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Abstract

Electroencephalogram (EEG) provides a non-
invasive, highly accessible, and cost-effective so-
lution for Alzheimer’s Disease (AD) detection.
However, existing methods, whether based on
manual feature extraction or deep learning, face
two major challenges: the lack of large-scale
datasets for robust feature learning and evalua-
tion, and poor detection performance due to inter-
subject variations. To address these challenges,
we curate an EEG-AD corpus containing 813
subjects, which forms the world’s largest EEG-
AD dataset to the best of our knowledge. Using
this unique dataset, we propose LEAD, the first
large foundation model for EEG-based AD detec-
tion. Our method encompasses an entire pipeline,
from data selection and preprocessing to self-
supervised contrastive pretraining, fine-tuning,
and key setups such as subject-independent evalu-
ation and majority voting for subject-level detec-
tion. We pre-train the model on 11 EEG datasets
(4 AD and 7 non-AD) and unified fine-tune it
on 5 AD datasets. Our self-supervised pretrain-
ing design includes sample-level and subject-level
contrastive learning to extract useful general EEG
features. Fine-tuning is performed on 5 channel-
aligned datasets together. The backbone encoder
incorporates temporal and channel embeddings to
capture features across both temporal and spatial
dimensions. Our method demonstrates outstand-
ing AD detection performance, achieving up to a
9.86% increase in F1 score at the sample level and
up to a 9.31% improvement at the subject level
compared to state-of-the-art methods. The results
of our model strongly confirm the effectiveness of
subject-level contrastive pretraining and channel-
aligned multi-dataset fine-tuning for addressing
inter-subject variation. The source code is at https:
/lanonymous.4open.science/t/LEAD-3B51.
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1. Introduction

Alzheimer’s disease (AD) is the most common neurodegen-
erative disorder in the elderly, affecting 10-30% of individ-
uals over the age of 65, with an annual incidence rate of
1-3% (Breijyeh & Karaman, 2020; Masters et al., 2015).
AD results from the failure to clear amyloid-3 peptide from
the brain, leading to the progressive decline of cognitive
functions. While there is currently no cure for AD, early
intervention and treatment can slow the progression of symp-
toms, thereby improving patients’ quality of life(Nelson &
Tabet, 2015; Chu, 2012). Existing detection tools such as
Magnetic Resonance Imaging (MRI) and Positron Emission
Tomography (PET) neuroimaging are costly and require
specialized clinical expertise, often resulting in a detection
only after significant symptoms have manifested. Recently,
there has been growing interest in using non-invasive tech-
niques, such as Electroencephalogram (EEG), to identify
biomarkers for AD. EEG offers real-time brain activity data
and is more cost-effective than traditional methods, mak-
ing it a promising tool for early detection and continuous
monitoring of disease progression (Ieracitano et al., 2019a).

Currently, there are two main research directions for EEG-
based Alzheimer’s Disease (AD) detection. The first fo-
cuses on manually extracting feature biomarkers from the
data, such as statistical features (e.g., Mean, Standard De-
viation)(Tzimourta et al., 2019b;a), spectral features (e.g.,
Phase Shift, Phase Coherence)(Wang et al., 2017; Cassani
et al., 2014), power features (e.g., Power Spectrum Density,
Relative Band Power)(Fahimi et al., 2017; Schmidt et al.,
2013), and complexity features (e.g., Shannon entropy, Tsal-
lis Entropy)(Garn et al., 2015; Azami et al., 2019). Among
these features, brain slowing in specific frequency bands
is most commonly observed in existing research (Abdsolo
et al., 2005; Fahimi et al., 2017). The second direction in-
volves using deep learning methods for automatic feature ex-
traction. Models such as convolutional neural networks (Li
et al., 2022; Cura et al., 2022), graph neural networks (Shan
et al., 2022; Klepl et al., 2023), and transformers (Wang
et al., 2024e) have been employed for representation learn-
ing. Some research also explores combining manual feature
extraction with deep learning, such as extracting relative
band powers and spectral coherence connectivity across dif-
ferent frequency bands and training convolutional networks
on these extracted features (Miltiadous et al., 2023a).
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Figure 1. Pipeline of LEAD method.

However, the detection of Alzheimer’s Disease (AD) us-
ing EEG remains an open challenge, facing difficulties
from both application and theoretical perspectives. From
an application perspective, large, high-quality datasets are
scarce. The expense and complexity of collecting EEG-
AD data lead to most studies involving a limited number
of subjects, often no more than 50, and typically generate
only thousands of 1-second samples if segmentation is ap-
plied (Aviles et al., 2024). Such "reinventing the wheel"
with self-collected small datasets causes a significant waste
of resources, considering the expense of collecting EEG
data from AD patients. Furthermore, the relatively small
datasets used in most existing research make it difficult
to demonstrate the robustness of models, limiting the gen-
eralizability of findings. From a theory perspective, the
subject-independent classification in EEG-AD detection is
particularly challenging due to the inter-subject variance
caused by subject features interference (Wang et al., 2024c).
While subjects diagnosed with AD typically should exhibit
consistent patterns related to the disease, subject features
such as age, gender, or other personal factors may obscure
these patterns. As a result, models may overfit to these sub-
ject features rather than capturing the AD patterns (Wang
et al., 2024d). This challenge is further complicated by the
difficulty of interpreting EEG signals, even for experts. Un-
like other domains, such as computer vision, where we can
manually "remove" background features (e.g., in images), it
is impossible to easily "remove" subject features from EEG
data. This inherent difficulty hinders the development of
methods that can effectively generalize to unseen subjects.

To address the challenges mentioned above, we propose
LEAD, the world’s first Large foundational! model for
EEG-based Alzheimer’s Disease (AD) detection. We cu-
rate 9 EEG datasets for AD detection, both public and pri-
vate, totaling 813 subjects(330 from public datasets and
483 from private sources), aiming to provide a comprehen-
sive resource for training and evaluating detection models.
While this corpus may be relatively small compared to
datasets in domains such as computer vision and nat-
ural language processing, it remains the largest EEG-
based AD detection corpus to the best of our knowl-

'In this paper, we focus on downstream tasks for EEG-Based
AD detection, but our pre-trained model on different neurological
disease datasets can easily extend to other brain disease detection.

edge. Our approach includes a full detection pipeline, in-
cluding dataset selection, data preprocessing(e.g., channel
and frequency alignment), self-supervised contrastive pre-
training, and unified fine-tuning. We also introduce essen-
tial setups like subject-independent evaluation and majority
voting for subject-level detection. The channel alignment
in data preprocessing aligns all datasets into 19 standard
channels, allowing us to train on different datasets. We
pre-train our model on 11 datasets, which consist of 4 AD
datasets and 7 additional datasets of other neurological dis-
eases and healthy controls, including datasets for conditions
like epilepsy and Parkinson’s disease. This results in 2,354
subjects and 1,165,361 1-second, 128Hz samples. Our self-
supervised learning design includes both sample-level and
subject-level contrastive learning tasks. These tasks aim to
do sample and subject discrimination, allowing the model to
learn diverse EEG features that help minimize the interfer-
ence of subject features in downstream tasks. We perform
unified fine-tuning of the model in one run on 5 AD datasets
to classify AD patients and healthy subjects, totaling 615
subjects and 223,039 1-second, 128Hz samples. We use the
backbone that embeds cross-channel patches and the entire
channel in parallel, capturing temporal and spatial features.

The final subject-level classification results for the 5 AD
datasets—ADFTD, BrainLat, CNBPM, Cognision-ERP, and
Cognision-rsEEG—are 91.34%, 89.98%, 100.00%, 84.42%,
and 91.86%, respectively. We compare LEAD with state-
of-the-art (SOTA) methods, including fully supervised, self-
supervised, and EEG foundational model methods. Our
results demonstrate significant improvements, with up to
a 9.86% increase in F1 score at the sample level and up
to a 9.31% improvement at the subject level, compared to
SOTA methods. We also conduct a detailed ablation study
to evaluate the impact of pre-training modules, the benefit
of AD and non-AD datasets, and various training setups.
Additionally, we provide supplementary studies on brain
interpretability, including channel importance and frequency
band analysis. Related works for EEG-based AD detection
and self-supervised learning in EEG are in Appendix A.

‘We summarize our main contributions here:

* We present LEAD, the world’s first large foundational
model for EEG-based AD detection, including a com-
prehensive method pipeline.

* We construct the world’s largest EEG-based AD detec-
tion corpus, consisting of 9 datasets with 813 subjects.

* QOur strong performance validates the effectiveness of
subject-level contrastive pre-training and unified fine-
tuning for EEG-based AD detection.

* We release our code and model checkpoints to break
the isolation in the EEG-based AD detection domain
and facilitate future research.
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2. Method

2.1. Problem Formulation

Sample-Level Classification. Consider an input EEG sam-
ple x € RT*C where T denotes the number of timestamps
and C represents the number of channels. Our objective is
to learn an encoder that generates a representation h which
can be used to predict the corresponding label y € R for
the input sample. Specifically, the label y corresponds to
either Alzheimer’s Disease or Healthy controls.

Subject-Level Classification. In addition to the correspond-
ing label y € R each input EEG sample also has a subject
ID s € R that indicates which subject the sample belongs
to. The ultimate goal of EEG-based AD detection is to
determine whether a subject has Alzheimer’s Disease. For
subject-level classification, we use a majority voting scheme,
where the subject is assigned the label corresponding to the
majority label of all samples from that subject.

2.2. Datasets Selection

AD Datasets. We review EEG-based AD detection papers
published between 2018 and 2024 to identify potentially
available datasets. We find 6 publicly available datasets
containing AD subjects: AD-Auditory(Lahijanian et al.,
2024), ADFSU(Vicchietti et al., 2023), ADFTD(Miltiadous
et al., 2023b;a), ADSZ(Alves et al., 2022; Pineda et al.,
2020), APAVA (Escudero et al., 2006; Smith et al., 2017),
and BrainLat(Prado et al., 2023). Additionally, we use
3 private datasets: Cognision-ERP(Cecchi et al., 2015),
Cognision-rsEEG, and CNBPM(Ieracitano et al., 2019b;
Amezquita-Sanchez et al., 2019), bringing the total number
of AD datasets to 9, and the total number of subjects to 813.
We perform preliminary experiments on each dataset indi-
vidually to assess their quality. For smaller datasets or those
showing large performance variability across subjects, we
use them for pre-training to alleviate potential data quality
issues such as mislabeled subjects, interference from arti-
facts, collection devices, and collection methods. Five high-
quality AD datasets, ADFTD, CNBPM, Cognision-rsEEG,
Cognision-ERP, and BrainLat, are used for downstream
tasks to evaluate the model performance.

Non-AD Datasets. To enhance the learning of general EEG
and AD-specific features, we use datasets of healthy sub-
jects and other neurological diseases for self-supervised
pretraining. We aim to increase the diversity of brain condi-
tions, including healthy and diseased states, and increase the
number of subjects used for training to reduce the interfer-
ence of subject-specific patterns. Note that all the non-AD
datasets have one commonality: the label is assigned to
the subject, which adapts to the subject-level feature ex-
traction. Datasets such as sleep stage detection and mental
state classification are unsuitable here. We select publicly

available datasets from sources like OpenNEUROZ, Tem-
ple University Hospital®, and Brainclinics*. We choose
datasets collected in a resting-state condition or involving
resting-state tasks with either eyes open or closed to ensure
consistency with most downstream AD datasets. In total, we
select 7 proper large datasets, each with hundreds or even
thousands of subjects. They are Depression (Cavanagh
et al., 2019; Cavanagh, 2021), PEARL-Neuro (Dzianok
& Kublik, 2024), REEG-BACA (Getzmann et al., 2024),
REEG-PD (Singh et al., 2023), REEG-SRM (Hatlestad-
Hall et al., 2022), TDBrain (Van Dijk et al., 2022), and
TUEP (Veloso et al., 2017).

2.3. Data Preprocessing

Two key challenges in training a large foundation model for
time-series-like data are varying channel/variate numbers
and heterogeneous sampling frequencies (Liu et al., 2024;
Woo et al., 2024; Yang et al., 2024). However, we can
easily align channels based on their names in EEG and
align sampling frequency by resampling. More details and
reasons for preprocessing steps are provided in Appendix D.

Artifacts Removal. Some datasets have already undergone
preprocessing steps during data collection, such as artifact
removal and filtering. We perform a secondary preprocess-
ing to align all datasets uniformly for training. All the
fine-tuning datasets are guaranteed to be artifacts-free.

Channel Alignment. We align all datasets to a standard
set of 19 channels, which include Fp1, Fp2, F7, F3, Fz, F4,
F8, T3/T7, C3, Cz, C4, T4/T8, T5/P7, P3, Pz, P4, T6/PS,
01, and 02, based on the international 10-20 system’. For
datasets with fewer than 19 channels, we interpolate the
missing channels using the MNE EEG processing package®.
For datasets with more than 19 channels, we select the 19
channels based on the channel name and discard the others.
In cases where datasets use different channel montages, such
as the Biosemi headcaps with 32, 64, 128 channels’, we
select the 19 closest channels by calculating the Euclidean
distance between their 3D coordinates. The channel align-
ment allows us to pre-train the models on different datasets
with any backbone encoder and perform unified fine-tuning
on all AD datasets in one run.

