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Abstract

Visual editing with diffusion models has made significant progress but often struggles
with complex scenarios that textual guidance alone could not adequately describe, high-
lighting the need for additional non-text editing prompts. In this work, we introduce a
novel audio-guided visual editing framework that can handle complex editing tasks with
multiple text and audio prompts without requiring additional training. Existing audio-
guided visual editing methods often necessitate training on specific datasets to align audio
with text, limiting their generalization to real-world situations. We leverage a pre-trained
multi-modal encoder with strong zero-shot capabilities and integrate diverse audio into
visual editing tasks, by alleviating the discrepancy between the audio encoder space and
the diffusion model’s prompt encoder space. Additionally, we propose a novel approach
to handle complex scenarios with multiple and multi-modal editing prompts through our
separate noise branching and adaptive patch selection. Our comprehensive experiments on
diverse editing tasks demonstrate that our framework excels in handling complicated edit-
ing scenarios by incorporating rich information from audio, where text-only approaches
fail.

1 Introduction
Recent advancements in text-to-image diffusion models have facilitated visual editing tasks,
which require precise manipulation of images or videos while preserving essential elements
[10, 15, 34, 48]. However, relying solely on text prompts limits their effectiveness in complex
editing scenarios where descriptions may be ambiguous or insufficient [5, 14, 20, 57]. To
address this limitation, researchers have incorporated non-text conditions—such as edge map,
segmentation mask, and depth map—to provide richer and more precise control over the
editing process [14, 26, 33, 57]. Audio is one of the widely used modalities and can provide
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rich and dynamic information, thus being effective for visual editing. However, in audio-
guided visual editing, existing methods often require additional training on specific datasets
to align audio with the text [3, 24, 55], limiting their generalization to diverse real-world
scenarios.

We address this limitation by leveraging a pre-trained aligned multi-modal encoder trained
on large-scale text-audio and audio-visual datasets [46], which demonstrates strong zero-shot
capabilities. However, integrating this encoder with diffusion models such as Stable Diffusion
[41] faces challenges due to the discrepancy between the encoder’s output space and the CLIP
text encoder space used in Stable Diffusion, as illustrated in Figure 1. We overcome this
incompatibility by introducing a simple mapping technique involving only a matrix inversion,
effectively incorporating audio features in visual editing without extensive retraining.

Achieving richer and more complex visual editing often requires integrating multiple
editing prompts [14, 26, 33, 57], such as combining audio and text prompts. Existing
approaches typically enhance diffusion models with additional modules to handle multiple
editing prompts, requiring further training. In contrast, we propose a novel separate noise
branching and adaptive patch selection as shown in Figure 1, which can effectively integrate
multiple editing signals without training.

To comprehensively evaluate our framework, we construct new benchmark datasets,
PIEBench-multi and DAVIS-multi, by extending existing text-guided visual editing bench-
marks to include audio editing prompts. Through comprehensive experiments and analysis,
we demonstrate that our framework effectively handles complex editing scenarios by effec-
tively incorporating rich information from audio, which existing text-only methods struggle
with. We will publicly release our benchmarks to promote subsequent research.

Our contributions can be summarized as follows:

• We present a novel zero-shot approach to integrate audio into visual editing, which
delivers strong performance across diverse types of audio by effectively integrating a
pre-trained aligned multi-modal encoder without any further training.

• We propose a novel approach of separate noise branching and adaptive patch selection,
which can handle complex visual editing scenarios with multiple editing prompts
without further training.

• Comprehensive experiments and analysis on our new benchmark datasets, PIEBench-
multi and DAVIS-multi, demonstrate that our framework effectively handles complex
editing scenarios involving both text and audio prompts, where existing text-only
methods struggle. We will also release our benchmarks to promote subsequent research.

