
Under review as a conference paper at ICLR 2023

MULTI-AGENT MULTI-GAME ENTITY TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Building large-scale generalist pre-trained models for many tasks is becoming an
emerging and potential direction in reinforcement learning (RL). Research such as
Gato and Multi-Game Decision Transformer have displayed outstanding perfor-
mance and generalization capabilities on many games and domains. However, there
exists a research blank about developing highly capable and generalist models in
multi-agent RL (MARL), which can substantially accelerate progress towards gen-
eral AI. To fill this gap, we propose Multi-Agent multi-Game ENtity TrAnsformer
(MAGENTA) from the entity perspective as an orthogonal research to previous
time-sequential modeling. Specifically, to deal with different state/observation
spaces in different games, we analogize games as languages by aligning one single
game to one single language, thus training different "tokenizers" and a shared trans-
former for various games. The feature inputs are split according to different entities
and tokenized in the same continuous space. Then, two types of transformer-based
model are proposed as permutation-invariant architectures to deal with various
numbers of entities and capture the attention over different entities. MAGENTA is
trained on Honor of Kings, Starcraft II micromanagement, and Neural MMO with a
single set of transformer weights. Extensive experiments show that MAGENTA can
play games across various categories with arbitrary numbers of agents and increase
the efficiency of fine-tuning in new games and scenarios by 50%-100%. See our
project page at https://sites.google.com/view/rl-magenta.

1 INTRODUCTION

In recent years, transformer-based models, as a solution to build large-scale generalist models, have
made substantial progress in natural language processing (Brown et al., 2020; Devlin et al., 2018),
computer vision (Dosovitskiy et al., 2020; Bao et al., 2021), graph learning Yun et al. (2019); Rong
et al. (2020), Furthermore, they are showing their potential in reinforcement learning (RL) (Reed
et al., 2022; Lee et al., 2022; Wen et al., 2022) by modeling and solving sequential problems.

However, there are few inherent challenges in building large-scale general RL agents. First, when
the training environment and the test environment are the same, RL is inclined to overfit the training
environments, while lacking generalizability to unknown environments. As a result, a model is often
needed to be re-trained from scratch for a new task. Second, it is challenging for a single model
to adapt for various environments with differences in the numbers of agents, states, observations,
actions, and dynamics. Third, training from scratch normally suffers from expensive computational
cost, especially for large-scale RL. For example, AlphaStar requires 16 TPUs to train for 14 days,
and Honor of King (HoK) requires 19,600 core CPUs and 168 V100 GPUs to train for nearly half a
month. Thus, building a general, reusable, and efficient RL model has been an increasingly important
task for both industrial and non-industrial research.

To this end, we investigate whether a single model, with a single set of parameters, can be trained by
playing multiple multi-agent games in an online manner, which is a blank in current research after
Gato (Reed et al., 2022) and MGDT (Lee et al., 2022). We consider training on Honor of Kings
(HoK), Starcraft II micromanagement (SMAC), and Neural MMO (NMMO), informally asking:

Can models learn some general knowledge about games across various categories?

In this paper, we answer this question by proposing Multi-Agent multi-Game ENtity TrAnsformer
(MAGENTA). We consider this problem as a few-shot transfer learning with the hypothesis, where a

1

https://sites.google.com/view/rl-magenta

Under review as a conference paper at ICLR 2023

single model is capable of playing many games and can be adapted to never-seen-before games or
scenarios with fine-tuning. For interpretability, we align the design of MAGENTA with the Entity
Component System (ECS) architectural pattern of video games and the multilingual transformer.
Specifically, we treat different games as different languages by aligning one single game to one single
language as shown in Fig.3. Different languages have different tokenizers, so do games. Also, we
expect that the learned representations in different games are similar to the word2vec in NLP. In this
case, our transformer can be viewed as a multilingual transformer to capture the common knowledge
among different games. We split the feature input according to different entities and tokenize the
features in the same continuous space. Unlike existing applications of the transformer as a causal
time-sequential model, the transformer in MAGENTA serves as a permutation-invariant architecture
to attend to the features of different entities. We propose two types of transformer architecture,
Encoder-Pooling (EP) and Encoder-Decoder (ED), to build permutation-invariant models. In this way,
the output of the model should not change under any permutation of the elements in the input. Lastly,
we show the training scheme of MAGENTA about how to train and transfer the pre-trained model.

As a step towards developing a general model in RL/MARL, our contributions are threefold: First,
by aligning games and languages, we show that it is possible to train a single generalist agent to act
across multiple environments in an online manner. Second, we present permutation-invariant models
for adapting various numbers of agents in different games. And third, we find that MAGENTA can
achieve rapid fine-tuning in an online fashion to different scenarios within a single game, to a new
type of game, and to different numbers of agents. Furthermore, we release the pre-trained models
and code to encourage further research in this direction.

2 PRELIMINARY
2.1 REINFORCEMENT LEARNING AND MULTI-AGENT RL

An RL problem is generally studied as a Markov decision process (MDP) (Bellman, 1957), defined
by the tuple: MDP = (S,A,P, r, γ, T), where S ⊆ Rn is an n-dimensional state space, A ⊆ Rm

an m-dimensional action space, P : S ×A× S → R+ a transition probability function, r : S → R
a bounded reward function, γ ∈ (0, 1] a discount factor and T a time horizon. In MDP, an agent
receives the current state st ∈ S from the environment and performs an action at ∈ A defined by
a policy πθ : S → A parameterized by θ. The objective of the agent is to learn an optimal policy:
πθ∗ := argmaxπθ

Eπθ

[∑T
i=0 γ

irt+i|st = s
]
. An MARL problem is formulated as a decentralised

partially observable Markov decision process (Dec-POMDP) (Bernstein et al., 2002), which is
described as a tuple ⟨n,S,A, P,R,O,Ω, γ⟩, where n represents the number of agents. S,A, P,R
are all global versions of those in MDP. O = {Oi}i=1,··· ,n denotes the space of observations of all
agents. Each agent i receives a private observation oi ∈ Oi according to the observation function
Ω(s, i) : S → Oi. 1.

2.2 ATTENTION MECHANISM IN TRANSFORMER

One of the most essential components of Transformer (Vaswani et al., 2017) is the attention mecha-
nism, which captures the interrelationship of input sequences. Assume that we have n query vectors
(corresponding to a set with n elements) each with dimension dq : Q ∈ Rn×dq . The attention
function is written as Attention(Q,K, V) = ω(QK⊤)V , which maps queries Q to outputs using
nv key-value pairs K ∈ Rnv×dq , V ∈ Rnv×dv . The pairwise dot product QK⊤ ∈ Rn×nv measures
how similar each pair of query and key vectors is, with weights computed with an activation function
ω. The output ω

(
QK⊤)V ∈ Rn×dv is a weighted sum of V where a value gains more weight if

its corresponding key has a larger dot product with the query. Furthermore, self-attention refers to
cases where Q,K, V share the same set of parameters. Multi-head attention is an extension of the
attention by computing h attention functions simultaneously and outputing a linear transformation of
the concatenation of all attention outputs.

