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ABSTRACT

Federated learning is a distributed learning paradigm that allows clients to perform
collaboratively model training without sharing their local data. Despite its bene-
fit, federated learning is vulnerable to backdoor attacks where malicious clients
inject backdoors into the global model aggregation process so that the resulting
model will misclassify the samples with backdoor triggers while performing nor-
mally on the benign samples. Existing defenses against backdoor attacks either
are effective only under very specific attack models or severely deteriorate the
model performance on benign samples. To address these deficiencies, this pa-
per proposes pFedSAM, a new federated learning method based on partial model
personalization and sharpness-aware training. Theoretically, we analyze the con-
vergence properties of pFedSAM for the general non-convex and heterogeneous
data setting. Empirically, we conduct extensive experiments on a suite of feder-
ated datasets and show the superiority of pFedSAM over state-of-the-art robust
baselines in terms of both robustness and accuracy.

1 INTRODUCTION

Federated learning (FL) has emerged as a transformative paradigm in machine learning, enabling
collaborative model training among distributed clients while keeping their data locally. Although
FL has achieved success in many applications, such as keyboard prediction Hard et al. (2018), med-
ical image analysis Li et al. (2020), and Internet of things Samarakoon et al. (2018), FL systems
confront significant security threats due to their distributed nature, particularly from backdoor at-
tacks Bagdasaryan et al. (2020); Wang et al. (2020); Xie et al. (2020); Sun et al. (2019). Specifically,
by stealthily injecting backdoor triggers into the trained model, attackers aim to mislead any input
with the backdoor trigger to a target label while ensuring that the backdoored model’s performance
on benign samples remains unaffected. Such stealthy manipulation makes backdoor attacks one of
the most serious threat to the real-world deployment of FL system.

Existing defenses against backdoor attacks in FL can be roughly divided into two categories Nguyen
et al. (2022): anomaly update detection and robust federated training. The first category consists of
anomaly detection approaches that can identify whether the submitted updates are malicious and
then remove the malicious ones, such as Krum Blanchard et al. (2017), Trimmed Mean Yin et al.
(2018), Bulyan Guerraoui et al. (2018), and FoolsGold Fung et al. (2018). However, these methods
are effective only under very specific attack models (i.e., attack strategies of the adversary and data
distribution of the benign clients). The second category comprises robust federated training methods
that can directly mitigate backdoor attacks during the training process, such as norm clipping Sun
et al. (2019); Xie et al. (2021) and adding noise Xie et al. (2021). These solutions require modifica-
tion of the individual weights of benign model updates and therefore result in severe degradation on
model performance on benign samples. Moreover, most of the aforementioned works only work in
the single-shot attack setting where a small number of malicious clients participate in a few rounds
but fail under the stronger continuous attack setting where malicious clients continuously participate
in the entire FL training period Zhang et al. (2023).

A few recent works Qin et al. (2023); Li et al. (2021a); Lin et al. (2022) have demonstrated that
personalized federated learning (pFL) methods that were originally designed to improve accuracy
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Figure 1: An overview of pFedSAM under backdoor attacks. Partial model personalization allows
each client to locally retain a personal classifier and only share the feature extractor with the server
for aggregation. The malicious client performs the backdoor attack and sends the malicious updates,
while the benign client engages in sharpness-aware training and sends the benign updates to the
server. The server aggregates the shared feature extractor and sends it back to all clients.

under heterogeneous data distribution could also provide some robustness benefits. Specifically, Li
et al. (2021a) and Lin et al. (2022) utilize model personalization to defend against untargeted poi-
soning attacks that aim to corrupt FL models’ prediction performance or make FL training diverge,
but do not address the more challenging problem of backdoor attacks. Qin et al. (2023) further
demonstrates that pFL with partial model-sharing can notably enhance robustness against backdoor
attacks in comparison to pFL with full model-sharing under the continous attack setting, but it solely
focuses on the black-box setting where malicious adversaries can only manipulate training data and
have no control of the training process. Considering the white-box setting where malicious clients
can control the local training process, Ye et al. (2023) demonstrates pFL methods with partial model-
sharing remain vulnerable to backdoor attacks. Therefore, a straightforward implementation of pFL
is susceptible to new attacks tailored for pFL and does not ensure robustness against real-world
backdoor attacks.

In this paper, we propose pFedSAM, a novel personalized FL method that can inherently defend
against both black-box and white-box state-of-the-art backdoor attacks while maintaining the be-
nign performance of the models. This is achieved by two key modules: partial model personaliza-
tion and sharpness-aware training. The partial model personalization lets each client own its locally
preserved linear classifier to block the propagation of backdoor features from malicious clients to
benign clients. The sharpness-aware training generates local flat model updates with better stabil-
ity and perturbation resilience, resulting in a globally flat model that is robust to the injection of
backdoor features from malicious clients. The overview of pFedSAM is shown in Figure 1. We
summarize our main contributions as follows.

• We propose pFedSAM, a novel pFL method that offers better robustness against both black-box
and white-box backdoor attacks while retaining similar or superior accuracy on the benign model
performance relative to other common robust FL methods.

• We provide convergence guarantees for our proposed pFedSAM method under the general non-
convex and non-IID data distribution setting.

• We conduct an extensive evaluation of the proposed method on several FL benchmark datasets by
comparing it with state-of-the-art baselines under the stronger and stealthier continuous black-box
and white-box backdoor attacks. The empirical results show that the proposed method can largely
outperform the baselines in terms of both attack success rate and main task accuracy.
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2 BACKGROUND AND RELATED WORKS

2.1 PERSONALIZED FEDERATED LEARNING

We consider a typical FL system involving N clients and one server. Each client i ∈ [N ] holds a
local training dataset Di = {ξi,j}Di

j=1 where ξi,j is a training example and Di is the size of the local
training dataset. The total number of training examples across N devices is D =

∑N
i=1 Di. Let

w ∈ Rd denote the parameters of a machine learning model and fi(w, ξi,j) be the loss of the model
on the sample ξi,j . Then the loss function of client i is Fi(w) = (1/Di)

∑
j∈Dj

fi(wi, ξi,j). The
objective of standard FL is to find model parameters that minimize the weighted average loss over
all clients:

min
{wi}N

i=1

N∑
i=1

αiFi(w), (1)

where αi > 0 is the weight assigned to client i, and
∑N

i=1 αi = 1. However, standard FL can be
ineffective and undesirable under data heterogeneity Li et al. (2021a). Instead, pFL aims to train
local personalized models instead of a single global model across all clients, which is more adaptive
to each client’s local dataset and has shown to improve model accuracy under practical non-IID
scenarios. Based on the form of model sharing with the server, existing pFL methods can be divided
into two categories: full model-sharing and partial model-sharing.

• Full model-sharing Fallah et al. (2020); Li et al. (2021a); Liang et al. (2020); Marfoq et al. (2021);
T Dinh et al. (2020): The objective can be summarized as

min
w0,{wi}N

i=1

N∑
i=1

αi (Fi(wi) + λiR(w0, wi)) , (2)

where w0 is a reference model shared among all clients, wi means the local personalized model
owned by client i, and λi is the weight of the regularization term R(w0, wi) for client i.

• Partial model-sharing Arivazhagan et al. (2019); Collins et al. (2021); Li et al. (2021b); Pillutla
et al. (2022): The objective can be summarized as

min
ϕ,{hi}N

i=1

N∑
i=1

αiFi(ϕ, hi), (3)

where the full model parameters wi of each client i are divided into two parts: shared parameters
ϕ ∈ Rd0 and personal parameters hi ∈ Rdi , i.e. wi = (ϕ, hi).