2 Related Work

2.1 Diffusion Models in Multi-modal Generation
With the groundbreaking achievements in text-to-image diffusion models [36, 40, 41, 42],
researchers have actively explored the application of diffusion models in various output
modalities, including text [13, 29, 53], audio [28, 38, 43] and video [4, 18, 30]. Furthermore,
incorporating non-text conditions, such as video-to-audio [8, 29], image-to-video [12, 35],
and audio-to-image [23, 55] has led to impressive results. Notably, the integration of visual,
textual, and auditory information as either condition or output [46, 52, 54] enables us to
handle a broader range of tasks within a unified framework.
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Figure 1: Left: To address the limited generalization of previous methods that require addi-
tional training to align audio data with text, our framework leverages an aligned multimodal
encoder pretrained on large-scale datasets without extra training. Right: Instead of enhancing
diffusion models to handle multiple editing prompts through additional training, we propose
a novel method, separate noise branching and adaptive patch selection, which can effectively
combine multiple and multi-modal prompts, while preserving each editing effect.

2.2 Diffusion Models in Editing

Building on the observation that DDIM sampling can be reversed to reconstruct or interpolate
visual data [44], numerous studies have focused on diffusion-based editing. These works
primarily target image editing with text prompts [15, 17, 34, 48], aiming to achieve faithful
inversion for enhanced editing capabilities. Additional control mechanisms have been incor-
porated alongside DDIM inversion, such as cross-attention [15], unconditional embeddings
[34], and spatial and self-attention features [48].

Text-guided video editing has also drawn significant interest [2, 10, 39, 50], with an
emphasis on preserving temporal consistency across edited frames. Moreover, the field of
diffusion-based editing has expanded to include sound, which is utilized either as a prompt
[3, 22, 24, 27, 55] or as the subject of editing [28, 31, 49].

Recently, it has been recognized that text prompts alone are insufficient for handling
complex editing scenarios [5, 14, 20, 57]. To address this limitation, researchers have explored
incorporating non-text conditions—such as edge map, segmentation mask, and depth map—to
achieve richer and more precise control [14, 26, 33, 57]. However, most of these approaches
expand the capabilities of diffusion models by adding and training additional modules to the
text-to-image diffusion model, which requires extra training with paired datasets. CoDi-2
[45] demonstrates instructional editing capability with multiple and multi-modal prompts, but
requires extensive training on paired datasets of original data [15]. In contrast, our approach
does not require training with paired data and has strong zero-shot editing ability.

3 Method

3.1 Background

A family of Latent Diffusion Model [28, 41] transforms a high-dimensional input data x
into a lower-dimensional latent z using the encoder E and decoder D, where x̂ = D(E(x)).
Subsequently, a time-conditioned U-net, denoted as θ , conducts a sequential diffusion process
to predict z0 from random noise zT , considering the textual condition C = ψ(P) as Equation
1, where ψ refers to the prompt encoder and P is editing prompt.

Lldm = EE(x),ε∼N (0,1),t∥ε − εθ (zt , t,C)∥2
2, (1)

Citation
Citation
{Song, Meng, and Ermon} 2020

Citation
Citation
{Hertz, Mokady, Tenenbaum, Aberman, Pritch, and Cohen-Or} 2022

Citation
Citation
{Ju, Zeng, Bian, Liu, and Xu} 2023

Citation
Citation
{Mokady, Hertz, Aberman, Pritch, and Cohen-Or} 2023

Citation
Citation
{Tumanyan, Geyer, Bagon, and Dekel} 2023

Citation
Citation
{Hertz, Mokady, Tenenbaum, Aberman, Pritch, and Cohen-Or} 2022

Citation
Citation
{Mokady, Hertz, Aberman, Pritch, and Cohen-Or} 2023

Citation
Citation
{Tumanyan, Geyer, Bagon, and Dekel} 2023

Citation
Citation
{Bar-Tal, Ofri-Amar, Fridman, Kasten, and Dekel} 2022

Citation
Citation
{Geyer, Bar-Tal, Bagon, and Dekel} 2023

Citation
Citation
{Qi, Cun, Zhang, Lei, Wang, Shan, and Chen} 2023

Citation
Citation
{Wu, Ge, Wang, Lei, Gu, Shi, Hsu, Shan, Qie, and Shou} 2023{}

Citation
Citation
{Biner, Sofian, Karaka{³}, Ceylan, Erdem, and Erdem} 2024

Citation
Citation
{Lee, Kim, Yoo, Yang, Cho, Kim, Chang, Kim, and Kim} 2023{}

Citation
Citation
{Li, Liu, Owens, and Zhao} 2022

Citation
Citation
{Lin, Lin, Yang, Li, Wang, Lin, Wang, Bertasius, and Wang} 2025

