5
in the main paper.

B ANALYSIS OF NUMBER OF
PSEUDO-LABELED NODES REQUIRED

In the node classification experiments, we take a grid search for
the optimal hyper-parameters in all datasets. Notably, there was
a marked variance in the total number of pseudo-labeled nodes
(denoted by parameter P in Table 6, 7, 8, and 9), comparing across
different datasets.

We observe a correlation between the number of pseudo labels
required and the average degree of a graph. This relationship is
visualized using a scatter diagram, as illustrated in Fig. 6. In Fig. 6,
each blue point represents the characteristics of a specific dataset:
the x-axis indicates the average degree of the graphs, while the y-
axis signifies the optimal number of pseudo-labeled nodes provided
by the grid search. Notably, the y-axis is on a logarithmic scale.
This observation can be reasonably explained by noting that as the
average degree of the graph rises, the supervised information from
both labeled and pseudo-labeled nodes propagates more rapidly
through the GCN model. Consequently, there’s a reduced need
to add additional pseudo-labeled nodes to effectively spread the
valuable supervised information throughout the graph.

We further validate this hypothesis by taking a Kendall corre-
lation test between average degree of graph and the parameter P
for 𝐿/𝐶 = 3 scenarios in Table 6, 7, 8, and 9. The resulting Kendall
correlation coefficient is -0.67 with an associated p-value of 0.02.
This outcome suggests a strong negative correlation between the
parameter P and the graph’s average node degree. We will deeply
explore this interesting correlation in our future work.

Figure 6: The scatter diagram to visualize a negative correla-
tion between the number of pseudo labels required and the
average degree of a graph. Each blue point denotes the char-
acteristics of a dataset. The x-axis denotes average degree of
graphs, while the y-axis denotes number of pseudo-labeled
nodes required. The y-axis is on a logarithmic scale.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009
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Table 6: The hyper-parameters for GCN with the pseudo-labeling algorithm

Dataset Cora Citeseer Pubmed CoraFull

L/C 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20

Hidden Num 16 16 16 16 16 16 16 16 16 16 16 16 64 64 64 64
No. of layers 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Learning Rate 5E-2 5E-2 5E-2 5E-2 5E-2 5E-2 5E-2 5E-2 5E-2 5E-2 5E-2 5E-2 5E-2 5E-2 5E-2 5E-2
Weight Decay 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4

K 2 2 2 2 7 7 3 5 5 5 2 3 3 3 3 3
Starting Epoch 0 20 50 50 50 50 50 20 50 50 50 50 100 100 100 100

Number of Epochs 150 100 100 100 150 100 100 50 100 100 100 100 100 100 100 100
P 174 192 112 112 223 214 90 61 560 700 677 480 30 12 15 6
𝛾 0.1 0.1 0.01 0.01 0.9 0.6 0.1 0.4 0.01 0.01 0.01 0.01 0.1 0.1 0.1 0.1

Dataset AmazonCS AmazonPhoto CoauthorCS CoauthorPhy

L/C 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20

Hidden Num 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
No. of layers 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Learning Rate 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3
Weight Decay 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3

K 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Starting Epoch 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Number of Epochs 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
P 6 6 6 6 6 6 6 18 60 60 60 60 120 120 90 90
𝛾 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 7: The hyper-parameters for GAT with the pseudo-labeling algorithm

Dataset Cora Citeseer Pubmed CoraFull

L/C 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20

Hidden Num 8 8 8 8 8 8 8 8 8 8 8 8 32 32 32 32
No. of layers 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Learning Rate 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-2 5E-2 5E-2 5E-2
Weight Decay 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4

K 3 4 4 3 6 3 2 2 4 4 3 2 3 3 3 3
Starting Epoch 20 100 10 50 50 50 50 50 50 50 50 20 100 100 100 100

Number of Epochs 100 150 150 100 100 100 100 100 100 100 100 100 100 100 100 100
P 96 150 48 42 212 160 84 60 480 600 320 36 30 12 15 6
𝛾 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.1 0.1 0.1 0.1