Frequency Alignment. In addition to channel alignment,
we resample all datasets to a uniform sampling frequency
of 128Hz, which is commonly used and preserves the key
frequency bands (4, 0, «, 3, 7y), while also reducing noise.

Zhttps://openneuro.org/
3https://isip.piconepress.com/projects/tuh_eeg/
*https://www.brainclinics.com/resources
>https://en.wikipedia.org/wiki/10-20_system_(EEG)
Shttps://mne.tools/stable/index.html
"https://www.biosemi.com/headcap.htm
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Sample Segmentation. For deep learning training, we
segment the EEG trials within each subject into 1-second
samples, which results in 128 timestamps per sample, as the
sampling frequency is aligned to 128Hz.

Frequency Filtering. We then apply frequency filtering
to each sample, ranging from 0.5Hz to 45Hz, to remove
frequency bands that do not correspond to brain activities.

Standard Normalization. After frequency filtering, we
perform standard normalization on each sample, applied in-
dividually to each channel, to ensure that the data is centered
and scaled consistently across all samples and channels.

2.4. Self-Supervised Pretraining

The region b) in figure 2 shows the flowchart of self-
supervised contrastive pre-training.

Representation Learning. For an input EEG sample x;,
where ¢ denotes the index of the sample x;, we apply
data augmentation methods a and b to generate two aug-
mented views, ¢ and z%. Given a backbone encoder f(-)
and a projection head g(-), we compute their representa-
tions h¢ = f(x¢) and h? = f(x?) after the encoder f(-),
and further obtain denser representations z¢ = g(h?) and
2! = g(h?) through the projection head g(-). The pro-
jection head is designed to benefit contrastive learning, as
described in (Chen et al., 2020), and it will be discarded
during downstream tasks, with only the encoder being used
for the downstream task.

Sample-Level Contrasting. Sample-level contrasting is the
most widely used framework in contrastive learning, as seen
in SimCLR (Chen et al., 2020) and MOCO (He et al., 2020).
The goal is to perform sample/instance discrimination and
learn a representation that can distinguish one sample from
others (Wu et al., 2018). A pre-trained model using this
approach can capture general patterns in EEG data, ben-
efiting downstream tasks by improving performance and
reducing the need for labeled data. In this work, we adopt
the SimCLR architecture, which treats different augmented
views of the same sample as positive pairs and views from
different samples as negative pairs. For an input sample
x; € B in a batch, our sample-level InfoNCE contrastive
loss is defined as follows:

exp(sim(z{, 2})/7)

>, (exp(sim(zf, 25) /7))

where j denotes the index of other samples in the batch

Lsam = Eg, |—log

ey

. T . . . .
B, and sim(u,v) = Ty denotes the cosine similarity
between vectors u and v. The parameter 7 is a temperature
parameter that adjusts the similarity scale.

Subject-Level Contrasting. In EEG-based Alzheimer’s

disease (AD) detection, each subject is typically associated
with a stable medical state. Specifically, once a subject
has AD or preclinical signs of AD, all EEG samples from
that subject should exhibit features related to AD, mean-
ing they share the same label during deep learning training.
This prior knowledge allows us to perform subject-level
contrasting, a concept first defined in (Wang et al., 2024b)
and successfully applied in EEG and ECG-based disease
detection (Kiyasseh et al., 2021; Wang et al., 2024b; Ab-
baspourazad et al., 2024). In subject-level contrasting, we
treat samples from the same subject as positive pairs and
samples from different subjects as negative pairs. With an
increasing number of subjects used in pre-training, we aim
for the model to learn diverse feature types and reduce in-
terference from unrelated subject-specific features during
downstream classification. Appendix F.3 and H.2 provide
more details on the effectiveness and analysis of subject-
level contrasting. For an input sample «; € B in a batch, our
subject-level InfoNCE contrastive loss is defined as follows:

['Sub = Eml [Ewk

| exp(sim(z¢, 2%)/7) ] ]

T8 >, (exp(sim(zf, 25)/7))
()

where x;, denotes samples from the same subject as x; in
the batch, with the same subject ID s;, = s;. The function
sim(u,v) = m represents the cosine similarity, and
T is a temperature parameter that adjusts the scale. Note
that not all neurological diseases can utilize subject-level
contrasting. For instance, seizures are a condition where
the EEG patterns during a seizure phase differ significantly
from those in the regular phase for the same subject.

Overall Loss Function. The overall loss function is the
weighted sum of the sample-level and subject-level con-
trastive losses is defined as follows:

L= AI‘C/Sam + A2£Sub (3)

where A\; + A2 = 1 are hyper-coefficients that control the
relative importance and adjust the scales of each level’s loss.

Indices Shuffling. In real-world scenarios, the likelihood
of samples with the same subject ID appearing in the same
training batch decreases as the number of subjects increases.
This can hinder subject-level contrastive learning. To ad-
dress this issue, we develop an indices shuffling algorithm
that shuffles the order of samples in each epoch. The goal is
to ensure that samples with the same subject ID are present
in the batch while introducing randomness in the sample
order every epoch. More algorithm description and Pseudo
code details are presented in Appendix B.
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Figure 2. Details of LEAD method. a) The pipeline for our method includes data preprocessing, sample indices shuffling, self-supervised
pre-training, multi-dataset fine-tuning, sample-level classification, and subject-level AD detection. b) The flowchart of the self-supervised
pre-training. A batch of samples is applied with two augmentations a and b to generate two augmented views, ¢ and 2. The number in
each sample is the subject ID. The representation z{ and 2. after encoder f(-) and projection head g(-) are used for contrastive learning.
Two augmented views from the same sample are positive pairs for sample-level contrast. For subject-level contrast, samples with the same
subject IDs are positive pairs. ¢) The backbone encoder f(-) includes two branches. The temporal branch takes cross-channel patches to
embed as tokens. The spatial branch takes the whole series of channels to embed as tokens. The two branches are computed in parallel.

2.5. Backbone Encoder Architecture

We use a simplified version of ADformer (Wang et al.,
2024¢) as the backbone encoder f(-), adopting single-
granularity learning only. This architecture is designed for
EEG-based AD detection and efficiently captures tempo-
ral features along the time dimension and spatial features
among channels, as both are critical for EEG feature repre-
sentation learning. For simplicity, we omit the subscript ¢
for the input sample z in this subsection, as it is not neces-
sary for the illustration. The temporal and spatial branches
are computed in parallel before the projection head or clas-
sifier. Both branches use the standard encoder-only trans-
former, including self-attention, layer normalization, and
feed-forward networks. The region c) in figure 2 illustrates
the architecture of the backbone encoder.

Temporal Branch. Given an input EEG sample € RT*¢
and patch length L, where T and C' denote the number of
timestamps and channels, respectively. We first segment the
input sample into N cross-channel non-overlapping patches
to obtain ' € RN *(2-C), Zero padding is applied to ensure
that the number of timestamps 7 is divisible by L, resulting
in N = [Z]. The patches ' are then mapped into D-
dimensional patch embeddings using a linear projection

W, and a fixed positional embedding W,,s (Vaswani et al.,

2017) is added to produce the final patch embeddings: e' =
T'W + W, where et € RVXP W € RIE-CIXD and
Wpos € RV*P_ The final patch embeddings e' are used
as input tokens for the standard encoder-only transformer.
After M encoding layers, we obtain the temporal branch’s
final representations h'.

Spatial Branch. Given an input EEG sample ¢ R7*¢,
we first transpose the sample and add a fixed channel-wise
positional embedding W, to obtain ¢ = Transpose(x) -+
Wos, Where ¢, W,,s € REXT. Unlike the temporal
branch, where positional embeddings are added after em-
bedding, we add channel-wise positional embeddings on
the raw input EEG data since the subsequent up-dimension
process destroys the information of raw channel order. For
a target channel number F' and embedding dimension D,
we first perform an up-dimensional transformation using a
1-D convolution W to increase the channel number. Then,
we map the entire series of each channel into a latent em-
bedding using a linear projection Wy to get the final chan-
nel embeddings: e = (Wix°)Ws, where e¢ € RFF*P,
Wi, € RFXC and W, € RT*P_ The final channel embed-
dings e€ are used as input tokens for the standard encoder-
only transformer. After M encoding layers, we obtain the
spatial branch’s final representation h°.
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Projection Head and Classifier. For an input EEG sample
x, we obtain the temporal branch’s representation h! and
the spatial branch’s representation h¢. We concatenate the
last token from both representations to form the final repre-
sentation b = [h![—1]|| h¢[—1]] of the backbone encoder
f(-), where [-|| -] denotes concatenation and h € R??. For
contrastive pre-training, h is further projected into a denser
representation z € R” using a projection head g(-), where
g(+) consists of a two-layer fully connected network. For
downstream classification tasks, h is used directly to clas-
sify the output label y via a linear classifier ¢(+).

2.6. Important Setups

Subject-Independent. Two main setups are commonly
used for evaluation in the EEG-based AD detection domain:
subject-dependent (Nour et al., 2024; kumar Ravikanti &
Saravanan, 2023) and subject-independent (Watanabe et al.,
2024; Chen et al., 2024). In the subject-dependent setup, all
samples are mixed together and split into training, valida-
tion, and test sets, allowing samples from the same subject to
appear in all three sets. In contrast, the subject-independent
setup splits the training, validation, and test sets based on
subjects, ensuring that samples from the same subject are
exclusively assigned to one set (Wang et al., 2024c). Un-
like many existing works that use the subject-dependent
setup, we use the subject-independent setup. The subject-
dependent setup is unsuitable for real-world scenarios and
leads to significant data leakage (Wang et al., 2024d).

Unified Fine-tuning. The channel alignment in our data
preprocessing step enables us to pre-train the model on vari-
ous datasets and then fine-tune it on all downstream datasets
simultaneously. We refer to this as "unified fine-tuning,"
where the model is fine-tuned across all downstream AD
datasets in one run. The best model is then selected based on
the weighted performance across the downstream datasets,
ensuring that the model performs optimally on all tasks.

Majority Voting. For subject-level EEG-based AD detec-
tion, we apply a majority voting scheme to determine the
final classification label for each subject. Specifically, for
all the samples from one subject (with the same subject ID
s), we find the majority label of these samples and assign
this label to this subject. For example, if a subject has 100
samples and more than 50 are classified as AD, the subject
will be labeled "AD." The voting mechanism alleviates the
interference of outlier samples in a subject.

3. Experiments

Datasets. We pre-train on 11 datasets: AD-Auditory (Lahi-
janian et al., 2024), ADFSU (Vicchietti et al., 2023),
ADSZ (Pineda et al., 2020), APAVA (Escudero et al.,
2006), Depression (Cavanagh et al., 2019), PEARL-

Neuro (Dzianok & Kublik, 2024), REEG-BACA (Getz-
mann et al., 2024), REEG-PD (Singh et al., 2023), REEG-
SRM (Hatlestad-Hall et al., 2022), TDBrain (Van Dijk
et al.,, 2022), and TUEP (Veloso et al., 2017), and
fine-tuning on 5 downstream datasets: ADFTD (Mil-
tiadous et al., 2023b), BrainLat (Prado et al., 2023),
CNBPM (Amezquita-Sanchez et al., 2019), Cognision-
ERP (Cecchi et al., 2015), and Cognision-rsEEG. The pre-
training datasets include 7 non-AD neurological diseases or
healthy subjects and 4 AD datasets, totaling 2,354 subjects
and 1,165,361 1-second, 128Hz samples. All downstream
datasets are binary classifications between AD patients
and healthy subjects, totaling 615 subjects and 223,039
1-second, 128Hz samples. The nine AD datasets used for
pretraining or fine-tuning consist of 813 subjects in total.
The rationale behind selecting these datasets for pre-training
and fine-tuning is discussed in 2.2. The unified processing
pipeline for each dataset is detailed in 2.3, with a more de-
tailed description available in Appendix D. The statistics for
the processed datasets are summarized in Table 1.

Baselines. We compare our method with 10 baselines, in-
cluding 5 supervised, 3 self-supervised learning, and 2 large
EEG foundational models. These selected baselines are
state-of-the-art methods or have shown strong performance
in EEG or time series classification tasks. The 5 supervised
learning methods include TCN (Bai et al., 2018), vanilla
Transformer (Vaswani et al., 2017), Conformer (Song
et al., 2022), TimesNet (Wu et al., 2023), and Med-
former (Wang et al., 2024c). The 3 self-supervised learning
methods are TS2Vec (Yue et al., 2022), BIOT (Yang et al.,
2024), and EEG2Rep (Mohammadi Foumani et al., 2024).
The 2 large EEG foundational models are LaBraM (Jiang
et al., 2024) and EEGPT (Wang et al., 2024a).