Citation
Citation
{Yang, Zhang, Ge, Shao, Xue, Qiao, and Luo} 2023

Citation
Citation
{Liu, Chen, Yuan, Mei, Liu, Mandic, Wang, and Plumbley} 2023

Citation
Citation
{Manor and Michaeli} 2024

Citation
Citation
{Wang, Ju, Tan, He, Wu, Bian, et~al.} 2024

Citation
Citation
{Brack, Friedrich, Kornmeier, Tsaban, Schramowski, Kersting, and Passos} 2024

Citation
Citation
{He, Zheng, Fang, Piramuthu, Bansal, Ordonez, Sigurdsson, Peng, and Wang} 2024

Citation
Citation
{Kumari, Zhang, Zhang, Shechtman, and Zhu} 2023

Citation
Citation
{Zhao, Chen, Chen, Bao, Hao, Yuan, and Wong} 2024

Citation
Citation
{He, Zheng, Fang, Piramuthu, Bansal, Ordonez, Sigurdsson, Peng, and Wang} 2024

Citation
Citation
{Lin, Cho, Zala, and Bansal} 2024

Citation
Citation
{Mo, Mu, Lin, Liu, Guan, Li, and Zhou} 2024

Citation
Citation
{Zhao, Chen, Chen, Bao, Hao, Yuan, and Wong} 2024

Citation
Citation
{Tang, Yang, Khademi, Liu, Zhu, and Bansal} 2023{}

Citation
Citation
{Hertz, Mokady, Tenenbaum, Aberman, Pritch, and Cohen-Or} 2022

Citation
Citation
{Liu, Chen, Yuan, Mei, Liu, Mandic, Wang, and Plumbley} 2023

Citation
Citation
{Rombach, Blattmann, Lorenz, Esser, and Ommer} 2022



4 KIM ET AL : AUDIO-GUIDED VISUAL EDITING WITH COMPLEX MULTI-MODAL PROMPTS

Source image AVStyle → NT NT → AVStyle P2P (caption) NT (caption) PnP (caption) SonicDiffusion

Prompt: Dogs Rabbits running in the grass + (Splashing Water)

Prompt: A woman with gold blue makeup + (Baby Crying)

Source image AVStyle SonicDiffusion P2P (caption) NT (caption) PnP (caption) Ours

(Airplane)

(Volcano Explosion)

Prompt:

Prompt:

Ours

Figure 2: Editing results for Audio-guided Image Editing (A2I-edit) and Text and Audio-
guided Image Editing (TA2I-edit)

DDIM inversion [44] allows the original data to be encoded through an invertible transfor-
mation as expressed in Equation 2, resulting in initial noise z∗T capable of reconstruction and
interpolation. In editing tasks, conditional DDIM inversion with textual description Pinv is
commonly employed, where the initial noise z∗T is utilized along with the editing prompt P
in sampling stage to maintain the structure and semantic layout. We use ∗ to distinguish the
diffusion trajectory of DDIM inversion and editing.

z∗t+1 =
√

αt+1
αt

z∗t +
(√

1
αt+1

−1−
√

1
αt
−1

)
· εθ (z∗t , t,Cinv) (2)

However, this approach often leads to undesired changes [34], prompting the additional
controls over the diffusion process for fine-grained editing [7, 32, 34, 48]. PnP-Diffusion [48]
has demonstrated the effectiveness of injecting spatial features and self-attention to preserve
the original image content. Specifically, spatial features of the fourth decoder layer and the
self-attention matrix are extracted during the DDIM inversion, which are then injected in the
editing stage. TokenFlow [10], which we adopt for video editing, adapts the PnP-Diffusion
to video editing. It first randomly samples a subset of keyframes from the input video and
jointly edits them via an extended self-attention mechanism as in Tune-A-Video [50]. It
then propagates the edited tokens from each keyframe’s self-attention map to its neighboring
frames to ensure temporal coherence.