As shown in Pillutla et al. (2022), partial model-sharing personalization can obtain most of the
benefit of full model-sharing personalization with only a small fraction of personalized parameters.
Our work builds on FedRep Collins et al. (2021), a pFL algorithm with partial model-sharing that
focuses on learning shared representations and personal classifier heads between clients but does
not consider robustness. In contrast, our work provides a novel robust FL framework. Moreover, a
major different ingredient of our algorithm is the sharpness-aware training for shared representation
learning, which finds backdoor-resilient global shared parameters in each FL round.

2.2 BACKDOOR ATTACKS IN FEDERATED LEARNING

In FL backdoor attacks, the adversary controls a group of malicious clients to manipulate their local
models, which are then aggregated into the global model and affect its properties. In particular, the
adversary wants the backdoored global model to mislead the prediction on inputs with the backdoor
trigger to a target label while behaving normally on all benign samples. There are generally two cat-
egories for FL backdoor attacks: 1) black-box setting, where malicious clients tamper with a fraction
of their training data, also known as data poisoning, to inject a backdoor into their local models dur-
ing the training Xie et al. (2020); Goldblum et al. (2022); Lyu et al. (2022); and 2) white-box setting,
where the adversary poisons the training data of the malicious clients and manipulates their training
processes by modifying the resulting uploaded models, also known as model poisoning, to maxi-
mize attack impact while avoiding being detected. Examples of white-box backdoor attacks include
constrain-and-scale attack Bagdasaryan et al. (2020), projected gradient descent attack with model
replacement Wang et al. (2020), DBA Xie et al. (2020), and BapFL Ye et al. (2023).
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3 PFEDSAM: FEDERATED LEARNING WITH PERSONALIZED
SHARPNESS-AWARE MINIMIZATION

3.1 PFEDSAM ALGORITHM

Algorithm 1 pFedSAM
Input: Initial states ϕ0, {h0

i }Ni=1, client sampling ratio r, number of local iterations τh, τϕ,
number of communication rounds T , learning rates ηh, ηϕ, and neighborhood size ρ

Output: Personalized models (ϕT , hT
i ),∀i ∈ [N ].

1: for t = 0, 1, . . . , T − 1 do
2: Server randomly samples a set of rN clients St.
3: Server broadcasts the current global version of the shared parameters ϕt to all clients in St.
4: for each client i ∈ St in parallel do
5: Initialize ht,0

i = ht
i

6: for s = 0, . . . , τh − 1 do
7: Compute stochastic gradient ∇̃hFi(ϕ

t, ht,s
i )

8: ht,s+1
i = ht,s

i − ηh∇̃hFi(ϕ
t, ht,s

i )
9: end for

10: Update ht+1
i = ht,τh

i and initialize ϕt,0
i = ϕt

11: for s = 0, . . . , τϕ − 1 do
12: Update shared parameters using SAM according to (6) and (7)
13: end for
14: Update ϕt+1

i = ϕ
t,τϕ
i

15: Client sends ϕt+1
i back to server

16: end for
17: for each client i /∈ St do
18: ht+1

i = ht
i

19: end for
20: Server updates ϕt+1 = 1

rN

∑
i∈St ϕ

t+1
i

21: end for

We present the pFedSAM algorithm to solve Problem (3) and describe its detailed procedures in
Algorithm 1. The overall training process of pFedSAM consists of updating two parts of a client’s
model in an alternating manner: local personal parameters hi and global shared parameters ϕ.

At the beginning of each t-th round, the server randomly samples a subset of the clients St to join
the learning process (line 2) and broadcasts the current global version of the shared parameters ϕt

to clients in St (line 3). Then, each selected client i ∈ St performs local training in two stages.
First, it fixes the local version of the shared parameters ϕi to be the received global one ϕt and
then performs τh iterations of SGD to update the personal parameters hi (lines 5–9). Second, it
fixes the personal parameters hi to be the newly updated one ht,τh

i obtained from the first stage
(line 10) and then updates the shared parameters ϕi. Here, instead of seeking out shared parameters
that simply have low training loss by minimizing Fi(ϕ, hi), we propose to find shared parameters
whose entire neighborhoods have uniformly low training loss. This can be formulated as solving the
following Sharpness-Aware Minimization (SAM) problem that jointly minimizes the loss function
and smooths the loss landscape:

min
ϕ

max
∥ϵ∥2≤ρ

Fi(ϕ+ ϵ, ht+1
i ), (4)

where ρ is a predefined constant controlling the radius of the perturbation and ∥·∥2 is a l2-norm.
Intuitively, through optimizing the objective (4), the resulting local version of the shared parameters
ϕi has a smoother local loss landscape and exhibits inherent robustness to perturbations. Then by
aggregating all the local models with smoother local loss landscape at the server, the flatness of the
aggregated global model is boosted as well, making it more resilient to the injection of backdoor
features from malicious clients.

To solve the min-max problem (4), we adopt the efficient and effective approximation technique
proposed in Foret et al. (2021). Specifically, via the use of the first-order Taylor expansion of Fi, the

4



Under review as a conference paper at ICLR 2024

solution of the inner maximization problem is

ϵ∗(ϕ) ≈ argmax
∥ϵ∥2≤ρ

{
Fi(ϕ, h

t+1
i ) + ϵT∇ϕFi(ϕ, h

t+1
i )

}
= ρ

∇ϕFi(ϕ, h
t+1
i )∥∥∇ϕFi(ϕ, h
t+1
i )

∥∥
2

(5)

Substituting (5) back into (4) and taking the differentiation w.r.t. ϕ, we can obtain the approximate
SAM gradient as ∇ϕFi(ϕ, h

t+1
i )|ϕ+ρ∇ϕFi(ϕ,h

t+1
i )/∇ϕFi(ϕ,h

t+1
i ). Therefore, at the s-th local itera-

tion of round t, SAM first computes partial stochastic gradient ∇̃ϕFi(ϕ
t,s
i , ht+1

i ) and calculates the
perturbation ϵ(ϕt,s

i ) as follows:

ϵ(ϕt,s
i ) = ρ

∇̃ϕFi(ϕ
t,s
i , ht+1

i )∥∥∥∇̃ϕFi(ϕ
t,s
i , ht+1

i )
∥∥∥
2

. (6)

Then the perturbation is used to update the shared parameters as follows:

ϕt,s+1
i = ϕt,s

i − ηϕ∇̃ϕFi(ϕ
t,s
i + ϵ(ϕt,s

i ), ht+1
i ), (7)

where ηϕ is the learning rate. The same procedure repeats for τϕ local iterations (lines 10–13).

After local training, each selected client i only sends the updated local version of the shared pa-
rameters ϕt+1

i to the server, which aggregates them from all selected clients to compute the global
version of the shared parameters ϕt+1 for the next round (line 20). The updated personal parameters
ht+1
i are kept locally at the client to serve as the initialization when the client is selected for another

round.

3.2 CONVERGENCE PROPERTIES OF PFEDSAM

In this section, we give the convergence results of pFedSAM. To simplify presentation, we denote
H = (h1, . . . , hN ) ∈ Rd1+···+dN . We consider a general setting with αi = 1/N without loss of
generality. Then our objective becomes

min
ϕ,H

F (ϕ,H) =
1

N

N∑
i=1

Fi(ϕ, hi). (8)

Before stating our theoretical results, we make the following assumptions for the convergence anal-
ysis.

