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Although sparse activations are commonly seen in cortical brain circuits, the com-
putational benefits of sparse activations are not well understood for machine learn-
ing. Recent neural network Gaussian Process models have incorporated sparsity
in infinitely-wide neural network architectures, but these models result in Gram
matrices that approach the identity matrix with increasing sparsity. This collapse
of input pattern similarities in the network representation is due to the use of in-
dependent weight vectors in the models. In this work, we show how weak corre-
lations in the weights can counter this effect. Correlations in the effective weights
are introduced using a convolutional model, similar to the neural structure of lat-
eral connections in the cortex. We show how to theoretically compute the prop-
erties of infinitely-wide networks with sparse, correlated weights and with recti-
fied linear outputs. In particular, we demonstrate how the generalization perfor-
mance of these sparse networks improves by introducing these correlations. We
also show how to compute the optimal degree of correlations that result in the best-
performing deep networks.

1. Introduction
Sparse neural activations are observed in both biological and artificial neural networks. For exam-
ple, in the cortex, less than 10 % of the neurons are active at a given moment, yet cortical circuits are
involved in amazingly complex sensory andmotor computations [1]. This is true not only for mam-
malian brains but universally across the animal kingdom including the central nervous systems of
insects. To understand the computational role of sparsity, Olshausen and Field [2] used artificial
neural networks to show that introducing a sparsity-inducing regularizer, i.e. L1 penalty, gives rise
to receptive fields similar to those observed in the visual cortex. It has also been demonstrated that
sparsity increases robustness in classification tasks [3]. More recently, the presence of sparse activa-
tion has been observed in high-performance neural networks such as AlexNet, LeNet, and various
models of Transformers, even without explicit regularization for sparsity [4–9].

The sparsity in these neural networkmodels is induced by a rectified linear unit (ReLU)with a large
negative pre-activation bias that is implicitly learnedwhen optimizing the error performance. In re-
cent work investigating the emergence of sparsity in Transformer architectures, Li et al. [9] proved
that single-step gradient descent from random initial weights increases the threshold of rectification
by ReLU in a single hidden layer neural network, thereby increasing the sparsity. Other theoretical
works [7, 10] prove that sparsely active neural networks can be learned to have an approximation
power comparable to that of the denser counterparts, providing computationally efficient alterna-
tives to the dense models.

Interestingly, harnessing the power of sparsity does not require tuning the sparse representation
to the input data. Using infinitely wide random neural networks with rectified units, Babadi and
Sompolinsky [3], Cho and Saul [11], Chun and Lee [12], Xie et al. [13] show wide-ranging per-
formance benefits of data-independent sparsity. In particular, sparse and shallow networks are
observed to have performances that are comparable to, if not better than, dense and deep counter-
parts. Although the widths of these networks are assumed to be infinitely wide to aid theoretical
computation, they are shown to well-approximate the behavior of large finite networks. However,
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Figure 1: Model for correlatedweights. (a) The correlatedweights form anm-dependent stationary
sequence. (b) Them-dependentweightmatrixW factorizes into i.i.d. randommatrixU andbanded
Toeplitz matrix C, forming an intermediate convolutional layer. The models in (a) and (b) are
equivalent. In NNGP, these weights are never explicitly sampled.

in these models, sparsity makes the neural representations of any pair of inputs more dissimilar, an
effect that becomes amplified with more hidden layers. Therefore, sparse random models do not
perform well with deep architectures [12]. Currently, there is little theoretical explanation of how
deep networkmodels benefit from sparsity. Here, we aim to bridge this gap by introducing a sparse
model with weight correlations.

Inspired by the convolutional structure of cortical circuits, we introduce amechanism for countering
the dissimilating effect of sparsity by correlating the random weights. In the literature on the neu-
ral network Gaussian process (NNGP) and the mean-field theory of neural networks, the weights
have been typically assumed to be independent so understanding the effect of correlated weights is
currently limited. Most relevantly, however, Martí et al. [14] shows that symmetrically correlated
weights can slow down dynamics in random recurrent networks, using a correlation and model
structure different from the one proposed here.

1.1. Summary of contribution
We present a novel NNGP kernel formulation for correlated weights and empirically demonstrate
that correlated weights enhance generalization performance in the sparse regime. This enhance-
ment in performance is theoretically elucidated by leveraging recent advancements in generaliza-
tion theory [15]. Additionally, we introduce a formula for calculating the optimalweight correlation
at a given sparsity level.

2. Review of sparse NNGP kernel with independent weights
Here we consider ReLU-induced sparsity in a random neural network [12, 13], where the post-
activation of ith neuron of an intermediate layer l is given by

xl
j =

[
hl
j − b(xl−1)

]
+

hl
j =

nl−1∑
i

wl−1
ji xl−1

i (1)

wherewji is a weight, and b(xl−1) is the bias that depends on the post-activation values of the previ-
ous layer. [·]+ denotes linear rectification. We refer to hl as the pre-activation. The first hidden layer
l = 1 value is directly dependent on the input vector x, whose elements are denoted xi (dropped
the 0 superscript that indicates the layer number):

xl=1
j =

[
hl=1
j − b(x)

]
+

h1=1
j =

nl=0∑
i

wl=0
ji xi (2)

An output neuron is a linear readout, defined as hL+1
j , where L is the number of hidden layers. The

bias terms in all layers are designed to be dependent on the activities of the previous layer, such that
only a fixed fraction f of the neurons in layer l is active. This is similar to the adaptive bias used in
sparse Top-k Transformer models [9, 10].
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We investigate the network in the infinite-width regime, where we take the number of neurons in
the previous layer (nl−1) to infinity. There are a couple of benefits of studying this limit: (1) the
posterior (Bayes optimal)w becomes data-independent, (2) Due to the central limit theorem (CLT),
it is tractable to compute the similarity, i.e. kernel, of neural representations of a pair of inputs. The
kernel can be used to train the model.