3.2 Training-Free Integration of Audio Prompts

With the rapid advancement of visual editing, research has evolved to integrate more diverse
conditions beyond simple text prompts [14, 26, 33, 45, 57]. Most audio-conditioned ap-
proaches fine-tune the diffusion model to align sound with text [3, 24, 55], but such adaptation
couples the model to the specific training data and generalizes poorly to in-the-wild audio.

To overcome this limitation, we adopt a large-scale multimodal encoder such as ImageBind
[11] and CoDi [46]. Specifically, we utilize CoDi because (i) it relies on the same OpenCLIP-
L/14 backbone as Stable Diffusion 1.x, common in visual-editing pipelines, and (ii) it is
trained on the largest public audio corpus, giving robust audio representations.
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Figure 3: Editing results for Audio-guided Video Editing (A2V-edit) and Text and Audio-
guided Video Editing (TA2V-edit)

However, integrating CoDi with Stable Diffusion is non-trivial, since they operate in
different feature spaces. Stable Diffusion directly conditions on the CLIP text encoder’s
output, while CoDi’s audio encoder produces embeddings in the aligned CLIP space. We
denote the Stable Diffusion space by CSD and the aligned CLIP space by CCLIP. Given a
text prompt P , the CLIP text encoder ψtext generates an SD-space vector c = ψtext(P) ∈ CSD.
Applying pooling to this output yields the special-token embedding cSD,pooled ∈ CSD. We then
project and normalize:

cCLIP =
McSD,pooled∥∥McSD,pooled

∥∥ , (3)

where M : CSD →CCLIP is a learned linear mapping with no bias.
Given an audio embedding cA ∈ CCLIP from CoDi’s encoder ψaudio, we invert Eq. 3 and

estimate its SD-space counterpart by solving a Tikhonov-regularized least squares problem:

c̃SD =
(
M⊤M+λ I

)−1 M⊤
(
∥cinv∥cA

)
, (4)

where cinv = ψtext(Pinv) ∈ CSD, λ = 10−5, Pinv is the inversion prompt, and I is the identity
matrix. Finally, we replicate the inverted feature c̃SD certain times and concatenate it with
the first and last special tokens from cinv. Despite minor precision errors that may arise from
matrix inversion, the semantic content is effectively preserved in visual editing.

3.3 Separate Noise Branching with Adaptive Patch-wise Noise Selection
Multi-modal editing commonly requires multiple guidance signals—text, audio, depth, masks,
and so on—to be combined within a single diffusion process [14, 26, 33, 57]. Existing works
often enlarge the network or attach learned adapters, both of which incur additional training
on specific paired dataset. We instead treat multi-prompt fusion as a variance-preserving
aggregation of the model’s native noise estimates, yielding a parameter-free, training-free
procedure that can be plugged into any pre-trained latent diffusion model.
Separate noise estimation. Let zt ∈ Rc×h×w be the latent at diffusion step t and C =
{C1, . . . ,CN} the set of N encoded prompts (possibly of different modalities). For each prompt
we query the frozen denoiser

εi = εθ (zt , t, Ci), i = 1, . . . ,N. (5)

Limitations of naïve averaging. A naïve fusion, ε̂θ = 1
N ∑i εi, reduces variance in proportion

to 1/N. Because diffusion process relies on scaled noise to reconstruct detail, this variance
collapse produces suboptimal results, as observed in Fig. 4 (top) and quantified in Sec. 4.
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Text prompt: Black Blue chair in a conference room

(Underwater Bubbling)

Source image

Adaptive Patch Selection

Noise AveragingAudio prompt: 

Noise integration

Ours

Ours (mean)

T
Timestep

0 T
Timestep

0

Figure 4: Comparison of different noise integration methods. Directly averaging each noise
prediction diminishes important high-frequency components, as evident in the red box. In
contrast, our separate noise branching and adaptive patch selection preserve these details
while effectively incorporating multiple editing effects.