2.3 ENTITY IN VIDEO GAME DESIGN

In video game development, the Entity Component System (ECS) is the often used software archi-
tectural pattern for the representation of game world objects (Bilas, 2002). An ECS has three parts:

1We present this paper in the scope of MARL, and abuse the term "feature" an alternative of observation.

2

Under review as a conference paper at ICLR 2023

Enemy Player Bullet

Position Health Spawning

Render

System

Health

System
Spawning

System

Entity

Component

System

Figure 1: An Example of ECS of the BattleCity game in Atari 2600.

entities, components, and systems. Entities are composed of data from components, while systems
operate on entities’ components. For example as shown in Fig.1, in BattleCity, the enemy tank, the
player, and the bullets can be represented as different entities. These entities that can cause damage
might have a health component. The physics system in this game may query entities whether having
mass, velocity, as well position components, and do physics calculations on the sets of components
for each entity.

3 RELATED WORK

3.1 TRANSFORMER IN RL

Recently, transformer-based models have been shown to be a powerful tool for RL to capture global
dependencies or model long-term squence. The architecture of MAGENTA is closely related to
AlphaStar (Jaderberg et al., 2019) and OpenAI Five (OpenAI, 2019), which use transformer-based
models to embed unit features for each player. Another perspective of using transformer-based models
is to model an RL problem as a sequence prediction problem that models trajectories autoregressively,
such as Decision Transformer (DT) (Chen et al., 2021), Trajectory Transformer (TT) (Janner et al.,
2021), GATO (Reed et al., 2022), and Multi-Game DT (MGDT) (Lee et al., 2022). In addition,
Multi-Agent transformer (MAT) (Wen et al., 2022) considers the MARL problem as a sequence
prediction problem that generates the optimal action of each agent sequentially.

However, these transformer-based models study the generality with trajectory sequences in single
agent scenarios (Reed et al., 2022; Lee et al., 2022) or focus on a single task with the sequences (Jader-
berg et al., 2019; OpenAI, 2019; Chen et al., 2021; Janner et al., 2021; Wen et al., 2022). In addition,
they use causal transformer decoders, which use causal masking to discard future information. MA-
GENTA fills the current research blank by using a transformer model without positional encoding
and exploring generality with entity sequences in multi-agent scenarios. Note that models such as DT,
TT, and MGDT utilize the sequence along the time dimension, while MAGENTA along the entity
dimension, so MAGENTA is orthogonal to time trajectory sequence modeling methods by viewing
MAGENTA as a tokenizer in these methods. We summarize these related works as shown in Table 1.

Table 1: Related Work on Transformers in RL

Method Sequence Data Agent Task Transfer Games/Domains
DT, TT trajectory offline single single No Atari,OpenAI Gym,Key-to-Door
Gato trajectory offline single multi No Atari,caption,chat,robotics,etc.
MGDT trajectory offline single multi Yes Atari
online DT trajectory online single single Yes OpenAI Gym
MAT agent online multi single No Starcraft II micromanagement
AlphaStar entity online multi single No Starcraft II full game
OpenAI Five entity online multi single No Dota 2

MAGENTA entity online multi multi Yes HoK,Neural MMO,
Starcraft II micromanagement

3.2 REUSE TRAINED RL MODELS

Another related research direction is to reuse trained RL models, which is an important subfield of
RL. Some approaches directly use the trained models. For example, to avoid restarting from scratch
after changes in code and environment, OpenAI Five (OpenAI, 2019) used the "surgery" approach
to convert a trained model to certain larger architectures with customized weight initialization.

3

Under review as a conference paper at ICLR 2023

spatial feature

turrets

minions

heroes

…

entity feature

CNN

FC

FC

FC

…

tokens

…

Transformer

𝑜𝑖

𝑒1, 𝑒2, … , 𝑒𝑛

tokenizer

𝑧𝑖

Value

Action

output
tokenizer

Figure 2: (Left) Overall framework of MAGENTA. (Right) An example tokenizer for HoK. Spatial
features are as images and entity features as vectors.

MGDT (Lee et al., 2022) and Gato (Reed et al., 2022) follow the manner of few-shot transfer
learning by using a single set of weights to play many games or handle tasks in multiple domains
simultaneously. Furthermore, some approaches implicitly exploit trained models, such as behavior
cloning (Gao et al., 2018; Hester et al., 2018), distillation (Rusu et al., 2015; Parisotto et al., 2015),
and the use of the teacher-student framework (Chang et al., 2015; Schmitt et al., 2018; Uchendu
et al., 2022). Considering that all these methods are based on well-pretrained model weights,
MAGENTA follows the fashion of direct usage and provides our code and trained agents. Interested
researchers can use the provided models for further exploration on how to reuse such models.

4 MULTI-AGENT MULTI-GAME ENTITY TRANSFORMER

In building generic multi-agent AI for different games, the following challenges are encountered: (1)
different feature inputs (i.e., different observations), different action spaces, and different rewards
across different classes of games; (2) the number of entities varies across different classes of games.

Motivated by multilingual models (Devlin et al., 2018; Liu et al., 2020; Xue et al., 2021) in the NLP
community, we treat different games as different languages to deal with different inputs of features.
Although words or sentences in different languages have different representations, such as "I love
you" in English, and "Je t’aime" in French; however, the meaning behind those words is the same. We
also find the analogy in the ECS game design pattern. Games are designed based on physical rules in
the world. Basically, entities in most games can move, collide, and even attack. The components
or attributes of these entities are changing according to the "virtual rules", which are mimics of the
physical rules. The RL policy can be considered as a neural network system to approximate such
rules. So we divide such neural network system into three parts: tokenizor, transformer, and output.
Tokenziors are trained for different games, just as they are trained for different languages in NLP.
Transformer is a multi-game transformer, as an analogy to the multilingual transformer. While output
are finetuned according to the down-streaming tasks.

4.1 GAMES AS LANGUAGES

Tokenizor is used to obtain initial embeddings of words in the NLP community. When we treat games
as languages, different features of entities can be analogized to different "words". Such "words" are
typically composed of images and vectors. Therefore, we need to divide the features into "words"
and then map them into the same continuous space.

A good tokenization for different games should be feature-space-agnostic. Different games have
different features, such as images or vectors. Furthermore, the features of different entities have
different shapes, dimensions, and meanings. Therefore, a good tokenization is supposed to handle
different feature spaces and split the entire feature into individual elements, such as the tokenizer in
NLP splits sentences into words.

