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ABSTRACT

To achieve end-to-end optimization in the Predict+Optimize (P+O) framework,
efforts have been focused on constructing surrogate loss functions to replace the
non-differentiable decision regret. While these surrogate functions are effective in
forwarding training, the backpropagation of the gradient introduces a significant
but unexplored problem: the inexactness of the surrogate gradient, which often
destabilizes the training process. To address this challenge, we propose the Adap-
tive Proximal Gradient Optimizer (AProx), the first gradient descent optimizer
designed to handle the inexactness of surrogate gradient backpropagation within
the P+O framework. Instead of explicitly solving proximal operations, AProx uses
subgradients to approximate the proximal operator, simplifying the computational
complexity and making proximal gradient descent feasible within the P+O frame-
work. We prove that the surrogate gradients of three major types of surrogate
functions are subgradients, allowing efficient application of AProx to end-to-end
optimization. Additionally, AProx introduces momentum and novel strategies for
adaptive weight decay and parameter smoothing, which together enhance both
training stability and convergence speed. Through experiments on several clas-
sical combinatorial optimization benchmarks using different surrogate functions,
AProx demonstrates superior performance in stabilizing the training process and
reducing the optimality gap under predicted parameters.

1 INTRODUCTION

End-to-end learning has demonstrated powerful representational capabilities in prediction tasks,
driving revolutionary breakthroughs in computer vision (He et al. (2016)), and natural language
processing (Vaswani (2017)). The end-to-end approach is an emerging approach that has the po-
tential to change tradition in the decision-making process. For example, in autonomous driving,
the UniAD proposes an integrated framework for end-to-end perceptual decision-making that co-
ordinates perceptual predictive decision-making to enhance path-planning capabilities (Hu et al.
(2023b)). In the areas of maternal and child health (Wang et al. (2023)), and environmental change
(Harder et al. (2023)), research has been invested to enable end-to-end decision-making and maxi-
mize social value.

Most end-to-end decisions can be inseparable from the prediction and the optimization stage. In the
prediction stage, the machine learning model generates predicted values for unknown parameters,
which are subsequently fed to the optimization model. This two-stage approach will lead to the
problem of error misalignment between the prediction and the optimization model. Therefore, less
prediction error can not ensure a minor gap between the predicted and the true optimal value (Geng
et al. (2023)).

To solve this problem, Predict+Optimize (P+O) is developed to integrate the two stages of pre-
diction and optimization into one, enabling end-to-end training from features to predicted optimal
values (Demirović et al. (2019)). Although the P+O approach is straightforward, the loss function
representing decision regret is non-differentiable. Currently, one major solution is to construct a
surrogate loss function, thus acquiring surrogate gradients as approximations for end-to-end train-
ing (Mulamba et al. (2021); Elmachtoub & Grigas (2022); Guler et al. (2022); Ferber et al. (2023)).
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However, such surrogate gradients are inexact since error always exists in the approximation from
the surrogate function to the ideal differentiable loss function.

The inexactness of surrogate gradients surely needs to be emphasized for its importance during
the training process of the P+O framework. Existing optimizers used for end-to-end training are
designed for exact gradients (Schaul et al. (2013); Kingma (2014)), lacking the consideration of
inexact gradients in the P+O framework. The presence of inexact gradients often fails to provide a
direction consistent with the steepest descent path. This mismatch leads to slower convergence and
parameter update vibration, impacting the stability and efficiency of the training process.

Current research on the impact of inexact gradients in optimization mostly focuses on the so-
lution process of optimization problems(Yang & Li (2023); Barré et al. (2023)). In end-to-end
Predict+Optimize (P+O) frameworks, the problem of gradient inexactness during training remains
under-explored. To bridge this gap, we propose the Adaptive Proximal Gradient Optimizer (AProx).
Unlike traditional optimizers, AProx builds on proximal gradient descent and implicitly computes
the proximal operator. By integrating momentum terms along with improved weight decay and pa-
rameter smoothing strategies, AProx effectively handles the inexactness of the surrogate gradient
during backpropagation, improving the stability of training. Our contributions can be summarized
as follows:

• We introduce the Adaptive Proximal Gradient Optimizer (AProx), the first to directly ad-
dress the importance of inexact surrogate gradient backpropagation in end-to-end optimiza-
tion. AProx employs an implicit proximal gradient descent method using subgradients,
which is independent of the specific surrogate regret function. This characteristic makes it
broadly applicable across various surrogate-based solutions of the P+O framework.

• We enhance the optimizer by incorporating momentum along with newly designed adaptive
weight decay and parameter smoothing strategies. These enhancements improve the stabil-
ity and efficiency of training, balancing convergence speed with robustness, especially in
the presence of surrogate gradient inaccuracies.

• We theoretically prove that the surrogate gradients of three classes of surrogate functions
for P+O are subgradients, which allows the effective use of AProx in these scenarios. Fur-
thermore, we establish the convergence properties of AProx when applied to these surrogate
gradients, demonstrating its effectiveness in stabilizing the training process and improving
solution quality.

2 INEXACTNESS OF SURROGATE GRADIENTS IN P+O FRAMEWORK

2.1 SURROGATE GRADIENT REQUIREMENT

The Predict+Optimize (P+O) framework involves making end-to-end decisions based on predictions
of uncertain parameters. Formally, consider a decision variable z ∈ Rn, an input feature vector
x ∈ Rd, and true cost parameters c ∈ Rn. The target is to learn a predictive model ĉ = ϕ(θ)
parameterized by θ that maps x to estimated costs. Then solve an optimization problem to determine
the optimal decision z∗(ĉ) = argminz∈Z ĉ⊤z, where Z is the feasible set defined by problem-
specific constraints.

To achieve end-to-end optimization, the P+O framework defines a decision regret function as:

R(ĉ) = c⊤z∗(ĉ)− c⊤z∗(c). (1)

The key challenge lies in computing the gradient of the regret function for θ. During the training
process, the chain rule for differentiation would require the following:

∇θR(ĉ) = ∇ĉR(ĉ) · ∇θĉ(θ) = ∇ĉ

(
c⊤z∗(ĉ)

)
· (∇θĉ(θ))

⊤
. (2)

In practice, the predicted cost vector ĉ(θ) is obtained from differentiable neural networks or machine
learning models, making the computation of ∇θĉ(θ) relatively straightforward. However, the pri-
mary challenge is that z∗(ĉ) comes from an optimization problem, which is often non-differentiable.

Current approaches mainly focus on constructing a surrogate function R̃(ĉ) to approximate the
decison regret R(ĉ). Consequently, surrogate gradients are computed through surrogate functions,
enabling gradient-based end-to-end optimization.
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2.2 CHALLENGE OF SURROGATE GRADIENT INEXACTNESS

Although the difficulty of constructing surrogate functions has been addressed through different
approaches, the effects of end-to-end training with surrogate gradients are not sufficiently discussed.
In these settings, accurate gradient computation is crucial for the convergence and stability of the
training process.