Adaptive patch-wise Noise Selection. We utilize the inversion prompt Cinv and its noise
prediction εinv = εθ (zt , t, Cinv) to migitage this limitation. Subtracting εinv from each editing
prompt yields residual feature maps ∆εi = εi − εinv, where each ∆εi ∈ Rc×h×w represents the
difference in noise predictions for each prompt. Let p index spatial locations on the h×w
grid. We retain, for every patch, the residual with the largest magnitude:

ε̂θ (p) = εinv(p)+∆εi⋆(p)(p), i⋆(p) = argmax
i
∥∆εi(p)∥ (6)

, where ∥·∥ is the channel-wise ℓ2 norm. Equation (6) preserves high-frequency detail and
prevents destructive interference between heterogeneous conditions, as illustrated in Fig. 4
(bottom).

4 Experiments

In this section, we rigorously validate the effectiveness of our framework by constructing
various evaluation datasets and baselines that incorporate audio editing prompts. Specifically,
quantitative evaluations are conducted across four tasks: Audio-guided Image Editing (A2I-
edit), Text and Audio-guided Image Editing (TA2I-edit), Audio-guided Video Editing (A2V-
edit), and Text and Audio-guided Video Editing (TA2V-edit). Additionally, we explore more
complex editing scenarios in Section 4.7.

The results from the A2I-edit and A2V-edit tasks assess whether our audio mapping can
produce appropriate editing results while preserving the diverse information contained in the
audio. The TA2I-edit and TA2V-edit tasks demonstrate that our noise integration method
yields suitable results in complex editing scenarios that existing visual editing approaches
cannot handle. The zero-shot capability of our framework can be further verified in the
Sections 3, 4, 5, and 6 of the supplementary material.

4.1 Implementation Details

We incorporate diffusion editing techniques such as PnP-Diffusion [48] and TokenFlow
[10]. These techniques demonstrate superior edit fidelity and do not require word-level
configurations, such as specifying which words to replace or emphasize. We employ Stable
Diffusion v1.5 for fairness and utilize A100 with 40GB memory for inference with the seed
set to 1 for all experiments.
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Str. Dist(↓) LPIPS(↓) CLIP_Audio(↑) CLIP_Text(↑) CLIP_integrated(↑) Structural Preservation(↑) Audio Alignment(↑) Text Alignment(↑) Overall Alignment(↑)
Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose

A2I-edit

AVStyle 0.0396 0.2219 14.5596 - - 88.40 7.60 4.00 90.06 2.59 7.34 - - - - - -
Sonic Diffusion 0.0475 0.2915 13.4908 - - 77.38 4.96 17.66 91.27 4.15 4.59 - - - - - -
P2P (caption) 0.0617 0.3261 12.2536 - - 89.66 2.87 7.47 82.31 11.13 6.56 - - - - - -
NT (caption) 0.0097 0.1145 12.7248 - - 78.85 10.04 11.11 86.41 8.70 4.88 - - - - - -
PnP (caption) 0.0227 0.1866 12.8969 - - 74.02 3.52 22.46 75.04 8.56 16.40 - - - - - -
Ours 0.0341 0.2539 17.0472 - - - - - - - - - - - - - -

TA2I-edit

AVStyle → NT 0.0668 0.4174 13.1312 25.2388 21.1613 68.69 5.05 26.26 70.42 5.52 24.06 58.92 11.42 29.66 70.88 13.65 15.48
NT → AVStyle 0.0369 0.2508 14.4867 25.5348 21.6772 56.59 14.10 29.31 71.73 20.90 7.36 46.12 14.88 38.99 59.15 17.41 23.44
P2P (caption) 0.0591 0.3278 12.3059 24.9569 21.1932 56.47 8.04 35.49 69.48 11.69 18.83 48.64 14.40 36.96 76.60 7.35 16.05
NT (caption) 0.0192 0.1802 12.8379 24.3057 21.6057 56.59 14.10 29.31 71.73 20.90 7.36 46.12 14.88 38.99 59.15 17.41 23.44
PnP (caption) 0.0264 0.2108 13.0695 24.9375 21.3103 50.83 16.39 32.78 76.88 7.89 15.23 48.99 17.31 33.70 48.12 27.33 24.55
Sonic Diffusion 0.0179 0.1551 12.9011 23.6654 20.1574 49.80 9.92 40.28 63.12 14.17 22.71 51.22 17.64 31.14 69.61 12.53 17.87
Ours (mean) 0.0204 0.1729 14.0025 24.2257 20.1574 39.69 18.51 41.79 55.33 22.79 21.88 27.36 48.69 23.94 39.71 39.92 20.37
Ours 0.0333 0.2392 15.0699 24.1283 23.0356 - - - - - - - - - - - -