From here on, we investigate a statistics of a single neuron in an intermediate layer, so we drop
the subscript j from the notations presented in Eqn. 1 for brevity. At the infinite width limit, hl is
always a Gaussian distribution, if wi and xl−1

i are independent across all i’s, regardless of the shape
of the distributions. Therefore, xl is a rectified Gaussian distribution. Note that the bias b(xl−1) is a
deterministic positive value that shifts the mean of hl to a negative value (Eqn. 1). In order to make
hl to be positive with probability f , the bias should be

b(xl−1) = σh(x
l−1)τf τf =

√
2erf−1(1− 2f) (3)

where σh(x
l−1) is the standard deviation of hl which is dependent on xl−1. With a slight abuse

of notation, b(xl−1) will be denoted just bl and σh(x
l−1) as σh with the dependence on xl implied.

erf−1(·) is the inverse error function.

The similarity between neural representations (post-activations) at layer l of two inputs p and q
averaged over the random weights is known as the NNGP kernel Kl(x(p),x(q)), where x(p) is a
vector notation of the input sample p. The formula of the kernel is given by

Kl(x(p),x(q)) :=

〈[
hl,(p) − bl

]
+

[
hl,(q) − bl

]
+

〉
P (hl,(p),hl,(q))

(4)

where hl,(p) is the pre-activation at layer l for input sample p. ⟨·⟩P (hl,(p),hl,(q)) is the average over
the joint distribution over hl,(p) and hl,(q). Analogous to the NNGP (post-activation) kernel, a
pre-activation kernel Kl

h computes the similarity of pre-activations of two inputs: Kl
h(x

(p),x(q)) =
Cov

[
hl,(p), hl,(q)

]
. For the sparse NNGP kernel, the relationship between Kl and and Kl

h is given
by [12]:

Kl(x(p),x(q)) =
1

2π

√
Kl

h(x
(p),x(p))Kl

h(x
(q),x(q))g

(
θl, f

)
(5)

g
(
θl, f

)
= 2I

(
θl | τf

)
− τf

√
2π(1 + cos θl) (6)

I(θ | τf ) =
∫ π−θ

2

0

exp

(
−

τ2f

2 sin2(ϕ0)

)
2 sin (ϕ0 + θ) sin(ϕ0)

+ τf (sin (ϕ0 + θ) + sin(ϕ0))

√
π

2
erf
(

τf√
2 sin(ϕ0)

)
dϕ0 (7)

I(θ | τf ) can be efficiently computed with numerical integration. In Eqn.5,
√
Kl

h(x
(p),x(p)) is ge-

ometrically analogous to a length of the pre-activation for input p at layer l. Typically, this is not
an interesting part of a kernel, since the lengths are the same for length-normalized inputs. The
part that gives the rich characteristics of the kernel is a complicated function g(·, ·), which takes the
activation level f , and the angle θl between the two pre-activation representations at layer l, and
returns a scalar. Formally, the angle is defined as

θl = arccos
Kl

h(x
(p),x(q))√

Kl
h(x

(p),x(p))Kl
h(x

(q),x(q))
(8)

The pre-activation kernel is, in turn, dependent on the post-activation kernel of the previous layer.

Kl
h(x

(p),x(q)) = σ2Kl−1(x(p),x(q)) (9)
where σ is the standard deviation of the weights. For the input layer, l = 0, the post-activation
kernelKl=0 is simply a dot product between a pair of input vectors. To train the NNGP, we use the
kernel regression without the ridge factor. This is equivalent to training only the last layer, which is
optimal in the Bayesian neural network formulation at the infinite width limit.
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3. Weight correlations
In sparse networks, the neural representations of a pair of inputs rapidly become more and more
dissimilar, i.e. θl increases, over layers, which loses the information of the inputs [12]. To counter
this effect, we introduce a weak correlation between the random weights that still allow the CLT.

3.1. Central limit theorem form-dependent stationary sequences
Here we review the CLT for m-dependent stationary sequence [16]. Consider a set
{a1, . . . , ai, . . . , an} of random variables with mean 0 and variance σ2

a. The set is called an m-
dependent stationary sequence when any ai and aj are independent if and only if |i − j| > m.
Define a sum h = a1 + · · · + an. The CLT for m-dependent stationary sequences states that the
distribution of h converges to a normal distribution with 0 mean and standard deviation σa

√
n as

n → ∞. This illustrates that, despite the sequence having dependencies up to m terms apart, the
normalized sum h will still approach a Gaussian distribution. It is generally assumed that m is a
finite integer. In the context of our neural network, ai = wixi is the summand for computing the
pre-activation h (dropping the superscripts for brevity). To create an m-dependent sequence of ai,
we require that the weights wi are m-dependent (Figure 1a).

3.2. Convolutional layer interpretation
Here we highlight that having m-dependent weights is equivalent to having an intermediate con-
volutional layer. Consider a weight matrix W whose each row is composed of an m-dependent
sequence of random weights. The pre-activation vector in layer l + 1 is then given by hl+1 = Wxl.
Such amatrixW can be factorized into i.i.d. randomweightsmatrixU and a banded Toeplitzmatrix
Cwith value 1’s on the band: W = UC. The linear operation byW on xl is therefore equivalent to

hl+1 = Uxl+0.5 xl+0.5 = Cxl (10)

The Toeplitz matrix C carries out the linear convolution over neurons in layer l. The convolutional
filter locally sums overm+1 neurons. We thereby show that havingm-dependent weights is equiv-
alent to having a linear intermediate convolutional layer l+0.5 between the layer l and l+1, followed
by a fully connected layer with i.i.d. random weights (Figure 1b). The convolutional operation is
analogous to the local lateral connection to neighboring neurons in the cortex, whereas the random
i.i.d. weights are analogous to the long-range projections in the cortex.