However, when using surrogate functions, the gradients are computed inexactly: g̃(ĉ) ≈
∇ĉ

(
c⊤z∗(ĉ)

)
. Such inexactness can introduce an error compared with the ideal true gradient:∥∥g̃(ĉ)−∇ĉ

(
c⊤z∗(ĉ)

)∥∥ ≤ δ, (3)
where δ > 0 represents the error bound, which is often non-negligible.

While backpropagating through the equation (2), the inexactness will be accumulated:
∥ϵt∥ ≤ δ ∥∇θĉ(θt)∥

where ϵt = ∇θR̃(ĉt) − ∇θR(ĉt) and . This leads to instability in the training process, making
parameter updates unstable and convergence difficult in end-to-end training.

Therefore, reducing the impact of surrogate gradient inexactness is crucial to ensure stable training
of the P+O framework. This requires not only improving the accuracy of the surrogate gradient, but
also developing new optimizers that enhance the backpropagation process to adapt to the inexact
surrogate gradient.

3 ADAPTIVE PROXIMAL GRADIENT OPTIMIZER (APROX)

In this section, we will briefly introduce the core ideas behind the Adaptive Proximal Gradient Op-
timizer (AProx), a novel optimizer specifically designed to address the inexact gradient challenges
within P+O framework. Most of the lemmas and corresponding proofs will be detailed in later
sections.

3.1 IMPLICIT PROXIMAL GRADIENT DESCENT

A key innovation of AProx is the introduction of proximal gradient descent instead of standard gra-
dient descent. This allows AProx to inherently accommodate the inexactness of surrogate gradients
within the basic update rules, providing better robustness and adaptability to such inaccuracies.

To effectively address the inexact gradient issue, we first construct a composite function that incor-
porates the regret term R̃(ĉ) as follows:

F (ĉ) = f(ĉ) + R̃(ĉ), (4)
where f(ĉ) is a smooth, differentiable loss function. Here, f(ĉ) is defined as f(ĉ) = 1

2 |ĉ − c|2,
where the factor 1

2 helps to avoid redundant coefficients during differentiation and can also act as a
weighting factor for regularization purposes. This function aids in minimizing decision regret while
introducing a regularization effect. The non-smooth term R̃(ĉ) represents the approximated convex
surrogate function, which we construct using three kinds of convex surrogate functions, Perturbed
Methods (Niepert et al. (2021); Berthet et al. (2020); Minervini et al. (2023)), Contrastive Methods
(Mulamba et al. (2021)), and Convex Upper Bound Methods (Elmachtoub & Grigas (2022)).

To handle the non-smooth nature of the surrogate function, we introduce the proximal gradient
descent given by:

ĉt+1 = proxηR̃ (ĉt − η∇f(ĉt)) , (5)

where η > 0 is the learning rate, and proxηR̃ is the proximal operator associated with R̃, defined as:

proxηR̃(v) = argmin
ĉ

{
R̃(ĉ) +

1

2η
|ĉ− v|2

}
, (6)

where v is proximal point of ĉ. This approach provides a mechanism to update parameters while
considering the non-smooth properties of the surrogate function.

To make the proximal gradient update more efficient for end-to-end learning, we employ an implicit
method using subgradients, as shown in the following lemma.
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Lemma 1 (Implict Proximal Gradient Descent Update rule). Let R̃ : Rn → R be a convex, non-
smooth function, and let f : Rn → R be a differentiable convex function with an L-Lipschitz contin-
uous gradient. The proximal gradient descent update formula ĉt+1 = proxηR̃ (ĉt − η∇f(ĉt)) can
be equivalently written in the form:

ĉt+1 = ĉt − η∇f(ĉt)− ηg̃t,

where g̃t ∈ ∂R̃(ĉt+1) represents a subgradient of R̃ at ĉt+1.

For convenience of presentation, we will use gt to replace ∇f(ĉt) + g̃t. This implicit proximal gra-
dient descent update rule allows us to incorporate the subgradient of the surrogate function, making
the update computationally efficient and suitable for end-to-end learning scenarios. In this context,
g̃t essentially represents the surrogate gradient, and the corresponding proof will be provided in a
later section.

3.2 APROX OPTIMIZER STRATEGIES

In the AProx optimizer, we incorporate several strategies based on the implicit proximal gradient
update rule. These strategies are utilized to improve stability, convergence speed, and generalization,
some of which have been shown to be effective in gradient-based optimization.

Incorporating First-order Momentum (Kingma (2014)): Momentum can average the noise in
inexact gradients over time, leading to a more reliable search direction. Therefore, we apply the
first-order moment estimate mt as:

mt = β1mt−1 + (1− β1)gt,

where β1 ∈ [0, 1) is the momentum coefficient. The use of momentum allows us to smooth the
sequence of gradient estimates over time, improving the stability of updates.

Incorporating Adaptive Learning Rates: For adaptive learning rates, we compute a biased second-
order momentum estimate:

vt = β2vt−1 + (1− β2)g
2
t ,

where β2 ∈ [0, 1) is the decay rate for the second-order momentum estimate. The maximum cor-
rection (Loshchilov & Hutter (2019)) is then used in AProx to ensure that the adaptive learning rate
does not decay too quickly:

v̂t = max(v̂t−1,vt).

This correction addresses convergence issues by preventing a vanishing learning rate. The bias-
corrected first-order momentum estimate is given by:

m̂t =
mt

1− βt
1

.

This bias correction mitigates the initial underestimation of the first-order momentum, particularly
at the early stages of training when the accumulated gradient information is limited.

Using the corrected first-order momentum and corrected second-order momentum, we compute the
adaptive learning rate for each parameter:

ηt = α
1√

v̂t + ϵ
,

where α > 0 is the base learning rate and ϵ > 0 is a small constant for numerical stability. This
adaptive adjustment enables the optimizer to scale the learning rate effectively, taking larger steps
in directions with low variance and smaller steps where gradients are large or noisy (as shown in the
challenge of surrogate gradient inexactness).

Temporal Averaging for Parameter Robustness: To further enhance the stability of the model and
improve generalization, we maintain a running average of the model parameters:

ĉavg,t = γĉavg,t−1 + (1− γ)ĉt,

where γ ∈ [0, 1) is the parameter smoothing coefficient. Compared with existing optimizer strate-
gies, the introduced strategy runs an average of model parameters. By averaging parameters over
time, AProx is capable of reducing sensitivity to inexact surrogate gradient updates.

