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Abstract 33 

Objectives: In this multicenter study, we aimed to develop and validate a predictive model for 34 

pulmonary subsolid nodules (SSN) growth at different time intervals by machine learning (ML) 35 

based CT radiomics methods. This model is intended to guide personalized follow-up strategies in 36 

clinical practice. 37 

Methods: A total of 642 patients with 717 SSNs who underwent long-term follow-up were 38 

retrospectively collected from three medical centers. Patients were categorized into growth and non-39 

growth groups based on the growth status of presented SSNs within 2 or 5 years, and they were 40 

randomly divided into training and internal testing sets at an 8:2 ratio. Predictive models were 41 

developed using the optimal ML algorithms for clinical, radiomics, and clinical-radiomics fusion 42 

models to assess the risk of SSN growth over different timeframes. An independent external test set 43 

was established by including another 95 patients with 105 SSNs from a health examination center. 44 

Multiple assessment indices, including the area under the receiver-operating-characteristic curve 45 

(AUC), were utilized to assess and compare predictive performance. Furthermore, the SHapley 46 

Additive exPlanation (SHAP) method was employed to rank the importance of features and 47 

elucidate the rationale behind the final model. 48 

Results: The extreme gradient boosting (XGBoost) and light gradient boosting machine (Light 49 

GBM) model performed best in discriminative ability among the 8 ML models. For the prediction 50 

of within-2-year growth, the clinical, radiomics, and clinical-radiomics fusion models developed 51 

using the optimal ML algorithms achieved the AUC of 0.823 (95% CI: 0.745-0.906), 0.889 (95% 52 

CI: 0.823-0.943), and 0.911 (95% CI: 0.858-0.955) on the internal testing set, and the AUC of 0.712 53 

(95% CI: 0.610-0.815), 0.734 (95% CI: 0.616-0.830), and 0.734 (95% CI: 0.623-0.835) on the 54 

external testing set. In 5-year growth prediction task, the three models achieved AUCs of 0.796 (95% 55 

CI: 0.708-0.884), 0.838 (95% CI: 0.759-0.905), and 0.849 (95% CI: 0.772-0.913) on the internal 56 

testing set and AUCs of 0.672 (95% CI: 0.550-0.795), 0.773 (95% CI: 0.657-0.880), and 0.776 (95% 57 



CI: 0.652-0.882) on the external testing set. Furthermore, these insights have been translated into a 58 

streamlined clinical management framework, enhancing its utility within clinical settings. 59 

Conclusions: The interpretable machine learning model we developed based on multicenter 60 

longitudinal follow-up data for SSN has been successfully developed to accurately predict changes 61 

in SSN over 2 years and used for the first time to guide 5-year long-term follow-up. 62 

Keywords: Subsolid nodules, Natural course, Lung adenocarcinoma, Radiomics, Machine learning. 63 

 64 

1. Introduction 65 

Lung cancer is the most common cancer globally, and with the widespread use of Low-Dose 66 

Computed Tomography (LDCT), the detection rate of pulmonary subsolid nodules (SSN) has 67 

significantly increased[1]. Previous research has indicated that the appearance of growth during 68 

follow-up strongly suggests malignancy in SSN[2, 3]. Recent studies have shown that SSNs that 69 

persist and remain stable for over five years still require continued monitoring, and extended follow-70 

up beyond five years may reveal more cases of lung cancer[4-7]. 71 

Due to differences in the biological characteristics and prognosis of pure ground-glass nodules 72 

(pGGN) and part-solid nodules (PSN), major guidelines manage these two types separately. 73 

However, there is considerable controversy in determining the presence of solid components within 74 

SSN and measuring the solid components[8]. Some PSNs have solid components visible in both the 75 

lung and mediastinal windows (real part-solid nodules, rPSN). In contrast, others have solid 76 

components only visible in the lung window (heterogeneous ground-glass nodules, hGGN). 77 

Previous research has reported that the average time for hGGN to develop into rPSN is 2.1 years[9], 78 

and rPSN has poorer clinical pathological results and prognosis than hGGN[10]. Previous studies on 79 

the natural course of SSN have primarily focused on comparing differences between pGGN and 80 