3.3. Kernel computation
Computing the post-activation kernelKl from the pre-activation kernelKl

h remains the same as the
independent weights case (Eqn. 5). The only difference is in computing the pre-activation kernel
Kl

h from the post-activation kernel of the previous layer Kl−1 (for the independent case we had
Eqn. 9). The more general form of Eqn. 9 is given by

Kl
h(x

(p),x(q)) = σ2Kl−1(x(p),x(q)) + σ2m
1

2π

√
Kl−1

h (x(p),x(p))Kl−1
h (x(q),x(q))g

(
θ =

π

2
, f
)

(11)

The derivation is presented in Appendix B. Equivalently, substituting Kl−1 using Eqn. 5, we have

Kl
h(x

(p),x(q)) =
σ2

2π

√
Kl−1

h (x(p),x(p))Kl−1
h (x(q),x(q))

[
g
(
θl−1, f

)
+mg

(π
2
, f
)]

(12)

When the weights are independent (m = 0), Eqn. 11 reverts to Eqn. 9 by eliminating the second
term. Note that the value of g

(
π
2 , f

)
in the second term is a constant for a given f . Therefore, if we

assume
√
Kl−1

h (x(p),x(p)) is the same for all inputs p’s, which is the case for normalized inputs, the
second term of Eqn. 11 is input-independent but may change over layers. This is similar to having
a noisy bias in the pre-activation, although the bias noise would stay constant across the layers. For
the noisy bias case, the second term in Eqn. 11 would be replaced with a variance of the bias noise.
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Figure 2: Experimental observations of the simplest network model with sparse activation and cor-
relatedweights. (a) 2-hidden layer neural network diagram. 50% confidence intervals across 8 trials
of random training sets are shown with shades. (b) Results on MNIST (training set size: P = 512,
test set size: 2P ). Top: The median (over 8 trials) generalization performance of the model with
varying degrees of activation levels f and correlation levels m. The mean squared error (MSE) on
the test set is reported. Bottom: To compare the performance curves, the performance curve of the
highest weight correlationm = 20 is subtracted from the rest of the curves. Where the difference is
positive, m = 20 outperformed, and where negative, m = 20 underperformed. Generally, m = 20
outperforms in a sparser regime. Solid lines: median over 8 trials. 50% confidence intervals are
shown with shades. (c) Results on Fashion-MNIST dataset. (d) Results on CIFAR10. More are
shown in Appendix E

.

Note that we need a deterministic bias in order to induce sparsity, so inducing the noisy bias-like
effect using the correlated weights is a viable alternative to actually having a noisy bias. In a kernel
formulation for the more general form of correlated weights, the effect of correlation becomes a lot
more complicated than that of the noisy bias (see Appendix B).

4. Numerical experiments

The simplest network to investigate the effect of correlated weights is the network with 2 hidden
layers, with the correlated weights between the first and the second hidden layers (Fig. 2a). We do
not want the correlated weights between the input and the first hidden layer, since having them is
equivalent to simply replacing the input vectors with blurred (i.e. convolved with a convolutional
kernel with value 1’s) versions of the input vectors. Also, the aim of this paper is to investigate
how the correlated weights counter the random sparse activities in the presynaptic neurons. As for
the readout weights, we do not consider the weight correlation, since the readout weights will be
trained without the ridge factor (i.e. L2 regularizer), thereby ignoring the prior over the readout
weights.

We trained the 2-hidden layer model with varying degrees of weight correlations m and activation
levels f on the MNIST, Fashion-MINST, and CIFAR10 datasets [17–19] (Figure 2b-d). The training
is performed by regressing on the 10-dimensional one-hot vectors using kernel ridgeless regression.
Although the datasets were meant for the classification, it has been widely used for benchmarking
regression performances of NNGPmodels [15, 20]. We consistently observe that higher weight cor-
relation, i.e. largerm, improves generalization performance in the sparser regime, but degrades the
performance in the denser regime. This observation is consistent for all tested datasets of varying
numbers of training set sizesP , with very little variation across 8 trials of randomly selected training
samples (see Appendix E for comprehensive results). Across the paper, the generalization perfor-
mances were measured on test sets twice the sizes of the training sets. In the case of Fashion-MINST
and CIFAR10, the sparse models with correlated weights have the best performances.
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Figure 3: Generalization theory of the 2-hidden layer NNGP models with correlated weights and
sparse activation. (a)Dottedmarkers: empirically obtained generalization error on two-class (digits
3 and 5) MNIST dataset. Solid lines: theoretically obtained generalization errors. (b) The perfor-
mance curve of the m = 20 case subtracted from the other curves. Positive: m = 20 outperforms.
Negative: m = 20 underperforms. Dotted: empirical. Solid line: theory. (c) Blue: themedian target
function spectra v2ρ for different model configurations. Black: themedianmodal error spectraEρ for
different model configurations. Shades: 50% confidence intervals. (d) Same as (c) but on different
axes scales. (e)Modal error spectra for two different correlation levels. (f) Same as (e) but for eigen
spectra. (g) Participation ratios of modal error spectra for all models. (h) Same as (g) but for eigen
spectra.