Implementation. All baseline methods and our method’s
variants, except for LaBraM and EEGPT, are trained under
the same code framework. The training epoch for self-
supervised pretraining is fixed at 50 epochs, with no early
stopping mechanism. The training epoch is set to 100 for
fully supervised learning or fine-tuning, with early stopping
after 15 epochs of patience based on the best F1 score. The
batch sizes for pretraining, fully supervised learning, and
fine-tuning are set to 512, 128, and 128, respectively. The op-
timizer is AdamW. The initial learning rates for pretraining,
fully supervised learning, and fine-tuning are set to 0.0002,
0.0001, and 0.0001, respectively, with the CosineAnneal-
ingLR learning scheduler. Gradient norm clipping is set
to 4.0, and Stochastic Weight Averaging (SWA) (Izmailov
et al., 2018) is enabled to benefit inter-subject representation
learning. For LaBraM and EEGPT, we use their public code
and load their pre-trained model for fine-tuning. We employ
four evaluation metrics: sample-level accuracy and F1 score
(macro-averaged), and subject-level accuracy and F1 score
(macro-averaged) after majority voting, as described in 2.6.
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Table 1. Processed Dataset Statistics. For datasets where the channels are not 19 standard channels in the international 10-20 system, we
process them into two versions: one with channel alignment to the 19 channels and one without channel alignment. We present the #-AD
and #-HC subjects in the supervised or unified fine-tuning task, e.g., 35 AD + 29 HC = 65 subjects.

Datasets ‘ Confidentiality Type(subtype) #-Subjects #-Rate #-Channels #-Duration #-Samples Tasks
AD-Auditory Public AD(ERP) 35 128Hz 19 1 second 37,425 Self-supervised pre-training
ADFSU Public AD(Resting) 92 128Hz 19 1 second 2,760 Self-supervised pre-training
ADSZ Public AD(Resting) 48 128Hz 19 1 second 768 Self-supervised pre-training
APAVA Public AD(Resting) 23 128Hz 16 or 19 1 second 5,967 Self-supervised pre-training
ADFTD Public AD(Resting) 36+29=65 128Hz 19 1 second 53,215 Supervised or Unified Fine-tuning
BrainLat Public AD(Resting) 35+32=67 128Hz 19 1 second 29,788 Supervised or Unified Fine-tuning
CNBPM Private AD(Resting) 63+63=126 128Hz 19 1 second 46,336 Supervised or Unified Fine-tuning
Cognision-rsEEG Private AD(Resting) 97+83=180 128Hz 7or 19 1 second 32,400 Supervised or Unified Fine-tuning
Cognision-ERP Private AD(ERP) 90+87=177 128Hz 7or19 1 second 61,300 Supervised or Unified Fine-tuning
Depression Public Non-AD(Resting) 122 128Hz 66 or 19 1 second 24,014 Self-supervised pre-training
PEARL-Neuro Public Non-AD(Resting) 79 128Hz 127 or 19 1 second 51,670 Self-supervised pre-training
REEG-BACA Public Non-AD(Resting) 608 128Hz 65 or 19 1 second 611,269 Self-supervised pre-training
REEG-PD Public Non-AD(Resting) 149 128Hz 60 or 19 1 second 23,839 Self-supervised pre-training
REEG-SRM Public Non-AD(Resting) 109 128Hz 64 or 19 1 second 32,760 Self-supervised pre-training
TDBrain Public Non-AD(Resting) 911 128Hz 330r19 1 second 231,689 Self-supervised pre-training
TUEP Public Non-AD(Resting) 179 128Hz 19 1 second 143,200 Self-supervised pre-training

In the self-supervised pre-training stage, all subjects in the
datasets are used for training. The A\; and A5 are both set to
0.5. In the supervised learning or fine-tuning classification
stage, the training, validation, and test sets are split based on
the subject-independent setup with a ratio of 6:2:2 for each
dataset, where each subject appears exclusively in one of
these three sets. There is no dataset overlapping between the
pre-training and fine-tuning datasets. The training process
is conducted with 5 random seeds (41-45) on fixed training,
validation, and test sets to compute the mean and standard
deviation of the models. All experiments are run on an RTX
4090 GPU and a server with 4 RTX A5000 GPUs, using
Python 3.8 and PyTorch 2.0.0 + cul18. Appendix E pro-
vides more details about each method’s implementations.

3.1. Comparison with Baselines

Setup. Our method has three variants based on training
setups: LEAD-Vanilla(3.21M), LEAD-Sup(3.21M), and
LEAD-Base(3.41M). The LEAD-Vanilla model is trained
fully supervised on a single dataset without channel align-
ment, such as the 7-channel version of the Cognision-ERP
dataset. LEAD-Sup and LEAD-Base use datasets with
alignment to 19 channels. LEAD-Sup is the model trained
unified supervised on 5 AD datasets together without pre-
training. For LEAD-Base, we first perform self-supervised
pre-training on 11 pre-training datasets. The trained model
is then used for unified fine-tuning on 5 downstream AD
datasets. Note that for both LEAD-Sup and LEAD-Base,
the 5 downstream AD datasets are unified trained and evalu-
ated in one run, which is different from the usual approach
where supervised training or fine-tuning occurs on a sin-
gle dataset. The five supervised learning baselines, includ-
ing TCN, Transformer, Conformer, TimesNet, and Med-
former, use the same setup as LEAD-Vanilla. The three
self-supervised learning baselines, including TS2Vec, BIOT,

and EEG2Rep, follow LEAD-Base’s setup. For the two
large EEG foundational models, LaBraM and EEGPT, we
load their pre-trained models and use the same fine-tuning
setup as our LEAD-Base. Appendix E provides more details
about the implementation setups.

Results. The results are presented in Table 2. Our method
significantly improves accuracy and F1 score compared with
all baselines for both sample-level and subject-level classifi-
cation. Specifically, our method outperforms the best base-
line methods by 6.9%, 5.72%, 3.85%, 7.81%, and 11.16%
in F1 score at the subject-level on the ADFTD, BrainLat,
CNBPM, Cognision-ERP, and Cognision-rsEEG datasets,
respectively. The comparison between our method and the
supervised learning baselines highlights the effectiveness
of channel alignment; although some information might be
lost during alignment, the ability to allow unified training
still demonstrates substantial performance improvements
compared to supervised learning methods on raw-channel
datasets. The comparison with self-supervised learning
baselines underscores the effectiveness of our contrastive
learning approach. The sample-level and subject-level con-
trasting show a strong learning ability for inter-subject clas-
sification. The two large EEG models perform poorly on the
ADFTD and BrainLat datasets, achieving almost random
results. The comparison between ours and their methods
emphasizes the importance of selecting proper pre-training
datasets. Our selection of healthy and neurological dis-
ease datasets for pre-training contributes significantly to the
downstream classification between AD and healthy controls.

Among the three variants of our methods, the LEAD-Base
achieves the best performance in most cases, except for the
ADFTD dataset, where LEAD-Sup performs better. The
comparison between LEAD-Vanilla and LEAD-Sup shows
that leveraging more AD datasets for training benefits per-
formance, even in a fully supervised learning manner. The
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Table 2. Comparison with Baselines. This table presents the sample and subject-level classification results of 10 baselines and 4
variations of our method. The parameter number of each method is written in the brackets, followed by the method name.

ADFTD BrainLat CNBPM Cognision-ERP Cognision-rsEEG
Datasets (53,215 Samples) (29,788 Samples) (46,336 Samples) (61,300 Samples) (32,400 Samples)
(65 Subjects) (67 Subjects) (126 Subjects) (177 Subjects) (180 Subjects)
Sample-Level Classification
Metrics
Methods Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
TCN(1.02M) 75.01£0.95  74.90£0.90 59.23+0.97 59.21+0.98 92.35+0.33 90.28+0.40 61.87+£0.45  61.431+0.67 | 64.27+0.82  63.78%+0.89
Transformer(0.83M) 67.89+2.14  67.2942.53 59.21+1.05 58.60+0.83 93.37+0.25 91.74£0.33 60.56+0.25  60.424+0.23 | 59.584+0.32  59.524+0.27
Conformer(1.14M) 75.041+1.56 74.8011.66 62.454+1.09 60.7642.19 86.5042.36 84.8042.34 63.384+0.21 63.331+0.19 65.3640.34 64.78+0.49
TimesNet(2.35M) 75.06+£1.59  74.4242.07 59.63+2.16 59.09+2.49 92.284+0.52 90.13£0.70 62.04+£031  61.93+0.38 | 61.48+0.84  60.6010.79
Medformer(2.42M) 73.88+£1.23  73.77£1.19 60.15+0.79 59.86+0.86 93.73+0.29 92.22+0.37 61.23+£0.57  60.58+0.74 | 62.894£0.75  62.50+0.73
TS2Vec(2.58M) 71.811+0.84 71.731+0.83 67.99+1.10 67.944+1.08 91.7940.67 89.3840.94 62.1940.67 62.031+0.75 67.084+0.44 66.76+0.46
BIOT(4.16M) 78.63+0.80  77.43+0.89 61.51+1.50 61.36+1.27 88.31+0.46 83.561+0.88 63.41+£026  63.144+0.32 | 66.14+1.23  6541+1.64
EEG2Rep(5.33M) 70.62+1.31  70.60£1.32 68.02+3.86 67.60+3.87 91.41£1.31 88.96+1.97 64.04£0.74  63.924+0.68 | 70.12£1.52  69.85+1.66
LaBraM(9.62M) 55.0740.00 71.0340.00 48.24+0.00 65.0840.00 78.444+1.92 83.46+1.63 70.90+1.52 72.924+1.22 57.164+1.47 61.21£3.00
EEGPT(25.5M) 54.0940.00  70.21£0.00 49.09+0.00 65.8540.00 68.441+3.44 74.53£2.14 59.58+3.17  64.60£1.69 | 57.66+0.86  62.231+2.42
LEAD-Vanilla(3.21M) | 73.81+1.02  73.75£1.00 62.15+1.28 62.07+1.28 94.94+0.20 93.65+0.26 62.64+0.86  62.561+0.86 | 61.43+1.41  60.98+1.48
LEAD-Sup(3.21M) 80.8410.84 80.681+0.79 70.3610.62 70.31+0.65 94.244-0.46 92.65+0.61 65.961+0.92 65.93+0.92 71.7240.69 71.41£0.71
LEAD-Base(3.41M) 76.641+0.87 76.64+0.86 77.89+1.28 77.80+1.34 96.51+0.33 95.53+0.42 69.58+0.90 69.531+0.91 76.21+0.39 76.01+0.39
Subject-Level Classification
Metrics

Methods Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
TCN(1.02M) 81.43+3.50  81.36+£3.55 75.71£7.28 75.57£7.24 96.15+0.00 96.15£0.00 71.11£222  70.704£2.29 | 71.35£3.67  70.42+4.26
Transformer(0.83M) 74.29+3.50  74.00+3.65 74.29+5.71 72.82+6.12 90.77+1.88 90.73£1.87 67.224£272  66.98+2.84 | 71.354+3.67  70.95+3.89
Conformer(1.14M) 77.1445.35 76.8615.59 68.57+11.61 63.40+15.55 92.3140.00 92.26£0.00 69.44+1.76 68.491+1.82 71.35+2.16 70.48+2.49
TimesNet(2.35M) 81.43£3.50 81.05£3.18 77.14+5.35 76.23+5.90 86.1543.08 86.1243.09 70.56+2.83 70.40+2.83 69.1942.76 67.30+3.18
Medformer(2.42M) 78.57£0.00  78.46+0.00 74.29+5.71 73.51£5.37 92.3140.00 92.260.00 67.22+1.11  66.66%1.11 74.05£2.16  73.5542.01
TS2Vec(2.58M) 78.5740.00 78.4610.00 84.2942.86 84.2642.90 89.2345.65 89.0945.79 72.224+3.51 71.924+3.75 81.08+4.52 80.7045.12
BIOT(4.16M) 85.714+0.00 84.4440.00 64.294+6.39 63.384+6.28 88.4640.00 88.3340.06 73.33+3.33 73.14+3.45 73.51+£4.95 72.53+5.95
EEG2Rep(5.33M) 75.71£571  75.59+5.74 78.57£6.39 78.07£6.59 89.23+2.88 89.214+2.87 76.67£4.84  76.61+4.90 | 82.70£2.76  82.55+2.89
LaBraM(9.62M) 57.1440.00 72.7340.00 50.0040.00 66.6740.00 69.231+5.44 69.69+5.43 72.78+3.69 73.56+3.18 65.4142.02 67.80+3.23
EEGPT(25.5M) 57.144+0.00 72.734+0.00 50.0040.00 66.6740.00 60.00+5.76 61.08+4.96 62.78+7.37 68.544+3.98 61.0843.67 67.64+3.81
LEAD-Vanilla(3.21M) | 82.86+3.50  82.81+3.55 75.71£5.71 75.39+5.78 94.62+1.88 94.59+1.90 73.33+£222 73274221 73514432 72724471
LEAD-Sup(3.21M) 91.43+2.86  91.34+2.81 78.5740.00 78.46£0.00 95.38+1.54 95.38+1.54 77.78+1.76  77.71£1.81 80.544+2.02  80.42+2.04
LEAD-Base(3.41M) 80.004+5.35  79.96+5.36 90.00+3.50 89.98+3.48 100.00£0.00  100.00+0.00 | 84.4442.22  84.42+2.21 | 91.89+1.71 91.86+1.73

comparison between LEAD-Sup and LEAD-Base indicates
that proper self-supervised pre-training methods dramati-
cally reduce the interference of subject features and improve
inter-subject classification ability. Besides, We observe that
subject-level classification results are typically better than
sample-level classification results for almost all methods.
This demonstrates that majority voting does alleviate noise
interference from outlier samples within a subject. The
improvement is particularly notable in the two Cognision
datasets. The best performance for these two datasets on the
sample-level is around 70% F1 score, but increases to ap-
proximately 90% with majority voting. Since these datasets
were collected in an industrial pipeline with a balanced num-
ber of samples per subject (300 or 400), we can infer that
the more balanced the number of samples per subject, the
greater the improvement introduced by majority voting.