Table 1: Evaluation results for A2I-edit and TA2I-edit. Left: quantitative scores; right: user
study. Str. Dist is structure distance. CLIP_Audio, CLIP_Text, and CLIP_integrated are
CLIP scores w.r.t. audio, text, and integrated captions. User ratings—Structural Pres., Audio
Align., Text Align., Overall—compare ours with the baseline; bold indicates the best result.

4.2 Evaluation Dataset

To perform a comprehensive evaluation of our framework, we introduce PIEBench-multi and
DAVIS-multi, which augment existing text-guided visual editing benchmarks, PIEBench [17]
and DAVIS [37] to involve audio editing prompts. We select 28 classes of audio suitable for
editing by filtering out low-quality content from VGGSound [6] and choose three audio clips
for each category. We utilize 100 images in the PIEBench dataset and use all 89 videos from
DAVIS, excluding one unsuitable video (gunshot). We then match appropriate audio editing
prompts to each visual data, resulting in 300 editing pairs in PIEBench-multi and 267 editing
pairs in DAVIS-multi. Detailed examples of our editing pairs used in the benchmarks can be
found in Section 1 of the supplementary material.

4.3 Baselines

Complex audio-guided visual editing is underexplored and lacks baselines, so we first compare
our method to representative text-guided approaches: Prompt-to-Prompt (P2P) [15], Null-Text
Inversion (NT) [34], and PnP-Diffusion (PnP) [48] for image editing; and TokenFlow [10]
and Gen-1 [9] for video editing.

We initially consider a straightforward baselines that uses audio class names either alone
(A2I-edit, A2V-edit) or appended to text editing prompts (TA2I-edit, TA2V-edit). Since this
approach does not incorporate the textual description Pinv of original data, it induces severe
modifications and produces suboptimal results. Section 2 of the supplementary material
presents complete performances and examples for these baselines.

To better integrate audio information, we employ an audio captioning model [19] to
convert audio into text. Then we refine Pinv with audio caption using GPT-4o [1]. Section 2
of the supplementary material provides details on constructing these refined baselines, which
we denote as X(caption).

For A2I-edit task, we compare our approach with AVStyle [24], Sonic Diffusion [3],
and caption-based baselines. We exclude SGSIM [21] as it is trained with highly specific
domains and tends to produce inappropriate results on our benchmark. For TA2I-edit we
include caption-based baselines, Sonic Diffusion, and 12 cascaded pipelines that sequentially
run a T2I-edit (P2P, NT, or PnP) and then an A2I-edit (AVStyle or Sonic Diffusion). For
A2V-edit and TA2V-edit tasks, we select baselines only using caption-based approaches
(TokenFlow and Gen-1) since there are no suitable audio-guided video editing methods on
our benchmarks.
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CLIP_frame(↑) CLIP_Audio(↑) CLIP_Text(↑) CLIP_integrated(↑) Structural Preservation(↑) Audio Alignment(↑) Text Alignment(↑) Overall Alignment(↑)
Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose

A2V-edit
Tokenflow (caption) 0.9060 15.2095 - - 61.98 8.89 29.14 61.25 10.47 28.29 - - - - - -
Gen1 (caption) 0.8854 14.5752 - - 57.07 2.31 40.62 70.77 6.52 22.71 - - - - - -
Ours 0.9029 18.1445 - - - - - - - - - - - - - -