Assumption 1 (Smoothness). For each i ∈ [N ], the function Fi is continuously differentiable. There
exist constants Lϕ, Lh, Lϕh, Lhϕ such that for each i ∈ [N ]:

• ∇ϕFi(ϕ, hi) is Lϕ-Lipschitz with respect to ϕ and Lϕh-Lipschitz with respect to hi, and

• ∇hFi(ϕ, hi) is Lh-Lipschitz with respect to hi and Lhϕ-Lipschitz with respect to ϕ.

The relative cross-sensitivity of ∇ϕFi with respect to hi and ∇hFi with respect to ϕ is defined by
the following scalar:

χ := max{Lϕh, Lhϕ}/
√

LϕLh. (9)

Assumption 2 (Bounded Variance). The stochastic gradients in Algorithm 1 are unbiased and have
bouned variance. That is, for all ϕ and hi,

E[∇̃ϕFi(ϕ, hi)] = ∇ϕFi(ϕ, hi), (10)

E[∇̃hFi(ϕ, hi)] = ∇hFi(ϕ, hi). (11)

Furthermore, there exist constants σϕ and σh such that

E
∥∥∥∇̃ϕFi(ϕ, hi)−∇ϕFi(ϕ, hi)

∥∥∥2 ≤ σ2
ϕ, (12)

E
∥∥∥∇̃hFi(ϕ, hi)−∇hFi(ϕ, hi)

∥∥∥2 ≤ σ2
h. (13)
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Assumptions 1 and 2 are standard in the analysis of SGD Bottou et al. (2018), Guo et al. (2022).
Here, we can view ∇ϕFi(ϕ, hi), when i is randomly sampled from [N ], as a stochastic partial
gradient of F (ϕ,H). The following assumption imposes a constant variance bound.

Assumption 3 (Partial Gradient Diversity). There exist a constant δ such that for all ϕ and H ,

1

N

N∑
i=1

∥∇ϕFi(ϕ, hi)−∇ϕFi(ϕ,H)∥2 ≤ δ2 (14)

We denote ∆F0 = F (ϕ0, H0) − F ∗ with F ∗ being the minimal value of F (·). Further, we use the
shorthands Ht = (ht

1, · · · , ht
N ), ∆t

ϕ = ∥∇ϕF (ϕt, Ht)∥2, and ∆t
h = 1/n

∑N
i=1 ∥∇hF (ϕt, ht

i)∥
2.

Next, we propose our main theoretical results of the proposed pFedSAM algorithm in the following
theorem.

Theorem 1 (Convergence of Algorithm 1). Under Assumptions 1-3, if the learning rates satisfy
ηϕ = α/(Lϕτϕ) and ηh = α/(Lhτh), where α depends on the parameters Lϕ, Lh, χ

2, σ2
ϕ, σ

2
h, r,

and the number of total rounds T , we have

1

T

T−1∑
t=0

(
1

Lϕ
E[∆t

ϕ] +
r

Lh
E[∆t

h]

)
≤ (∆F0Ω

2
1)

1/2

√
T

+
(∆F 2

0Ω
2
2)

1/3

T 2/3
+O(

1

T
), (15)

where the effective variance terms are defined as follows:

Ω2
1 =

σ2
h

Lh
(r + χ2(1− r)) +

σ2
ϕ

Lϕ
+

δ2ϕ
Lϕ

(1− r),

Ω2
2 =

χ2σ2
h

Lh
+

ρ2

τϕ
+

σ2
ϕ + δ2

Lϕ
.

The left-hand side of (15) represents the time-averaged value of a weighted combination of E[∆t
ϕ]

and E[∆t
h]. The convergence rate, dictating how rapidly this value diminishes to zero, is tied to the

effective noise variances Ω2
1 and Ω2

2. These variances result from the SAM gradient perturbation
parameter ρ2 and three stochastic variances σ2, σ2

ϕ, and σ2
h.

4 EXPERIMENTS

In this section, we empirically assess the robustness of our pFedSAM against the state-of-the-art
black-box and white-box backdoor attacks. For the black-box attack, we choose the BadNet attack
Gu et al. (2019), which is the most commonly used attack in centralized training. For the white-
box attacks, we implement the DBA Xie et al. (2020) and BapFL Ye et al. (2023) attacks. DBA
significantly enhances the persistence and stealthiness against FL on diverse data by breaking down
the BadNet trigger pattern into distinct local patterns and injecting them in a distributed way. BapFL
Ye et al. (2023) is the most recent backdoor attack specifically tailored for pFL with partial model-
sharing. We compare our proposed pFedSAM method with seven widely used defense strategies
in FL: Krum Blanchard et al. (2017), Multi-Krum Blanchard et al. (2017), Adding Noise (AD) Du
et al. (2019); Sun et al. (2019); Wang et al. (2020), Norm Clipping (NC) Shejwalkar et al. (2022);
Sun et al. (2019); Wang et al. (2020), Ditto Li et al. (2021a), FedRep Collins et al. (2021), and
Simple-Tuning (ST) Qin et al. (2023). Krum and Multi-Krum aim to identify and filter malicious
clients by selecting one or multiple model updates for aggregation based on their similarity. NC and
AD aim to mitigate backdoor attacks during the training by limiting the norm of model updates or
adding Gaussian noise to model updates before aggregation. We set the threshold c ∈ {0.5, 1.0} in
NC and noise scales σ ∈ {10−5, 5 × 10−4} in AD according to Zhang et al. (2022). Ditto is a full
model-sharing pFL method that has been demonstrated to provide robustness benefits. FedRep is
the most commonly used partial model-sharing pFL method, which has been validated in Qin et al.
(2023) to offer superior robustness against black-box attacks compared to other pFL methods. ST is
a newly proposed defense method in Qin et al. (2023) that re-initializes and retrains the local linear
classifier on benign local dataset at each client while freezing the remaining parameters of its model.
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4.1 EXPERIMENTAL SETTINGS

We run each experiment 5 times with distinct random seeds, and provide the average testing accuracy
and training loss in the same last round for fair comparison. All the algorithms were implemented
using PyTorch and executed on an Ubuntu server equipped with four NVIDIA RTX A6000 GPUs.

Datasets and Models. Following the prior works in robust FL Xie et al. (2020); Zhang et al. (2023);
Wang et al. (2020); Xie et al. (2021); Ye et al. (2023); Qin et al. (2023), we choose the following
two common datasets: MNIST LeCun et al. (1998) and CIFAR-10 Krizhevsky et al. (2009). The
heterogeneity of these datasets across clients is controlled by following the Dirichlet distribution
Hsu et al. (2019) with concentration parameter β (default β = 0.5), where smaller β indicates larger
data heterogeneity across clients. As with Liang et al. (2020), we use a CNN with two convolutional
layers followed by three fully-connected layers for CIFAR10, and an MLP with two hidden layers
for MNIST, respectively.

Attack Setup. We conduct the FL training over 100 and 300 communication rounds for MNIST
and CIFAR10, respectively. We consider the stronger and stealthier backdoor attack setting that ma-
licious clients continuously participate in every round. We consider 100 clients in total by default.
Following the existing attack setting Xie et al. (2020); Ye et al. (2023); Qin et al. (2023), we ran-
domly sample 10 clients, including 4 malicious clients for DBA and BapFL or 1 malicious client for
BadNet. The rest are benign clients. For pFedSAM, we set the number of local epochs to train the
personal parameters to be 2, followed by 2 epochs for the shared parameters in each FL round. The
hyper-parameter ρ is set as 0.05 by default. All other methods use the same number of local epochs
as pFedSAM. The poison ratio controls the fraction of backdoored samples added per training batch.
Malicious clients poison 20 out of 64 samples per batch on CIFAR-10 and MNIST. More details are
given in Appendix A.