3.2. Ablation Study and Supplementary Experiments

We conduct comprehensive ablation studies, including the
effectiveness of non-AD and AD datasets, contrastive learn-
ing modules research, and training setups, see Appendix F.
Besides, we conduct additional experiments for brain inter-
pretability analysis, including frequency bands analysis and
channels analysis. See Appendix G for more details.

4. Conclusion

In this paper, we present LEAD, the world’s first large foun-
dational model for EEG-Based Alzheimer’s Disease detec-
tion on the world’s largest EEG-based AD detection corpus,
including 813 subjects. We design a complete pipeline en-
compassing dataset selection, data processing, pre-training
framework, model architecture, and evaluation metrics. We
perform self-supervised pre-training on 4 AD datasets and 7
non-AD neurological diseases or healthy control datasets,
totaling 2,354 subjects. The self-supervised pre-training
includes sample-level and subject-level contrastive learn-
ing. Unified fine-tuning is performed on 5 AD datasets with
channel-aligned datasets, totaling 615 subjects. We use a
backbone encoder that can leverage both temporal and spa-
tial features. The significant improvement compared with
state-of-the-art baselines demonstrates the effectiveness of
our design for dataset selection, channel alignment, self-
supervised pre-training, and unified fine-tuning. We hope
to inspire future research on EEG-based AD detection and
other neurological disease detection, such as Parkinson’s
disease. More discussion on the existing large EEG model,
the effectiveness of our subject-level contrasting, and limita-
tions & future works are presented in Appendix H.
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Impact Statement

This paper introduces the first large foundational model for
EEG-based Alzheimer’s Disease detection, trained on the
largest EEG-AD corpus to date. Our results demonstrate the
effectiveness of large pre-trained models and multi-dataset
fine-tuning for AD detection, provided that appropriate train-
ing methods and datasets are selected. Our approach sig-
nificantly outperforms methods trained on single datasets
and other state-of-the-art self-supervised pre-training meth-
ods and large EEG foundational models trained on multiple
datasets. The subject-independent evaluation, which tests on
unseen subjects, further highlights the applicability of our
method in real-world scenarios. We open-source our code,
pre-trained model, and fine-tuned model with the hope that
this work will drive progress in EEG-based AD detection
and inspire future research in detecting other brain disorders
and neurodegenerative diseases.
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A. Related Work
A.1. EEG-Based Alzheimer’s Disease Detection

In the last two decades, EEG-based Alzheimer’s disease (AD) detection has followed two main research directions: manual
biomarker extraction and deep learning representation. Biomarker Extraction: This research direction aims to identify
potential biomarkers in EEG signals of AD patients and use simple classifiers, such as Multi-Layer Perceptrons (MLP)
and Support Vector Machines (SVM), to differentiate these features from normal healthy subjects. Different types of EEG
features are used, including statistical features like Mean, Skewness, Kurtosis, and Standard Deviation (Tzimourta et al.,
2019b;a; Kulkarni & Bairagi, 2017; Kanda et al., 2014; Waser et al., 2013; Tylova et al., 2013; Mora-Sanchez et al., 2019),
spectral features like Phase Shift, Phase Coherence, Bispectrum, and Bicoherence (Wang et al., 2017; Cassani et al., 2014;
Wang et al., 2015; Fraga et al., 2013; Tait et al., 2019; Waser et al., 2016; Trambaiolli et al., 2011), power features like
Power Spectrum Density, Relative Band Power, Ratio of EEG Rhythm, and Energy (Fahimi et al., 2017; Schmidt et al.,
2013; Liu et al., 2016; Kanda et al., 2014), as well as complexity features like Shannon Entropy, Tsallis Entropy, and
Permutation Entropy (Garn et al., 2015; Azami et al., 2019; Tylova et al., 2018; Coronel et al., 2017; Al-Nuaimi et al.,
2018). The main advantage of this approach is its interpretability, which is crucial for real-world healthcare applications.
Deep Learning: Compared to manual biomarker extraction, deep learning offers an alternative approach by automatically
extracting useful representations for AD detection. Models such as Convolutional Neural Networks (CNNs) (Li et al.,
2022; Cura et al., 2022), Graph Neural Networks (GNNs) (Shan et al., 2022; Klepl et al., 2023), and Transformers (Wang
et al., 2024e) are widely used for representation learning. Some researchers still perform manual feature extraction or
transform the data before applying deep learning models. For example, the method in (Ieracitano et al., 2019a) converts
5-second EEG intervals into Power Spectral Density (PSD) images and uses 2D convolutional layers on the images for
feature extraction. DICE-net (Miltiadous et al., 2023a) extracts relative band power and spectral coherence connectivity
across five frequency bands and applies convolutional layers followed by transformers. In contrast, some studies apply deep
learning methods directly to EEG data. For instance, the method in (Gallego-Vifiaras et al., 2024) uses semi-supervised
spatiotemporal representation learning with deep learning models for AD detection based on different sleep-stage EEG data.
STEADYNet (Kachare et al., 2024) designs low-complexity convolutional models for AD and dementia detection, focusing
on fast inference times. Research in (Watanabe et al., 2024) using MNet that applies convolutional networks for feature
extraction and concatenates with relative power spectrum for AD and other dementia detection. ADformer (Wang et al.,
2024e) uses a multi-granularity spatial-temporal transformer for AD detection and widely tests on five EEG-AD datasets.

A.2. Self-Supervised Learning in EEG

There are two main strategies for self-supervised representation learning in EEG: contrastive learning and mask-
reconstruction. Contrastive Learning: BENDR (Kostas et al., 2021) follows a similar contrastive learning pipeline
as Wav2Vec (Baevski et al., 2020), but it is trained on EEG data. EEG2Vec (Zhu et al., 2023) explores both contrastive learn-
ing and mask-reconstruction for self-supervised pre-training on EEG data. BIOT (Yang et al., 2024) designs a transformer
architecture for biomedical signal embedding and applies a self-supervised contrastive framework similar to BYOL (Grill
et al., 2020). COMET (Wang et al., 2024b) utilizes various data levels in biomedical time series to define positive and
negative pairs in contrastive learning. Mask-Reconstruction: Neuro-BERT (Wu et al., 2024) employs masked autoencoding
to predict missing amplitude and phase of EEG signals during pre-training. EEG2Rep (Mohammadi Foumani et al., 2024)
combines a context encoder with a momentum target encoder to reconstruct context-level representations rather than raw
data in self-supervised pre-training. LaBraM (Jiang et al., 2024), the first large foundation model in the EEG domain, uses a
neural tokenizer to reconstruct the Fourier spectrum during self-supervised pre-training. EEGPT (Wang et al., 2024a) is a
foundation model for EEG representation learning that integrates reconstruction loss with an alignment loss between the
encoder and momentum encoder. Other strategies: Recently, some work has begun exploring the potential of autoregressive
pretraining for EEG, such as another work also named EEGPT (Yue et al., 2024).

B. Indices Shuffling Algorithm

To avoid overlapping subject IDs when loading data from multiple datasets, we first count the number of subjects in each
dataset and assign each subject a unique subject ID starting from 1. As a result, each sample x; has a corresponding new
subject ID s;, where s; = s; indicates that x; and x; are from the same subject. In real-world scenarios, as the number of
subjects increases, the likelihood of samples with the same subject ID appearing in the same training batch decreases. This
situation may hinder subject-level contrastive learning.
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Algorithm 1 Pseudo code of Indices Shuffling.

import
Lo

numpy as np
# ids: ject I

sub-iect -

r shuffling
shuffling

def shuffle_i
# indices

ndices (ids, batch_size=128, group_size=2)
sorted by subject IDs

indices np.argsort (subject_ids)

length = len(indices)

# split indices into groups

groups = [indices[i:i + group_size] for i in range (0, length, group_size)]

# shuffle groups
np.random.shuffle (groups)

# concatenate groups

indices = np.concatenate (groups)

# split indices into batches

batches = [indices[i:i1 + batch_size] for i in range (0, length, batch_size)]

# shuffle indices in the batch
for batch in batches:

np.random.shuf (batch)
# concatenate batches
indices = np.concatenate (batches)

return indices

To address this issue, we develop an indices shuffling algorithm, which is called every epoch by passing it to the sampler
parameter in the PyTorch DataLoader. We first sort the indices by subject IDS and split the sorted indices of the entire
training set into small groups (where the group size is much smaller than the batch size), each containing indices of samples
from the same subject ID. We then randomly shuffle these groups rather than shuffle the individual samples. After shuffling
the groups, we split the shuffled indices into batches and shuffle the indices within each batch. This two-step shuffling
process ensures the randomness of the samples in each training epoch while maintaining a relatively balanced number of
positive pairs for subject-level contrastive learning. The pseudocode for indices shuffling is provided in Algorithm 1.

C. Data Augmentation Banks

We apply data augmentation for self-supervised contrastive pretraining and some supervised learning methods. We utilize
a bank of data augmentation techniques to enhance the model’s robustness and generalization. During the forward pass
in the training of each iteration, one augmentation method will be picked from available augmentation options with equal
probability. The data augmentation methods include temporal flipping, temporal masking, frequency masking, channel
masking, jittering, and dropout, and can be further expanded to more choices. We provide a detailed description of each
technique below.

Temporal Flippling. We reverse the EEG data along the temporal dimension. The probability of applying this augmentation
is controlled by a parameter prob, with a default value of 0.5.

Temporal Masking. We randomly mask timestamps across all channels. The proportion of timestamps masked is controlled
by the parameter ratio, with a default value of 0.1.

Frequency Masking. First introduced in (Zhang et al., 2022) for contrastive learning, this method involves converting the
EEG data into the frequency domain, randomly masking some frequency bands, and then converting it back. The proportion
of frequency bands masked is controlled by the parameter ratio, with a default value of 0.1.

Channel Masking. We randomly mask channels across all timestamps. The proportion of channel masked is controlled by
the parameter ratio, with a default value of 0.1.

Jittering. Random noise, ranging from O to 1, is added to the raw data. The intensity of the noise is adjusted by the
parameter scale, which is set by default to 0.1.

Dropout. Similar to the dropout layer in neural networks, this method randomly drops some values. The proportion of
values dropped is controlled by the parameter ratio, with a default value of 0.1.

2
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Figure 3. Channel Alignment. We perform channel alignment to ensure that all datasets have the standard 19 channels according to
the 10-20 international system. For datasets with more than 19 channels, we select the 19 channels based on their names. For datasets
with fewer than 19 channels, we perform channel interpolation. In cases of channel name mismatches, we select the closest channels as
alternatives by calculating their 3D coordinates.

D. Datasets Preprocessing

We refer to datasets that include Alzheimer’s Disease (AD) subjects as AD datasets, while datasets that do not include
AD subjects are called non-AD datasets. In total, we have 9 AD datasets and 7 non-AD datasets. Note that all the
non-AD datasets have one commonality: the label is assigned to each subject, which adapts to the subject-level contrastive
learning. Among the AD datasets, ADFTD, BrainLat, CNBPM, Cognision-ERP, and Cognision-rsEEG are selected for
downstream evaluations due to their high quality, larger number of subjects, and sufficiently long recording trials per subject,
which provide a more robust assessment. The remaining 4 AD datasets, as well as all the non-AD datasets, are used for
self-supervised pretraining to learn general EEG patterns and disease-specific patterns related to neurological diseases.

For datasets where the raw channel names or numbers do not match the 19 standard channels (Fpl, Fp2, F7, F3, Fz, F4,
F8, T3, C3, Cz, C4, T4, TS, P3, Pz, P4, T6, O1, O2) in the 10-20 international system, we perform channel alignment to
generate two versions of the processed data: a channel-aligned version with 19 channels and a raw-channel version with
either more or fewer channels. The channel-aligned version is used for pretraining and unified fine-tuning across multiple
datasets, while the raw-channel version without channel alignment is used for supervised learning on individual datasets.
These two versions aim to demonstrate the effectiveness of the pretraining and unified fine-tuning method pipeline compared
to supervised learning on individual datasets, even if it involves a trade-off where some channel information is lost in certain
datasets. Note that the channels T7, T8, P7, and P8 are the same as the channels T3, T4, T5, and T6 in the international
10-20 and 10-10 system (Acharya et al., 2016). Figure 3 illustrates the channel alignment process. The statistics of the
processed datasets are presented in Table 1.

There are three main reasons for aligning all datasets to the same 19 channels. First, these 19 channels are the most commonly
used in EEG-based AD detection (Aviles et al., 2024), matching the goal of low-cost and convenient AD detection through
EEG. Second, the standard 19 channels cover all the brain regions, preserving enough temporal and spatial information. This
channel alignment approach avoids the trade-off between computational resources and patch length in existing methods that
seek to capture both spatial and fine-grained temporal features (Yang et al., 2024; Wang et al., 2024a; Jiang et al., 2024), as
we discuss later in Appendix H. Third, using the same channels across datasets enables unified fine-tuning for downstream
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AD datasets together in one run, which significantly improves performance compared to fine-tuning on individual datasets, a
benefit we demonstrate later in the ablation study 8.