PSN based on lung window classification[11-13]. However, these studies have not provided sufficient 81 

information on the natural course of solid components under different window settings. Current 82 

guidelines for SSN management have several limitations. Therefore, establishing personalized SSN 83 

management methods and developing appropriate follow-up strategies hold significant clinical 84 

importance. 85 

Radiomics, as a non-invasive method, can extract numerous features from Computed 86 

Tomography (CT) scan images through high-throughput computation, transform them into 87 



comprehensive quantifiable data, and develop models to non-invasively predict various phenotypic 88 

features of lesions[14, 15]. Numerous radiomics studies have established predictive models to enhance 89 

the accuracy of diagnosing benign and malignant nodules, assessing the degree of infiltration, and 90 

predicting histological subtypes and prognosis in lung cancer patients[16]. However, due to 91 

limitations in the number of cases and follow-up time, how to dynamically track nodules and predict 92 

the growth patterns of SSNs using radiomics remains to be further explored [17, 18]. 93 

Based on these scientific questions, this study selected SSN patients from multiple centers with 94 

long-term follow-up as the research subjects, including those with growth at two years and five 95 

years of follow-up and those with sustained stability. Through ML modeling, clinical and radiomics 96 

features of patients were used to establish clinical-radiomics fusion models to predict the growth 97 

status of SSNs within two years and five years, optimizing individualized follow-up strategies. 98 

 99 

2. Material and Methods 100 

2.1 Study Design and Inclusion Criteria 101 

This study is a multi-center retrospective cohort study based on the STORBE guidelines. It 102 

includes adult individuals aged 18 years or older who underwent chest CT scans for any reason at 103 

three tertiary comprehensive medical centers from November 2007 to August 2021, regardless of 104 

their smoking history. They were randomly divided into a training set and an internal testing set in 105 

an 8:2 ratio. In addition, patients from a medical examination center in Beijing, China, who 106 

underwent chest CT examinations between January 2017 and November 2021 were included as an 107 

independent external testing set. The inclusion and exclusion criteria were identical to those of the 108 

derivation cohort. (Detailed information on participating hospitals was listed in Supplementary 109 

Materials). Clinical data, such as smoking history, previous history of pulmonary conditions and 110 

malignancies, and chest CT scans of enrolled patients, were all retrospectively collected for 111 

modeling. Notably, our study had two key components (Figure 1). First, we constructed predictive 112 

models for growth at different time intervals. We pretested the probability of nodule growth using 113 

eight typical machine learning algorithms and selected the best-performing algorithm for further 114 

optimization. Secondly, the model underwent external validation in an independent external SSN 115 

cohort to assess its performance. 116 

The inclusion criteria for SSN were as follows: (1) confirmation of SSN persisting for at least 117 



six months after the initial chest CT examination; (2) SSN with a maximum long-axis diameter of 118 

≤3 cm; (3) evaluation of each SSN using original Digital Imaging and Communications in Medicine 119 

(DICOM) format files from chest CT with a slice thickness of ≤1.5 mm; (4) a minimum follow-up 120 

time of at least two years or a follow-up time of less than two years but with documented nodule 121 

growth during the follow-up period. Exclusion criteria were: (1) inability to obtain detailed clinical 122 

data for patients with SSN; (2) a decrease in the maximum long-axis diameter of the SSN by ≥2 mm 123 

during the follow-up period. 124 

Non-smokers were defined as individuals who had never smoked in their lifetime or had 125 

smoked fewer than 100 cigarettes. Individuals with data on smoking status but without data on the 126 

quantity of cigarettes smoked were included. Exclusion criteria included participants with a history 127 

of lung cancer at the baseline screening and those with unknown smoking status history. 128 

This study obtained approval from the Institutional Review Boards (IRB) of three tertiary 129 

comprehensive medical centers (No. 2022PHB031-001, No. 2022-0601-01, and No. 2022002). The 130 

IRB waived the requirement for written informed consent from the participants. 131 

 132 

2.2 Growth Definition and SSNs Categorization 133 

SSN growth is defined as occurring during follow-up[19]: (1) an increase in the maximum 134 

diameter by ≥2mm; (2) an increase in the solid component of PSN (including hGGN and rPSN) by 135 

≥2mm; (3) the appearance of any diameter of a solid component in pGGN under the lung window. 136 