Evaluation Metrics. We utilize two evaluation metrics, attack success rate (ASR) and main task
accuracy (ACC), to gauge the effectiveness of pFedSAM. ASR is calculated as the proportion of suc-
cessfully attacked poisoned samples relative to the total number of poisoned samples. ACC denotes
the model’s accuracy when tested with benign samples. An effective backdoor attack should achieve
a high ASR while maintaining a high ACC, demonstrating its ability to manipulate the model’s out-
puts effectively without compromising its performance on the primary task. Furthermore, to ensure
unbiased evaluation, we compute ASR only on samples where the true label differs from the target
label Xie et al. (2020).

4.2 EXPERIMENTAL RESULTS

We compare pFedSAM with the baselines under the BadNet, DBA, and BapFL attacks.

Table 1: Black-box BadNet attack evaluation

Defenses MNIST CIFAR-10
ACC ASR ACC ASR

FedAvg (no defense) 96.09 97.03 70.94 31.88
FedRep 90.44 35.86 72.85 7.15
Ditto 87.66 58.41 72.28 30.61
NC (c = 0.5) 95.82 98.62 56.06 19.64
NC (c = 1.0) 95.96 98.57 69.54 22.96
AD (σ = 10−5) 95.26 96.90 70.97 20.59
AD (σ = 5× 10−4) 95.12 96.43 42.15 10.86
Krum 93.58 31.96 62.88 15.10
Multi-Krum 95.86 19.58 69.68 15.55
ST 66.58 33.92 75.21 15.57
pFedSAM 91.42 14.51 75.06 5.76

BadNet Attack. As shown in Table 1, BadNet attack achieves more than 97% and 31% ASRs on
MNIST and CIFAR-10, respectively. For both datasets, partial model-sharing pFL methods, such
as FedRep and pFedSAM effectively reduce the ASR while maintaining high ACC under the black-
box setting. Fedrep can effectively reduce the ASR below 36% on MNIST and 8% on CIFAR-10.
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Table 2: White-box DBA attack evaluation

Defenses MNIST CIFAR-10
ACC ASR ACC ASR

FedAvg (no defense) 94.54 100.00 66.32 74.82
FedRep 87.47 21.69 67.73 6.19
Ditto 56.57 85.23 60.53 15.01
NC (c = 0.5) 92.68 97.25 65.68 37.04
NC (c = 1.0) 92.89 99.96 66.33 44.99
AD (σ = 10−5) 93.97 99.99 57.24 34.91
AD (σ = 5× 10−4) 93.07 99.88 36.88 15.24
Krum 88.62 92.50 62.01 8.33
Multi-Krum 94.01 97.36 69.68 20.92
ST 77.95 51.76 67.88 8.77
pFedSAM 89.10 12.13 69.61 5.06

Conversely, the full model-sharing pFL method Ditto does not significantly enhance the robustness
against the backdoor attack. The ASR is only reduced within 1% on CIFAR-10 and remains over
58% on MNIST. This matches the prior results observed in Qin et al. (2023).

NC with c = 1.0 brings a slight increase in robustness compared with FedAvg. The ASR is reduced
only within 1% on MNIST. Although we can set a small threshold to mitigate the influence of
malicious clients, such as c = 0.5, it will significantly reduce the ACC because we also limit the
contribution from benign clients, such as ACC is below 57% on CIFAR-10. AD yields similar effects
on accuracy when employing a large noise scale σ = 5 × 10−4, leading to ACC dropping below
43%. By detecting and filtering the potential malicious clients, Krum and Multi-Krum improve
the robustness against the backdoor attack. However, their ability to identify attackers is limited,
and the ASR remains at least 19% on MNIST and 15% on CIFAR-10. Additionally, the ACC
is influenced because these methods may filter potential benign users. Although these NC, AD,
Krum, and Multi-Krum exhibit varying robustness improvements against the BadNet attack, they
all encounter a significant trade-off between robustness and accuracy. ST can achieve similar ASRs
with Krum on both datasets. However, its ACC is unstable and cannot completely eliminate the risk
of backdoor attacks.

We can also observe that among all the methods, pFedSAM achieves the best robustness with the
lowest ASR while still maintaining a high ACC. Specifically, pFedSAM can reduce the ASR to
5.76% on CIFAR-10 and 14.51% on MNIST, respectively, while achieving a comparable ACC to the
highest ACC among all the methods. Compared to FedRep, pFedSAM exhibits a dual enhancement,
improving ACC and reducing ASR concurrently. This clearly highlights the benefits of sharpness-
aware training in enhancing robustness.

DBA Attack. Table 2 shows the effectiveness of pFedSAM in comparison to the baselines for the
DBA attack on both datasets. The ASR is 3%-42% higher than BadNet attack on FedAvg shows that
DBA is a more aggressive attack than BadNet. Partial model-sharing pFL methods still demonstrate
significant robustness against DBA attack, while full model-sharing pFL does not notably enhance
robustness. Specifically, Fedrep can effectively reduce the ASR below 22% on MNIST and 7% on
CIFAR-10. Although Ditto reduces ASR to 15.01% on CIFAR-10, its ASR exceeds 85% on MNIST,
and the ACCs are low on both datasets.

NC fails to effectively mitigate DBA attack on both datasets. Even with a small clipping threshold
of c = 0.5, its ASR remains above 97% on MNIST and 37% on CIFAR-10, respectively. AD faces
a trade-off between robustness and ACC. Although larger noise σ = 5 × 10−4 can reduce ASR, as
seen 15.24% on CIFAR-10, it significantly impacts ACC below 37% as it restricts the contribution
from benign clients. Krum and Multi-Krum can all partially mitigate the impact of backdoored
models, particularly on the CIFAR-10 dataset. Krum achieves an impressive reduction to as low as
8.33% ASR on CIFAR-10. However, they turn to be ineffective on the MNIST dataset as the DBA
is considered very strong on this dataset, validating the claim that these methods could fail under the
strong attack scenarios. Note that ST achieves a comparable ASR to Krum on CIFAR-10. However,
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Table 3: White-box BapFL attack evaluation

Defenses MNIST CIFAR-10
ACC ASR ACC ASR

FedRep 76.77 37.50 77.50 53.13
pFedSAM 80.36 29.17 78.87 40.91
pFedSAM + NC (c = 0.5) 78.45 16.67 81.79 21.53
pFedSAM + NC (c = 1.0) 75.54 18.93 81.70 29.12
pFedSAM + AD (σ = 10−5) 79.05 19.50 80.91 26.85
pFedSAM + AD (σ = 5× 10−4) 80.17 29.36 33.83 6.70
pFedSAM + Krum 57.15 5.81 76.66 3.55
pFedSAM + Multi-Krum 75.46 3.66 80.97 2.82
pFedSAM + ST 44.76 7.04 70.38 19.67

its ACC is unstable and unable to completely mitigate the risks associated with backdoor attacks on
the MNIST dataset.

We observe that pFL methods with partial model-sharing, such as FedRep and pFedSAM, can
largely defend against DBA attack on both datasets with a much lower ASR. pFedSAM demon-
strates superior robustness by achieving the lowest ASR while maintaining a high ACC. In addition,
pFedSAM consistently outperforms FedRep in terms of both ACC and ASR. Specifically, pFedSAM
demonstrates a 1%-2% increase in ACC and a 1%-9% reduction in ASR compared to FedRep. This
highlights the benefits of sharpness-aware training in enhancing the robustness against backdoor
attacks and improving model performance on benign samples.