The final processed datasets are organized into two folders: Feature/ and Label/. The Feature/ folder contains files named in
the format feature_ID.npy for all subjects, where ID represents the subject ID. Each feature_ID.npy file contains samples
belonging to the same subject, stacked into a 3-D array with the shape [Nsample, T, C], where Nsample denotes the number of
samples in this subject, T' denotes the number of timestamps per sample, and C' denotes the number of channels. Note that
different subjects may have different numbers of samples. The Label/ folder contains a file named label.npy, which is a 2-D
array with the shape [Nsubjecl, 2], where Nubject 18 the total number of subjects. The first column contains the subject’s label
(e.g., healthy or AD), and the second column contains the subject ID, which ranges from 1 to Ngypject-

D.1. AD Datasets
D.1.1. AD-AUDITORY.

The AD-Auditory (40Hz Auditory Entrainment) is a publicly available EEG dataset on the OpenNEURO website® from
the paper (Lahijanian et al., 2024). It contains 35 subjects, including 17 AD, 6 MCI, 10 healthy controls, and 2 unknown
subjects. This dataset aims to investigate the effect of entrainment on brain oscillations using EEG signal recordings during
auditory brain stimulation for distinguish Alzheimer’s Disease. All the data are recorded using 19 monopolar channels (Fpl,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) based on the standard 10/20 system, with a
sampling rate set to 250Hz. The dataset’s authors preprocess the data using the EEGLab toolbox in Matlab, which includes
bandpass filtering, noise removal, artifact removal, re-referencing, and interpolating rejected channels, as described in their
paper and on the data website. We perform secondary data preprocessing to match the pipeline of our method.

Each subject has one recording trial. For each raw trial, we first downsample the trials from 250Hz to 128Hz. Then,
we segment all the trials into 1-second samples with 128 timestamps. We drop the last sample if it is shorter than 128
timestamps. This results in a total of 37,425 1-second, 128Hz samples. We apply bandpass filtering ranging from 0.5Hz to
45Hz, followed by standard normalization on each channel. We perform preliminary evaluations on this dataset and find
substantial variability among subjects. We suspect the limited number of subjects and potential data and label quality issues
cause this variability. As a result, we decide to use this dataset for pre-training, although it is an AD dataset.

D.1.2. ADFSU.

This is a publicly available dataset provided by Dr. Dennis Duke of Florida State University (Vicchietti et al., 2023; Nour
et al., 2024), as we name it to ADFSU®. It contains data from 80 AD subjects and 12 healthy subjects. Each subject has
a recording with a sampling frequency of 128Hz and an 8-second trial collected across 19 standard channels (Fp1, Fp2,
F7,F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) during both eye-open and eye-closed resting-state
conditions. The preprocessing steps includes band-pass filtering within the range of 0.5-30 Hz, and an experienced EEG
expert removes artifacts caused by movements. We perform secondary preprocessing to match the pipeline of our method.

The data files are organized into "AD" and "Healthy" folders, with each folder containing "Eyes_open" and "Eyes_closed"
subfolders to indicate the different tasks. Each task folder contains subject folders labeled with ID numbers, and all the data
are stored in channel_name.txt files. Note that the eye-open data for the healthy subject with ID 5 is empty. For simplicity,
we manually copy the eyes-closed data for this subject and use it as the eye-open data to avoid handling empty files in the
code. For each subject, we first load all the channel text files and concatenate them into two recording trials: eyes-open and
eyes-closed. We segment the data for each trial into 1-second, half-overlapping samples with 128 timestamps. We discard
the last sample if it is shorter than 128 timestamps. This results in a total of 2,760 1-second, 128Hz samples. We apply
bandpass filtering in the range of 0.5Hz to 45Hz, followed by standard normalization on each channel. Due to the extreme
imbalance between AD and healthy subjects, and the limited length of each subject’s recording trial, we use this dataset for
pretraining rather than downstream evaluation.

8https://openneuro.org/datasets/ds005048/versions/1.0.0
“https://osf.io/2v5md/
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D.1.3. ADFTD.

The ADFTD (A dataset of EEG recordings from Alzheimer’s disease, Frontotemporal dementia and Healthy subjects) is a
publicly available EEG dataset on the OpenNEURO website!? from the paper (Miltiadous et al., 2023b;a). It contains 88
subjects, including 36 AD, 23 Frontotemporal Dementia (FTD), and 29 healthy controls. For recording, a Nihon Kohden
EEG 2100 clinical device is used, with 19 scalp electrodes (Fpl, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, TS, P3,
Pz, P4, T6, O1, and O2) according to the 10-20 international system and 2 reference electrodes (Al and A2) placed on
the mastoids for impedance check, according to the manual of the device. Each recording is performed according to the
clinical protocol, with participants sitting with their eyes closed. The collection sampling rate is 500Hz. The dataset’s
authors preprocess the data using the EEGLab toolbox in Matlab, which includes bandpass filtering, noise removal, artifact
removal, re-referencing, and interpolating rejected channels, as described in their paper and on the data website. We perform
secondary data preprocessing to match the pipeline of our method.

Each subject has one recording trial. This paper only uses 65 subjects that are AD and healthy control subjects. For each
raw trial, we first downsample the trials from 500Hz to 128Hz. Then, we segment all the trials into 1-second samples with
128 timestamps. We drop the last sample if it is shorter than 128 timestamps. This results in a total of 53,215 1-second,
128Hz samples. We apply bandpass filtering ranging from 0.5Hz to 45Hz, followed by standard normalization on each
channel. This AD dataset is used for downstream evaluation as it contains enough subjects, and each subject has a long
enough recording to be segmented into samples.

D.1.4. ADSZ.

The ADSZ (Alzheimer’s Disease and Schizophrenia) dataset is a public EEG dataset!' from the paper (Alves et al., 2022;
Pineda et al., 2020). We use only the sub-dataset for Alzheimer’s disease (AD) available in the download link. This dataset
contains data from 48 subjects, including 24 AD subjects and 24 healthy elderly subjects. The data are collected from 19
standard channels (Fpl, Fp2, F7, F3, Fz, F4, F§, T3, C3, Cz, C4, T4, TS, P3, Pz, P4, T6, O1, and O2) during eyes-open and
eyes-closed resting states, with a sampling frequency of 128Hz. Most subjects have an EEG trial duration of 8 seconds,
although some trials last 10, 12, or 14 seconds, with timestamps ranging from 1,024 to 1,792. The preprocessing of the
signals includes band-pass filtering within the range of 1-30 Hz, and an experienced EEG technician removes artifacts
caused by subject movements. We perform secondary preprocessing to match the pipeline of our method.

For each trial, we segment the data into 1-second, half-overlapping samples with 128 timestamps. We discard the last sample
if it is shorter than 128 timestamps. This results in a total of 768 1-second, 128Hz samples. We apply bandpass filtering in
the range of 0.5Hz to 45Hz, followed by standard normalization on each channel. Due to the limited number of subjects and
the short duration of each subject’s recording trials, we use this dataset for pretraining rather than downstream evaluation.

D.1.5. APAVA.

The APAVA (Alzheimer’s Patients’ Relatives Association of Valladolid) dataset'?, referenced in the study by (Escudero
et al., 2006), is a publicly available EEG dataset consisting of 23 subjects, including 12 AD subjects and 11 healthy
elderly subjects. The data are recorded using 16 channels (Fpl, Fp2, F7, F3, F4, F8, T3, C3, C4, T4, TS5, P3, P4, T6,
O1, and O2) with a sampling frequency of 256Hz. Each subject has multiple trials, with each trial lasting 5 seconds,
corresponding to 1,280 timestamps. A specialist physician visually inspects the recordings to select data with minimal
movement, electromyographic activity, or electrooculographic artifacts. A bandpass filter is applied with 0.5 Hz and 40 Hz
cut-off frequencies. We perform secondary preprocessing to match the pipeline of our method.

Since this dataset has only 16 channels compared to the 19 standard channels, we perform channel alignment using the
Python MNE EEG processing tools. Specifically, by checking the file information stored in the Matlab files, we found
that the three missing channels are Fz, Cz, and Pz. We set these channels as "bad channels" and interpolate them using the
montage "standard_1020." After this, we have recording trials in all 19 standard channels. We then downsample all the trials
from 256Hz to 128Hz. We segment the data into 1-second, half-overlapping samples for each trial with 128 timestamps. We
discard the last sample if it is shorter than 128 timestamps. This results in a total of 5,967 1-second, 128Hz samples. We
apply bandpass filtering in the range of 0.5Hz to 45Hz, followed by standard normalization on each channel. Besides, we
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also process a raw 16-channel data version for supervised learning on individual datasets by not doing channel alignment
and keeping other procedures the same. Due to the limited number of subjects and the short duration of each subject’s
recording trials, we use this dataset for pretraining rather than downstream evaluation.

D.1.6. BRAINLAT.

The BrainLat'® (Latin American Brain Health Institute) dataset comprises multimodal neuroimaging data from 780
participants from Latin America (Prado et al., 2023). It contains two modalities: EEG and MRI. It includes five classes
of subjects: Alzheimer’s disease (AD), behavioral variant frontotemporal dementia (bvFTD), multiple sclerosis (MS),
Parkinson’s disease (PD), and healthy controls (HC). For EEG data recording, subjects are recorded in an eye-closed resting
state inside a dimly lit, sound-attenuated, and electromagnetically shielded EEG room. They are instructed to remain still
and awake, with a 128-channel Biosemi Active-two acquisition system (pin-type, active, sintered Ag-AgCl electrodes). The
data are band-pass filtered between 0.5 and 40 Hz using a zero-phase shift Butterworth filter of order 8. The data are then
downsampled to 512 Hz, and Independent Component Analysis (ICA) is used to correct EEG artifacts induced by blinking
and eye movements. We perform secondary preprocessing to match the pipeline of our method.

In this paper, we use only the EEG data from the AD and HC classes for research. EEG data for each subject are stored in
folders labeled AR and CL, representing the subjects’ countries: Argentina and Chile. It is important to note that some
subjects cannot read for unknown reasons, such as the subject named "sub-100013" (at least when we downloaded the
dataset, which the data version was last modified by Dr. Pavel Prado on 7/2/2024). Additionally, not all subjects have EEG
data; most subjects only have MRI datasets. In total, there are 135 functional subjects with EEG data across all five classes,
with 67 subjects(35 AD and 32 HC) used for this paper.

Since this dataset uses the Biosemil28 montage instead of the standard_1020 montage, which has an entirely different
electrode naming and positioning scheme, we perform channel alignment using the Python MNE EEG processing tools.
Specifically, we use the 3-D coordinates of the channels to identify 19 channels in the Biosemil28 montage closest to the 19
standard channels in the 10-20 system. The closest channels are C29, C16, D7, D4, C21, C4, C7, D24, D19, Al, B22, B14,
A10, A18, A19, B4, B7, A16, and A29, which we use as replacements for the 19 standard channels. We then downsample all
trials from 512Hz to 128Hz. We segment the data into 1-second, 128Hz samples with 128 timestamps. We discard the last
sample if it is shorter than 128 timestamps. This results in a total of 29,788 1-second, 128Hz samples. We apply bandpass
filtering from 0.5Hz to 45Hz, followed by standard normalization on each channel. We also process a raw 128-channel
data version for supervised learning on individual datasets by not performing channel alignment while keeping all other
procedures. This high-quality dataset has enough subjects and trial recording length; we use it for downstream evaluations.

D.1.7. CNBPM.

The CNBPM is a large private EEG dataset provided by the AI-LAB laboratory at the University Mediterranea of Reggio
Calabria, Italy, referenced in studies (Ieracitano et al., 2019b; Amezquita-Sanchez et al., 2019). It consists of 63 subjects
with Alzheimer’s Disease (AD), 63 with Mild Cognitive Impairment (MCI), and 63 Healthy Control (HC) subjects. The
data are collected using 19 standard channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, TS5, P3, Pz, P4, T6, O1, and
02) with an initial sampling rate of 1024Hz. A frequency-band filter is applied to filter the frequency bands between 0.5 and
32 Hz, followed by downsampling to reduce the sampling rate to 256Hz. Visible blinks affected by artifacts are visually
inspected and removed by an EEG expert. We perform secondary preprocessing to match the pipeline of our method.

In this paper, we use only the EEG data of 63 AD and 63 HC for research. For each subject’s recording trial, which ranges
from several minutes to over half an hour, we first downsample all trials from 256Hz to 128Hz. We then segment the
trials into 1-second, non-overlapping samples, excluding those shorter than 1 second at the trial’s edge. This results in a
total of 46,336 1-second, 128Hz samples. We apply bandpass filtering ranging from 0.5Hz to 45Hz, followed by standard
normalization on each channel. Since this dataset is sufficiently large and high-quality, with more than 100 subjects and
long recording trials per subject, we use it for downstream evaluations.

Bhttps://www.synapse.org/Synapse:syn5 1549340/wiki/624187
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D.1.8. COGNISION-ERP.