We categorize the feature input into two types: images and vectors. When playing games, we can
have a screenshot as an image. Typically, we call them frames as shown in (Mnih et al., 2015). The
numerical attributes of the entities can be vectors. For example, a vector composed of the health
point, the mana point, the speed, the attack, and defense, etc. As shown in Fig.2, to process images,
we first use convolution neural networks to extract the latent representation and then linearly project
the representation into the embedding space. For processing vectors, we divide the vectors into many
inputs that correspond to different entities. Then we use a fully connected neural network to get
tokens for different entities. The same types of entities share the same parameters in neural networks.

4

Under review as a conference paper at ICLR 2023

split & tokenize

… … …

sentences

tokens

split & tokenize

我爱你 I love you Je t'aime

… … …

observations

tokens

Figure 3: Games as Languages. (Left) Tokenize different observations from different games. (Right)
Tokenize different sentences from different languages.

We chose our tokenization scheme with simplicity in mind, but many other schemes are possible. For
example, more sophisticated methods, such as VAE (Kingma & Welling, 2013) can be used to learn a
more effective token representation.

4.2 TRANSFORMER IN MAGENTA

In many game scenarios, the number of entities to be modeled changes over time (e.g., deaths of
soldiers in Starcraft II, revival of enemies in Neural MMO), and although some empty spaces can be
set aside in advance from a network compatibility perspective, these spaces are not always suitable
for new entities. In addition, the order of the entities should not affect the RL model training. Unlike
the order of words in sentences, the order dependence in RL leads to an inability to handle the input
of a varying number of entities.

A model for this issue should satisfy two critical requirements. First, the model should be able to
process input of any size. The number of input tokens depends on the number of entities. Second, it
should be order-agnostic or permutation-invariant. The output of the model should not change under
any permutation of the elements in the input. Classical feedforward neural networks violate both
requirements, and RNNs are sensitive to input order. To this end, we use the transformer architecture
as the core of MAGENTA. We modify the vanilla transformer architecture by removing the positional
encoding to satisfy these two requirements.

Furthermore, to force our model to be order agnostic, we design two types of the transformer
architecture, as shown in Figure 4: Encoder-Pooling (EP) and Encoder-Decoder (ED). Detailed
despcritption can be found in Appendix. The encoder is used to obtain the mapping between the
token representations of entities

(
e1, . . . , en

)
and the output of the attentive features

(
ê1, . . . , ên

)
,

where n is the number of all entities. The key idea is that each agent can only affect the related
entities, and thus should pay more attention to them.

For EP, we use the pooling function to post-process the embeddings. A network that performs
pooling over embeddings extracted from the elements of a set. More formally, net

({
ê1, . . . , ên

})
=

ρ
(
pool

({
ϕ
(
ê1
)
, . . . , ϕ (ên)

}))
. Here, operations like mean, summation, max, or similar can be

used as the pooling function to aggregate the embeddings. Zaheer et al. have proven that all
permutation-invariant functions can be represented as this inline equation when pool is the sum
operator and ϕ, ρ any continuous functions, thus satisfying the permutation-invariance requirement.

Transformer Encoder

…

…

…

Pooling Transformer Decoder

…
𝑒1, 𝑒2, … , 𝑒𝑛

Ƹ𝑒1, Ƹ𝑒2, … , Ƹ𝑒𝑛

Ƹ𝑒1, Ƹ𝑒2, … , Ƹ𝑒𝑛 Ƹ𝑒1, Ƹ𝑒2, … , Ƹ𝑒𝑛

𝑧𝑖 𝑧𝑖

𝑒𝑖

Figure 4: The transformer architecture in MAGENTA. (Left) The transformer encoder. (Mid) Pooling.
(Right) The transformer decoder. EP consists of the left and mid parts, while ED consists of the
left and right parts. We denote the the token representations of entities by

(
e1, . . . , en

)
and the

output of the attentive features by
(
ê1, . . . , ên

)
. We unify zi from different architectures as the

permutation-invariant representation.

5

Under review as a conference paper at ICLR 2023

For ED, we design a decoder to post-process the embeddings. Specifically, instead of using self-
attention, the decoder uses the original attention mechanism and outputs Attention(Q,K, V) ∈
R1×dv , where Q is the embedding êi of the current agent i (an agent is also an entity), while K,V
are the embeddings of all entities. In this way, the output of ED is only one single vector that does
not change under any permutation of the elements in the input.

4.3 TRAINING AND IMPLEMENTATION DETAILS

M0

Random

initialized model

Performance

H

N

S

M1

expert models

on diff. games

M2

transfer models

on new games

M3

final model

on all games

Figure 5: The training scheme of MAGENTA.
The dotted lines represent transfers to a new
game or a new scenario. Each cell repre-
sents tokenizer, transformer and output, re-
spectively. Different colors represent differ-
ent games.

Training scheme. We focus on MARL scenarios and
choose three representative environments from the
industrial and academic domains: Honor of Kings
(HoK), Neural MMO (NMMO), and Starcraft II mi-
cromanagement (SMAC). We design our three-stage
training scheme as shown in Fig.5.

Stage 1. From the random initialized model
M0, we train expert models with MAGENTA on
each individual game and obtain expert models
M1

H ,M1
N ,M1

S in different games, where H rep-
resents HoK, N represents NMMO, S represents
SMAC.

Stage 2. We transfer M1
H to new games and

get M2
H,N ,M2

H,S . The tokenizer and output are
trained from scratch in the new games. Note that
HoK, with a state and action space of magnitude
1020000 (Ye et al., 2020), is much more complex.
So we transfer the trained HoK transformer to
NMMO and SMAC.

Stage 3. We start from M0 and train the transformer M3 = M3
H,N,S in selected scenarios in

these three environments. The tokenizer and output are from M2. Then we check whether M3

can handle never-seen-before scenarios in these games with few-shot transfer.

Policy updates. In order to avoid training instability in our large-scale distributed environment,
we use the dual-clip PPO method for each agent. Unlike the original algorithm, we introduce the
policy πθ (ai | oi) and the estimate of advantages Ât (ai, oi). When πθ (ai | oi) ≫ πθold (ai | oi)
and Ât < 0, the ratio rt(θ) =

πθ(ai|oi)
πθold (ai|oi) is huge, causing the large and unbounded variance since

rt(θ)Ât ≪ 0. Dual-clip PPO introduces another clipping parameter c that indicates the lower bound
when Ât < 0. The new objective is defined as:

Lpolicy (θ) = Êt

[
max

(
cÂt,min

(
clip (rt(θ), 1− τ, 1 + τ) Ât, rt(θ)Ât

))]
, (1)

where τ is the original clip parameter in PPO.

Value updates. We use the multi-head value mechanism for different rewards sources. Specifically,
the values of achieving one reward are regarded as one head. Therefore, the value loss is defined as:

Lvalue (θ) = Êt

[∑
head k

(
Rk

t − V̂ k
t

)]
, Vtotal =

∑
head k

wkV
k
t (oi) (2)

where wk is the learnable weight of the k-th head and V k
t (oi) is the k-th value.