BapFL Attack. As the BapFL attack is custom-designed for partial model-sharing pFL, we evaluate
this attack only on two methods for comparison: FedRep and pFedSAM. Moreover, we show the
flexibility of pFedSAM in incorporating other defense strategies to achieve even better robustness.
The results are shown in Table 3. Due to its ASR being 15%-42% higher than DBA attack on
FedRep, and DBA being stronger than BadNET, it clearly shows that BapFL is more aggressive
than DBA and BadNet under the pFL setting.

From the table, we can observe that the straightforward implementation of pFL with partial model-
sharing, FedRep, remains susceptible to BapFL attack with relatively high ASRs, such as 53% on
CIFAR-10 and 37.50%. Compared with FedRep, pFedSAM can enhance robustness and accuracy
simultaneously under BapFL due to the use of sharpness-aware training in updating the shared pa-
rameters, but it still cannot provide an effective defense by itself. Therefore, we combine pFedSAM
with the existing defense strategies (NC, AD, Krum, Multi-Krum, and ST) by applying them to the
global aggregation step of the shared parameters in pFedSAM to see the effectiveness. From the
table, we can observe that pFedSAM in conjunction with AD, NC, or ST does not effectively miti-
gate the BapFL attack. However, BapFL can be effectively mitigated when integrating the Krum or
Multi-Krum into our proposed pFedSAM. Specifically, by integrating pFedSAM with Multi-Krum,
it can reduce the ASR to below 4% on both datasets and keep the ACC degradation within 1%.

5 CONCLUSION

In this paper, we have introduced pFedSAM, a novel pFL method that provides robustness against
both black-box and white-box backdoor attacks. We have shown that pFedSAM can result person-
alized models with low accuracy on poisoned samples and high accuracy on benign samples under
the strong continuous backdoor attack setting. We have also proved the convergence of pFedSAM
under the general non-convex and non-IID data distribution setting. Our proposed method is flexible
and can be integrated with existing defense strategies to defend against more aggressive attacks.
For future work, we will consider other implementations of the SAM optimizer and conduct more
comprehensive experiments on a wide range of datasets, tasks, and attack settings.
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sein Yalame, Helen Möllering, Hossein Fereidooni, Samuel Marchal, Markus Miettinen, et al.
{FLAME}: Taming backdoors in federated learning. In 31st USENIX Security Symposium
(USENIX Security 22), pp. 1415–1432, 2022.

Krishna Pillutla, Kshitiz Malik, Abdel-Rahman Mohamed, Mike Rabbat, Maziar Sanjabi, and Lin
Xiao. Federated learning with partial model personalization. In International Conference on
Machine Learning, pp. 17716–17758. PMLR, 2022.

Zeyu Qin, Liuyi Yao, Daoyuan Chen, Yaliang Li, Bolin Ding, and Minhao Cheng. Revisiting person-
alized federated learning: Robustness against backdoor attacks. arXiv preprint arXiv:2302.01677,
2023.

Sumudu Samarakoon, Mehdi Bennis, Walid Saad, and Merouane Debbah. Federated learning for
ultra-reliable low-latency v2v communications. In 2018 IEEE global communications conference
(GLOBECOM), pp. 1–7. IEEE, 2018.

Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. Back to the drawing
board: A critical evaluation of poisoning attacks on production federated learning. In 2022 IEEE
Symposium on Security and Privacy (SP), pp. 1354–1371. IEEE, 2022.

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan. Can you really
backdoor federated learning? arXiv preprint arXiv:1911.07963, 2019.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau en-
velopes. Advances in Neural Information Processing Systems, 33:21394–21405, 2020.

Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal, Jy-
yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you really can
backdoor federated learning. Advances in Neural Information Processing Systems, 33:16070–
16084, 2020.

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor attacks against
federated learning. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=rkgyS0VFvr.

Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li. Crfl: Certifiably robust federated learning
against backdoor attacks. In International Conference on Machine Learning, pp. 11372–11382.
PMLR, 2021.

11

https://openreview.net/forum?id=rkgyS0VFvr


Under review as a conference paper at ICLR 2024

Tiandi Ye, Cen Chen, Yinggui Wang, Xiang Li, and Ming Gao. You can backdoor personalized
federated learning. arXiv preprint arXiv:2307.15971, 2023.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International Conference on Machine Learning,
pp. 5650–5659. PMLR, 2018.

Kaiyuan Zhang, Guanhong Tao, Qiuling Xu, Siyuan Cheng, Shengwei An, Yingqi Liu, Shiwei
Feng, Guangyu Shen, Pin-Yu Chen, Shiqing Ma, and Xiangyu Zhang. FLIP: A provable defense
framework for backdoor mitigation in federated learning. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
Xo2E217_M4n.

Zhengming Zhang, Ashwinee Panda, Linyue Song, Yaoqing Yang, Michael Mahoney, Prateek Mit-
tal, Ramchandran Kannan, and Joseph Gonzalez. Neurotoxin: Durable backdoors in federated
learning. In International Conference on Machine Learning, pp. 26429–26446. PMLR, 2022.

A IMPLEMENTATION DETAILS

A.1 ATTACK SETTING

BadNet. BadNet trigger is the most commonly used attack in centralized training. We employ a
continuous attack setup where the attacker engages in attacks throughout the entire training process,
from the first round to the last. As a black-box attack, we set the same learning rate and poisoning
epoch as benign clients.

DBA. DBA uses the same trigger as BadNet but in a distributed way. Specifically, DBA breaks down
a central trigger pattern into distinct local patterns and then integrates each of these patterns into the
training dataset of various adversarial entities. Compared to traditional centralized backdoors, DBA
exhibits significantly enhanced persistence and stealthiness against FL on diverse data. We use the
same continuous attack setting as BadNet in our paper. The poison learning rate/epoch is 0.05/4 for
CIFAR-10 and 0.05/10 for MNIST.

BapFL. BapFL is a SOTA partial model-sharing backdoor attack in FL. The key principle of BapFL
is to preserve clean local parameters while embedding the backdoor into the global parameters.
Specifically, BapFL divides the local samples in each batch into a clean set and a poison set. During
the attack, the local full model is trained using the clean set, while the global shared parameters are
updated exclusively using the poison set. We use the same learning rate and batch size as benign
clients. As backdoor attackers start attacking when the ACC converges Ye et al. (2023), we utilize
pre-trained models for FedRep and pFedSAM and set the learning rate as 0.01 for benign clients and
0.05 for malicious clients.

A.2 IMPLEMENTATION DETAILS OF BASELINES

Following the setting in Collins et al. (2021), we set the weights and biases of the final fully-
connected layer in each model as the local parameters. Other parts are global shared model pa-
rameters. For all baselines, we use the same local sample batch size 64.

FedAvg. We set the learning rate to 0.1 and the number of epochs to 2 for each client on both
datasets.

Ditto. We set the hyper-parameter λ = 0.1 and learning rate as 0.05 and epoch as 2 for each client.

NC, AD, Krum, Multi-Krum, and ST. All these mechanisms follow the same setting as FedAvg.