5. Generalization performance analysis
The theoretical explanation of the experimental observation is twofold. First, using the results by
Canatar et al. [15], we theoretically review that kernel Gram matrix with moderately low dimen-
sionality has a high generalization performance, and empirically show that the weight correlation
yields a low-dimensional kernel Gram matrix. This is in contrast to the observation that sparsity
yields a high-dimensional Grammatrix [12]. Second, we establish a theoretical explanation of why
the weight correlation yields a low-dimensional kernel Gram matrix. In conjunction, these two
parts presented in the next two sections (5.1,5.2) complete the theoretical explanation of the con-
nection between the weight correlation and improvement in the generalization performance in the
sparse regime. In the final third section 5.3, we derive an optimal weight correlation level m (for
a given activation level f) that balances the dimensionality-increasing force of the sparsity and the
dimensionality-decreasing force of the weight correlation. We then show that the best generaliza-
tion performance is attained at this balance in deep neural networks.

5.1. Moderately low-dimensional kernel Gram matrix improves the
generalization performance

We start by reviewing the theory of the generalization performance of kernel regression by Canatar
et al. [15]. Let ηρ and ϕρ(·) be the ρth eigenvalue and the eigenfunctions of a kernel given by a
Mercer decomposition. If the target function f̄ : Rn0 → R lives in a reproducing kernelHilbert space
(RKHS) given by the kernel, then the target function can be expressed in terms of the coordinates
(vρ) on the eigenfunctions: f̄(x) =

∑N−1
ρ=0 vρϕρ(x)whereN is the number of non-zero eigenvalues.

At the large training sample size and large N limit, the expected generalization error Eg computed
via replica trick is given as a sum of modal errors Eρ weighted by the target powers v2ρ.

Eg =
∑
ρ

v2ρEρ (13)
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Eρ =
1

1− γ

κ2

(κ+ Pηρ)2
γ =

∑
ρ

Pη2ρ

(κ+ Pηρ)
2 κ =

∑
ρ

κηρ
κ+ Pηρ

(14)

where P is the size of the training set. Note thatEρ is independent of the target function but depen-
dent on the kernel which is encapsulated by the eigenspectrum (set of ηρ). Also, the target function
spectrum (set of v2ρ) is not only dependent on the target function itself, but also on the kernel. There-
fore, when comparing the generalization performances of kernels for the same target function, one
needs to, in principle, compare both the modal error spectra (set of Eρ) and target function spectra.

We observe that the theory predicts the generalization performances of NNGP kernels with varying
degrees of sparsity and weight correlation (Figure 3ab). As an illustrative example, we used the
MNIST dataset with two classes (digits 3 and 5) and the target outputs are scalar values −1 and 1
for labeling the two digits.

Agreeing with the observation made in Chun and Lee [12], the target function spectrum does not
differ much across different kernels, compared to the large variation in the modal error spectrum
(compare the confidence intervals of modal error and target function spectra in Figure 3cd). There-
fore, we only need to compare the change in the modal error spectrum to explain the difference in
the generalization performance between the kernels. It is shown in Figure 3e that for a fixed sparsity
value f = 0.0365, a higher weight correlation leads to a steeper modal error spectrum. At this spar-
sity level, the higher weight correlation improves the performance. Since the generalization error
Eg is the sum of Eρ weighted by the target function powers v2ρ, it is beneficial to have a small value
of Eρ at ρ’s where the weights for the sum, i.e. v2ρ, is large. This is achieved by having a steep modal
error spectrum. However, when the modal error spectrum is too steep, the Eρ at the rest of the ρ
may become too large, contributing to an increase in the generalization error.

We observe that a steepermodal error spectrum is attainedwhen the eigenspectrum is steep, i.e. the
kernel has low effective dimensionality (Figure 3f). This relationship is theoretically supported in
Chun and Lee [12]. To quantify the change in the steepness of themodal error spectra and the eigen-
spectra, we compute the participation ratios of the spectra, given by r({ai}) = (

∑
i ai)

2/(
∑

i a
2
i ),

where {ai} denotes a set whose elements are some values ai for some i’s. A small participation ra-
tio indicates a steeper spectrum. Figure 3gh shows that the higher weight-correlations have smaller
participation ratios for both modal error- and eigen-spectra (the red curve is the lowest). When the
fraction of active neurons is large (large f ; low sparsity), the participation ratio is very low, indicat-
ing a very steep modal error spectrum. As noted earlier, an excessively steep modal error spectrum
can increase Eg , which explains the increase in Eg at the dense regime (see f > 0.2 in Figure 3a).
On the other hand, in the sparser regime where the eigenspectra are moderately steep, i.e. moder-
ately low-dimensional, the higher weight correlation further lowers the dimensionality, improving
the generalization performance, assuming the correlation is not excessive.

5.2. Weight correlation yields low-dimensional kernel Gram matrix

Thus far, we have observed that a higher weight correlation lowers the rank of the kernel Gram
matrix, which helps with improving the generalization performance in the sparse regime. In this
section, we explain how the higher weight correlation lowers the rank of the kernel Grammatrix. To
this end, we return our attention to the recursive formula for computing the pre-activation kernel
Eqn. 12. Note that for understanding the dimensionality of the kernel over layers, one can gain
practically the same insight from studying either the post-activation kernel or the pre-activation
kernel, since these two are related by a monotonically increasing function g(·, f).