SSN reduction is a decrease in the maximum diameter of the solid component by ≥2mm during 137 

follow-up[20]. SSN stability is defined as not meeting the criteria for growth or reduction during 138 

follow-up. SSN is categorized into pGGN, hGGN, and rPSN based on the radiological features of 139 

lung and mediastinal windows in chest CT. 140 

Given that the 2-year and 5-year progression-free survival serve as important prognosis 141 

indicators for patients with cancer[4, 5, 12], we accordingly studied the growth risks of SSN within 2-142 

year and 5-year periods. In particular, the enrolled patients were categorized according to the status 143 

of SSN (growth or stable) within two years and five years, respectively. SSNs were labeled as 144 

positive if they grew within the 2 or 5-year follow-up period and assigned as negative if they 145 

remained stable during the 2 or 5-year follow-up period, regardless of subsequent growth afterward.  146 

 147 



2.3 Clinical and Radiographic Data Collection 148 

We collected primary clinical, surgical, and pathological data of SSN patients included in the 149 

study. This had demographic information, surgical procedures, and the pathological diagnosis of 150 

SSNs in patients who underwent resection surgery. A chief thoracic surgeon or higher decided for 151 

the need for invasive tests to obtain pathological results for SSNs. The pathological types of SSNs 152 

were categorized as benign, lung adenocarcinoma (LUAD) (invasive adenocarcinoma, IAC, and 153 

minimally invasive adenocarcinoma, MIA), and their epithelial precursor lesions (adenocarcinoma 154 

in situ, AIS and atypical adenomatous hyperplasia, AAH). 155 

We gathered imaging data for the included SSNs, encompassing both CT quantitative features 156 

and non-quantitative features. The detailed information regarding CT acquisition and parameters is 157 

described in Figure S1. This data had the maximum diameter of SSNs, the diameter of the solid 158 

component under the lung window (LW) and mediastinal window (MW), the Lung Window-159 

Consolidation Tumor Ratio (LW-CTR), the Mediastinal Window-Consolidation Tumor Ratio (MW-160 

CTR), and the number of multifocal SSNs. We also collected information on SSN types, lobulation 161 

signs, air bronchograms, vascular signs, pleural tag signs, and others. In discrepancies, a consensus 162 

was reached through discussion with a third radiologist. 163 

 164 

2.4 Nodules Segmentation and Feature Selection 165 

A radiology-trained thoracic surgeon (Reader 1, with ten years of chest imaging experience) 166 

and a radiologist (Reader 2, with 15 years of experience in reading chest imaging) independently 167 

performed layer-by-layer SSN segmentation based on radiological examination reports. The ROI of 168 

each nodule layer was manually drawn based on the image using 3D Slicer (version 5.2.1) (Figure 169 

S2). If there were multiple SSNs, the largest one was selected for analysis. To ensure the stability 170 

of feature extraction, the consistency of radiomic features was assessed between different observers 171 

and by the same observer at other times. Three months later, 30 nodules were randomly selected 172 

and segmented again by the above two readers. Two readers were blinded to clinical characteristics, 173 

SSN growth, and histopathology. 174 

A voxel size standardization of 1mm was applied along the x, y, and z axes. Pyradiomics 175 

(version 3.0.1) was used to extract SSN radiomic features, resulting in a total of 1454 radiomic 176 

features, including first-order features, Gray Level Cooccurrence Matrix (GLCM) features, Gray 177 



Level Dependence Matrix (GLDM) features, Gray Level Run Length Matrix (GLRLM) features, 178 

Gray Level Size Zone Matrix (GLSZM) features, Neighboring Gray Tone Difference Matrix 179 

(NGTDM) features, and shape-based features. Detailed information on extracted features was 180 

summarized in Supplementary Table 1. 181 

Clinical features, including clinical characteristics and conventional imaging features, were 182 

selected for subsequent model construction through univariate and multivariate logistic regression. 183 

 184 

2.5 Model Construction, Selection, and Validation 185 

Eight machine learning models, including Logistic Regression (LR), Random Forest (RF), 186 

Support Vector Machine (SVM), Naive Bayes (NB), Extreme Gradient Boosting (XGBoost), Light 187 

Gradient Boosting Machine (Light GBM), K-Nearest Neighbor (KNN), and Multilayer Perceptron 188 