B CONVERGENCE ANALYSIS OF PFEDSAM

B.1 NOTIONS

For ease of notion, let ϕ̃t,s
i , h̃t,s

i denote the virtual sequences as the SAM/SGD updates following
Algorithm 1, regardless of whether they are selected. Thus, for the selected client i ∈ St, we have
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ht,s
i = h̃t,s

i and ϕt,s
i = ϕ̃t,s

i . Note that the random variables ϕ̃t,s
i , h̃t,s

i are independent of the random
selection St. Then, we have the following update roles for selected clients i ∈ St in Algorithm 1 as
follows

ht+1
i = ht

i − ηh

τh−1∑
s=0

∇̃hFi(ϕ
t
i, h̃

t,s
i ),

ϕt+1
i = ϕt

i − ηϕ

τϕ−1∑
s=0

∇̃ϕFi(ϕ̃
t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i ).

where ϵ(ϕ̃t,s
i ) is given by

ϵ(ϕ̃t,s
i ) = ρ

∇̃ϕFi(ϕ̃
t,s
i , h̃t+1

i )∥∥∥∇̃ϕFi(ϕ̃
t,s
i , h̃t+1

i )
∥∥∥
2

.

The server update rule is given by

ϕt+1 = ϕt − ηϕ
rN

∑
i∈St

∇̃ϕFi(ϕ̃
t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i ).

We use the notation ∆̃t
ϕ as the analogue of ∆t

ϕ with the virtual variable H̃t+1.

B.1.1 USEFUL LEMMAS

Lemma 1 (Jensen’s inequality). For arbitrary set of n vectors {ai}ni , ai ∈ Rd and positive weights
{wi}i∈[n],

∑n
i wi = 1, ∥∥∥∥∥

n∑
i=1

wiai

∥∥∥∥∥
2

≤
n∑

i=1

wi∥ai∥

Lemma 2 (Cauchy-Schwarz inequality). For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd,∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n

n∑
i=1

∥ai∥2

Lemma 3. For given two vectors a, b ∈ Rd,

2⟨a, b⟩ ≤ γ∥a∥2 + γ−1∥b∥2,∀γ ≥ 0.

Lemma 4 (Bounded T1,ϕ). For T1,ϕ, we have,

Et[T1,ϕ] ≤ −ηϕτϕ
2

Et

∥∥∥∇ϕF (ϕt, H̃t+1)
∥∥∥2 + 2ηϕL

2
ϕ

N

N∑
i=1

τϕ−1∑
s=0

[
Et

∥∥∥ϕ̃t,s
i − ϕt

∥∥∥2 + ρ2
]
.

Proof. For client i ∈ St, we have ϕ̃t,s
i = ϕt,s

i . Thus, we have

Et[T1,ϕ] = −ηϕ

〈
∇ϕF (ϕt, H̃t+1),

1

rN

∑
i∈St

τϕ−1∑
s=0

∇̃ϕFi(ϕ̃
t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i )

〉
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Note that ϕ̃t,s
i is independent of St. Then, we have

Et[T1,ϕ] = −ηϕEt

〈
∇ϕF (ϕt, H̃t+1),

1

N

N∑
i=1

τϕ−1∑
s=0

∇ϕFi(ϕ̃
t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i )

〉

= −ηϕ

τϕ−1∑
s=0

Et

〈
∇ϕF (ϕt, H̃t+1), (

1

N

N∑
i=1

(
∇ϕFi(ϕ̃

t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i )

−∇ϕF (ϕt, H̃t+1) +∇ϕF (ϕt, H̃t+1)
)〉

= −ηϕτϕEt

∥∥∥∇ϕF (ϕt, H̃t+1)
∥∥∥2

− ηϕ

τϕ−1∑
s=0

Et

〈
∇ϕF (ϕt, H̃t+1),

1

N

N∑
i=1

(
∇ϕFi(ϕ̃

t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i )−∇ϕF (ϕt, H̃t+1)

)〉
(a)
≤ −ηϕτϕ

2
Et

∥∥∥∇ϕF (ϕt, H̃t+1)
∥∥∥2 + ηϕL

2
ϕ

N

N∑
i=1

τϕ−1∑
s=0

[
Et

∥∥∥ϕ̃t,s
i + ϵ(ϕ̃t,s

i )− ϕt
∥∥∥2]

(b)
≤ −ηϕτϕ

2
Et

∥∥∥∇ϕF (ϕt, H̃t+1)
∥∥∥2 + 2ηϕL

2
ϕ

N

N∑
i=1

τϕ−1∑
s=0

[
Et

∥∥∥ϕ̃t,s
i − ϕt

∥∥∥2 + ρ2
]

where (a) holds due to ⟨x, y⟩ ≤ ∥x∥2/2 + ∥y∥2/2, (b) holds due to
∥∥∥ϵ(ϕ̃t,s

i )
∥∥∥2 ≤ ρ2.

Lemma 5 (Bounded T2,ϕ). For T2,ϕ, we have,

Et[T2,ϕ] ≤ 3Lϕη
2
ϕτ

2
ϕEt

∥∥∥∇ϕF (ϕt, H̃t+1)
∥∥∥2 + Lϕη

2
ϕτ

2
ϕ

rN

(
σ2
ϕ + 6δ2(1− r)

)
+

6L2
ϕη

2
ϕτϕ

N

N∑
i=1

τϕ−1∑
s=0

[
Et

∥∥∥ϕ̃t,s
i − ϕt

∥∥∥2 + ρ2
]
.

Proof. Using E∥x∥2 = ∥E[x]∥2 + E∥x− E[x]∥2, we have

Et[T2,ϕ] = LϕEt

∥∥ϕt+1 − ϕt
∥∥2

= Lϕη
2
ϕEt

∥∥∥∥∥∥ 1

rN

∑
i∈St

τϕ−1∑
s=0

∇̃ϕFi(ϕ̃
t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i )

∥∥∥∥∥∥
2

= Lϕη
2
ϕEt

∥∥∥∥∥∥ 1

rN

∑
i∈St

τϕ−1∑
s=0

∇ϕFi(ϕ̃
t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i )

∥∥∥∥∥∥
2

+ Lϕη
2
ϕEt

∥∥∥∥∥∥ 1

rN

∑
i∈St

τϕ−1∑
s=0

[
∇̃ϕFi(ϕ̃

t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i )−∇ϕFi(ϕ̃

t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i )

]∥∥∥∥∥∥
2

≤ Lϕτϕη
2
ϕ

τϕ−1∑
s=0

Et

∥∥∥∥∥ 1

rN

∑
i∈St

∇ϕFi(ϕ̃
t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i )

∥∥∥∥∥
2

︸ ︷︷ ︸
T ′
s

+
Lϕη

2
ϕτ

2
ϕσ

2
ϕ

rN
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For T ′
s , we have

T ′
s ≤ 3

∥∥∥∥∥ 1

rN

(∑
i∈St

∇ϕFi(ϕ̃
t,s
i + ϵ(ϕ̃t,s

i ), h̃t+1
i )−∇ϕFi(ϕ

t, h̃t+1
i )

)∥∥∥∥∥
2

︸ ︷︷ ︸
T ′
s,1

+ 3

∥∥∥∥∥ 1

rN

∑
i∈St

∇ϕFi(ϕ
t, h̃t+1

i )−∇ϕF (ϕt, H̃t+1)

∥∥∥∥∥
2

︸ ︷︷ ︸
T ′
s,2

+3
∥∥∥∇ϕF (ϕt, H̃t+1)

∥∥∥2.

For T ′
s,1, according to Lemma 1 and Assumption 1, then we take an expectation over the sampling

of devices to get

Et[T ′
s,1] ≤

2Lϕ

N

N∑
i=1

[
Et

∥∥∥ϕ̃t,s
i − ϕt

∥∥∥2 + ρ2
]

For T ′
s,2, following Lemma 8 and Assumption 3, we get

T ′
s,2 ≤

(
N − rN

N − 1

)
1

rN2

N∑
i=1

∥∥∥∇ϕFi(ϕ
t, h̃t+1

i )−∇ϕF (ϕt, H̃t+1)
∥∥∥2 ≤ 2

rN
(1− r)δ2.