Dataset AmazonCS AmazonPhoto CoauthorCS CoauthorPhy

L/C 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20
Hidden Num 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32
No. of layers 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Learning Rate 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3
Weight Decay 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3

K 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Starting Epoch 100 100 100 150 150 150 150 100 100 100 100 100 100 100 100 100

Number of Epochs 100 100 100 50 50 50 50 100 100 100 100 100 100 100 100 100
P 6 6 6 3 3 12 3 12 60 100 100 100 100 100 100 100
𝛾 0.01 0.01 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5
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Table 8: The hyper-parameters for APPNP with the pseudo-labeling algorithm

Dataset Cora Citeseer Pubmed CoraFull

L/C 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20

Hidden Num 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
No. of layers 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Learning Rate 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 5E-2 5E-2 5E-2 5E-2
Weight Decay 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4

K 5 4 3 3 2 4 3 3 3 3 2 4 3 3 3 3
Starting Epoch 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Number of Epochs 100 100 100 200 50 50 50 50 100 100 50 100 100 100 100 100
P 111 178 63 63 111 96 96 54 675 720 708 328 30 12 15 6
𝛾 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.1 0.1 0.1 0.1

Dataset AmazonCS AmazonPhoto CoauthorCS CoauthorPhy

L/C 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20

Hidden Num 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
No. of layers 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Learning Rate 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3
Weight Decay 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3 5E-3

K 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Starting Epoch 100 100 100 150 100 100 100 100 100 100 100 100 100 100 100 100

Number of Epochs 100 100 100 50 100 100 100 100 100 100 100 100 100 100 100 100
P 6 6 3 6 3 6 6 9 60 60 60 60 96 120 96 90
𝛾 0.1 0.1 0.01 0.01 0.4 0.4 0.4 0.4 0.01 0.1 0.1 0.1 0.01 0.1 0.1 0.1

Table 9: The hyper-parameters for GCNII with the pseudo-labeling algorithm

Dataset Cora Citeseer Pubmed CoraFull

L/C 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20

Hidden Num 64 64 64 64 256 256 256 256 256 256 256 256 256 256 256 256
No. of layers 64 64 64 64 32 32 32 32 16 16 16 16 32 32 32 32
Learning Rate 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 5E-2 5E-2 5E-2 5E-2
Weight Decay1 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 5E-2 5E-2 5E-2 5E-2
Weight Decay2 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4

K 5 4 3 3 2 4 3 3 3 3 2 4 3 3 3 3
Starting Epoch 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400

Number of Epochs 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
P 111 178 105 63 111 96 96 54 675 720 708 328 30 15 15 6
𝛾 0.5 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.01 0.01 0.01 0.01 0.1 0.1 0.1 0.1

Dataset AmazonCS AmazonPhoto CoauthorCS CoauthorPhy

L/C 3 5 10 20 3 5 10 20 3 5 10 20 3 5 10 20
Hidden Num 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
No. of layers 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
Learning Rate 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2
Weight Decay1 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2 1E-2
Weight Decay2 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4 5E-4

K 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Starting Epoch 400 400 400 400 150 150 150 400 400 400 400 400 400 400 400 400

Number of Epochs 100 100 100 100 350 350 350 100 100 100 100 100 100 100 100 100
P 6 6 6 6 3 3 3 12 60 60 60 60 120 120 90 90
𝛾 0.01 0.01 0.01 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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Table 10: The hyper-parameters for OODGAT with the pseudo-labeling algorithm

Dataset Cora AmazonCS AmazonPhoto CoauthorCS

ID Classes [4,2,5,6] [8,1,2,7,6] [3,4,5,2,0] [5,11,10,7,14,8,12,6]
Splits [3,10,1000] [3,10,5000] [3,10,3000] [3,10,8000]

Continuous False False False False
Weight Consistent 2 2 3 4
Weight Entropy 0.05 0.05 0.10 0.05

Weight Discrepancy 0.005 0.005 0.005 0.005
Margin 0.6 0.4 0.4 0.6
Heads 4 4 4 4
K 3 3 3 3
P 12 4 6 6

Starting Epoch 20 50 100 30
Number of Epochs 250 500 600 250

𝛾 0.3 0.1 0.01 0.3
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