The Cognision-ERP is a private Event-Related Potential (ERP) EEG dataset from the Cognision'* company, referenced in
the study (Cecchi et al., 2015). It contains 177 subjects, including 90 Alzheimer’s Disease (AD) subjects and 87 Healthy
Control (HC) subjects. The total number of samples is 61,300, with each subject having either 300 or 400 samples, and
each sample containing 149 timestamps. The sampling rate is 125Hz, and there are 7 channels (Fz, Cz, Pz, F3, P3, F4,
P4). Artifacts, such as eye movements, are visually inspected and removed by an EEG expert. We perform secondary
preprocessing to match the pipeline of our method.

Since this dataset has only 7 channels compared to the 19 standard channels, we perform channel alignment using the Python
MNE EEG processing tools. Specifically, the 12 missing channels are Fpl, Fp2, F7, F8, T3, C3, C4, T4, TS, T6, O1, and
02. We set these channels as "bad channels" and interpolate them using the montage "standard_1020." After this, we have
recording samples with all 19 standard channels. We then upsample all the samples from 125Hz to 128Hz, which increases
the number of timestamps per sample from 149 to 153. We take the middle 128 timestamps as the new sample. This results
in a total of 61,300 1-second, 128Hz samples. We apply bandpass filtering in the range of 0.5Hz to 45Hz, followed by
standard normalization on each channel. We also process a raw 7-channel data version for supervised learning on individual
datasets by not performing channel alignment while keeping all other procedures the same. Since this dataset is sufficiently
large and high-quality, with more than 100 subjects and many samples per subject, we use it for downstream evaluations.

D.1.9. COGNISION-RSEEG.

The Cognision-rsEEG is a private EEG dataset from the Cognision company. Unlike Cognision-ERP, Cognision-rsEEG
consists of resting-state EEG data. It contains 180 subjects, including 97 Alzheimer’s Disease (AD) subjects and 83 Healthy
Control (HC) subjects. Each subject has a recording trial with 22,524 timestamps collected at 125Hz. The number of
channels is 7 (Fz, Cz, Pz, F3, P3, F4, P4). Artifacts, such as eye movements, are visually inspected and removed by an EEG
expert. We perform secondary preprocessing to match the pipeline of our method.

Since this dataset has only 7 channels compared to the 19 standard channels, we perform channel alignment using the
Python MNE EEG processing tools. Specifically, the 12 missing channels are Fpl, Fp2, F7, F§, T3, C3, C4, T4, TS5, T6, O1,
and O2. We set these channels as "bad channels" and interpolate them using the "standard_1020" montage. After this, we
obtain recording samples with all 19 standard channels. We then upsample all the samples from 125Hz to 128Hz. Next,
we segment the trials into 1-second, non-overlapping samples, excluding those shorter than 1 second at the edges of the
trial. This results in a total of 32,400 1-second, 128Hz samples. We apply bandpass filtering in the range of 0.5Hz to 45Hz,
followed by standard normalization on each channel. Since this dataset is sufficiently large and high-quality, with more than
100 subjects and many samples per subject, we use it for downstream evaluations.

D.2. Non-AD Datasets
D.2.1. DEPRESSION.

The Depression (EEG: Depression rest) dataset is a publicly available EEG dataset on the OpenNEURO website' from the
paper (Cavanagh et al., 2019; Cavanagh, 2021). It contains data from 122 college-age subjects with healthy and different
degrees of depression. The EEG data are recorded in a resting state, with instructions for eyes open and eyes closed,
triggering one-minute spans of either open or closed eyes. Each subject’s depression level is labeled based on their score on
the Beck Depression Inventory (BDI). The raw data sampling frequency is 500Hz. We perform secondary preprocessing to
match the pipeline of our method.

Each subject has one or multiple recording trials. We check the channel information for each trial and find that some trials
have 66 channels and others have 67 channels. We perform channel alignment by selecting the 19 standard channels: Fpl,
Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P§, O1, and O2. Note that the channels T7, T8, P7, and P8
are the same as the channels T3, T4, TS5, and T6 in the international 10-20 and 10-10 system (Acharya et al., 2016). After
alignment, we obtain recording trials with all 19 standard channels. We then downsample all the trials from SO0Hz to
128Hz. Next, we segment the trials into 1-second, non-overlapping samples, excluding those shorter than 1 second at the
edges of the trial. This results in a total of 24,014 1-second, 128Hz samples. This 19-channel processed dataset is used for
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self-supervised contrastive pretraining. We apply bandpass filtering in the range of 0.5Hz to 45Hz, followed by standard
normalization on each channel. We also process a raw 66-channel data version for supervised learning on individual datasets
by not performing channel alignment while keeping all other procedures the same. The 66 channels are picked by the most
common channel names among trials.

D.2.2. PEARL-NEURO.

The PEARL-Neuro (A Polish Electroencephalography, Alzheimer’s Risk-genes, Lifestyle and Neuroimaging) dataset is a
publicly available EEG dataset on the OpenNEURO website ', referenced in the paper (Dzianok & Kublik, 2024). The full
dataset contains data from 192 self-reported healthy middle-aged (50-63) subjects, with a balanced female-to-male ratio. Of
these, 79 subjects are publicly available, and the dataset includes two modalities: EEG and fMRI. Other information, such
as blood tests, demographics, and other health conditions, are also provided. The dataset aims to identify genetic variations
associated with brain anatomical and functional phenotype imaging genomics, which could be potential biomarkers for
predicting the risk of developing neurological and psychiatric disorders. This could lead to earlier diagnoses, more targeted
treatments, and improved patient outcomes. EEG data are recorded using Brain Products systems, including an actiCHamp
amplifier and high-density actiCAP electrode caps with 128 electrodes (Brain Products GmbH, Munich, Germany). The
FCz electrode is used as an online reference, and the sampling rate is set to 1000Hz with a low-pass filter at 280Hz. The
dataset includes three different tasks: the Sternberg memory task (Sternberg), the Multi-source interference task (MSIT),
and resting-state (rest). In this paper, we use only the resting-state EEG data. We perform secondary preprocessing to match
the pipeline of our method.

For resting-state trials from each subject, we first align the channels by selecting 19 standard channels: Fpl, Fp2, F7, F3, Fz,
F4, F8, T7, C3, Cz, C4, TS, P7, P3, Pz, P4, P§, O1, and O2, where T7, T8, P7, and P8 correspond to the channels T3, T4,
T3, and T6 in the international 10-20 system. After alignment, we obtain recording trials with all 19 standard channels. We
then downsample all trials from 1000Hz to 128Hz. Next, we segment the trials into 1-second, non-overlapping samples,
excluding those shorter than 1 second at the edges of the trial. This results in a total of 51,670 1-second, 128Hz samples.
We apply bandpass filtering in the range of 0.5Hz to 45Hz, followed by standard normalization on each channel. This
19-channel processed dataset is used for self-supervised contrastive pretraining. Additionally, we process a 127-channel data
version for supervised learning on individual datasets without channel alignment but keeping all other procedures the same.

D.2.3. REEG-BACA.

The REEG-BACA (Resting-state EEG data before and after cognitive activity across the adult lifespan and a 5-year
follow-up) dataset is a publicly available EEG dataset on the OpenNEURO website!”, referenced in the paper (Getzmann
et al., 2024). According to the paper’s description, this dataset consists of 64 channels based on the 10-20 system, with the
FCz electrode as an online reference. It includes resting-state EEG recordings from 608 subjects aged between 20 and 70
years, along with follow-up measurements of 208 subjects approximately 5 years later, starting in 2021. The EEG data are
recorded with eyes open and eyes closed before and after a 2-hour block of cognitive experimental tasks. The EEG data are
recorded at a 1000Hz sampling rate and filtered online using a 250Hz low-pass filter. This dataset aims to study the aging of
brain activity in a resting state and provide a normal distribution of healthy subjects’ resting-state EEG for comparison with
clinically relevant disorders. We perform secondary preprocessing to match the pipeline of our method.

For resting-state trials in both the eye-open and eye-closed conditions from each subject, we first align the channels by
selecting the 19 standard channels: Fpl, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2. Note
that T7, T8, P7, and P8 are the same channels as T3, T4, TS, and T6 in the international 10-20 and 10-10 systems. After
alignment, we obtain recording trials with all 19 standard channels. We then downsample all trials from 1000Hz to 128Hz.
Next, we segment the trials into 1-second, non-overlapping samples, excluding those shorter than 1 second at the edges of
the trial. This results in a total of 611,269 1-second, 128Hz samples. We apply bandpass filtering in the range of 0.5Hz to
45Hz, followed by standard normalization on each channel. This 19-channel processed dataset is used for self-supervised
contrastive pretraining. Additionally, we process a 65-channel data version for supervised learning on individual datasets by
not performing channel alignment while keeping all other procedures the same.

1https://openneuro.org/datasets/ds004796/versions/1.0.9
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D.2.4. REEG-PD.

The REEG-PD (Rest eyes open) dataset is a publicly available EEG dataset on the OpenNEURO website'3, referenced
in the paper (Singh et al., 2023). This dataset includes 149 subjects, with 100 Parkinson’s disease (PD) subjects and 49
Healthy controls (HC) subjects. According toe the description in their paper, the EEG data is recorded with a 64-channel
BrainVision cap in a resting state with their eyes open for two minutes. The sampling frequency is set to 500Hz, and a 0.1Hz
high-pass filter is applied to the EEG recordings. The Fully Automated Statistical Thresholding for EEG artifact Rejection
(FASTER) algorithm rejects the bad channels and trials with greater than +/- 3 Z-scores on key metrics and pop_rejchan
function from EEGLAB. Bad channels are interpolated except the mid-frontal Cz channel, which is never interpolated. Eye
blink artifacts are removed following independent component analysis(ICA). We perform secondary preprocessing to match
the pipeline of our method.

For the trials in each subject, we first align the channels into 19 channels Fpl, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4,
TS, P3, Pz, P4, T6, O1, and O2 by selecting from the existing channels in the data. Channel Pz is not included in the existing
channels, so we use the closest channel, POz, as a replacement. Besides, T7, T8, P7, P8 are the same channels as T3, T4,
TS, T6. Finally, we select Fpl, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, TS, P7, P3, POz, P4, P8, O1, and O2 as the 19
standard channels. After alignment, we obtain recording trials with all 19 standard channels. We then downsample all trials
from 500Hz to 128Hz. Next, we segment the trials into 1-second, non-overlapping samples, excluding those shorter than 1
second at the edges of the trial. This results in a total of 23,839 1-second, 128Hz samples. We apply bandpass filtering in the
range of 0.5Hz to 45Hz, followed by standard normalization on each channel. This 19-channel processed dataset is used for
self-supervised contrastive pretraining. Additionally, we process a raw 60-channel data version for supervised learning on
individual datasets by not performing channel alignment while keeping all other procedures the same. Since some trials
have mismatched channels, the 60 channels are picked by the most common channel names among trials.

D.2.5. REEG-SRM.

The REEG-SRM (SRM Resting-state EEG) dataset is a publicly available EEG dataset on the OpenNEURO website'?,
referenced in the paper (Hatlestad-Hall et al., 2022). This dataset contains resting-state EEG extracted from the experimental
paradigm used in the Stimulus-Selective Response Modulation (SRM) project at the Department of Psychology, University
of Oslo, Norway. The EEG data are recorded using 64 electrodes with a BioSemi ActiveTwo system, following the positional
scheme of the 10-10 system. The dataset includes 111 healthy control subjects, with some subjects having one trial and
others having multiple trials. The sampling rate is set to 1024Hz. Preprocessing steps are applied to the raw data, including
bad channel interpolation, artifact rejection, and bandpass filtering from 1Hz to 45Hz. We perform secondary preprocessing
to match the pipeline of our method.

We exclude two subjects who cannot read, identified as "sub-029" and "sub-104." For the remaining 109 subjects, we
perform channel alignment by selecting the 19 standard channels: Fpl, Fp2, F7, F3, Fz, F4, F§, T7, C3, Cz, C4, T8, P7, P3,
Pz, P4, P8, O1, and O2. Note that T7, T8, P7, and P8 are the same channels as T3, T4, TS5, and T6 in the international 10-20
and 10-10 systems. After alignment, we obtain recording trials with all 19 standard channels. We then downsample all trials
from 1024Hz to 128Hz. Next, we segment the trials into 1-second, non-overlapping samples, excluding those shorter than 1
second at the edges of the trial. This results in a total of 32,760 1-second, 128Hz samples. We apply bandpass filtering in the
range of 0.5Hz to 45Hz, followed by standard normalization on each channel. The 19-channel processed dataset is used for
self-supervised contrastive pretraining. Additionally, we process a raw 64-channel data version for supervised learning on
individual datasets by not performing channel alignment but keeping all other procedures the same. Since some trials have
mismatched channels, the 60 channels are selected based on the most common channel names across trials.

D.2.6. TDBRAIN.