To finalize the proof, we substitute these terms into the definitions of T ′
s and T2,ϕ.

Lemma 6 (Bounded T3,ϕ). (Claim 8, Pillutla et al. (2022)) For T3,ϕ, we have,

Et[T3,ϕ] ≤ 8η2hτ
2
hLhχ

2(1− r)∆t
h + 4χ2η2hτ

2
hLhσ

2
h(1− r).

Lemma 7 (Bounded TH ). (Claim 9, Pillutla et al. (2022)) Assume that ηhτhLh ≤ 1/8, we have

Et[TH ] ≤ −ηhτhr∆
t
h

8
+

η2hτ
2
hLhσ

2
hr

2
+ 4η3hLhτ

2
h(τh − 1)σ2

hr.

Lemma 8 (Sampling Without Replacement). (Lemma 21, Pillutla et al. (2022))Let a1, . . . , an ∈ Rd

be given. Let S be a uniformly random sample of size m from this collection, where the sampling is
without replacement. Denoting the mean ā = 1

n

∑n
i=1 ai, we have

ES

∥∥∥∥∥ 1

m

∑
i∈S

ai − ā

∥∥∥∥∥
2

≤
(
n−m

n− 1

)
1

nm

n∑
i=1

∥ai − ā∥2.

Lemma 9 (Bounded local updates). Under Assumptions 1, 2, 3, we have

1

N

N∑
i=1

Et

∥∥ϕt,s
i − ϕt

∥∥2 ≤ 6τϕη
2
ϕL

2
ϕρ

2 + 18η2ϕτ
2
ϕ

(
σ2
ϕ + δ2 +

1

N

N∑
i=1

∥∇ϕF (ϕt, Ht+1)∥2
)
.

Proof.

1

N

N∑
i=1

Et

∥∥ϕt,s
i − ϕt

∥∥2 =
1

N

N∑
i=1

Et

∥∥∥ϕt,s−1
i − ηϕ∇̃ϕFi(ϕ

t,s−1
i + ϵ(ϕt,s−1

i ), ht+1
i )− ϕt

∥∥∥2
=

1

N

N∑
i=1

∥ϕt,s−1
i − ϕt − ηϕ

(
∇̃ϕFi(ϕ

t,s−1
i + ϵ(ϕt,s−1

i ), ht+1
i )− ∇̃ϕFi(ϕ

t,s−1
i , ht+1

i )

+ ∇̃ϕFi(ϕ
t,s−1
i , ht+1

i )−∇ϕFi(ϕ
t,s−1
i , ht+1

i ) +∇ϕFi(ϕ
t,s−1
i , ht+1

i )

−∇ϕF (ϕt, Ht+1) +∇ϕF (ϕt, Ht+1)
)
∥2

≤ T ′′
2,ϕ + T ′′′

2,ϕ
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where

T ′′
2,ϕ = (1+

1

2τϕ − 1
)
1

N

N∑
i=1

∥ϕt,s−1
i −ϕt−ηϕ

(
∇̃ϕFi(ϕ

t,s−1
i +ϵ(ϕt,s−1

i ), ht+1
i )−∇̃ϕFi(ϕ

t,s−1
i , ht+1

i )
)
∥2,

and

T ′′′
2,ϕ =

2τϕη
2
ϕ

N

N∑
i=1

∥∇̃ϕFi(ϕ
t,s−1
i , ht+1

i )−∇ϕFi(ϕ
t,s−1
i , ht+1

i ) +∇ϕFi(ϕ
t,s−1
i , ht+1

i )

−∇ϕF (ϕt, Ht+1) +∇ϕF (ϕt, Ht+1)
)
∥2

For T ′′
2,ϕ, we have

T ′′
2,ϕ ≤ (1 +

1

2τϕ − 1
)
1

N

N∑
i=1

(E∥ϕt,s−1
i − ϕt∥2 + η2ϕL

2
ϕρ

2).

For T ′′′
2,ϕ, we have

T ′′′
2,ϕ ≤ 6τϕη

2
ϕ

(
σ2
ϕ + δ2 +

1

N

N∑
i=1

∥∇ϕF (ϕt, Ht+1)∥2
)
.

Thus, the recursion from s = 0 to τϕ − 1 generate

1

N

N∑
i=1

Et

∥∥ϕt,s
i − ϕt

∥∥2 ≤
τϕ−1∑
s=0

(1 +
1

2τϕ − 1
)s
[
(1 +

1

2τϕ − 1
)η2ϕL

2
ϕρ

2 + T ′′′
2,ϕ

]
≤ (2τϕ − 1)

[
(1 +

1

2τϕ − 1
)τϕ−1

][
(1 +

1

2τϕ − 1
)η2ϕL

2
ϕρ

2 + T ′′′
2,ϕ

]
(a)
≤ 3τϕ

(
T ′′′
2,ϕ + 2η2ϕL

2
ϕρ

2
)

≤ 6τϕη
2
ϕL

2
ϕρ

2 + 18η2ϕτ
2
ϕ

(
σ2
ϕ + δ2 +

1

N

N∑
i=1

∥∇ϕF (ϕt, Ht+1)∥2
)
,

where (a) holds due to 1 + 1
2τϕ−1 ≤ 2 and (1 + 1

2τϕ−1 )
τϕ ≤

√
5 < 5

2 for any τϕ ≥ 1.

B.2 DETAILED PROOF

Proof. We start with
Et[F (ϕt+1, Ht+1)− F (ϕt, Ht)] = Et[F (ϕt+1, Ht+1)− F (ϕt, Ht+1)]︸ ︷︷ ︸

Tϕ

+Et[F (ϕt, Ht+1)− F (ϕt, Ht)]︸ ︷︷ ︸
TH

For Tϕ, we have

Et[F (ϕt+1, Ht+1)− F (ϕt, Ht+1)]
(a)
≤ ⟨∇ϕF (ϕt, Ht+1), ϕt+1 − ϕt⟩+ Lϕ

2
Et

∥∥ϕt+1 − ϕt
∥∥2

= ⟨∇ϕF (ϕt, Ht+1)−∇ϕF (ϕt, H̃t+1), ϕt+1 − ϕt⟩

+ ⟨∇ϕF (ϕt, H̃t+1), ϕt+1 − ϕt⟩+ Lϕ

2
Et

∥∥ϕt+1 − ϕt
∥∥2

(b)
≤ ⟨∇ϕF (ϕt, H̃t+1), ϕt+1 − ϕt⟩+ LϕEt

∥∥ϕt+1 − ϕt
∥∥2

+
1

2Lϕ

∥∥∥∇ϕF (ϕt, Ht+1)−∇ϕF (ϕt, H̃t+1)
∥∥∥2

(c)
≤ ⟨∇ϕF (ϕt, H̃t+1), ϕt+1 − ϕt⟩︸ ︷︷ ︸

T1,ϕ

+LϕEt

∥∥ϕt+1 − ϕt
∥∥2︸ ︷︷ ︸

T2,ϕ

+
χ2Lh

2n

n∑
i=1

∥∥∥h̃t+1
i − ht+1

i

∥∥∥︸ ︷︷ ︸
T3,ϕ
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where (a) and (c) follow from Assumption 1 and (b) follows from Lemma 3. According to Lem-
mas 4, 5 and 6, we have