5 EXPERIMENTS

We conduct our experiments to answer a number of questions:

• How is the performance of the entity transformer in single game?

• How effective is MAGENTA in transfer to new games?

6

Under review as a conference paper at ICLR 2023

Figure 6: Games where MAGENTA trains. (Left) Neural MMO. (Mid) Honor of Kings. (Right)
Starcraft II micromanagement (SMAC). See detailed description about these games in Appendix.

• How effective is MAGENTA in transfer to new scenarios?

• How does MAGENTA scale with model size?

• What does MAGENTA attend to? (See Appendix E.2 due to page limits.)

• What the learned embedding in games looks like? (See Appendix E.3)

5.1 SETUP

Models used in the experiments. We list the different versions of /name and the corresponding
transfer experiments in Table 2.

EP ED TL
M1

(baselines) H,S,N H,S,N H

M2

(new games)
H->
S,N

H->
S,N -

M3

(new scenarios)
H+S+N->

S,N
H+S+N->

S,N - 25 50 75 100 125 150 175
Training hours

0

20

40

60

80

HO
K

wi
nr

at
e

(%
)

model
TL
ED
EP

Table 2: Different Models and Transfer Experi-
ments.

Figure 7: The performance of different variants
of MAGENTA in HoK 3v323.

Training and fine-tuning. We train MAGENTA models on Hok with an ADAM optimizer of a
2 · 10−4 learning rate, β1 = 0.9 and β2 = 0.999, without weight decay, gradient clip 0.5, and batch
size 2048. And we train MAGENTA on SMAC and NMMO with an ADAM optimizer of 1 · 10−4

learning rate, β1 = 0.9 and β2 = 0.999, no weight decay, gradient clip 0.3, and batch size 4096.
Detailed hyperparameter are described in the Appendix F.

Metrics. We measure the performance of MAGENTA in HoK by the win rate and in SMAC/NMMO
by cumulative rewards. Due to prohibitively long training times, we only evaluated one training seed
in HoK and three training seeds in SMAC/NMMO.

5.2 HOW IS THE PERFORMANCE OF THE ENTITY TRANSFORMER?

In this subsection, we mainly evaluate M1 of MAGENTA in HoK 3v3 scenario. We trained 3 different
variants of MAGENTA: EP, ED, TL (EP followed by an LSTM network), and train FC+LSTM (FC
layers as replacement of the transformer) as the opponent to calculate the win rate with three variants.
All variants have similar model sizes. We introduce the TL model to show that MAGENTA is
orthogonal to the time-sequential modeling methods. At each point, two models with the same
training time compete with each other.

3We omit the performance of the FC+LSTM model, since it is a 50% line.
3We use time-axis since the training is in a distributed manner. It is difficult to show the exact number of

samples.

7

Under review as a conference paper at ICLR 2023

0.0 1.0
Mil Step

12

14

16

18

3m
(e

as
y)

 re
wa

rd

model
M1

M2

M3
1

M3
2

0.0 0.2 0.4 0.6
Mil Step

16

18

8m
(e

as
y)

 re
wa

rd

0.0 0.5 1.0
Mil Step

16

18

25
m

(h
ar

d)
 re

wa
rd

0.0 1.0 2.0
Mil Step

10

12

14

16

8m
9m

(h
ar

d)
 re

wa
rd

0.0 1.0 2.0
Mil Step

6

7

8

9

10

5m
6m

(s
-h

ar
d)

 re
wa

rd

0.0 1.0 2.0
Mil Step

7.5

8.0

8.5

9.0

6h
8z

(s
-h

ar
d)

 re
wa

rd
0.0 1.0 2.0

Mil Step

8

9

10

11

3s
5z

3s
6z

(s
-h

ar
d)

 re
wa

rd

0.0 1.0 2.0
Mil Step

12

14

16

18

27
m

30
m

(s
-h

ar
d)

 re
wa

rd

Figure 8: Transfer performance in SMAC. M2 is trained in HoK, M3
1 in HoK, SMAC 5m_vs_6m

scenario, NMMO 8 agent scenario, and M3
2 in HoK, SMAC 8m_vs_9m, NMMO 8 agent scenario.

In Fig.7, we can see that after 160 hours of training, all variants of MAGENTA outperform the
FC+LSTM model. It shows the benefit of using the transformer architecture. An interesting finding
is that, at the beginning, MAGENTA hardly won the FC+LSTM model. The transformer can increase
model capacity and expressiveness while needing more training data compared to the FC model.

5.3 HOW EFFECTIVE ARE MAGENTA AT TRANSFER TO NEW GAMES?

0.0 1.0 2.0
Mil Step

0.2

0.4

0.6

0.8

1.0

4a
ge

nt
 re

wa
rd

0.0 0.2 0.5 0.8
Mil Step

0.5

1.0

1.5

2.0

8a
ge

nt
 re

wa
rd

model
M1

M2

M3

Figure 9: Transfer performance in NMMO.

We want to evaluate whether MAGENTA can
adapt the the novel games. To do this,
we transfer the trained HoK transformer to
NMMO and SMAC. We show the training pro-
cess of M1,M2 and M3. In Fig.8, we show
the result of transfer to SMAC. Before this
transfer, M2 is already trained in HoK, M3

1
in HoK, SMAC 5m_vs_6m scenario, NMMO
8 agent scenario, and M3

2 in HoK, SMAC
8m_vs_9m, NMMO 8 agent scenario. For
M2, the tokenizer and the output are trained
from scratch with the pre-trained transformer.
For M3, all modules in MAGENTA are pre-trained. In this subsection, we focus on M1 and M2,
since M2 is trained in the new games. We can see that M2 can outperform M1 in most SMAC
scenarios, including easy, hard, and super hard scenarios. In Fig.9, we show the result of transfer to
NMMO. We show the performance in the 4 agent scenario and the 8 agent scenario. We can clearly
see that M2 can outperform M1. The results verifies our hypothesis that pre-training in other games
should indeed help with rapid learning of a new game.

5.4 HOW EFFECTIVE IS MAGENTA IN TRANSFER TO NEW SCENARIOS?

We devise our own evaluation setup by transferring to the never-seen-before scenarios in HoK, SMAC,
and NMMO. HoK has three scenarios: 1v1, 3v3, and 5v5. In HoK, we have two experiments to
answer whether we can transfer to more or fewer agents.

In Fig.10a, we show the training performance of model M1
HoK ,M2

1v1,M
2
3v3 and M2

5v5
4. The result

shows that the models transferred from 3v3 and 5v5 to 1v1 outperform the model trained in 1v1
from scratch. And there is a slight performance difference between M2

3v3 and M2
5v5. In Fig.10b,

the model transferred from 1v1 to 5v5 outperforms the model trained in 5v5 from scratch. The
experiments show that MAGENTA learned some transferable knowledge which can be used in the
never-seen-before scenarios, even in the single agent scenario. Then we look back at Fig.8 and Fig.9.
We can see that M3 can outperform M2 in the held-out scenarios. The results in this subsection
highlight the benefit of MAGENTA’s rapid fine-tuning to new scenarios across different tasks and
number of agents or entities.