(MLP), were trained with selected clinical and radiomic features to build three sets of models: 189 

clinical models, radiomic models, and clinical-radiomic fusion models. The models with the highest 190 

diagnostic performance parameters were selected using repeated three-fold cross-validation on the 191 

training dataset. The model with the best AUC calculated on the internal testing dataset was used as 192 

the final model for application on the external testing dataset. Discrimination was quantified using 193 

the area under the curve (AUC). Several commonly used evaluation indexes, such as the area under 194 

the receiver-operating-characteristic (ROC) curve (AUC), sensitivity, specificity, positive predictive 195 

value (PPV), negative predictive value (NPV), accuracy, and F1 score, were used to evaluate the 196 

reliability of these models. Predictive accuracy was assessed using calibration curves and confusion 197 

matrices. Shapley Additive exPlanations (SHAP) was used to visualize the correlations between 198 

variables and SSN growth. 199 

 200 

2.6 Follow up 201 

The growth interval refers to the time from the baseline chest CT scan to the subsequent 202 

follow-up CT scan, during which the same SSN met the criteria for growth. The total 203 

observation time is the interval between the baseline and final CT scans for the same SSN or 204 

between the baseline CT scan and the SSN's last intervention. The follow-up CT intervals were 205 

determined by specialized clinical thoracic surgeons based on patient and SSN radiological 206 

features, following guidelines. 207 



All patients were followed up via phone or outpatient visits, and the outcomes of the nodules 208 

were recorded. The final follow-up deadline was December 2022. 209 

 210 

2.7 Statistical analysis 211 

Statistical analysis was conducted using SPSS (version 26), R software (version 3.6.2), and 212 

Python (version 3.11). For data following a normal distribution, values were presented as mean 213 

± standard deviation (SD), and intergroup comparisons were performed using independent 214 

sample t-tests. Data with non-normal distribution were described as median [interquartile range, 215 

IQR] and analyzed using the Mann-Whitney U test. Categorical variables were presented as 216 

frequencies and percentages, and intergroup comparisons were made using the Chi-square test 217 

or Fisher’s exact test when appropriate. The DeLong test was employed to compare different 218 

ROC curves. Feature selection for radiomics and model construction was made using Python's 219 

"scikit-learn" machine learning framework. ROC curves and confusion matrices were 220 

generated using Python's "Matplotlib" library. A significance level of p < 0.05 was considered 221 

for all tests. 222 

 223 

3. Results 224 

3.1 Baseline Clinical Characteristics of the Patients and Radiologic Features of Included SSNs 225 

This study included 642 patients with 717 SSNs from three different hospitals and 99 226 

patients with 105 SSNs from one medical examination center. Two-year and five-year growth 227 

prediction models were established based on whether SSNs grew within 2 and 5 years, 228 

respectively. Clinical baseline characteristics of all patients and radiological characteristics of 229 

all SSNs are summarized in Table 1 and Table 2. 230 

All patients and SSNs from three tertiary comprehensive medical centers were randomly 231 

divided into training and internal test sets in an 8:2 ratio. Patient information and SSN features 232 

for the two datasets are compared in Table S2 and Table S3. There were no significant 233 

differences in the pathological characteristics and surgical methods of SSNs that underwent 234 

surgical resection in the training and internal testing sets; details are provided in Table S4. 235 

 236 

3.2 Clinical Feature selection, model development, and performance comparison 237 

The univariate and multivariate analyses revealed that gender, SSN type, vascular sign, 238 



and initial maximum diameter were independent risk factors for the different-year prediction 239 

models. In the 5-year prediction model, the vacuole sign was a newly discovered factor (Table 240 

S5). The clinical models established based on the optimal machine learning algorithm, 241 

XGBoost, achieved an AUC of 0.823 (95% CI: 0.745-0.906) and 0.796 (95% CI: 0.708-0.884) 242 

in the internal testing cohort for the 2-year and 5-year predictions, respectively (Comparison of 243 

Clinical Models Established by Different Machine Learning Algorithms and ROC Curves are 244 

presented in Supplementary Material Figure S3 and Table S6). 245 

 246 

3.3 Radiomics Feature selection, model development, and performance comparison 247 

Among the 1,454 radiomic features, redundant features (ICC < 0.75 and PCC > 0.9) were 248 

first removed, resulting in 271 and 259 remaining features for the 2-year and 5-year models, 249 

respectively. The final set of 10 radiomic features was generated through recursive feature 250 

elimination and cross-validation (Table S7). For the 2-year model, the radiomic model was 251 

developed using the optimal machine learning algorithm LightGBM, achieving an AUC of 252 