We can ignore the change in the length of pre-activation, i.e.
√

Kl−1
h (x(p),x(p)), over layers, by

choosing a standard deviation of theweights that maintains the length constant in all layers [21, 22].
Wedenote this critical standard deviation as σ∗ (seeAppendix C for derivation). With σ∗, the length
of pre-activation at all layers is σ∗∥x∥where ∥x∥ is the length of an input vector. In this case, we can
divide both sides of Eqn. 12 by

√
Kh(x(p),x(p))Kh(x(q),x(q)) and obtain the following dynamical
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Figure 4: Dynamics of the NNGP kernels with sparsity and correlatedweights. (a) The relationship
between cl and cl+1 for different levels of f for m = 0. The intersection between the line of unity
(black) and the curves are the fixed points. (b) Same as (a) but with different levels of m for f =
0.07. (c) Top row: the dynamics of cl over layers. The 1st (left-most) column: the raw cl values.
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equation:

cl =
σ∗2

2π

[
g
(
arccos cl−1, f

)
+mg

(π
2
, f
)]

(15)

where cl is the pre-activation correlation of two inputs: cl := Kl
h(x

(p),x(q))√
Kh(x(p),x(p))Kh(x(q),x(q))

= cos θl. If

the input vectors lie on a unit ball, cl is just a scaled version of Kl
h. The iterative equation of cl is

visualized in Figure 4ab for different values of f and m. Note that the fixed points of the iterative
equation where cl = cl−1 are visualized in Figure 4ab by the intersections of the function and the
line of unity. It is immediately noticeable that one of the fixed points is always at cl = 1 (Figure
4ab), which corresponds to θl = 0. As a trivial example, this means that cl between two identical
inputs, i.e. normalized length of the input, stays constant throughout all layers.

It is more interesting to study the stability of the fixed point cl = 1. When the fixed point is unstable
(the slope at cl = 1 is greater than 1), such as in the cases of f < 0.5 m = 0 in Figure 4a, a pair
of inputs vectors with cl=0 < 1 will have cl value decrease away from 1 towards a stable fixed
point cl < 1. This means that any pair of neural representations dissimilates over layers for such
kernels. These kernels are referred to as being in a disordered regime [20–22]. For kernels with
i.i.d. weights (m = 0), only the dense f = 0.5 kernel has slope 1 at cl = 1 and all sparser f < 0.5
kernels are in the disordered regime (Figure 4a). However, with an introduction of the correlated
weights, one can bring the sparse model into the ordered regime where the slope is less than 1 at
cl = 1. Figure 4b shows an example case where a sparse kernel with f = 0.07 moves from the
disordered regime to the ordered regime with a large weight correlation. In summary, the sparsity
always dissimilates the neural representations whereas the weight correlation always assimilates
the neural representations. This means that weight correlation makes the kernel Grammatrix more
uniform over the layers, making the Gram matrix have low dimensionality.

5.3. Optimal weight correlation

Here we present the formula for optimal weight correlation as a function of sparsity f . This is
based on the observations that the kernels along the phase boundary of the disordered and ordered
regimes have the best performance in deep NNGP kernels [20]. The optimal weight correlationm∗
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Figure 5: Empirical generalization performances of the deeper networks (L=17) on (a) MNIST, (b)
Fashion-MNIST and (c) CIFAR10 datasets. Grayscale values report the MSEs on the test dataset.
Red line is the phase boundary that determines the theoretical optimal weight correlation degree
m∗ as the function sparsity f . Above the boundary is the ordered regime, and below the boundary
is the disordered regime.

that puts a kernel with sparsity f in the phase boundary (dcl+1

dcl
= 1) is given by

m∗(f) =

d
dcg(arccos c, f)

∣∣∣
c=1

− g(0, f)

g
(
π
2 , f

) (16)

Computing the derivative is non-trivial (see Appendix D for the full formula).

The values of cl as the function of the angle θ0 between a pair of input vectors are shown in the
first column of Figure 4c. The kernel with f = 0.5 and m∗ = 0 (Figure 4c top) is in the boundary
of the disordered and ordered regimes as stated earlier. As expected, cl values converge to 1 albeit
slowly. The same is true for the kernel with f = 0.07 andm∗ = 47 (Figure 4c bottom) which is also
in the boundary. However, the kernel in the disordered regime (Figure 4c middle) has cl values
converging to cl ≪ 1. It is not immediately obvious that the boundary case kernels are said to have
optimal performances when the kernel values assimilate.

With σ∗ and the unit ball input assumption, cl is a scaled version ofKl
h and a scaled-shifted version

ofKl−1. It has been empirically and theoretically shown that the scale and shift ofKl−1 typically do
not affect the generalization performance, and it is the shape ofKl−1 thatmatters [12, 15]. Therefore,
we can normalize the cl by scaling and shifting such that the normalized cl always ranges from 0
to 1. This helps us to visualize the change in the shape of cl that matters to the generalization
performance (Figure 4c 2nd column). The second column of Figure 4c shows that the boundary case
kernels (top, bottom) maintain the shape of cl over layers, without much difference between layers.
On the other hand, the kernel in the disordered regime (middle) loses its shape rapidly over layers,
quickly converging to the shape of the Dirac delta function. For the kernel in the ordered regime, the
cl values converge too quickly to 1, bringing numerical instability when training at deeper layers.
Therefore, only the kernels on the boundary can maintain high performance in a deeper layers.

Through numerical experiments, we confirm our theory (Figure 5). A deep NNGP with 17 hidden
layers (L = 17) has the best performance at the phase boundary m∗(f) given by Eqn. 16 (red line
in Figure 5). The results from NNGP’s of different depths are shown in Appendix G.

6. Discussion
There is much discussion about why sparse networks are universally observed along with their
computational benefits. In this work, we introduce a mechanism for correlated weights and study
its effect on the performance of infinitely-wide sparse neural networks. We show that both theoreti-
cally and empirically, the correlated weights increase generalization performance in sparse random
neural networks. We also show how to compute the optimal correlation level that gives the best-
performing kernel in deep and sparse random networks. To this end, we utilize the recent theoret-
ical results on kernel regression [12, 15] to explain why these networks perform the best across the
range of hyperparameters. Future work will investigate more sophisticated forms of correlations
and compare their performance across a range of neural network architectures.
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A. Code Availability
The codes for our computational methods and figure generation are available at: https://github.
com/badooki/Sparse_and_Correlated/.