4We omit other games in the subscript.

8

Under review as a conference paper at ICLR 2023

0 10 20 30 40 50 60 70
Training hours

0

20

40

60

80

100

HO
K

1v
1

wi
nr

at
e

(%
)

model
M1

M2(3v3)
M2(5v5)

(a) From 5v5 and 3v3 to 1v1.

0 25 50 75 100 125 150 175
Training hours

0

500

1000

1500

2000

HO
K

5v
5

el
o

Sc
or

e

model
M1

M2(1v1)

(b) From 1v1 to 5v5.

Figure 10: The transfer in HoK. The win rate is against the FC+LSTM model.

5.5 HOW DOES MAGENTA SCALE WITH MODEL SIZE?

60M 120M 180M 240M
Number of Model Parameters

60%

100%

140%

180%

No
rm

al
ize

d
Sc

or
e HoK

SMAC
NMMO

Figure 11: Normalized scores for all
training games with different model
sizes.

We obtain the final performance of M3 on all games
and choose M1 as the baseline to compute the normal-
ized score. In Fig.11 It shows that when the size of the
model increases, in the complex game, i.e., HoK, MA-
GENTA has better performance. In less complex games,
MAGENTA shows a flat or decreasing performance with
increasing model size. We interpret this result as overpa-
rameterization, where a richer model is fitting than nec-
essary. In fact, we conducted a confirmatory experiment
using just a few FC layers in SMAC and NMMO. It can
show a performance similar to M1.

We also conduct an ablation study in HoK on which parts of MAGENTA are transferable in Fig.12.
We transfer different parts of MAGENTAto the new scenarios. It shows that all transfers benefit the
adapt to the new scenarios and the transfer of the whole model weights achieves the best performance.

0 10 20 30 40 50 60 70
Training hours

0

20

40

60

80

100

HO
K

1v
1

wi
nr

at
e

(%
)

model
M1

M2(3v3_p1)
M2(3v3_p2)
M2(3v3_p3)

(a) From 3v3 to 1v1

0 10 20 30 40 50 60 70
Training hours

0

20

40

60

80

100

HO
K

1v
1

wi
nr

at
e

(%
)

model
M1

M2(5v5_p1)
M2(5v5_p2)
M2(5v5_p3)

(b) From 5v5 to 1v1

0 10 20 30 40 50 60 70
Training hours

0

500

1000

1500

2000

HO
K

3v
3

EL
O

sc
or

e

model
M1

M2(5v5_p1)
M2(5v5_p2)
M2(5v5_p3)

(c) From 5v5 to 3v3

Figure 12: The ablation of transferable parts of MAGENTA in HoK. P1 represents the transfer of
tokenizer. P2 represents the transfer of tokenizer and transfomer. P3 represents the transfer of the
whole model weights.

6 CONCLUSION

In this paper, we have made an attempt to develop highly capable generalist agents. Namely, we
provide a perspective: viewing different games as different languages. When different tokenizers are
trained for various games, entities are split into tokens. The utilization of transformer models can
deal with different feature inputs and various number of entities. The attention mechanism in the
transformer also encourages the agent to focus on highly related entities. Our results exhibit a clear
benefit of using large transformer-based models from entity perspective in multi-agent multi-game
domains. We believe the trends suggest clear paths for future work, that with larger models and larger
suites of tasks.

Limitations. We acknowledge some limitations of our conclusions. First, our results are largely
based on performance in battle games, such as real-time strategy games, MOBA games, and MMO
games, where the rules are similar to each other. Second, the tokenizer is not general for all games.
We still need to train specific tokenizers to handle different entities in various games. Third, we still
follow the online fashion, which remains the question whether offline datasets can help and boost the
training efficiency. Lastly, it remains unclear whether we can observe other forms of generalization,
such as zero-shot adaptation, as well as whether our conclusions hold for other settings.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv preprint
arXiv:2106.08254, 2021.

Richard Bellman. A Markovian. Journal of Mathematics and Mechanics, pp. 679–684, 1957.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of Markov decision processes. Mathematics of Operations Research, 27(4):
819–840, 2002.

Scott Bilas. A data-driven game object system. In Game Developers Conference Proceedings, 2002.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daumé III, and John Langford. Learning
to search better than your teacher. In International Conference on Machine Learning, pp. 2058–
2066. PMLR, 2015.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in Neural Information Processing Systems, 34:15084–15097, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Yang Gao, Huazhe Xu, Ji Lin, Fisher Yu, Sergey Levine, and Trevor Darrell. Reinforcement learning
from imperfect demonstrations. arXiv preprint arXiv:1802.05313, 2018.

Yiming Gao, Bei Shi, Xueying Du, Liang Wang, Guangwei Chen, Zhenjie Lian, Fuhao Qiu, Guoan
Han, Weixuan Wang, Deheng Ye, et al. Learning diverse policies in moba games via macro-goals.
Advances in Neural Information Processing Systems, 34:16171–16182, 2021.

William H Guss, Cayden Codel, Katja Hofmann, Brandon Houghton, Noburu Kuno, Stephanie
Milani, Sharada Prasanna Mohanty, Diego Perez Liebana, Ruslan Salakhutdinov, Nicholay Topin,
et al. The minerl competition on sample efficient reinforcement learning using human priors. 2019.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Science,
364(6443):859–865, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in Neural Information Processing Systems, 34:1273–1286, 2021.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. ViZ-
Doom: A Doom-based AI research platform for visual reinforcement learning. In IEEE Conference
on Computational Intelligence and Games, pp. 341–348, Santorini, Greece, Sep 2016. IEEE. URL
http://arxiv.org/abs/1605.02097. The best paper award.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

10

http://arxiv.org/abs/1605.02097

Under review as a conference paper at ICLR 2023

Kuang-Huei Lee, Ofir Nachum, Mengjiao Yang, Lisa Lee, Daniel Freeman, Winnie Xu, Sergio
Guadarrama, Ian Fischer, Eric Jang, Henryk Michalewski, et al. Multi-game decision transformers.
arXiv preprint arXiv:2205.15241, 2022.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike
Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation.
Transactions of the Association for Computational Linguistics, 8:726–742, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

OpenAI. OpenAI Five. https://openai.com/blog/openai-five/, 2019. Accessed
March 4, 2019.