0.889 (95% CI: 0.823-0.943) in the internal testing cohort. For the 5-year model, the radiomic 253 

model was developed using the optimal machine learning algorithm XGBoost, achieving an 254 

AUC of 0.838 (95% CI: 0.759-0.905) in the internal testing cohort (Figure S4 and Table S8). 255 

 256 

3.4 Development of fusion radiomics model and performance comparison 257 

Incorporating the selected clinical features and radiomic features, a clinical-radiomic 258 

fusion model was developed using the mentioned eight machine learning algorithms (Figure 259 

S5 and Table S9). The results show that for the 2-year prediction model, the LightGBM 260 

algorithm with its specific parameters performed the best on the internal testing dataset, 261 

achieving an AUC of 0.911 (95% CI: 0.858-0.955). For the 5-year prediction model, the 262 

XGBoost algorithm with its specific parameters performed the best on the internal testing 263 

dataset, resulting in an AUC of 0.849 (95% CI: 0.772-0.913).  264 

 265 

3.5 Identification of the Final Model and External Validation 266 

The optimal algorithm with the highest AUC in the internal testing set was selected to 267 

build the model, and its predictive performance was compared. Table 3 displays the predictive 268 



performance of the three groups of prediction models, and ROC curves are presented in Figure 269 

2. The addition of SHAP allows for interpretative analysis of the fused radiomic model by 270 

visualizing the specific impact of each variable on the prediction of SSN growth (Figure 3). In 271 

the 2-year prediction model, the fusion model produced the highest AUC in the internal testing 272 

cohort. Both the fusion model and radiomics model had higher AUC values compared to the 273 

clinical model (DeLong test p < 0.05), with no significant difference between the fusion model 274 

and radiomics model (DeLong test p > 0.05). In the internal testing set of the 5-year prediction 275 

model, even though there were no statistically significant differences among the three models, 276 

the fusion model achieved the highest AUC. Simultaneously, the radiomic and fusion models 277 

exhibit higher accuracy and sensitivity.  278 

In the external testing set of the 2-year prediction model, the AUC values for the clinical 279 

model, radiomics model, and clinical-radiomics fusion model were 0.712 (95% CI: 0.610-280 

0.815), 0.734 (95% CI: 0.616-0.83), and 0.734 (95% CI: 0.623-0.835), respectively. In the 281 

external testing set of the 5-year prediction model, the AUC values for the three groups were 282 

0.672 (95% CI: 0.550-0.795), 0.773 (95% CI: 0.657-0.880), and 0.776 (95% CI: 0.652-0.882), 283 

respectively (Figure 4). The metrics for evaluating the reliability of these models are outlined 284 

in Table 4. The confusion matrices for each model are displayed in Figures S6 and S7. This 285 

suggests that the combined radiomics model exhibits good stability and reproducibility.  286 

 287 

3.6 Follow-up management framework for clinical utility 288 

Based on the research outcomes, we propose a tailored follow-up management framework 289 

for SSN, outlined in Figure 5. Firstly, for patients identified with SSN via thoracic thin-section 290 

CT, clinical physicians assess whether further examination, surgery, no follow-up, or regular 291 

follow-up is necessary. If regular follow-up is deemed necessary, the SSN is subjected to growth 292 

prediction models for evaluation. If the 2-year growth prediction model indicates a high risk of 293 

growth, clinical physicians may propose high-risk management recommendations after a 294 

thorough review. This involves extensive discussion with the patient to determine whether to 295 

continue follow-up with a shortened interval, undergo further examination, or proceed with 296 

surgery. The SSN is further evaluated using a 5-year growth prediction model if the growth risk 297 

is low. Suppose the 5-year growth prediction model indicates a high risk of SSN growth. In that 298 



case, appropriate management recommendations are proposed after a thorough evaluation, 299 

possibly shortening the follow-up interval for continued monitoring and considering further 300 

examination if necessary. If the growth risk is low, low-risk management recommendations are 301 

provided, suggesting regular follow-up for the patient and possibly extending the follow-up 302 

interval appropriately. 303 

 304 

4. Discussion 305 

In clinical practice, determining the nature of nodules and establishing follow-up duration 306 

is crucial for long-term persist and stable SSN. In this study, based on multicenter, long-term 307 

follow-up cases, we constructed a growth prediction model using machine learning methods to 308 

predict the growth status of SSN at 2 and 5 years, aiming to assist in the standardized 309 

management of pulmonary nodules. This clinical prediction model demonstrates excellent 310 

diagnostic performance and has been validated using independent external data. 311 