The TDBrain (Two Decades-Brainclinics Research Archive for Insights in Neurophysiology) dataset?!, referenced in the
paper (Van Dijk et al., 2022), is a large permission-available EEG time series dataset recording brain activities of 1274
subjects with 33 channels. Researchers need to send requests to the authors by filling out the application forms to get access
to this dataset. This dataset aims to research neurological or psychiatric dysfunction, such as Major Depressive Disorder

Bhttps://openneuro.org/datasets/ds004584/versions/1.0.0
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(MDD), attention deficit hyperactivity disorder (ADHD), Subjective Memory Complaints (SMC), obsessive-compulsive
disorder (OCD), Parkinson’s disease (PD), and many other brain disorders. The EEG data is recorded in resting-states in
eye-open and eye-closed states. The sampling rate is S00Hz. Preprocessing steps are applied to the raw data, including
artifact rejection, SOHz notch-frequency removal, and bandpass filtering from 0.5Hz to 100Hz. We perform secondary
preprocessing to match the pipeline of our method.

We exclude subjects with "REPLICATION" and "NaN" indications in the datasets, which are left for validation and testing
for the researcher’s model by contacting them, as described in their paper. For the remaining 911 subjects, we perform
channel alignment by selecting the 19 standard channels: Fpl, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4,
P8, O1, and O2. Note that T7, T8, P7, and P8 are the same channels as T3, T4, TS5, and T6 in the international 10-20 and
10-10 systems. After alignment, we obtain recording trials with all 19 standard channels. We then downsample all trials
from 500Hz to 128Hz. Next, we segment the trials into 1-second, non-overlapping samples, excluding those shorter than 1
second at the edges of the trial. This results in a total of 231,689 1-second, 128Hz samples. We apply bandpass filtering in
the range of 0.5Hz to 45Hz, followed by standard normalization on each channel. The 19-channel processed dataset is used
for self-supervised contrastive pretraining. Additionally, we process a raw 33-channel data version for supervised learning
on individual datasets by not performing channel alignment but keeping all other procedures the same.

D.2.7. TUEP.

The TUEP?? is one of the datasets in The Temple University Hospital (TUH) Electroencephalography (EEG) Corpus, which
is the world’s largest open-source EEG corpus. Researchers can access this dataset by submitting a request via an application
form to the authors. This dataset is a subset of TUEG and contains data from 100 subjects with epilepsy and 100 subjects
without epilepsy, as determined by a certified neurologist. We perform data preprocessing to align the data with our method.

Each subject has one or more trials, and some trials may have different numbers of channels and sampling rates. We first
select subjects who have 19 standard channels: Fpl, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, TS5, P3, Pz, P4, T6, O1,
and 02, in all their trials. A total of 179 subjects meet this requirement. For each trial from these 179 subjects, the majority
have a 256Hz sampling rate. We downsample or upsample all trials to 128Hz. Next, we segment the trials into 1-second,
non-overlapping samples, excluding those shorter than 1 second at the trial edges. Some subjects have a large number of
trials, resulting in more than 10,000 samples in total per subject. Since our goal for pretraining is to learn general EEG
features and disease-related features across subjects, we aim to avoid the model overfitting to subject-specific features.
Therefore, we set 800 as the maximum number of samples per subject, randomly selecting 800 samples if the total number
exceeds this threshold. This results in a total of 143,200 1-second, 128Hz samples. We apply bandpass filtering in the range
of 0.5Hz to 45Hz, followed by standard normalization on each channel.

E. Implementation Details

Table 3. Training Setups. Training setups for our method and baselines, where the x indicates disabled and v'indicates enabled.

Processed Datasets Version

Setups
Methods

| Raw-Channel Datasets | Channel-Aligned Datasets
TCN

Single-Dataset Supervised Unified Supervised Pre-training | Unified Fine-tuning

Transformer
Conformer
TimesNet
Medformer
LEAD-Vanilla(Ours)

LEAD-Sup(Ours)

LaBraM
EEGPT

TS2Vec

BIOT

EEG2Rep
LEAD-Base(Ours)

X X X X X X
X X X X X X

X XXX [ XX [X]|SNSNSNSSS

XX XX [ XX [N]XXXXXX

LR x x| x
SRNENEN RN

Zhttps://isip.piconepress.com/projects/nedc/html/tuh_eeg/
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Table 4. Training Parameters. Detailed training parameters, including encoder layers, heads, model dimensions, and optimization setups.
The — indicates a parameter not used. LaBraM and EEGPT are excluded from the table since the code structure is different.

Methods Params ‘ backbone e_layers n_heads d_model d_ff batch_size train_epochs optimizer learning_rate Ir_scheduler gradient_clip patience swa
Single-Dataset Supervised Learning
TCN TCN 6 - - - 128 100 AdamW le-4 CosineAnnealing 4.0 15 v
Transformer Transformer 6 8 128 256 128 100 AdamW le-4 CosineAnnealing 4.0 15 v
Conformer Conformer 6 8 128 256 128 100 AdamW le-4 CosineAnnealing 4.0 15 v
TimesNet TimesNet 2 - 32 64 64 100 AdamW le-4 CosineAnnealing 4.0 15 v
Medformer Medformer 6 8 128 256 128 100 AdamW le-4 CosineAnnealing 4.0 15 v
LEAD-Vanilla(Ours) LEAD 12 8 128 256 128 100 AdamW le-4 CosineAnnealing 4.0 15 v
Unified Supervised Learning
LEAD-Sup(Ours) | LEAD | 12| 8 | 128 | 256 | 128 | 100 | AdamW | le-4 | CosineAnnealing | 4.0 | 15 | v
Self-Supervised Pre-training
TS2Vec Transformer 20 12 128 256 512 50 AdamW 2e-4 CosineAnnealing 4.0 - v
BIOT BIOT 20 12 128 256 512 50 AdamW 2e-4 CosineAnnealing 4.0 - v
EEG2Rep EEG2Rep 20 12 128 256 512 50 AdamW 2e-4 CosineAnnealing 4.0 - v
LEAD-Base(Ours) LEAD 12 8 128 256 512 50 AdamW 2e-4 CosineAnnealing 4.0 - v
Unified Fine-tuning

TS2Vec Transformer 20 12 128 256 128 100 AdamW le-4 CosineAnnealing 4.0 15 v
BIOT BIOT 20 12 128 256 128 100 AdamW le-4 CosineAnnealing 4.0 15 v
EEG2Rep EEG2Rep 20 12 128 256 512 50 AdamW 2e-4 CosineAnnealing 4.0 - v
LEAD-Base(Ours) LEAD 12 8 128 256 128 100 AdamW le-4 CosineAnnealing 4.0 15 v

E.1. LEAD

We perform pretraining on 11 datasets: AD-Auditory (Lahijanian et al., 2024), ADFSU (Vicchietti et al., 2023),
ADSZ (Alves et al., 2022; Pineda et al., 2020), APAVA (Escudero et al., 2006; Smith et al., 2017), Depression (Ca-
vanagh et al., 2019; Cavanagh, 2021), PEARL-Neuro (Dzianok & Kublik, 2024), REEG-BACA (Getzmann et al.,
2024), REEG-PD (Singh et al., 2023), REEG-SRM (Hatlestad-Hall et al., 2022), TDBrain (Van Dijk et al., 2022), and
TUEP (Veloso et al., 2017), and fine-tuning on 5 downstream datasets: ADFTD (Miltiadous et al., 2023b;a), Brain-
Lat (Prado et al., 2023), CNBPM (Ieracitano et al., 2019b; Amezquita-Sanchez et al., 2019), Cognision-ERP (Cecchi et al.,
2015), and Cognision-rsEEG. The details of datasets and preprocessing steps are described in the previous section D. The
pretraining datasets include 7 non-AD brain diseases or healthy subjects and 4 AD datasets, totaling 2,354 subjects and
1,165,361 1-second, 128Hz samples. All the downstream datasets are binary classifications between Alzheimer’s disease
and healthy controls, totaling 615 subjects and 223,039 1-second, 128Hz samples. The rationale for selecting these datasets
for pretraining or fine-tuning is presented in 2.2.

We compare our method with 10 baselines, including 5 supervised, 3 self-supervised learning, and 2 large EEG foundational
models. These selected baselines are state-of-the-art methods or have shown strong performance in EEG or time series
classification tasks. The 5 supervised learning methods include TCN (Bai et al., 2018), vanilla Transformer (Vaswani
et al., 2017), Conformer (Song et al., 2022), TimesNet (Wu et al., 2023), and Medformer (Wang et al., 2024c). The 3 self-
supervised learning methods are TS2Vec (Yue et al., 2022), BIOT (Yang et al., 2024), and EEG2Rep (Mohammadi Foumani
et al., 2024). The 2 large EEG foundational models are LaBraM (Jiang et al., 2024) and EEGPT (Wang et al., 2024a).

Our method has three variants based on training setups: LEAD-Vanilla(3.21M), LEAD-Sup(3.21M), and LEAD-
Base(3.41M). The LEAD-Vanilla model is trained fully supervised on a single dataset without channel alignment, such as
the 7-channel version of the Cognision-ERP dataset. LEAD-Sup and LEAD-Base use datasets with alignment to 19 channels.
LEAD-Sup is the model trained unified supervised on 5 AD datasets together without pre-training. For LEAD-Base, we first
perform self-supervised pre-training on 11 pre-training datasets. The trained model is then used for unified fine-tuning on 5
downstream AD datasets. Note that for both LEAD-Sup and LEAD-Base, the 5 downstream AD datasets are unified trained
and evaluated in one run, which is different from the usual approach where supervised training or fine-tuning occurs on a
single dataset. The five supervised learning baselines, including TCN, Transformer, Conformer, TimesNet, and Medformer,
use the same setup as LEAD-Vanilla. The three self-supervised learning baselines, including TS2Vec, BIOT, and EEG2Rep,
follow LEAD-Base’s setup. For the two large EEG foundational models, LaBraM and EEGPT, we load their pre-trained
models and use the same unified fine-tuning setup as our LEAD-Base. The training setups, including single-dataset or
unified training, whether the training is fully supervised or self-supervised, and whether the channel-aligned dataset version
is used are summarized in Table 3.

All baseline methods and our method’s variants, except for LaBraM and EEGPT, are trained using the same code framework
and pipelines. The training epoch for self-supervised pretraining is fixed at 50 epochs, with no early stopping mechanism.
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Linear probing is applied on all downstream datasets every five epochs to monitor relative performance. For fully supervised
learning or fine-tuning, the training epoch is set to 100, with early stopping after 15 epochs of patience based on the best F1
score. The batch sizes for pretraining, fully supervised learning, and fine-tuning are set to 512, 128, and 128, respectively.
The optimizer used is AdamW. The initial learning rates for pretraining, fully supervised learning, and fine-tuning are set to
0.0002, 0.0001, and 0.0001, respectively, with the CosineAnnealingLR learning scheduler. Gradient norm clipping is set
to 4.0, and Stochastic Weight Averaging (SWA)(Izmailov et al., 2018) is enabled to improve cross-subject representation
learning. The parameters are summarized in Table 4.

For LaBraM and EEGPT, we use their public code frameworks and load their pre-trained models for fine-tuning, as both
are large EEG foundational models. The selection of pre-training datasets is also an integral part of their method. The
five fine-tuning AD datasets are all preprocessed to the same shape and sampling frequency to align with their pre-trained
models as described in their paper. Further training details for these two methods are provided in the following subsections
for each respective method.

We employ four evaluation metrics: sample-level accuracy, sample-level F1 score (macro-averaged), subject-level accuracy,
and subject-level F1 score (macro-averaged) after majority voting, as described in 2.6. In the self-supervised pre-training
stage, all subjects in the pre-training datasets are used for training. In the supervised learning or fine-tuning classification
stage, the training, validation, and test sets are split based on the subject-independent setup with a ratio of 6:2:2 for each
dataset, where each subject appears exclusively in one of these three sets. There is no dataset overlapping between the
pretraining and finetuning datasets. The training process is conducted with five random seeds (41-45) on fixed training,
validation, and test sets to compute the mean and standard deviation of the models. All experiments are run on an NVIDIA
RTX 4090 GPU and a server with 4 RTX A5000 GPUs, using Python 3.8 and PyTorch 2.0.0 + cul 18.

E.2. TCN

Temporal Convolutional Networks (TCN) (Bai et al., 2018) are a specialized type of convolutional network designed for
time series tasks such as forecasting and classification. TCNs use causal dilated convolutions to expand the receptive field of
the network while preventing information leakage from the past. Based on our experience, TCNs typically offer fast training
speeds and relatively good performance in many time series classification tasks (Yue et al., 2022; Wang et al., 2024b),
including EEG classification. This is a fully supervised method, and we train it on datasets without channel alignment. We
set e_layers = 6. The method specified parameters are hidden_dims = 128, output_dims = 320, and kernel_size = 3.

E.3. Transformer

Transformer (Vaswani et al., 2017), commonly known as the vanilla transformer, is introduced in the well-known paper
"Attention is All You Need." It can also be applied to time series by embedding each cross-channel timestamp as a token and
performing self-attention among these input tokens. This is a fully supervised method, and we train it on datasets without
channel alignment. We set e_layers = 6, n_heads = 8, d_model = 128, and d_ff = 256.

E.4. Conformer

EEG-Conformer (Song et al., 2022) is specifically designed for EEG classification by combining convolutional networks
and self-attention modules. They first use convolutional modules to learn low-level local features and embeds the raw data
into patches. A self-attention module is applied to these patches to capture global features. This is a fully supervised method,
and we train it on datasets without channel alignment. We set e_layers = 6, n_heads = 8, d_model = 128, and d_ff = 256.