4
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Algorithm 1 Adaptive Proximal Gradient Optimizer (AProx)

Require: Initial moments m0 = 0, v0 = 0, initial parameter average ĉavg,0 = ĉ0, hyperparameters
α > 0, β1 ∈ [0, 1), β2 ∈ [0, 1), γ ∈ [0, 1), λ ≥ 0, ϵ > 0

1: for t = 1 to T do
2: Compute gradient of smooth loss function: ∇f(ĉt)

3: Compute subgradient of surrogate function: g̃t ∈ ∂R̃(ĉt)
4: Compute total gradient: gt = ∇f(ĉt) + g̃t
5: Update biased first-order momentum estimate: mt = β1mt−1 + (1− β1)gt
6: Update biased second-order momentum estimate: vt = β2vt−1 + (1− β2)g

2
t

7: Apply maximum correction: v̂t = max (v̂t−1,vt)

8: Compute bias-corrected first moment estimate: m̂t =
mt

1− βt
1

9: Compute adaptive learning rate: ηt = α
1√

v̂t + ϵ
10: if weight decay λ > 0 then

11: Update parameters with adaptive weight decay: ĉt+1 =
1

1 + αλ
(ĉavg,t − ηt ⊙ m̂t)

12: end if
13: Update parameter average: ĉavg,t = γĉavg,t−1 + (1− γ)ĉt
14: end for
15: Return ĉavg,T or ĉT

Adaptive Regularization via Weight Decay Dynamics: To prevent overfitting and control model
complexity, we introduce weight decay during the parameter update:

ĉt+1 =
1

1 + αλ
(ĉavg,t − ηt ⊙ m̂t) ,

where λ ≥ 0 is the weight decay coefficient. ⊙ denotes the element-wise multiplication. Unlike
traditional fixed weight decay methods used in optimizers like AdamW, AProx employs an adaptive
approach to scale the parameter update. Specifically, the operator 1

1+αλ is applied element-wise,
meaning each parameter ĉt,i is individually adjusted according to the weight decay factor, which
adapts based on the learning rate and the coefficient λ. This effectively reduces the influence of
weight decay when the learning rate is lower, maintaining parameter stability.

By integrating these strategies, AProx can address the challenges of inexact surrogate gradients
in the P+O framework. The detailed steps of the AProx algorithm are presented in Algorithm 1.
Comparison with AProx and existing baseline optimizers is shown in section B.

4 THEORETICAL CONVERGENCE ANALYSIS OF APROX

In this section, we present the convergence analysis of the proposed Adaptive Proximal Gradient
Optimizer (AProx). The detailed proof procedures for each of the following results are provided in
the appendix.

First, we will give lemmas to illustrate the convexity and subgradient properties of the three classes
of generating functions used in AProx. Each of the following Lemma is essential for verifying
Lemma 2, as they prove both the convexity of a particular surrogate function and the validity of its
surrogate gradient as a subgradient.
Lemma 2 (Surrogate Gradient of Perturbed Methods IN P+O). The perturbed surrogate loss func-
tion Lpert(c, ĉ) (Niepert et al. (2021)) is given by

Lpert(c, ĉ) = Eẑ∼q(z;ĉ) [A(c)− ⟨ẑ, c⟩] ,

is convex with respect to c. Moreover, the surrogate gradient

gpert = µ(c)− µ(ĉ),

where µ(c) = ∇cA(c), is a subgradient of Lpert(c, ĉ) at c.

5
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Lemma 3 (Surrogate Gradient of Contrastive Methods IN P+O). The CMAP surrogate loss function
Lcontrast(ĉ, c) (Mulamba et al. (2021)) is given by

Lcontrast(ĉ, c) =
1

|Γ| − 1

∑
z∈Γ\{z∗(c)}

(
ĉ⊤z∗(c)− ĉ⊤z

)
,

is convex with respect to ĉ. Moreover, the surrogate gradient

gcontrast =
1

|Γ| − 1

∑
z∈Γ\{z∗(c)}

(z∗(c)− z)

is a subgradient of Lcontrast(ĉ, c) at ĉ.

Lemma 4 (Surrogate Gradient of Upper Bound Methods IN P+O). The upper bound surrogate loss
function Lupper(ĉ, c) (Elmachtoub & Grigas (2022)) is given by

Lupper(ĉ, c) = − min
z∈W

{
(2ĉ− c)⊤z

}
+ 2ĉ⊤z∗(c)− c⊤z∗(c),

is convex with respect to ĉ. Moreover, the surrogate gradient

gupper = 2z∗(c)− 2z⋆,

where z⋆ ∈ argminz∈W(2ĉ− c)⊤z, is a subgradient of Lupper(ĉ, c) at ĉ.

Based on the above lemmas, which establish the convexity and subgradient properties of the surro-
gate functions, we proceed with the convergence analysis of AProx. Using Lemma 2, we directly
update the surrogate gradient in conjunction with the continuous gradient ∇f(x), which simplifies
the proximal update formulation.

We provide the following theorem under appropriate assumptions, demonstrating the convergence
of AProx for the three surrogate methods introduced.
Theorem 1. Assume that the function f : Rd → R is convex and differentiable, and that the
subgradient R̃ is a convex, potentially non-smooth function. For all iterations k, the gradients and
subgradients are bounded, and there exists G∞ > 0 such that ∥∇f(ĉk)∥∞ ≤ G∞ and ∥g̃k∥∞ ≤
G∞. Assume β1, β2 ∈ [0, 1), and they satisfy β2

1√
β2

< 1, with a learning rate α > 0 and weight
decay coefficient λ ≥ 0. The cumulative regret R(T ) satisfies:

R(T ) =

T∑
t=1

(F (ĉt)− F (ĉ∗)) ≤ D2

2α(1− β1)

d∑
i=1

√
v̂T,i +

αG2
∞

(1− β1)2(1− β2)
T

Theorem 1 proves that under the assumptions of convexity and bounded gradient, AProx ensures
convergence with appropriate bounds on the cumulative regret values. Even in non-smooth genera-
tional gradients, the outlined conditions ensure that AProx remains stable throughout the iterations,
thus effectively addressing the challenges inherent in the prediction+optimisation framework. The
detailed proof of this theorem and supporting lemmas can be found in Appendix A.5 for further
reference.

5 RELATED WORKS

Predict+Optimize The Predict+Optimize problem aims to solve a class of parametric optimiza-
tion problems in an end-to-end manner, where a machine learning model predicts the optimization
problem parameters. The main challenge of the problem is that the loss function during end-to-end
training is non-differentiable concerning the predicted parameters, making it infeasible to obtain the
loss and back-propagate the gradient.

6
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The paths to solving this problem so far can be broadly categorized into two groups: One is the
differentiable layer implementations developed to solve a specific optimization problem and em-
bedding the differentiable layer into a framework for end-to-end optimization. Existing research
has been conducted for stochastic optimization (Donti et al. (2017)), quadratic programming (Amos
& Kolter (2017)), integer programming (Mandi & Guns (2020)), constrained optimization (Donti
et al. (2021); Hu et al. (2023a)) and logic programming (Nandwani et al. (2022)) have been ex-
tensively studied. Another path to solving the non-trivial loss function is to construct a surrogate
function to obtain the corresponding gradient, and the main paths so far are designing convex upper
bounds (Elmachtoub & Grigas (2022)), dynamic programming (Stuckey et al. (2020)), decision trees
(Elmachtoub et al. (2020)), black box approximation (Pogančić et al. (2020)), adding Gaussian per-
turbation (Berthet et al. (2020)), using the rank approach (Mandi et al. (2022)), contrast optimization
approach (Mulamba et al. (2021)), linearization (Ferber et al. (2023)), etc..