B. Generalized correlated weights kernel
Consider a random correlated matrixW constructed by convolving independent randommatrixU
with a constant filter matrix V of size zh × zw where zh and zw are odd numbers. The resulting
element of W is given as

wi,j =

zw∑
β=1

zh∑
α=1

U
i− zh+1

2 +α,j− zw+1
2 +β

Vα,β

The covariance between two arbitrary elements wij and wkl is given by

Cov [wi,j , wk,l]

=

{
Var [u]

∑zw−|l−j|
β=1

∑zh−|k−i|
α=1 Vα,βV|k−i|+α,|l−j|+β (|k − i| < zh) ∧ (|l − j| < zw)

0 otherwise
(17)

where Var [u] is the variance of the elements of U.

A special case of this formulation is where V is of rank 1. If V = pq⊤,

W = PUQ

whereP andQ are bandmatrices with bandwidths zh−1
2 and zw−1

2 respectively where the non-zero
elements are centered at the diagonals of the matrices. For each row ofP, the non-zero elements are
given by p⊤ with their orders preserved, and the same for Q. As a linear operator, W takes input
x, convolve it with q, multiplies the resulting vector with a randommatrixU, and finally convolves
the resulting vector with p.

IfV is a matrix with all elements value 1, that corresponds to the rank-1 case with p = 1 and q = 1.
In this case, the formula for the covariance is simplified to

Cov [wi,j , wk,l] = Var [u] (zh −min (|k − i| , zh)) (zw −min (|l − j| , zw))
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Tomaintain V ar[wij ] =
σ2

N , we need to choose the variance of u to be σ2

zhzwN , whereN is the number
of neurons in the previous layer. The rescaled covariance is

Cov [wi,j , wk,l] =
σ2

zhzwN
(zh −min (|k − i| , zh)) (zw −min (|l − j| , zw))

The weight matrix W has m-dependent sequence of weights in both row and column, where m ≡
zw − 1 = zh − 1. We call it a doubly m-dependent matrix.

B.1. Correlated neurons as the result of the correlated weights
Here we show that the doublym-dependent zero-mean weight matrix results inm-dependent out-
put neurons regardless of the statistics of the input.

hi =
∑
j

wijxj

Cov[hi, hk] =
∑
j

Cov[wijxj , wkjxj ] +
∑
j ̸=l

Cov[wijxj , wklxl] (18)

=
∑
j

E[wijxjwkjxj ]− E[wijxj ]E[wkjxj ] +
∑
j ̸=l

E[wijxjwklxl]− E[wijxj ]E[wklxl]

(19)

Assuming that wij and xj are independent from each other and E[wij ] = 0,

Cov[hi, hk] =
∑
j

Cov[wijwkj ]E[x2
j ] +

∑
j ̸=l

Cov[wijwkl]E[xjxl]

Acknowledging the fact that W is doubly m-dependent, and assuming x is a stationaty m-
dependent sequence,

Cov[hi, hk] = NCov[wijwkj ]E[x2] + 2N

m∑
l=1

Cov[wi0wkl]E[x0xl]

It is evident that h is a stationarym-dependent sequence.

B.2. Summary on the pre-activation correlations

For deep neural network, the post-activation of cell j in layer l for stimulus p is denoted x
(p)l
j , and

the pre-activation is denoted h
(p)l
j . The model is therefore written as

x
(p)l
j = ϕ(h

(p)l
j − b)

h
(p)l
j =

∑
i

wji · x(p)l−1
i

The within-cell correlation is

Cov[h(p)l, h(q)l] = σ2E[x(p)l−1x(q)l−1] + 2N

m∑
g=1

Cov[wi0, wig]E[x
(p)l−1
0 x(q)l−1

g ]

The inter-cell correlation is

Cov[h(p)l
i , h

(q)l
k ] = NCov[wij , wkj ]E[x(p)l−1x(q)l−1] + 2N

m∑
g=1

Cov[wi0, wkg]E[x
(p)l−1
0 x(q)l−1

g ]

where
Cov[wij , wkl] =

σ2

zhzwN
(zh −min (|i− k| , zh)) (zw −min (|j − l| , zw))
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and z = m+ 1. In summary, after some clean-up, the above is written as the following.

The within-cell pre-activation correlation is

Cov[h(p)l, h(q)l] = σ2E[x(p)l−1x(q)l−1] + 2
σ2

zhzw

m∑
g=1

fi0igE[x
(p)l−1
0 x(q)l−1

g ]

The inter-cell pre-activation correlation is

Cov[h(p)l
i , h

(q)l
k ] =

σ2

zhzw
fijkjE[x(p)l−1x(q)l−1] + 2

σ2

zhzw

m∑
g=1

fi0kgE[x
(p)l−1
0 x(q)l−1

g ]

where
fijkl = (zh −min (|i− k| , zh)) (zw −min (|j − l| , zw))

z = m+ 1

B.3. Post-activation correlations

Let x(p) be the input vector for a sample p, and x(p)l be the activation in layer l for the same sample.
The within-cell post-activation kernel Kl(x(p),x(q)) = E[x(p)lx(q)l] and inter-cell post-activation
kernel Kl

ik(x
(p),x(q)) = E[x

(p)l
i x

(q)l
k ] in layer l can be written in terms of the pre-activation kernels

in layer l, for example, by using the sparse NNGP formula.