Pulmonary SSN growth modes were categorized into five patterns based on consecutive 312 

follow-up CT scans, including linear, rapidly accelerating, slow accelerating, slow, and rapid 313 

growth while pointing out that the likelihood of malignant radiological features of nodules 314 

increases with prolonged follow-up[18]. Therefore, index models based on volume doubling time 315 

(VDT) may not be suitable for evaluating every nodule encountered in clinical practice. Studies 316 

have shown that after two years or more of stability, the probability of SSN experiencing growth 317 

is only 5%[21]. Additionally, within three years, 26.9% of SSNs showed growth; among those 318 

stable for three years and followed up to five years, 6.7% demonstrated growth[22, 23]. Taking 319 

into account the aforementioned concerns, this study categorized subjects into groups based on 320 

their growth within two years and five years respectively. Utilizing predictive modeling, it 321 

aimed to assess growth risks and devise tailored follow-up strategies for individuals across 322 

different growth durations. 323 

The progression of SSNs represents a complex and dynamic process. As anticipated, this 324 

study demonstrates that gender, larger size on initial CT imaging, and the presence of solid 325 

components are independent risk factors for SSN progression, consistent with previous research 326 

[5, 6, 9, 23, 24]. Introducing the radiographic characteristics of CT MW images into classification, 327 

SSNs are divided into pGGN, hGGN, and rPSN. It was found that hGGN and rPSN have 328 



differences in growth patterns[9, 25]. Further analysis combining large-panel targeted sequencing 329 

confirmed at the genomic level that only hGGNs with solid components on LW are intermediate 330 

subtypes of PSNs. Meanwhile, the genomic structure of hGGNs is closer to pGGNs[26]. The 331 

assessment of nodule growth should not only depend on size changes but may also be 332 

influenced by morphological features. Vascular signs are defined as either vessel traversing 333 

through the lesion or vascular thickening and tortuosity around the lesion, indicating a higher 334 

demand for blood supply and often indicative of malignancy[27]. The relationship between 335 

vessels and SSNs can be classified into three types: Type I (intact vessels passing through or 336 

traversing the SSN without tiny branches), Type II (intact vessels passing through the SSN 337 

without tiny branches), and Type III (distorted vessels within the SSN are wider or tortuous). 338 

Type II and Type III are more likely to be associated with malignancy than Type I. Hence, the 339 

relationship between vessels and lesions might predict SSN progression[28]. Similarly, vacuole 340 

sign has also been established as predictive factors for the growth of SSNs in previous studies 341 

[24]. 342 

The most commonly used method currently is to select radiomic features through LASSO 343 

regression and then estimate each radiomic feature using logistic regression algorithms to 344 

calculate a Rad-score for predicting SSN growth[12, 17]. In this study, we applied dimensionality 345 

reduction to 1454 radiomic features using the REF method and built models using the ten 346 

optimal features associated with SSN growth in 2 and 5 years, which outperformed previous 347 

reports. We also found that the most influential feature in the 2-year radiomics model was 348 

glszm_HighGrayLevelZoneEmphasis_original, which assists in quantifying regions of high 349 

brightness in the image[29]. In the 5-year radiomics model, the most influential feature was 350 

glrlm_LongRunEmphasis_wavelet-LLH, which measures the frequency and intensity of 351 

continuous appearances of pixels with the same grayscale values in the image[30]. 352 