Most current research focuses on gradient acquisition, but the gradient update process is underex-
plored. The gradient obtained by the surrogate function is not like the general end-to-end learning,
where exact gradients can be easily obtained.

Inexact Proximal Gradient Methods The proximal gradient method has been investigated in a
variety of optimization problems for the problem of inexact gradient and is regarded as one of the
means to efficiently handle the inexact gradient. In recent years, Ajalloeian et al. (2020) extended
this concept by developing an inexact online proximal-gradient method tailored for time-varying
convex optimization problems. Bastianello & Dall’Anese (2021) introduced a distributed and in-
exact proximal gradient method specifically designed for online convex optimization. Moreover,
Barré et al. (2023) provided a comprehensive analysis of first-order methods with inexact proximal
operators. Yang & Li (2023) focused on using the Kurdyka-Łojasiewicz (KL) property to ensure
convergence in nonconvex and nonsmooth optimization problems.

Their work demonstrated that the use of the inexact proximal gradient can keep the optimization
process stable, inspiring our work to extend the proximal gradient approach.

Optimizer In the context of large-scale data for artificial intelligence, many variants of stochastic
gradient descent (SGD) algorithms have been developed to improve the convergence performance,
such as: vSGD (Schaul et al. (2013)), The Sum-of-Functions Optimizer (SFO) (Sohl-Dickstein et al.
(2014)), and the well-known Adam optimizer by (Kingma (2014)).

With a variety of end-to-end learning tasks being proposed, optimizers are still being investigated
in recent years to adapt to the characteristics of different learning tasks. Sun et al. (2020) explored
gradient descent learning with “floats“. Demidovich et al. (2023) provided a detailed guide through
the diverse landscape of biased stochastic gradient descent (SGD) methods. Wang & Chen (2024)
took a step further by analyzing the stability and generalization bounds in decentralized minibatch
stochastic gradient descent.

As previously discussed, no optimizer has been developed to date for the characteristics of the P+O
framework, and the resulting Exact gradient problem has no clear solution.

6 EXPERIMENTS

6.1 EXPERIMENT SETTINGS

We implement our codes primarily using Gurobi (Gurobi Optimization, LLC (2023)) and PyTorch
(Paszke et al. (2019)), with additional help from PyEPO (Tang & Khalil (2022)). All experiments
are conducted in a consistent computational environment featuring an Intel i7 CPU, 32GB of RAM,
and an NVIDIA RTX 4070 Ti GPU.

Baseline Optimizers In our experiments, we compare AProx with several state-of-the-art optimiz-
ers, including AdaGrad (Duchi et al. (2011)), RMSProp (Tieleman & Hinton (2012)), AdaDelta
(Zeiler (2012)), Adam (Kingma (2014)), and AdamW (Loshchilov & Hutter (2017)). These opti-
mizers serve as baselines to evaluate the effectiveness of AProx in updating gradients and parameters
during training across various benchmarks.

Surrogate Functions To thoroughly evaluate whether the AProx is valid across various surrogate
gradient, we conducted experiments on both convex and non-convex surrogate functions within the

7
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Predict+Optimize (P+O) framework. Specifically, we use five surrogate solutions to obtain inexact
gradients on each benchmark, including three convex surrogate loss functions, IMLE (Niepert et al.
(2021)), CMAP (Mulamba et al. (2021)), and SPO (Elmachtoub & Grigas (2022)), whose resulting
gradients have been proven to be subgradients. In addition, we selected two non-convex approaches,
DBB (Pogančić et al. (2020)) and NID (Sahoo et al.), to further validate the broader applicability and
robustness of our optimizer. This diverse selection ensures that our experimental results encompass
a wide range of gradient behaviors, from theoretically well-understood convex settings to more
challenging non-convex scenarios.

Parameter Settings All experiments used consistent settings across benchmarks. The learning rate
ranged from 1e-5 to 1e-3, and random seeds were fixed at 2024 for reproducibility. Training ran
for up to 50 epochs, with a convergence threshold of 1e-2. These settings ensure that performance
differences are due to the optimizers, not experimental variations.

6.2 BENCHMARKS DESCRIPTION

Production Sales Problem (Sales) The Sales problem is a variant of the 0-1 knapsack problem
(Hu et al. (2023a)), focused on optimizing real estate investments. Investors select housing projects
under budget constraints to maximize predicted profits. The decision variable xh represents whether
to invest in project h. Given construction costs ch, predicted sales prices ph, and budget B, the
objective is:

max
xh

∑
h∈H

phxh s.t.
∑
h∈H

chxh ≤ B, xh ∈ {0, 1}

Portfolio Problem (Portfolio) In the Portfolio problem (Tang & Khalil (2022)), the goal is to al-
locate investments across assets to maximize expected returns while managing risk. The decision
variable xi represents the proportion of asset investment i, with expected return ri and risk captured
by the covariance matrix C. The problem is formulated as:

max
xi

n∑
i=1

rixi s.t.
n∑

i=1

xi = 1, xTCx ≤ γ, xi ≥ 0

Shortest Path Problem (Path) The Path problem (Tang & Khalil (2022)) aims to find the lowest-
cost path from a source to a destination node in a network. The decision variable xij represents the
flow along arc (i, j). The objective is to minimize the total traversal cost:

min
xij

∑
(i,j)∈A

cijxij , s.t.
∑

(i,v)∈A

xiv −
∑

(v,j)∈A

xvj =


−1 if v = s

1 if v = t

0 otherwise
xij ≥ 0,∀(i, j) ∈ A

Here, A represents the set of arcs, and cij denotes the travel cost from node i to node j.

6.3 RESULTS DISCUSSION

In this section, we present the comprehensive performance of AProx evaluated across different sur-
rogate gradients on three benchmark problems: Sales, Portfolio, and Path. Specifically, we assess
AProx’s convergence performance, its optimal gap performance compared to baseline optimizers,
and the findings from our ablation studies.

Convergence Performance: TTable 1 presents the average convergence performance of baseline
optimizers applied to all five surrogate gradients (IMLE, CMAP, SPO, DBB, NID) across three
benchmarks. The evaluation includes both the number of epochs required for convergence and the
average time per epoch. Across all three benchmarks, AProx consistently demonstrates superior
performance in terms of convergence speed, reflected by fewer epochs required on average.

For instance, in the Sales benchmark, AProx achieves the lowest average epochs (19.85 ± 21.29)
compared to other optimizers, while maintaining competitive time per epoch. In the Portfolio bench-
mark, AProx not only shows fewer epochs (20.62 ± 21.36) but also reports a lower training time
per epoch (151.98 ± 209.12), highlighting its efficiency and adaptability. For the Path benchmark,
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Figure 1: Optimal gap comparison of AProx against baseline optimizers (Adam, Adadelta, Ada-
grad, AdamW, RMSpp) across five surrogate gradients (IMLE, CMAP, SPO, DBB, NID) for three
benchmark problems: (a) Sales, (b) Portfolio, and (c) Path.