TA2V-edit

Tokenflow (caption) 0.9162 13.2351 23.6890 22.4227 43.50 19.28 37.22 54.84 9.30 35.86 49.78 21.34 28.88 58.40 9.02 32.58
Gen1 (caption) 0.8780 14.8816 23.7246 22.8530 54.46 0.48 45.06 48.41 10.72 40.87 50.39 5.17 44.44 49.79 8.58 41.63
Ours (mean) 0.9082 15.4571 22.9909 22.7029 48.67 10.40 40.93 50.54 37.91 11.55 35.46 39.38 25.15 38.19 38.56 23.25
Ours 0.9043 16.1833 22.8336 23.2885 - - - - - - - - - - - -

Table 2: Evaluation results for Audio-guided Video Editing (A2V-edit) and combined Text
and Audio-guided Video Editing (TA2V-edit). CLIP_frame represents the frame-wise CLIP
similarity score. All other abbreviations are consistent with those used in Table 1.

4.4 Evaluation Metrics

To evaluate our framework, we employ metrics for content preservation and edit fidelity
following existing works [10, 15, 34, 48]. For content preservation, we use Structure Distance
[47] and LPIPS [56] for image editing tasks on PIEBench-multi (A2I-edit and TA2I-edit).
For video editing tasks on DAVIS-multi (A2V-edit and TA2V-edit), we utilize frame-wise
CLIP similarity (CLIP_frame) in accordance with the TGVE competition [51].

To evaluate edit fidelity, we apply CLIPScore [16] across all tasks. Specifically, we
calculate CLIPScore for each individual editing prompt (CLIP_audio and CLIP_text) and use
category names for audio editing prompts. However, in editing tasks with multiple prompts,
it is crucial to evaluate how well each prompt is integrated and applied together. To evaluate
this, we manually create integrated captions in text form for these tasks and report the results
as CLIP_integrated.

Although these metrics assess the preservation of original data and the effectiveness of
editing effects, they do not provide a comprehensive assessment. To address this limitation,
we conducted a user study on Amazon Mechanical Turk with five participants per question,
using a total of 100 samples for image editing tasks and all available samples for video editing
tasks. Each participant compared our method against a baseline, selecting the better model
according to structural preservation, audio alignment, text alignment, and overall condition
consistency. To prevent cases where the absence of edits was rated highly for structural
preservation, participants were instructed to give the lowest score for structural preservation
if no edits were observed.

4.5 Evaluation Results

Table 1 shows the quantitative evaluation results of A2I-edit and TA2I-edit on PIEBench-
multi, and Table 2 presents the quantitative evaluation results of A2V-edit and TA2V-edit on
DAVIS-multi. We also show qualitative comparisons in Figure 2 and 3.

Audio-guided editing. Our model significantly outperforms the baselines in A2I-edit and
A2V-edit in terms of CLIP_audio. Our method does not show competitive scores in content
preservation metrics (Structure Distance, LPIPS, and CLIP_frame) since the baselines tend to
preserve the original data excessively and do not well reflect the editing prompt.

Qualitative samples in Figure 2 and Figure 3 allow us to observe these characteristics in
detail. In Fig. 2 (top), our method converts a bird to an airplane and adds a volcanic blast to
a mountain, while baselines fail. In Fig. 3 (left), our model inserts the crowd following the
audio prompt, whereas baselines scarcely change. More samples of the zero-shot capabilities
of our framework can be found in Section 3 and Section 5 of the supplementary material.
These results demonstrate that our framework effectively incorporates the rich information
from audio and achieves diverse editing effects that are difficult to capture using text alone.

Audio and Text-guided editing. Similarly, our model outperforms the baselines in the
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(a) (b)
Source image

(Ocean Bubbling)

(Splashing Water)

Prompt:

Volume Down Volume Up

Prompt:

Source image

(Bull Bellowing) (Splashing Water) (Sea Waves)

Prompt #1 Prompt #2 Prompt #3

A day of the city 
of 
dresden, germany, 
europe (Cattle Mooing) (Thunder)

Figure 5: Audio-guided visual editing examples with complex settings—(a) magnitude guided
effects and (b) multi-prompt editing.

CLIP_audio and CLIP_integrated. Baselines score well in CLIP_text but drop sharply in
other metrics, showing that they capture only part of the desired edits in complex cases, a
phenomenon also reported by [5, 20].