Previous studies have utilized LR on single-center retrospective data to build clinical-353 

radiomics nomograms for predicting 2-year growth of uncertain pulmonary nodules, 354 

emphasizing the importance of combining clinical and radiomic features in predicting nodule 355 

growth. However, the inclusion of nodules confirmed by histology and a high proportion of 356 

malignant nodules in these studies led to an overestimation of the diagnostic performance of 357 

the model[17]. Similarly, Chen et al. established clinical-radiomics nomograms for predicting 358 



the growth of SSN beyond two years based on single-center data, with the combined model 359 

significantly outperforming the clinical model but no significant difference between the 360 

combined model and the radiomics model. This study did not incorporate patients' clinical 361 

information into the analysis. [12]. Yang et al. developed several machine-learning models to 362 

predict whether lung nodules would grow within one year. They found that a LR model 363 

combining age and radiomic features performed the best (with an AUC of 0.87 in the training 364 

set and 0.82 in the validation set)[31]. However, the studies mentioned above all suffer from 365 

relatively small sample sizes and suboptimal model performance. With improved 366 

computational capabilities and storage space availability, machine learning algorithms can 367 

analyze more complex data and provide real-time output[32, 33]. XGBoost has recently become 368 

a popular algorithm, gaining recognition in various machine-learning competitions[34]. 369 

LightGBM, compared to XGBoost, has the advantage of faster training speed and lower 370 

memory usage[35]. Both machine learning methods outperform traditional linear models in terms 371 

of predictive accuracy. 372 

Building upon the aforementioned studies, we have conducted exploratory analyses and 373 

established, for the first time, a clinical model to predict whether SSNs will grow within 5 years 374 

based on multi-center, long-term follow-up data. The results demonstrate that in the internal 375 

testing set, the AUC values for the clinical model, radiomic model, and clinical-radiomic fusion 376 

model were 0.796 (95% CI: 0.708-0.884), 0.838 (95% CI: 0.759-0.905), and 0.849 (95% CI: 377 

0.772-0.913), respectively. According to the DeLong test, there was no significant difference 378 

among the three models, suggesting that the clinical and combined models have equivalent 379 

efficacy in predicting whether SSNs will grow within 5 years. However, the fusion model 380 

exhibited higher accuracy (0.730 vs. 0.680), sensitivity (0.767 vs. 0.517), F1 score (0.7773 vs. 381 

0.660), and AUPRC (0.909 vs. 0.859) compared to the clinical model. Therefore, future 382 

investigations using prospective data from long-term follow-up can further explore the 383 

predictive value of the combined model in predicting SSN growth within 5 years. 384 

Mainstream medical societies have issued guidelines for managing pulmonary nodules, 385 

but these guidelines differ in scope and emphasis. They primarily focus on factors such as 386 

malignancy probability thresholds, follow-up schedules based on imaging features, malignancy 387 

risk calculators, and the use of VDT [36-41]. To address the complexity of managing pulmonary 388 



nodules, we utilized the SHAP method to provide insights into the inner workings of machine 389 

learning models. We developed personalized prediction models based on clinical and imaging 390 

data to enhance clinician acceptance and decision-making. Despite the initial success, when 391 

extending the model to health examination centers, there was a decrease in diagnostic 392 

performance. However, the model still exhibited stability and reliability. Therefore, in the 393 

clinical setting, clinicians should view these models as valuable tools but also consider 394 

individual patient factors and exercise flexibility in decision-making to ensure personalized and 395 

accurate diagnosis and treatment. 396 

However, this study has some limitations. First, it is a multi-center retrospective 397 

observational study, and it may have selection bias and temporal bias. Clinical practitioners 398 

influence variations in follow-up intervals and duration at different medical centers. Second, 399 

the study only included an Asian population, which may have significant demographic 400 

differences compared to a Caucasian population. Therefore, clinical prediction models cannot 401 

be assessed for patients of different ethnicities, and further validation of the results is needed 402 

through international multi-center cohorts. Additionally, not all growing nodules were 403 

pathologically confirmed to be malignant. Hence, the criteria for surgical intervention after 404 

nodule progression warrant further exploration. 405 

In summary, developing individualized management strategies for SSNs is crucial in 406 

clinical practice. Based on this study's distinctly different natural courses of SSNs, we 407 

combined clinical and radiomic features using machine learning algorithms to create predictive 408 

models for assessing whether SSNs will grow within two years. Compared to previous research, 409 

our models demonstrated improved predictive performance. Additionally, for the first time, we 410 

used multi-center, long-term follow-up data to establish a predictive model for SSN growth 411 

within five years, guiding long-term follow-up of SSNs. These predictive models were further 412 

validated in an external dataset, demonstrating good generalizability. 413 
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