AProx significantly reduces the convergence epochs to just (6.84 ± 2.46), setting it apart from other
optimizers, which require substantially more epochs.

Optimizer Convergence Performance
Epochs Time per Epoch

Sa
le

s

Adam 28.40 ± 19.71 25.65 ± 23.91
Adadelta 30.80 ± 19.73 35.76 ± 59.85
Adagrad 24.80 ± 22.25 27.06 ± 35.28
AdamW 37.80 ± 15.74 44.58 ± 61.20
RMSpp 23.80 ± 23.13 38.72 ± 52.65
AProx 19.85 ± 21.29 33.87 ± 41.43

Po
rt

fo
lio

Adam 37.80 ± 17.88 227.29 ± 256.42
Adadelta 26.60 ± 21.59 190.48 ± 237.08
Adagrad 23.80 ± 23.08 191.12 ± 233.44
AdamW 33.20 ± 21.78 228.82 ± 258.10
RMSpp 31.40 ± 18.34 230.14 ± 258.47
AProx 20.62 ± 21.36 151.98 ± 209.12

Pa
th

Adam 23.20 ± 17.56 27.28 ± 27.71
Adadelta 22.60 ± 24.10 39.53 ± 48.34
Adagrad 22.60 ± 24.10 39.50 ± 48.33
AdamW 22.60 ± 17.36 27.48 ± 27.95
RMSpp 14.60 ± 10.36 22.41 ± 23.31
AProx 6.84 ± 2.46 20.70 ± 23.62

Table 1: Average convergence performance of
baseline optimizers across all five surrogate gra-
dients (IMLE, CMAP, SPO, DBB, NID) on three
benchmarks.

These results indicate that AProx balances
fewer training epochs with reasonable compu-
tational costs, making it suitable for scenarios
needing fast convergence and strong optimal
gap performance.

Baseline Comparisons: After conducting con-
vergence experiments, we compare the per-
formance gap of AProx with other optimizers
when using different regret functions, as shown
in Figure 1. The metrics in these radar plots
represent the ratio of the distance between the
optimal solution based on the predicted and the
true parameters, divided by the true optimal so-
lution. The closer an optimizer’s performance
line is to the center, the better it performs across
all metrics.

In the Sales benchmark (subfigure (a)), AProx
remains consistently close to the center across
multiple metrics (IMLE, NID, CMAP, SPO,
DBB), highlighting its superior performance
compared to baselines like Adam and Adadelta,
which display greater variability. AProx’s bal-
anced and compact shape suggests an overall
stronger performance.

Subfigure (b) of Figure 1 presents the portfolio
problem, where AProx maintains a favorable
position with lines consistently near the center,
particularly excelling in metrics such as SPO
and CMAP. Compared to Adam, Adadelta, and Adagrad, whose performance shows higher devia-
tion, AProx delivers a more robust and balanced outcome across all dimensions.

In subfigure (c), which represents the shortest path benchmark, AProx once again stays close to
the center, indicating better overall performance across all surrogate metrics. In contrast, Adam
and Adadelta show lines farther from the center, particularly in SPO and CMAP, suggesting poorer
results relative to AProx.
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Optimizer Convex Non-convex
IMLE CMAP SPO DBB NID

Sa
le

s
AProx 0.34 0.32 0.22 0.34 0.34
AProx NoProx 0.62 (82.35%) 0.64 (100.00%) 0.36 (63.64%) 0.47 (38.24%) 0.62 (82.35%)
AProx NoAdaptive 0.51 (50.00%) 0.36 (12.50%) 0.28 (27.27%) 0.42 (23.53%) 0.36 (5.88%)
AProx NoMomentum 0.49 (44.12%) 0.62 (93.75%) 0.38 (72.73%) 0.43 (26.47%) 0.61 (79.41%)
AProx NoWeightDecay 0.53 (55.88%) 0.34 (6.25%) 0.33 (50.00%) 0.39 (14.71%) 0.61 (79.41%)

Po
rt

fo
lio

AProx 0.05 0.11 0.02 0.17 0.18
AProx NoProx 0.18 (260.00%) 0.29 (163.64%) 0.18 (800.00%) 0.19 (11.76%) 0.18 (0.00%)
AProx NoAdaptive 0.16 (220.00%) 0.13 (18.18%) 0.17 (750.00%) 0.17 (0.00%) 0.18 (0.00%)
AProx NoMomentum 0.18 (260.00%) 0.10 (-9.09%) 0.12 (500.00%) 0.18 (5.88%) 0.19 (5.56%)
AProx NoWeightDecay 0.15 (200.00%) 0.13 (18.18%) 0.03 (50.00%) 0.17 (0.00%) 0.18 (0.00%)

Pa
th

AProx 0.15 0.09 0.11 0.33 0.28
AProx NoProx 0.40 (166.67%) 0.14 (55.56%) 0.13 (18.18%) 0.35 (6.06%) 0.40 (42.86%)
AProx NoAdaptive 0.16 (6.67%) 0.31 (244.44%) 0.12 (9.09%) 0.36 (9.09%) 0.34 (21.43%)
AProx NoMomentum 0.31 (106.67%) 0.12 (33.33%) 0.11 (0.00%) 0.35 (6.06%) 0.32 (14.29%)
AProx NoWeightDecay 0.28 (86.67%) 0.10 (11.11%) 0.11 (0.00%) 0.33 (0.00%) 0.29 (3.57%)

Table 2: Ablation study results showing the optimal gaps for AProx and its variants across different
surrogate gradients on three benchmarks. The percentages indicate the increase of the optimal gap
compared to AProx.

Therefore, AProx demonstrates a consistent advantage in minimizing the optimal gap across all
benchmarks and surrogate functions, reinforcing its effectiveness compared to traditional optimizers.
More detailed results are available in Table 4 in Appendix C.

Ablation Study: Finally, we would like to go a step further and verify how much the proposed
modules in AProx contribute to performance improvement. Table 2 presents the ablation results of
AProx compared to its variations, AProx NoProx, AProx NoAdaptive, AProx NoMomentum, and
AProx NoWeightDecay, on different surrogate gradients across three benchmarks: Sales, Portfolio,
and Path.

For the Sales benchmark, AProx achieves the lowest optimal gaps across all surrogate functions,
such as 0.34 for IMLE and 0.22 for SPO. Removing the proximal component (AProx NoProx)
increases the optimal gap by 82.35% for IMLE, demonstrating its effectiveness. A similar trend
holds across other ablated versions, with AProx always performing better.

In the Portfolio benchmark, removing the proximal component leads to significant increases in the
optimal gap (260% for IMLE, 800% for SPO), showing its crucial role in reducing sub-optimality.
Both the proximal gradient and momentum significantly contribute to AProx’s performance in this
benchmark. It is important to note here that this large scaling up is due to the small optimal gap of
AProx under this problem.