Emilio Parisotto, Jimmy Lei Ba, and Ruslan Salakhutdinov. Actor-mimic: Deep multitask and
transfer reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning, pp. 2778–2787.
PMLR, 2017.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

Microsoft Research. Minerl: Towards ai in minecraft. https://minerl.readthedocs.io/
en/latest/index.html, 2019. Accessed July 4, 2022.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in Neural Information
Processing Systems, 33:12559–12571, 2020.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. arXiv preprint arXiv:1511.06295, 2015.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon Whiteson. The
StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

Simon Schmitt, Jonathan J Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M
Czarnecki, Joel Z Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, et al. Kickstarting
deep reinforcement learning. arXiv preprint arXiv:1803.03835, 2018.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Joseph Suarez, Yilun Du, Clare Zhu, Igor Mordatch, and Phillip Isola. The neural mmo platform
for massively multiagent research. In J. Vanschoren and S. Yeung (eds.), Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021. URL
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/
file/44f683a84163b3523afe57c2e008bc8c-Paper-round1.pdf.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. arXiv
preprint arXiv:2204.02372, 2022.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

11

https://openai.com/blog/openai-five/
https://minerl.readthedocs.io/en/latest/index.html
https://minerl.readthedocs.io/en/latest/index.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/44f683a84163b3523afe57c2e008bc8c-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/44f683a84163b3523afe57c2e008bc8c-Paper-round1.pdf

Under review as a conference paper at ICLR 2023

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information Processing
Systems, 30, 2017.

Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets, Michelle
Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, et al. StarCraft II: A
new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

Hua Wei, Jingxiao Chen, Xiyang Ji, Hongyang Qin, Minwen Deng, Siqin Li, Liang Wang, Weinan
Zhang, Yong Yu, Lin Liu, et al. Honor of kings arena: an environment for generalization in
competitive reinforcement learning. arXiv preprint arXiv:2209.08483, 2022.

Muning Wen, Jakub Grudzien Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong
Yang. Multi-agent reinforcement learning is a sequence modeling problem. arXiv preprint
arXiv:2205.14953, 2022.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mT5: A massively multilingual pre-trained text-to-text transformer.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 483–498, June 2021.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
ment learning. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 6672–6679,
2020.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. Advances in Neural Information Processing Systems, 32, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30, 2017.

12

Under review as a conference paper at ICLR 2023

A RELATED WORK ABOUT RL IN VIDEO GAMES

Games have been a focus of artificial intelligence research for decades as a stepping stone towards
more general applications. Recently, (deep) RL has been widely used in Game AI, for example,
Go (Silver et al., 2016), Atari (Mnih et al., 2015), Super Mario Bros (Pathak et al., 2017), Quake III
Arena Capture the Flag (Jaderberg et al., 2019), VizDoom (Kempka et al., 2016), Minecraft (Research,
2019; Guss et al., 2019), Neural MMO (Suarez et al., 2021), Honor of Kings (Wei et al., 2022; Ye
et al., 2020; Gao et al., 2021), StarCraft II (Jaderberg et al., 2019; Samvelyan et al., 2019; Vinyals
et al., 2017), and Dota 2 (OpenAI, 2019). In this work, we mainly focus on using a single set of
weights to play multi-scenario multi-agent games, i.e. HoK, Neural MMO, and StarCraft II.

B HONER OF KINGS

Honor of Kings is one of the most popular MOBA games worldwide. The gameplay is to divide ten
players into two camps to compete on the same symmetrical map. Players of each camp compete
for resources through online confrontation, team collaboration, etc., and finally win the game by
destroying the enemy’s crystal. The behaviors performed by players in the game can be divided
into two categories: macro-strategies and micro-operations. Macro-strategy that is, long-distance
scheduling or collaborating with teammates for quick resource competition, such as long-distance
support for teammates, collaborating to compete for monster resources, etc. Micro-operation that
is, the real-time behavior adopted by each player in various scenarios, such as skill combo release,
evading enemy skills, etc. Complicated game maps, diverse hero combinations, diverse equipment
combinations, and diverse player tactics make MOBA games extremely complex and exploratory.

Figure 13 shows the UI interface of Honor of Kings. For fair comparisons, all experiments in this
paper were carried out using a fixed released gamecore version (Version 3.73 series) of Honor of
Kings.

Figure 13: The UI interface of Honor of Kings. The hero controlled by the player is called Main
Hero. The player controls the hero’s movement through the bottom-left wheel (C.1) and releases
the hero’s skills through the bottom-right buttons (C.2, C.3). The player can observe the local view
via the screen, observe the global view via the top-left mini-map (A), and obtain game states via the
top-right dashboard (B).

Feature Design. See Table 3.

Agent Action. Table 4 shows the action space of agents.

Reward Design. Table 5 demonstrates the details of the designed environment reward.

C SMAC

SMAC benchmark is a challenging set of cooperative StarCraft II maps for micromanagement
developed by (Samvelyan et al., 2019) built on DeepMind’s PySC2 (Vinyals et al., 2017). We

13

Under review as a conference paper at ICLR 2023

Table 3: Feature details.

Feature Class Field Description Dimension

1. Unit feature Scalar Includes heroes, minions, monsters, and turrets 3946

Heroes Status Current HP, mana, speed, level, gold, KDA, 1562and magical attack and defense, etc.
Position Current 2D coordinates 20

Minions Status Current HP, speed, visibility, killing income, etc. 920
Position Current 2D coordinates 80

Monsters Status Current HP, speed, visibility, killing income, etc. 728
Position Current 2D coordinates 56

Turrets Status Current HP, locked targets, attack speed, etc. 540
Position Current 2D coordinates 40

2. In-game stats feature Scalar Real-time statistics of the game 104

Static statistics

Time Current game time 57
Camp Types of two camps 1
Alive heroes Number of alive heroes of two camps 10
Kill Kill number of each camp 6
Alive turrets Number of alive turrets of two camps 8

Comparative statistics
Alive heroes diff Alive heroes difference between two camps 11
Kill diff Kill difference between two camps 5
Alive turrets diff Alive turrets difference between two camps 6

Table 4: The action space of agents.

Action Detail Description

What

Illegal action Placeholder.
None action Executing nothing or stopping continuous action.
Move Moving to a certain direction determined by move x and move y.
Normal Attack Executing normal attack to an enemy unit.
Skill1 Executing the first skill.
Skill2 Executing the second skill.
Skill3 Executing the third skill.
Skill4 Executing the fourth skill (only a few heroes have Skill4).
Summoner ability An additional skill choosing before the game begins (10 to choose).
Return home(Recall) Returning to spring, should be continuously executed.
Item skill Some items can enable an additional skill to player’s hero.
Restore Blood recovering continuously in 10s, can be disturbed.
Collaborative skill Skill given by special ally heroes.

How

Move X The x-axis offset of moving direction.
Move Y The y-axis offset of moving direction.
Skill X The x-axis offset of a skill.
Skill Y The y-axis offset of a skill.

Who Target unit The game unit(s) chosen to attack.

introduce states and observations, action space and rewards of SMAC, and environmental
settings of MAGENTA below.