In Figure 2 (row 3), our method converts the dog into a rabbit and adds the splashing-
water effect that baselines miss. In row 4, it morphs the woman into a blue-made-up baby,
while baselines merely recolor the makeup. In Figure 3 (right) our model replaces the
lady with Peppa Pig under rainfall, while baselines either omit the rain or over-distort the
scene. Additional examples appear in Section 4 and Section 6 of the supplementary material,
underscoring how separate-noise branching and adaptive patch selection effectively applies
editing effects in complex scenarios.

User Study. Tables 1 and 2 present the results of the user study, demonstrating that
our approach significantly outperforms the baselines in all cases, except for slightly lower
performance than averaged noise prediction in terms of structural preservation. Although
many baselines fail to produce any editing effects in several cases, users were instructed to
account for such overly preserved images with the guideline: EXCEPTION: if an image is
unchanged from the original image, consider it as the worst case. The results demonstrate
that our method effectively edits images and videos in alignment with both text and audio
while maintaining the original structure.

Note that in the main paper, only AVStyle → NT and NT → AVStyle were included
among the 12 cascaded approach baselines for TA2I-edit, as these two methods demonstrate
strong performance in A2I-edit and also due to space. We include the results of all baselines
in Section 7 of the supplementary material. Also, we observe that CLIP_text reports higher
scores than CLIP_audio since the text description of input data is included in the text editing
prompt.

4.6 Ablation Study

To demonstrate the effectiveness of our noise integration approach, we conduct an ablation
study. Specifically, we compare our method to one that integrates multiple noise predictions
by simply averaging them. We report these results as ‘Ours (mean)’ in Tables 1 and Table
2. Simply averaging (mean) each noise prediction results in a drastic performance drop in
CLIP_integrated scores across all tasks, which indicates that our separate noise branching
and adaptive patch selection play a crucial role in handling complex multiple editing prompts.

Furthermore, Figure 4 visualizes the differences between the two methods when inte-
grating multiple editing prompts. Specifically, we plot the magnitudes of the separate noise
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predictions from each editing prompt and the integrated noise at each diffusion timestep. As
indicated by the red boxes, simply averaging the noise predictions causes the information
from the audio editing prompt to be canceled out, resulting in the underwater bubbling effect
not appearing in the final output.

4.7 Analysis and Discussions
Figure 5(a) illustrates the impact of modulating the magnitude of the audio, showing that
an increase in magnitude enhances the editing effect. This demonstrates that our framework
effectively integrates rich audio information such as magnitude, which is difficult to capture
using text alone.

Figure 5(b) illustrates examples of more complex visual editing scenarios involving more
than two editing prompts. We add text or audio editing prompts one at a time and visualize
each result. We observe that our framework effectively determines which prompts should
influence the objects and which should affect the background. Additional examples are
provided in Section 8 of our supplementary material.

As for limitations, our frameworks inherit certain constraints from PnP-Diffusion and
TokenFlow, particularly a tendency to preserve composition and content excessively or to
yield flickering outputs. Although we did not address this in the present study, combining
our framework with more powerful diffusion models and editing methods would also be
worthwhile. Additionally, our mapping function assumes that audio features align closely
with textual counterparts, which may not always be accurate [25]. Utilizing a variety of
multi-modal encoders and diffusion models also appears to be a promising direction for future
research.

5 Conclusion
In this paper, we introduce a framework for visual editing that seamlessly integrates audio
conditions into diffusion models without requiring additional training. By leveraging a pre-
trained multi-modal encoder with strong zero-shot capabilities, our approach mitigates the
limitations of editing methods with only textual guidance, especially in complex scenarios
where textual descriptions would be insufficient or ambiguous. We further introduce separate
noise branching and adaptive patch selection, a novel method to handle multiple and multi-
modal editing prompts without further training. Extensive experiments on newly established
benchmark datasets demonstrate that our framework surpasses existing methods, effectively
capturing rich audio information and coherently combining multiple prompts to produce
sophisticated and accurate visual editing.
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