For the Path benchmark, AProx achieves the lowest optimal gap across most metrics, particularly
for IMLE (0.15) and CMAP (0.09). Removing adaptive or proximal components results in larger
gaps, such as a 166.67% increase for IMLE and 244.44% for CMAP.

Overall, these results indicate that the remove of components increases the gap, highlighting the
importance of each part for robust optimization.

7 CONCLUSION

This work introduces the Adaptive Proximal Gradient Optimizer (AProx) to address gradient inex-
actness in the Predict+Optimize (P+O) framework. AProx effectively handles inaccuracies from sur-
rogate gradients and achieves convergence speeds similar to smooth optimization methods through
composite function and proximal gradient techniques. We further enhance it with adaptive learning
rates, momentum, weight decay, and parameter averaging, improving performance beyond tradi-
tional gradient descent. Experiments on combinatorial benchmarks show that AProx accelerates
convergence and outperforms methods that overlook gradient inexactness. However, the issue of
inexact gradients remains under-explored, presenting opportunities for future research to strengthen
theoretical understanding and develop more robust optimization techniques for P+O.
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A THEORETICAL RESULTS AND PROOFS

A.1 PROOF OF LEMMA 1

Lemma 1 (Implict Proximal Gradient Descent Update rule). Let R̃ : Rn → R be a convex, non-
smooth function, and let f : Rn → R be a differentiable convex function with an L-Lipschitz contin-
uous gradient. The proximal gradient descent update formula ĉt+1 = proxηR̃ (ĉt − η∇f(ĉt)) can
be equivalently written in the form:

ĉt+1 = ĉt − η∇f(ĉt)− ηg̃t,

where g̃t ∈ ∂R̃(ĉt+1) represents a subgradient of R̃ at ĉt+1.

Proof By the definition of the proximal operator, we have:

ĉt+1 = proxηR̃ (v̂) ,

where

v̂ = ĉt − η∇f(ĉt).

This means that ĉt+1 is the minimizer of the following optimization problem:
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ĉt+1 = argmin
ĉ

{
R̃(ĉ) +

1

2η
∥ĉ− v̂∥2

}
.

From the first-order optimality condition for convex functions, we have:

0 ∈ ∂R̃(ĉt+1) +
1

η
(ĉt+1 − v̂) ,

where ∂R̃(ĉt+1) denotes the subdifferential of R̃ at ĉt+1.

Substituting v̂ = ĉt − η∇f(ĉt), we get:

0 ∈ ∂R̃(ĉt+1) +
1

η
(ĉt+1 − (ĉt − η∇f(ĉt))) .

Simplifying the expression inside the parentheses:

ĉt+1 − ĉt + η∇f(ĉt) = ĉt+1 − ĉt + η∇f(ĉt).

Therefore, the optimality condition becomes:

0 ∈ ∂R̃(ĉt+1) +
1

η
(ĉt+1 − ĉt + η∇f(ĉt)) .

Multiplying both sides by η:

0 ∈ η ∂R̃(ĉt+1) + (ĉt+1 − ĉt + η∇f(ĉt)) .

Rewriting the equation:

ĉt+1 = ĉt − η∇f(ĉt)− ηg̃t,

where g̃t ∈ ∂R̃(ĉt+1).

This demonstrates that the proximal gradient descent update can be expressed as a standard gradient
descent step on f followed by a subgradient step on R̃.

A.2 PROOF OF LEMMA 2

Lemma 2 (Surrogate Gradient of Perturbed Methods IN P+O). The perturbed surrogate loss func-
tion Lpert(c, ĉ) (Niepert et al. (2021)) is given by

Lpert(c, ĉ) = Eẑ∼q(z;ĉ) [A(c)− ⟨ẑ, c⟩] ,

is convex with respect to c. Moreover, the surrogate gradient

gpert = µ(c)− µ(ĉ),

where µ(c) = ∇cA(c), is a subgradient of Lpert(c, ĉ) at c.

Proof The function A(c) is the log-partition function of an exponential family distribution, which is
known to be convex in c. The second term, ⟨ẑ, c⟩, is linear in c. Since the expectation of a convex
function remains convex, Lpert(c, ĉ) is convex in c.

The gradient of Lpert with respect to c can be computed as:
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∇cLpert(c, ĉ) = ∇cA(c)− Eẑ∼q(z;ĉ)[ẑ] = µ(c)− µ(ĉ).

For any c′ ∈ Rn, by the convexity of A(c):

Lpert(c
′, ĉ) ≥ Lpert(c, ĉ) + (µ(c)− µ(ĉ))⊤(c′ − c),

which verifies that gpert = µ(c)− µ(ĉ) is a subgradient of Lpert(c, ĉ) at c.

A.3 PROOF OF LEMMA 3

Lemma 3 (Surrogate Gradient of Contrastive Methods IN P+O). The CMAP surrogate loss function
Lcontrast(ĉ, c) (Mulamba et al. (2021)) is given by

Lcontrast(ĉ, c) =
1

|Γ| − 1

∑
z∈Γ\{z∗(c)}

(
ĉ⊤z∗(c)− ĉ⊤z

)
,

is convex with respect to ĉ. Moreover, the surrogate gradient

gcontrast =
1

|Γ| − 1

∑
z∈Γ\{z∗(c)}

(z∗(c)− z)

is a subgradient of Lcontrast(ĉ, c) at ĉ.

Proof The function Lcontrast(ĉ, c) is an average of linear terms of the form ĉ⊤(z∗(c)− z), which are
all linear in ĉ. Since linear functions are both convex and concave, Lcontrast is convex in ĉ.

The surrogate gradient can be computed as:

gcontrast =
1

|Γ| − 1

∑
z∈Γ\{z∗(c)}

(z∗(c)− z) .

For any ĉ′ ∈ Rn:

Lcontrast(ĉ
′, c)− Lcontrast(ĉ, c) = g⊤contrast(ĉ

′ − ĉ),

which verifies that gcontrast is a subgradient of Lcontrast(ĉ, c) at ĉ.

A.4 PROOF OF LEMMA 4

Lemma 4 (Surrogate Gradient of Upper Bound Methods IN P+O). The upper bound surrogate loss
function Lupper(ĉ, c) (Elmachtoub & Grigas (2022)) is given by

Lupper(ĉ, c) = − min
z∈W

{
(2ĉ− c)⊤z

}
+ 2ĉ⊤z∗(c)− c⊤z∗(c),

is convex with respect to ĉ. Moreover, the surrogate gradient

gupper = 2z∗(c)− 2z⋆,

where z⋆ ∈ argminz∈W(2ĉ− c)⊤z, is a subgradient of Lupper(ĉ, c) at ĉ.
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Proof To prove convexity, we first rewrite the given function Lupper(ĉ, c). Notice that the term
involving the minimum can be expressed as a maximization:

− min
z∈W

{
(2ĉ− c)⊤z

}
= max

z∈W

{
−(2ĉ− c)⊤z

}
.