The within-cell post-activation kernel is

Kl(x(p),x(q)) =
1

2π

√
Kl

h(x
(p),x(p))Kl

h(x
(q),x(q))

(
2I
(
θl | τ

)
− τ

√
2π(1 + cos θl)

)

θl = arccos
Kl

h(x
(p),x(q))√

Kl
h(x

(p),x(p))Kl
h(x

(q),x(q))

where I(·|·) is defined in themain text and τ is the same as τf defined in themain text. The inter-cell
post-activation kernel is

Kl
ik(x

(p),x(q)) =
1

2π

√
Kl

h(x
(p), x(p))Kl

h(x
(q), x(q))

(
2I
(
θl(ik) | τ

)
− τ

√
2π(1 + cos θl(ik))

)

θl(ik) = arccos
Kl

h(ik)(x
(p),x(q))√

Kl
h(x

(p),x(p))Kl
h(x

(q),x(q))

B.4. From the input layer to the first hidden layer

In deep NNGP, we assume independent weights for W from the input layer to the first hidden
layer. However, in case one wants to have dependent weights for thatW, the following shows how
to compute the first hidden layer kernel.

Kl=1
h(ik)(x

(p),x(q)) =
∑
j,l

Cov[wijx
(p)
j , wklx

(q)
l ] (20)

=
∑
j,l

x
(p)
j x

(q)
l Cov[wij , wkl] =

σ2

zhzwN

∑
j,l

fijklx
(p)
j x

(q)
l (21)
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B.5. No correlation across post-synaptic neurons zh = 1, zw > 1

The weight correlation discussed in the main text is equivalent to the zh = 1 case, and therefore
Kl

h(ik)(x
(p),x(q)) = 0. Then fi0ig = zw −min (|0− g| , zw) = zw − g. This means we always have

θl(ik) = arccos(0) =
π

2

. Since the pre-activations of the post-synaptic neurons are independent (Kl
h(ik)(x

(p),x(q)) = 0),
the post-activations are also independent. This means that the inter-cell post-activation kernel is
always the following for any pair of post-synaptic neurons.

Kl
ik(x

(p),x(q)) =
1

2π

√
Kl

h(x
(p),x(p))Kl

h(x
(q),x(q))

(
2I
(π
2
| τ
)
− τ

√
2π(1 + cos

π

2
)
)

We obtain the above by plugging θl(ik) =
π
2 into the inter-cell post-activation kernel formula derived

earlier.

Nowderive the formula for the pre-activation kernel. Startwith thewithin-cell pre-activation kernel
formula derived earlier.

Kl+1
h (x(p),x(q)) = σ2Kl(x(p),x(q)) + 2

σ2

zhzw

m∑
g=1

fi0igK
l
0g(x

(p),x(q)) (22)

= σ2Kl(x(p),x(q)) + 2
σ2

zhzw
Kl

0g(x
(p),x(q))

m∑
g=1

(zw − g) (23)

= σ2Kl(x(p),x(q)) + σ2mKl
0g(x

(p),x(q)) (24)

By expanding the formula for Kl(x(p),x(q)) and Kl
0g(x

(p),x(q)). Now we get a formula for the
within-cell pre-activation kernel in terms of the within-cell pre-activation kernel of the previous
layer.

Kl+1
h (x(p),x(q)) = σ2 1

2π

√
Kl

h(x
(p),x(p))Kl

h(x
(q),x(q))

×
[(

2I
(
θl | τ

)
− τ

√
2π(1 + cos θl)

)
+m

(
2I
(π
2
| τ
)
− τ

√
2π
)]

(25)

In fact, wedonot need to compute the inter-cell kernels (for both pre-activation andpost-activation).

Since

g
(
θl, f

)
= 2I

(
θl | τ

)
− τ

√
2π(1 + cos θl)

where τ =
√
2erf−1(1− 2f), we get the expression shown in the main text

Kl
h(x

(p),x(q)) =
σ2

2π

√
Kl−1

h (x(p),x(p))Kl−1
h (x(q),x(q))

[
g
(
θl−1, f

)
+mg

(π
2
, f
)]

B.6. No correlation across pre-synaptic neurons zw = 1, zh > 1

When zw = 1, the independent randomness across the synaptic weights connected to one post-
synaptic neuron and all pre-synaptic neuronsmakes the kernel computation identical to the regular
independent weights NNGP kernel. The post-synaptic neurons become correlated due to zh > 1,
but this property does not have any effect on computing the activities of the next layer, since the
independentweights across the rowofW erases the correlated properties of the neurons. Therefore,
the resulting NNGP kernels are identical to the i.i.d. random weights case.
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C. Deviation of σ∗

Wewant to find theweight variation σ∗2 thatmakes the neural lengths
√
Kl(x(p),x(p)) to stay identi-

cal across layers. This is equivalent to requiring the pre-activation activation length to stay identical.

Kl+1
h (x(p),x(p))

Kl
h(x

(p),x(p))
= 1

By dividing both sides of the equation for the m-dependent sparse pre-activation kernel (Eqn. 25)
with

√
Kl

h(x
(p),x(p))Kl

h(x
(q),x(q)) and setting p = q, we get the following equation:

Kl+1
h (x(p),x(p))

Kl
h(x

(p),x(p))
=

σ∗2

2π

[(
2I (0 | τ)− 2τ

√
2π
)
+m

(
2I
(π
2
| τ
)
− τ

√
2π
)]

Since we require the above to equal to 1, we have

σ∗2

2π

[(
2I (0 | τ)− 2τ

√
2π
)
+m

(
2I
(π
2
| τ
)
− τ

√
2π
)]

= 1

By rearranging the terms, we obtain

σ∗ =

√
2π

2I (0 | τ)− 2τ
√
2π +m

(
2I
(
π
2 | τ

)
− τ

√
2π
) (26)

or equivalently,

σ∗ =

√
2π

g (0, f) +mg
(
π
2 , f

)
D. Derivation of m∗

By dividing both sides of the equation for the m-dependent sparse pre-activation kernel (Eqn. 25)
with