Et[F (ϕt+1, Ht+1)− F (ϕt, Ht+1)] ≤
(
−ηϕτϕ

2
+ 3Lϕη

2
ϕτ

2
ϕ

)
Et[∆̃

t
ϕ]

+
6L2

ϕη
2
ϕτϕ + ηϕL

2
ϕ

N

N∑
i=1

τϕ−1∑
s=0

[
Et

∥∥∥ϕ̃t,s
i − ϕt

∥∥∥2 + ρ2
]
+ 4χ2η2hτ

2
hLhσ

2
h(1− r)

+
Lϕη

2
ϕτ

2
ϕ

rN

(
σ2
ϕ + 6δ2(1− r)

)
+ 8η2hτ

2
hLhχ

2(1− r)∆t
h

(a)
≤− ηϕτϕ

4
Et[∆̃

t
ϕ] +

2ηϕL
2
ϕ

N

N∑
i=1

τϕ−1∑
s=0

Et

∥∥∥ϕ̃t,s
i − ϕt

∥∥∥2︸ ︷︷ ︸
T ′
2,ϕ

+4χ2η2hτ
2
hLhσ

2
h(1− r)

+
Lϕη

2
ϕτ

2
ϕ

rN

(
σ2
ϕ + 6δ2(1− r)

)
+ 8η2hτ

2
hLhχ

2(1− r)∆t
h + 2ηϕτϕL

2
ϕρ

2,

where (a) holds due to ηϕ ≤ min{1/(12Lϕτϕ), 1/(6τϕ)} According to Lemma 9, we have

Et[F (ϕt+1, Ht+1)− F (ϕt, Ht+1)]
(a)
≤ −ηϕτϕ

8
Et[∆̃

t
ϕ] + (12η3ϕL

4
ϕτ

2
ϕ + 2ηϕτϕL

2
ϕ)ρ

2 (16)

+ 36η3ϕτ
3
ϕL

2
ϕ(σ

2
ϕ + δ2) + 4χ2η2hτ

2
hLhσ

2
h(1− r)

+
Lϕη

2
ϕτ

2
ϕ

rN

(
σ2
ϕ + 6δ2(1− r)

)
+ 8η2hτ

2
hLhχ

2(1− r)∆t
h

where (a) holds due to 16η2ϕL
2
ϕτ

2
ϕ ≤ 1/8. Combining (16) and Lemma 7, we have

Et[F (ϕt+1, Ht+1)− F (ϕt, Ht)]
(a)
≤ −ηϕτϕ

8
Et[∆̃

t
ϕ]−

ηhτhr

16
E[∆t

h] + (12η3ϕL
4
ϕτ

2
ϕ + 2ηϕτϕL

2
ϕ)ρ

2

+ 36η3ϕτ
3
ϕL

2
ϕ(σ

2
ϕ + δ2) + 4η2hτ

2
hLhσ

2
h(r + χ2(1− r))

+
Lϕη

2
ϕτ

2
ϕ

rN

(
σ2
ϕ + 6δ2(1− r)

)
+

η2hτ
2
hLhσ

2
hr

2

where (a) holds due to 128ηϕLϕτϕχ
2(r− 1) ≤ 1. Taking an unconditional expectation, summing it

over t = 0 to T − 1 and rearranging, we get

1

T

T−1∑
t=1

(
ηϕτϕ
8

Et[∆̃
t
ϕ] +

ηhτhr

16
E[∆t

h]) ≤
∆F0

T
+ (12η3ϕL

4
ϕτ

2
ϕ + 2ηϕτϕL

2
ϕ)ρ

2 + 36η3ϕτ
3
ϕL

2
ϕ(σ

2
ϕ + δ2)

(17)

+ 4η2hτ
2
hLhσ

2
h(r + χ2(1− r)) +

Lϕη
2
ϕτ

2
ϕ

rN

(
σ2
ϕ + 6δ2(1− r)

)
+

η2hτ
2
hLhσ

2
hr

2

This is a bound in terms of the virtual iterates H̃t+1. However, we wish to show a bound in terms of
the actual iterate Ht. Using Lemma 2 and Assumption 1, we have

Et[∇ϕF (ϕt, Ht)−∇ϕF (ϕt, H̃t+1)] ≤ 1

N

N∑
i=1

Et

∥∥∥∇ϕFi(ϕ
t, ht

i)−∇ϕFi(ϕ
t, h̃t+1

i )
∥∥∥2

≤ χ2LϕLh

N

N∑
i=1

Et

∥∥∥h̃t+1
i − ht

i)
∥∥∥2

(a)
≤ χ2LϕLh

N

N∑
i=1

(
16η2hτ

2
h

∥∥∇hFi(ϕ
t, ht

i)
∥∥2 + 8η2hτ

2
hσ

2
h

)
= 8η2hτ

2
hσ

2
hχ

2LϕLh + 16η2hτ
2
hχ

2LϕLh∆
t
h,

17
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where (a) holds due the Lemma 23 in Pillutla et al. (2022). Using∥∥∇ϕF (ϕt, Ht)
∥∥2 ≤ 2

∥∥∥∇ϕF (ϕt, Ht)−∇ϕF (ϕt, H̃t+1)
∥∥∥2 + 2

∥∥∥∇ϕF (ϕt, H̃t+1)
∥∥∥2

we have
E[∆T

ϕ ] ≤ 2E[∆̃t
ϕ] + 16η2hτ

2
hσ

2
hχ

2LϕLh + 32η2hτ
2
hσ

2
hχ

2LϕLhE[∆t
h].

Thus, when 32γ2χ2α ≤ 1
2 , we have

ηϕτϕ
16

E[∆t
ϕ] +

ηhτhr

32
E[∆t

h] ≤
ηϕτϕ
8

E[∆̃t
ϕ] +

ηhτhr

16
E[∆t

h] + ηϕτϕη
2
hτ

2
hσ

2
hχ

2LϕLh.

Summing it over t = 0 to T − 1 and plugging in (17), we get

1

T

T−1∑
t=0

(
ηϕτϕ
16

E[∆t
ϕ] +

ηhτhr

32
E[∆t

h])

≤ 1

T

T−1∑
t=0

(
ηϕτϕ
8

E[∆̃t
ϕ] +

ηhτhr

16
E[∆t

h]) + ηϕτϕη
2
hτ

2
hσ

2
hχ

2LϕLh

≤ ∆F0

T
+ (12η3ϕL

4
ϕτ

2
ϕ + 2ηϕτϕL

2
ϕ)ρ

2 + 36η3ϕτ
3
ϕL

2
ϕ(σ

2
ϕ + δ2) + ηϕτϕη

2
hτ

2
hσ

2
hχ

2LϕLh

+ 4η2hτ
2
hLhσ

2
h(r + χ2(1− r)) +

Lϕη
2
ϕτ

2
ϕ

rN

(
σ2
ϕ + 6δ2(1− r)

)
+

η2hτ
2
hLhσ

2
hr

2

Plugging in ηϕ = α
Lϕτϕ

and ηh = α
Lhτh

completes the proof.

18


	introduction
	Background and Related Works
	Personalized Federated Learning
	Backdoor Attacks in Federated Learning

	pFedSAM: Federated Learning with Personalized Sharpness-Aware Minimization
	pFedSAM Algorithm
	Convergence Properties of pFedSAM

	Experiments
	Experimental Settings
	Experimental Results

	Conclusion
	Implementation details
	Attack setting
	Implementation details of Baselines

	Convergence analysis of pFedSAM
	Notions
	Useful Lemmas

	Detailed Proof