Thus, the loss function can be reformulated as:

Lupper(ĉ, c) = max
z∈W

{
−(2ĉ− c)⊤z

}
+ 2ĉ⊤z∗(c)− c⊤z∗(c).

The first term, maxz∈W

{
−(2ĉ− c)⊤z

}
, represents the pointwise maximum of affine functions

of ĉ, which is a convex operation. The second term, 2ĉ⊤z∗(c), is affine in ĉ, hence convex. The
third term, −c⊤z∗(c), is constant with respect to ĉ and does not affect the convexity. Therefore,
Lupper(ĉ, c) is convex with respect to ĉ.

For the subgradient, we consider the optimal solution z⋆, which minimizes (2ĉ−c)⊤z over z ∈ W.
The surrogate gradient can be computed by taking the gradient of the affine components:

gupper = ∇ĉ

(
−(2ĉ− c)⊤z⋆ + 2ĉ⊤z∗(c)

)
= −2z⋆ + 2z∗(c) = 2z∗(c)− 2z⋆.

To verify that gupper is a subgradient, consider any ĉ′ ∈ Rn:

Lupper(ĉ
′, c) ≥ Lupper(ĉ, c) + g⊤upper(ĉ

′ − ĉ).

Since z⋆ is an optimal solution, this inequality holds, confirming that gupper is a subgradient of
Lupper(ĉ, c) at ĉ.

A.5 PROOF OF THEOREM 1

Lemma 5 (Convexity). For any x,y ∈ Rd:

f(y) ≥ f(x) +∇f(x)T (y − x)

Proof This is a fundamental property of convex functions.

Lemma 6 (Subgradient Inequality for R̃). For any x,y ∈ Rd, g̃x ∈ ∂R̃(x), where g̃x = g̃′
x + δx,

and ∥δx∥2 ≤ δ:

R̃(y) ≥ R̃(x) + gT
x (y − x)− δTx (y − x)

Proof Since R̃ is convex, for any gx ∈ ∂R̃(x):

R̃(y) ≥ R̃(x) + gT
x (y − x)

Given g̃x = g̃′
x + δx:

R̃(y) ≥ R̃(x) +
(
g̃′

x − δx
)T

(y − x) = R̃(x) + g̃′T
x (y − x)− δTx (y − x)

Lemma 7 (Bound on the Sum of Scaled Gradients). For each coordinate i, if ∥∇f(ĉk)∥∞ ≤ G∞,
∥g̃k∥∞ ≤ G∞, and v̂k ≥ (1− β2)d

2
k,i:

T∑
t=1

g2t,i√
v̂t,i

≤ G2
∞

(1− β2)
√
1− β2

T
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Proof

Since v̂t,i = max(v̂t−1,i, vt,i) ≥ vt,i, and:

vt,i = β2vt−1,i + (1− β2)g
2
t,i ≥ (1− β2)g

2
t,i

Therefore:

v̂t,i ≥ (1− β2)g
2
t,i

Then, Substituting the lower bound of v̂t,i:

g2t,i√
v̂t,i

≤
g2t,i√

(1− β2)|gt,i|
=

|gt,i|√
1− β2

Since |gt,i| ≤ 2G∞, we have:

T∑
t=1

g2t,i√
v̂t,i

≤ 2G∞√
1− β2

T

Furthermore, since 2G∞ ≤ G2
∞/

√
1− β2 for G∞ ≥ 1, we can write:

T∑
t=1

g2t,i√
v̂t,i

≤ G2
∞

(1− β2)
√
1− β2

T

Lemma 8 (Bound on the Sum of Adaptive Learning Rates). For each coordinate i, given m̂k =
mk

1−βk
1

:
T∑

t=1

(m̂t,i)
2√

v̂t,i
≤ G2

∞
(1− β1)2(1− β2)

T

Proof

From the definition in Algorithm 1:

m̂t,i =
mt,i

1− βt
1

Since mt,i = β1mt−1,i + (1− β1)gt,i, unrolling:

mt,i = (1− β1)

t∑
k=1

βt−k
1 gk,i

Then:

|mt,i| ≤ (1− β1)

t∑
k=1

βt−k
1 |gk,i| ≤ (1− β1)

(1− βt
1)|gk,i|

1− β1
≤ (1− β1)

|gk,i|
1− β1

Therefore:

|m̂t,i| ≤
|gk,i|
1− β1
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From Lemma 7, we have:

v̂t,i ≥ (1− β2)g
2
t,i

So:

√
v̂t,i ≥

√
1− β2|gt,i|

After, bounding the ratio:

(m̂t,i)
2√

v̂t,i
≤

(
|gk,i|
1−β1

)2
√
1− β2|gt,i|

=
|gt,i|

(1− β1)2
√
1− β2

Summing Over t:

T∑
t=1

(m̂t,i)
2√

v̂t,i
≤ 1

(1− β1)2
√
1− β2

T∑
t=1

|gt,i| ≤
2G∞T

(1− β1)2
√
1− β2

Since |gt,i| ≤ 2G∞.

Recognizing that
√
1− β2 ≤ 1:

T∑
t=1

(m̂t,i)
2√

v̂t,i
≤ 2G∞T

(1− β1)2(1− β2)

For the purposes of an upper bound, we can write:

T∑
t=1

(m̂t,i)
2√

v̂t,i
≤ G2

∞
(1− β1)2(1− β2)

T

Theorem 1. Assume that the function f : Rd → R is convex and differentiable, and that the
subgradient R̃ is a convex, potentially non-smooth function. For all iterations k, the gradients and
subgradients are bounded, and there exists G∞ > 0 such that ∥∇f(ĉk)∥∞ ≤ G∞ and ∥g̃k∥∞ ≤
G∞. Assume β1, β2 ∈ [0, 1), and they satisfy β2

1√
β2

< 1, with a learning rate α > 0 and weight
decay coefficient λ ≥ 0. The cumulative regret R(T ) satisfies:

R(T ) =

T∑
t=1

(F (ĉt)− F (ĉ∗)) ≤ D2

2α(1− β1)

d∑
i=1

√
v̂T,i +

αG2
∞

(1− β1)2(1− β2)
T

Proof

From Lemma 5 and Lemma 6, and considering the inexactness of subgradients, we have:

F (ĉt)− F (ĉ∗) ≤ (gt − δt)
T
(ĉt − ĉ∗)

Assuming ∥δt∥2 ≤ δ, we can write:

F (ĉt)− F (ĉ∗) ≤ gT
t (ĉt − ĉ∗) + δ∥ĉt − ĉ∗∥2

Since ∥ĉt − ĉ∗∥2 ≤ D, the error term due to inexactness is bounded.

From the update rule, we have:
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ĉt+1 = ϕ (ĉt − ηt ⊙ m̂t) ,

where ϕ = 1
1+αλ .