States and Observations. At each time step, agents receive local observations within their field of
view, which contains information (distance, relative x, relative y, health, shield, and unit type) about
the map within a circular area for both allied and enemy units and makes the environment partially
observable for each agent. The global state is composed of the joint observations, which could be
used during training. All features, both in the global state and in individual observations of agents,
are normalized by their maximum values.

Action Space. actions are in the discrete space. Agents are allowed to make move[direction],
attack[enemy id], stop and no-op. The no-op action is only for dead agents and it is the only legal
action for them. Agents can only move in four directions: north, south, east, or west. The shooting
range is set to for all agents. Having a larger sight range than a shooting range allows agents to make
use of the move commands before starting to fire. The automatical built-in behavior of agents is also
disabled for training.

14

Under review as a conference paper at ICLR 2023

Table 5: The details of the environment reward.

Head Reward Item Weight Type Description

Farming Related

Gold 0.005 Dense The gold gained.
Experience 0.001 Dense The experience gained.
Mana 0.05 Dense The rate of mana (to the fourth power).
No-op -0.00001 Dense Stop and do nothing.
Attack monster 0.1 Sparse Attack monster.

KDA Related

Kill 1 Sparse Kill a enemy hero.
Death -1 Sparse Being killed.
Assist 1 Sparse Assists.
Tyrant buff 1 Sparse Get buff of killing tyrant, dark tyrant, storm tyrant.
Overlord buff 1.5 Sparse Get buff of killing the overlord.
Expose invisible enemy 0.3 Sparse Get visions of enemy heroes.
Last hit 0.2 Sparse Last hitting an enemy minion.

Damage Related Health point 3 Dense The health point of the hero (to the fourth power).
Hurt to hero 0.3 Sparse Attack enemy heroes.

Pushing Related Attack turrets 1 Sparse Attack turrets.
Attack crystal 1 Sparse Attack enemy home base.

Win/Lose Related Destroy home base 2.5 Sparse Destroy enemy home base.

Rewards. At each time step, the agents receive a joint reward equal to the total damage dealt on the
enemy agents. In addition, agents receive a bonus of 10 points after killing each opponent, and 200
points after killing all opponents for winning the battle. The rewards are scaled so that the maximum
cumulative reward achievable in each scenario is around 20.

Environmental Settings of MAGENTA. The difficulty level of the built-in game AI we use in our
experiments is level 7 (very difficult) by default as many previous works did. The used scenarios
are shown in Table 6. We present the table of all scenarios in SMAC in Table 6. The Ally Units are
agents trained by MARL methods and Enemy Units are built-in game bots. For example, 5m_vs_6m
indicates that the number of MARL agent is 5 while the number of the opponent is 6. The agent
(unit) type is marine5. This asymmetric setting is hard for MARL methods.

Table 6: SMAC Environments

Name Ally Units Enemy Units Type
3m 3 Marines 3 Marines homogeneous & symmetric
8m 8 Marines 8 Marines homogeneous & symmetric
25m 25 Marines 25 Marines homogeneous & symmetric

5m_vs_6m 5 Marines 6 Marines homogeneous & asymmetric
8m_vs_9m 8 Marines 9 Marines homogeneous & asymmetric

27m_vs_30m 27 Marines 30 Marines homogeneous & asymmetric

3s5z_vs_3s6z 3 Stalkers &
5 Zealots

3 Stalkers &
6 Zealots heterogeneous & asymmetric

6h_vs_8z 6 Hydralisks 8 Zealots micro-trick: focus fire
corridor 6 Zealots 24 Zerglings micro-trick: wall off

D NEURAL MMO

Neural MMO is a platform inspired by Massively Multiplayer Online games, a genre that sim-
ulates persistent worlds with large player populations and diverse gameplay objectives. It fea-
tures game systems configurable to research both on individual aspects of intelligence (e.g.
navigation, robustness, collaboration) and on combinations thereof. Support spans 1 to 1024
agents and minute- to hours-long time horizons. Our enviroment code is heavily based on

5A type of unit (agent) in StarCraft II. Readers can refer to https://liquipedia.net/
starcraft2/Marine_(Legacy_of_the_Void) for more information

15

https://liquipedia.net/starcraft2/Marine_(Legacy_of_the_Void)
https://liquipedia.net/starcraft2/Marine_(Legacy_of_the_Void)

Under review as a conference paper at ICLR 2023

the IJCAI2022-Neural MMO PvE challenge: https://www.aicrowd.com/challenges/
ijcai-2022-the-neural-mmo-challenge.

Observations and Actions: Neural MMO agents observe sets of objects parameterized by discrete
and continuous attributes and submit lists of actions parameterized by lists of discrete and object-
valued arguments. This parameterization is flexible enough to avoid major constraints on environment
development and amenable to efficient serialization (see documentation) to avoid bottlenecking simu-
lation. Each observation includes 1) a fixed crop of tile objects around the given agent parameterized
by position and material and 2) the other agents occupying those tiles parameterized by around a
dozen properties including current health, food, water, and position. Agents submit move and attack
actions on each timestep. The move action takes a single direction argument with fixed values of
north, south, east, and west. The attack action takes two arguments: style and target. The style
argument has fixed values of melee, range, and mage. The agents in the current observation are valid
target argument values. Encoding/decoding layers are required to project the hierarchical observation
space to a fixed length vector and the flat network hidden state to multiple actions. We also provide
reusable PyTorch subnetworks for these tasks.

Neural MMO tasks are defined by a reward function on a particular environment configuration (as
per above). Users may create their own reward functions with full access to game state, including the
ability to define per-agent reward functions. We also provide two default options: a simple survival
reward (-1 for dying, 0 otherwise) and a more detailed achievement system. Users may select between
self-contained and tournament evaluation modes, depending on their research agenda.

Achievement system: This reward function is based on gameplay milestones. For example, agents
may receive a small reward for obtaining their first piece of armor, a medium reward for defeating three
other players, and a large reward for traversing the entire map. The tasks and point values themselves
are clearly domain-specific, but we believe this achievement system has several advantages compared
to traditional reward shaping. First, agents cannot farm reward – in contrast to traditional reward
signals, each task may be achieved only once per episode. Second, this property should make the
achievement system less sensitive to the exact point tuning. Finally, attaining a high achievement score
somewhat guarantees complex behavior since tasks are chosen based upon difficulty of completion.
We are currently running a public challenge that requires users to optimize this metric.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 RAW SCORES OF M3 IN HOK, SMAC, AND NMMO

We show the raw scores of M3 in HoK, SMAC, and NMMO. In SMAC, we compute the mean reward
over 8 environments and NMMO over 2 environments.

HoK (win rate) SMAC (mean reward over 8 envs) NMMO (mean reward over 2 envs)
78M 69.3% 15.6 1.14

157M 87.5% 16.4 1.19
236M 97.2% 13.9 1.25

E.2 WHAT DOES MAGENTA ATTEND TO?