√
Kl

h(x
(p),x(p))Kl

h(x
(q),x(q)) , we have

Kl+1
h (x(p),x(q))√

Kl
h(x

(p),x(p))Kl
h(x

(q),x(q))
=

σ2 1

2π

[(
2I
(
θl | τ

)
− τ

√
2π(1 + cos θl)

)
+m

(
2I
(π
2
| τ
)
− τ

√
2π
)]

(27)

Since for the σ∗ mentioned above, Kl
h(x

(q),x(q)) = Kl+1
h (x(q),x(q)), and the L.H.S. of the above

equation becomes

cl+1 :=
Kl+1

h (x(p), x(q))√
Kl+1

h (x(p), x(p))K+1
h (x(q), x(q))

= cos θl+1

Therefore, the normalized kernel formula is

cl+1 =
σ∗2

2π

[(
2I
(
arccos cl | τ

)
− τ

√
2π(1 + cl)

)
+m

(
2I
(π
2
| τ
)
− τ

√
2π
)]

Viewing cl+1 as a function of cl, the slope of cl+1 at cl = 1 determines the disorderedness and
orderedness of the kernel as discussed in themain text. If the slope equals 1, the kernel is determined
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to be on the phase boundary. Here, we obtain the formula form∗ that results in a kernel that exists
on the phase boundary. The condition is formally written as

dcl+1

dcl
|cl=1 = 1

The derivative is given by

dcl+1

dcl
|cl=1 = σ∗2 1

2π

(
2
d

dcl
I
(
arccos cl | τ

)
− τ

√
2π

)
= 1

By substituting σ∗ with its expression found earlier (Eqn 26), we obtain

m∗ =

[
2
d

dcl
I
(
arccos cl | τ

)
|cl=1 + τ

√
2π − 2I (0 | τ)

](
2I
(π
2
| τ
)
− τ

√
2π
)−1

This is equivalent to the expression in the main text. Now we compute the derivative
d
dcl

I
(
arccos cl | τ

)
|cl=1.

Decompose d
dcl

I
(
arccos cl | τ

)
= A+B , where A =

∫ π−θ
2

0
∂
∂cl

r(ϕ0, θ)dϕ

A = −
∫ π−θ

2

0

2 exp

(
− τ2

2 sin2(ϕ0)

)
cos(ϕ0 + θ)

sin θ
sin(ϕ0) + τ

cos(ϕ0 + θ)

sin θ

√
π

2
erf
(

τ√
2 sin(ϕ0)

)
dϕ0

Therefore,

B =
1

2 sin θ
r(
π − θ

2
, θ)

where r(ϕ0, θ) is the integrand of I(θ | τ).

r(ϕ0, θ) = 2 exp

(
− τ2

2 sin2(ϕ0)

)
sin (ϕ0 + θ) sin(ϕ0)

+ τ (sin (ϕ0 + θ) + sin(ϕ0))

√
π

2
erf
(

τ√
2 sin(ϕ0)

)
(28)

E. More experimental results
The numerical experiments on the generalization performance of the sparse and correlated weights
NNGP kernels with L = 2 are presented in Figure S1,S2,S3. The kernels are trained on different
numbers of training set samples and tested on test set sizes twice that of the training sets. The
experiment was repeated over 8 trials for randomly selected training samples. The details of the
figure layout and formatting are the same as that of the main text Figure 2. The improvement in the
generalization performance by the weight correlation in the sparse regime is observed in all training
examples. The benefit of having correlated weights diminishes with the increase in training set size
(P ) in the two-hidden layer architecture. Intuitively, having correlated weights is similar to having
fewer parameters in a network, which in turn regularizes the network output yielding smoother
data interpolation. This explains the result in the main text that the weight correlation decreases
kernel dimensionality, i.e. increases the kernel width. With more training data, the benefit of this
regularization diminishes.

The improvement from a weight correlation is more pronounced in deeper networks. Figure S4
shows that for a deeper network the improvement from weight correlation is consistently pro-
nounced in the range of P between 128 and 4096.
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Figure S1: Experimental results on MNIST dataset of different training set sizes for L = 2.

F. More comparison between the experiments and generalization
theory

To show that the generalization theory predicts the numerically observed improvements due to
weight correlation in the sparse regime, we compare the prediction by the theory and numerical ex-
periments for different datasets (FigureS5). These figures serve the same purpose as Figure 3ab: to
show that it is valid to utilize the generalization theory by Canatar et al. to understand the observed
effect of correlated weights.

G. Performances of deep NNGP models
Here we present the generalization performances of deep NNGP models with sparsity and corre-
lated weights. We show that the optimal correlation levelm∗(f) given by the phase boundary gives
the best-performing kernels at deeper depths, but not necessarily at shallower depths (Figure S6).
That is because the kernels are far from the equilibrium points at shallower depths.
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Figure S2: Experimental results on Fashion-MNIST dataset of different training set sizes for L = 2.
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Figure S3: Experimental results on CIFAR10 dataset of different training set sizes for L = 2.

Figure S4: Experimental results on MNIST and CIFAR10 dataset of different training set sizes for
L = 4.
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Figure S5: Comparison between the experimental results and theoretical predictions on generaliza-
tion performances. Dotted markers indicate the experimental results. Lines indicate the theoretical
results
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Figure S6: Empirical generalization performances of the kernels of different depths. L is the number
of hidden layers. Red line is the phase boundary that determines the theoretical optimal weight
correlation degree m∗ as the function sparsity f .
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