Compute the squared distance:

∥ĉt+1 − ĉ∗∥22 = ϕ2∥ĉt − ĉ∗ − ηt ⊙ m̂t∥22

Expanding:

∥ĉt+1 − ĉ∗∥22 = ϕ2
(
∥ĉt − ĉ∗∥22 − 2(ĉt − ĉ∗)T (ηt ⊙ m̂t) + ∥ηt ⊙ m̂t∥22

)
Then, subtract ∥ĉt − ĉ∗∥22:

∥ĉt+1 − ĉ∗∥22 − ∥ĉt − ĉ∗∥22 = (ϕ2 − 1)∥ĉt − ĉ∗∥22 − 2ϕ2(ĉt − ĉ∗)T (ηt ⊙ m̂t) + ϕ2∥ηt ⊙ m̂t∥22

From above, we have:

F (ĉt)− F (ĉ∗) ≤ gT
t (ĉt − ĉ∗) + δD

We can relate (ĉt − ĉ∗)T (ηt ⊙ m̂t) to F (ĉt) − F (ĉ∗). Assuming ηt and m̂t are aligned with gt,
we have:

(ĉt−ĉ∗)T (ηt◦m̂t) =

d∑
i=1

(ĉt,i−ĉ∗i )(ηt,im̂t,i) =

d∑
i=1

(ĉt,i−ĉ∗i )

(
αm̂t,i√
v̂t,i + ϵ

)
= α

d∑
i=1

(ĉt,i − ĉ∗i )m̂t,i√
v̂t,i + ϵ

To proceed, we can use Cauchy-Schwarz inequality:

(ĉt − ĉ∗)T (ηt ⊙ m̂t) ≤ ∥ĉt − ĉ∗∥2∥ηt ⊙ m̂t∥2 ≤ D∥ηt ⊙ m̂t∥2

Using the bound on m̂t,i from Lemma 8 and the definition of ηt:

∥ηt ⊙ m̂t∥22 =

d∑
i=1

(
α

m̂t,i√
v̂t,i + ϵ

)2

≤ α2
d∑

i=1

(m̂t,i)
2

v̂t,i

Applying Lemma 8, we have:

T∑
t=1

∥ηt ⊙ m̂t∥22 ≤ α2
d∑

i=1

T∑
t=1

(m̂t,i)
2

v̂t,i
≤ α2G2

∞
(1− β1)2(1− β2)

dT

Combining the above:

T∑
t=1

(F (ĉt)− F (ĉ∗)) ≤ D2

2α(1− β1)

d∑
i=1

√
v̂T,i +

αG2
∞

(1− β1)2(1− β2)
dT + δDT

Note that (ϕ2 − 1) ≤ 0 since ϕ = 1
1+αλ < 1.

Assuming that δ (the subgradient error) is small, the cumulative regret R(T ) grows sublinearly with
T , implying that the average regret R(T )/T converges to zero as T → ∞.

This completes this proof.
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Optimizer IMLE NID CMAP SPO DBB
Adam 0.37 0.39 0.39 0.26 0.52
Adadelta 0.40 0.57 0.37 0.27 0.69
Adagrad 0.67 0.43 0.67 0.47 0.47
AdamW 0.65 0.41 0.55 0.39 0.62
RMSpp 0.33 0.39 0.38 0.26 0.60
AProx 0.39 0.38 0.38 0.25 0.38

Table 4: Comparison of AProx optimizer with baseline algorithms on the invariant knapsack prob-
lem

B COMPARISON WITH EXISTING GRADIENT DESCENT OPTIMIZERS

In this section, we compare the Adaptive Proximal Gradient Optimizer (AProx) with common exist-
ing gradient descent optimizers, highlighting the key differences and advantages. The comparison
focuses on how each optimizer handles gradient updates, learning rates, momentum, regularization,
and their suitability for dealing with inexact gradients in the P+O framework.

Table 3: Comparison of AProx with Existing Optimizers

Feature SGD RMSProp Adam-type AProx (Proposed)
Gradient Update gt = ∇f(ĉt) Same as SGD Same as SGD gt = ∇f(ĉt) + gsur

t

First Moment (Momentum) Not used Not used mt = β1mt−1 + (1− β1)gt Same as Adam-type

Second Moment (Adaptive LR) Not used vt = βvt−1 + (1− β)g2
t vt = β2vt−1 + (1− β2)g

2
t vt same as Adam-type

v̂t = max(v̂t−1,vt)

Bias Correction Not applicable Not used m̂t =
mt

1− βt
1

Same as Adam-type

Learning Rate Fixed η ηt =
η

√
vt + ϵ

ηt = α
1√

v̂t + ϵ
Same as Adam-type

Weight Decay Not included Not included Varies (Adam: coupled, AdamW: decoupled) Adaptive: ĉt+1 =
1

1 + αλ
(ĉt − ηtm̂t)

Proximal Operator Not included Not included Not included Implicit via subgradient

Parameter Averaging Not used Not used Not commonly used ĉavg,t = γĉavg,t−1 + (1− γ)ĉt

Handles Inexact Gradients No Partial (adaptive LR helps) Partial (adaptive LR and momentum help) Yes (designed for inexact gradients)

Adaptive Weight Decay: AProx introduces an adaptive weight decay mechanism that dynamically
scales the parameter updates, enhancing regularization and stability, especially important when deal-
ing with inexact gradients. This is distinct from Adam-type optimizers where weight decay is either
coupled with the learning rate (Adam) or decoupled but fixed (AdamW).

Proximal Operator Integration: AProx uniquely incorporates the proximal operator implicitly via
the subgradient, making it suitable for optimization problems with nonsmooth regularization terms,
which is not addressed by other optimizers.

Handling Inexact Gradients: AProx is specifically designed to handle inexact surrogate gradients
inherent in the P+O framework, providing robustness and improved convergence. While RMSProp
and Adam-type optimizers partially handle gradient noise due to adaptive learning rates and mo-
mentum, they are not tailored for the specific challenges posed by inexact surrogate gradients.

Parameter Averaging: AProx employs temporal parameter averaging to reduce sensitivity to noisy
updates and improve generalization, a strategy not commonly used in other optimizers.

C COMPARISON WITH BASELINE OPTIMIZERS

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Optimizer IMLE NID CMAP SPO DBB
Adam 0.17 0.19 0.18 0.15 0.20
Adadelta 0.08 0.20 0.15 0.04 0.19
Adagrad 0.20 0.21 0.20 0.20 0.20
AdamW 0.21 0.20 0.19 0.20 0.20
RMSpp 0.07 0.20 0.16 0.03 0.20
AProx 0.06 0.20 0.13 0.02 0.19

Table 5: Comparison of AProx optimizer with baseline algorithms on the portfolio problem

Optimizer IMLE NID CMAP SPO DBB
Adam 0.41 0.44 0.12 0.16 0.41
Adadelta 0.29 0.44 0.43 0.13 0.42
Adagrad 0.45 0.45 0.42 0.42 0.45
AdamW 0.43 0.45 0.13 0.40 0.44
RMSpp 0.42 0.44 0.12 0.13 0.41
AProx 0.17 0.31 0.10 0.12 0.37

Table 6: Comparison of AProx optimizer with baseline algorithms on the shortest path problem
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