We find that MAGENTA consistently attends to related entities. Fig.14 visualizes the selected
attention heads and layers for HoK 3v3 scenarios. By fixing one frame in a running competition in
HoK, we find that heads attend to entities such as monster, enemy, and friend, which are the entities
highly related to the current agent’s state. The visualization of MAGENTA in SMAC is shown in
Appendix 15. We find that heads attend to allies.

E.3 WHAT THE LEARNED EMBEDDING IN GAMES LOOK LIKE?

In this subsection, we visualize the embedded entities in HoK and SMAC using t-SNE (Van der
Maaten & Hinton, 2008). We run MAGENTA for one episode in HoK and collect the embedding
of entities for 6000 game frames. Also, we run MAGENTA for 50 episodes in SMAC and collect

16

https://www.aicrowd.com/challenges/ijcai-2022-the-neural-mmo-challenge
https://www.aicrowd.com/challenges/ijcai-2022-the-neural-mmo-challenge

Under review as a conference paper at ICLR 2023

Main PQH

Emy CC

Frd JZY

Emy WZJ

Monster
Monster

Emy Organ
Emy Organ

Emy Sldr

Monster

Figure 14: The attention of the entity transformer on 3v3

Figure 15: The visualization of attention weights in SMAC.

−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

ally_hero
emy_hero
main_hero
ally_soldier
emy_soldier
ally_tower
emy_tower
monster

(a) HoK.

−200 −100 0 100 200

−200

−100

0

100

200 ego
enemy
ally

(b) SMAC.

Figure 16: The visualization of entity embedding in HoK and SMAC.

the embedding of the entities. We can see a clear separation between allies’ embedding and ene-
mies’ embedding in both HoK and SMAC. Even though HoK and SMAC are two different games,
MAGENTA can still learn some general knowledge across different games.

F IMPLEMENTATION DETAILS

First, we introduce the EP and EP architecture. The parameters of the network architecture are:
Transformer Encoder layers: 3, Decoder layers: 3, HeadNum: 4, HeadDim: 256. z is a vector
with a dimension of dv. dv is the dimension of the value matrix in the attention module. Since the
output of the encoder is (n, dv), where n is the number of entities, the pooling merges along the
n entities and the decoder uses ei as a query to extract information. Here we use zi to denote the

17

Under review as a conference paper at ICLR 2023

permutation-invariant representation and do not differentiate zi from different models. We modify
the main text according to this point for clarity.

Main Info

Ally Info

Emy Info

FC

FC

FC

Tran
sfo

rm
er En

co
d

er

𝑒1, 𝑒2, … , 𝑒𝑛 Ƹ𝑒1, Ƹ𝑒2, … , Ƹ𝑒𝑛

A
verage Po

o
lin

g

FC

FC

Action

Value

𝑧

𝑞, 𝑘, 𝑣

Linea
r

Linea
r

Linear

Matmul

Softmax

Matmul

Linea
r

Linea
r

Linear

Matmul

Softmax

Matmul

𝑞𝑢𝑒𝑟𝑦 𝑘𝑒𝑦 𝑣𝑎𝑙𝑢𝑒

Concat

Linear Linear Linear

Matmul

Softmax

Matmul

Linear

Linear

𝑧

× 𝑁

Transformer Encoder/Decoder

Figure 17: The architecture of EP.

Main Info

Ally Info

Emy Info

FC

FC

FC

Tran
sfo

rm
er En

co
d

er

𝑒1, 𝑒2, … , 𝑒𝑛 Ƹ𝑒1, Ƹ𝑒2, … , Ƹ𝑒𝑛

Tran
sfo

rm
er D

eco
d

er

𝑞

𝑘, 𝑣

FC

FC

Action

Value

𝑧

𝑞, 𝑘, 𝑣

Linea
r

Linea
r

Linear

Matmul

Softmax

Matmul

Linea
r

Linea
r

Linear

Matmul

Softmax

Matmul

𝑞𝑢𝑒𝑟𝑦 𝑘𝑒𝑦 𝑣𝑎𝑙𝑢𝑒

Concat

Linear Linear Linear

Matmul

Softmax

Matmul

Linear

Linear

𝑧

× 𝑁

Transformer Encoder/Decoder

Figure 18: The architecture of ED.

Here, we describe the framework. For HoK, we use the self-developed RL framework for train-
ing (Ye et al., 2020; Gao et al., 2021). For SMAC and NMMO, we use the open-source Ray RLlib
implementation of Proximal Policy Optimization (PPO), which scales out using multiple workers for
experience collection. This allows us to use a large amount of rollouts from parallel workers during
training to ameliorate high variance and aid exploration. We do multiple rollouts in parallel with
distributed workers and use parameter sharing for each agent. The trainer broadcasts new weights to
the workers after their synchronous sampling. Now we turn our attention to environment-specific
settings.

Table 7: MAGENTA hyper-parameters used in HoK.

Name Value

Discount rate 0.99
GAE parameter 1.0
KL coefficient 0.2
Rollout fragment length 1000
Training batch size 100000
SGD minibatch size 10000
of SGD iterations 60
Learning rate 1e-4
Entropy coefficient 0.0
Clip parameter 0.3
Value function clip parameter 10.0

18

Under review as a conference paper at ICLR 2023

Table 8: MAGENTA hyper-parameters used in SMAC.

Name Value

Discount rate 0.99
GAE parameter 1.0
KL coefficient 0.2
Rollout fragment length 1000
Training batch size 100000
SGD minibatch size 10000
of SGD iterations 60
Learning rate 1e-4
Entropy coefficient 0.0
Clip parameter 0.3
Value function clip parameter 10.0

Table 9: MAGENTA hyper-parameters used in NMMO.

Name Value

Discount rate 0.99
GAE parameter 1.0
KL coefficient 0.2
Rollout fragment length 1000
Training batch size 100000
SGD minibatch size 10000
of SGD iterations 60
Learning rate 1e-4
Entropy coefficient 0.0
Clip parameter 0.3
Value function clip parameter 10.0

19

	Introduction
	Preliminary
	Reinforcement Learning and Multi-agent RL
	Attention Mechanism in Transformer
	Entity in Video Game Design

	Related Work
	Transformer in RL
	Reuse Trained RL Models

	Multi-agent Multi-game Entity Transformer
	Games as Languages
	Transformer in MAGENTA
	Training and Implementation Details

	Experiments
	Setup
	How is the performance of the entity transformer?
	How effective are MAGENTA at transfer to new games?
	How effective is MAGENTA in transfer to new scenarios?
	How does MAGENTA scale with model size?

	Conclusion
	Related Work about RL in video games
	Honer of Kings
	SMAC
	Neural MMO
	Additional Experimental Results
	Raw Scores of M3 in HoK, SMAC, and NMMO
	What does MAGENTA attend to?
	What the learned embedding in games look like?

	Implementation Details