E.5. TimesNet

TimesNet (Wu et al., 2023) is designed for general time series analysis. Instead of using 1D raw time series data, it first
transforms the data into a 2D format based on multiple periods. This transformation embeds intra-period and inter-period
variations into the columns and rows of the 2D tensors, respectively, to capture more robust features with 2D convolutions.
According to a recent survey (Wang et al., 2024f), TimesNet achieves the best classification performance in many time series
benchmarks. This is a fully supervised method, and we train it on datasets without channel alignment. We set e_layers = 2,
d_model =32, and d_{f = 64. The method specified parameter fop_k is set to 3.
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E.6. Medformer

Medformer (Wang et al., 2024c) is designed for biomedical time series classification, including EEG and ECG. They utilize
three mechanisms: cross-channel patching, multi-granularity embedding, and intra-inter granularity self-attention. These
mechanisms enable it to capture channel correlations and multi-granularity temporal features effectively. This is a fully
supervised method, and we train it on datasets without channel alignment. We set e_layers = 6, d_model = 128, and d_ff =
256. The method specified parameters patch_len_list is set to [2, 4, 8].

E.7. TS2Vec

TS2Vec (Yue et al., 2022) is a well-known self-supervised contrastive method designed for time series analysis. They
effectively capture fine-grained features in time series at the timestamp level. Unlike other contrastive frameworks in
computer vision domains (e.g., SImCLR, MOCO), which compute contrastive loss on denser representations after the
projection head, TS2Vec computes the contrastive loss directly on the representations after the encoder, at both the timestamp
and sample levels. Since the loss computation for each timestamp is required in this method, backbone models that fuse
timestamps into patches are not suitable. Therefore, we replace the TCN backbone model used in their paper with a vanilla
Transformer to better align with the large foundation model training. We pre-train on 11 datasets and then perform unified
fine-tuning on the five downstream AD datasets together. We set e_layers = 20, n_heads = 12, d_model = 128, and d_ff =
256.

E.8. BIOT

BIOT (Yang et al., 2024) is the first large foundation model for biosignals. They employ single-channel patching techniques
to handle biosignals with varying numbers of channels. Each patch is mapped into tokens, with segment embedding,
channel embedding, and positional embedding added to incorporate channel and positional information, making the tokens
distinguishable from each other. A self-supervised contrastive framework is used to pretrain the model. We first pretrain on
11 datasets and then perform unified fine-tuning on the five downstream AD datasets. We set e_layers = 20, n_heads = 12,
d_model = 128, and d_ff = 256.

E.9. EEG2Rep

EEG2Rep (Mohammadi Foumani et al., 2024) is a self-supervised learning method that uses context-level masking and
reconstruction instead of raw data-level reconstruction. The raw data is embedded into patches, and the masking operations
are performed on the patch embeddings. They employ two networks: the context network, which is used as a query, and the
target network, which serves as a key for calculating the L2 loss. A cross-attention predictor is used to align the output
shapes of the context and target networks. We first pre-train on 11 datasets and then perform unified fine-tuning on the five
downstream AD datasets. We set e_layers = 20, n_heads = 12, d_model = 128, and d_f[f = 256.

E.10. LaBraM

LaBraM (Jiang et al., 2024) is the first large foundational model for EEG. They design three-step pre-training strategies.
They first pre-train a vector-quantified neural code book that encodes single-channel EEG patches into compact neural
codes representations. Then, they pre-train a neural transformer by predicting the original neural codes for the masked EEG
patches. Last, the encoder part of the pre-trained neural transformer is reused and a new classification head is added for
finetuning on new datasets. We use the base version of the model checkpoint with e_layers = 12, n_heads = 10, d_model =
200, and d_ff = 800. We preprocess the five downstream AD datasets into 8-second, 1600 timestamps, and 200Hz samples
to match the pre-trained model of their methods.

E.11. EEGPT

EEGPT (Wang et al., 2024a) is a state-of-the-art large foundational model for EEG. They design a combination of an
alignment loss between encoded tokens and momentum-encoded tokens and a reconstruction loss between reconstructed
patches and masked patches. A spatiotemporal embedding is used to encode single-channel patches and by adding channel
embedding and patch embedding together. The pre-trained model we used is the large version, which has e_layers =
8, n_heads = 8, d_model = 512, and d_ff = 2048. We preprocess the five downstream AD datasets into 4-second, 1024
timestamps, and 200Hz samples to match the pre-trained model of their methods.
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F. Ablation Study
F.1. Ablation Study of Non-AD Datasets

Table 5. Ablation Study of Non-AD Datasets. This table presents the result change by adding more non-AD datasets during pre-training.

ADFTD BrainLat CNBPM Cognision-ERP Cognision-rsEEG
Datasets (53,215 Samples) (29,788 Samples) (46,336 Samples) (61,300 Samples) (32,400 Samples)
(65 Subjects) (67 Subjects) (126 Subjects) (177 Subjects) (180 Subjects)
Sample-Level Classification
Metrics
N Accuracy F1 Score ‘ Accuracy F1 Score Accuracy F1 Score ‘ Accuracy F1 Score ‘ Accuracy F1 Score
-Datasets
5 78.07+1.16  77.99+1.14 | 74.91+047  74.85+0.44 94.254+0.81 92.55+1.08 67.2840.72  67.20+£0.72 | 73.67+0.69  73.38+0.75
7 76.82+0.62  76.77+0.60 | 74.89+1.49  74.81+£1.52 95.404+0.42 94.1240.54 67.75+£0.76  67.69+0.75 | 74.52+024  74.28+0.22
9 76.84+0.61  76.81£0.60 | 74.70£1.13  74.63%1.17 96.09+0.30 94.99+0.40 67.54£0.75  67.46+0.73 | 75.32+£0.28  75.08+0.28
11 76.64£0.87  76.64+£0.86 | 77.89+£1.28  77.80+1.34 96.511+0.33 95.53+£0.42 69.58+0.90  69.53+0.91 76.21+0.39  76.01£0.39
Subject-Level Classification
Metrics
#-Datasets Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
5 84.29+2.86  84.26+2.90 | 84.29+2.86  84.26+2.90 93.854+3.08 93.84+3.08 73334222 73294220 | 83.78+0.00  83.52+0.08
7 82.864+3.50  82.81+3.55 | 84.294+2.86  84.26+2.90 96.92+1.54 96.92+1.54 73.33+£2.83  73.32+£2.84 | 86.49+1.71 86.32+1.78
9 81.431+3.50  81.36+3.55 | 84.294+2.86  84.26+2.90 99.23+1.54 99.23+1.54 71.67£2.08  71.62£2.03 | 8541£1.32  8523%1.35
11 80.00+5.35  79.96+5.36 | 90.00+3.50  89.98+3.48 | 100.00+0.00  100.00+0.00 | 84.44+2.22  84.42+2.21 | 91.89+1.71 91.86+1.73
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Figure 4. Ablation Study of Non-AD datasets. It shows the performance change when adding more non-AD datasets in pre-training.

Setup. We conduct an ablation study to evaluate the performance changes when adding more Non-AD datasets to self-
supervised contrastive pretraining. We begin by pretraining on five datasets: ADSZ, APAVA, ADFSU, AD-Auditory, and
TDBRAIN, and fine-tuning on five datasets: ADFTD, CNBPM, Cognision-rSEEG, Cognision-ERP, and BrainLat, following
the same setups as the model LEAD-Base. The P denotes pretraining, and F denotes fine-tuning, with the following number
indicating the number of datasets used. We then gradually add two more pretraining datasets in the following pairs for the
ablation study: (TUEP, REEG-PD), (PEARL-Neuro, Depression), and (REEG-SRM, REEG-BACA). The model uses 11
pre-training datasets is the same as LEAD-Base in Table 2. This study aims to investigate whether adding more Non-AD
datasets to pre-training improves the model’s ability to discriminate AD patterns during downstream fine-tuning.

Results. The results are presented in Table 5, and a figure showing the performance changes is displayed in Figure 4.
We observe that the overall performance at both the subject- and sample-level improves for four out of the five datasets,
excluding ADFTD. Performance increases for the last two pretraining datasets, with dramatic improvements seen in
BrainLat, Cognision-ERP, and Cognision-rsSEEG. Specifically, the subject-level F1 scores improved by 5.72%, 12.8%, and
6.63%, respectively. This improvement is intuitive, as the last two added datasets, REEG-SRM and REEG-BACA, have
the largest number of samples, totaling more than 600K samples. The performance improvement in Cognision-ERP and
Cognision-rsEEG also demonstrates that self-supervised pretraining benefits datasets, especially those with fewer channels
(7 in the raw datasets), helping them distinguish general EEG or other brain disease features from AD-specific features.

For datasets that initially demonstrated good performance, such as CNBPM, adding more Non-AD datasets to pretraining
results in gradual improvements, with a total improvement of 6.16% in the F1 score from 5 to 11 pretraining datasets. As
for the performance drop in ADFTD, it is consistent with the finding in Table 2 that the performance of LEAD-Sup using
supervised learning is much better than that of LEAD-Base using self-supervised learning. The reasons for this drop are
unclear and require further investigation in future research.
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Table 6. Ablation Study of AD Datasets. This table presents the results of ADFTD by adding more AD datasets in supervised learning.

Datasets

ADFTD
(53,215 Samples, 65 Subjects)

‘ Sample-Level Classification ‘ Subject-Level Classification

Metrics . .
# Datasets Accuracy F1 Score Accuracy F1 Score

S-1-V-ADFTD-Sup 73814102 73754100 | 82.86+3.50 82814355
S-2-V-ADFTD-Sup 779141.52 77.734£1.50 77.141£2.86 76.9413.05
S-3-V-ADFTD-Sup 81.31+1.04 80.8440.93 87.14£2.86 86.25+3.15
S-4-V-ADFTD-Sup 82.18+1.06 81.7640.89 90.00+3.50 89.35+4.00
S-5-V-ADFTD-Sup 82.794+0.71 82.394+0.73 87.14£2.86 86.31+3.27
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Figure 5. Ablation Study of AD datasets. It shows the results change of ADFTD when adding more AD datasets in supervised learning.

F.2. Ablation Study of AD Datasets

Setup. We conduct an ablation study to evaluate the performance changes when adding more AD datasets into unified
supervised learning. All AD datasets are added to the training set one by one in the following order: ADFTD, BrainLat,
CNBPM, Cognision-ERP, and Cognision-rsEEG, with validation and testing conducted on a single dataset: ADFTD. The
models are named from S-1-V-ADFTD-Sup to S-5-V-ADFTD-Sup, where S denotes supervised learning and V denotes
validation, with the following number indicating the number of datasets used. Note that the performance of S-5-V-ADFTD-
Sup on ADFTD may differ slightly from LEAD-Sup in Table 2, as S-5-V-ADFTD-Sup validates only on ADFTD to select
the best-performing model, rather than selecting the model with the best weighted F1 score across all five datasets. This
study investigates whether high-quality AD datasets can benefit each other in unified supervised learning compared to
single-dataset supervised learning, even without self-supervised pretraining.

Results. The results are presented in Table 6, and a figure showing the performance changes is displayed in Figure 5. We
observe a gradual improvement in performance at the sample-level classification, with the F1 score increasing from 73.75 to
82.39. For subject-level results, the overall trend is upward. However, we believe the fluctuations are due to the limited
number of subjects compared to the total number of samples. Additionally, the imbalanced number of samples per subject in
the ADFTD dataset may contribute to the larger variability observed.

F.3. Contrastive Learning Modules

Setup. We conduct an ablation study to investigate the functionality of each contrastive module. Specifically, we use either
sample-level contrast or subject-level contrast for self-supervised pre-training, while keeping the other setups the same as
the LEAD-Base model. Recall that sample-level contrast involves instance discrimination, where different views of the
same sample are treated as positive pairs, and the rest are treated as negative pairs, similar to setups used in other domains
like computer vision. In contrast, subject-level contrast is specifically designed for biomedical time series data, such as EEG,
which contains subject information. We consider samples segmented from the same subject as positive pairs and samples
from different subjects as negative pairs, thus performing a subject-discrimination task. We believe subject-level contrast
helps to reduce subject-specific noise, leading to more robust general feature learning. This approach makes the embedding
space more uniform across subjects and improves inter-subject classification in downstream tasks.
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Table 7. Ablation Study of Contrastive Learning Modules. This table presents the ablation study of each module in self-supervised
contrastive learning during the pretraining stage. The All is the same as the LEAD-Base model.

ADFTD BrainLat CNBPM Cognision-ERP Cognision-rsEEG
Datasets (53,215 Samples) (29,788 Samples) (46,336 Samples) (61,300 Samples) (32,400 Samples)
(65 Subjects) (67 Subjects) (126 Subjects) (177 Subjects) (180 Subjects)
Sample-Level Classification
Metrics

Modules Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Sample-Level Contrast | 78.67+1.47  78.55+1.43 | 70.34+0.43  70.2740.40 93.75+£0.29 92.04£0.38 64.87+£0.62  64.67£0.66 | 70.2840.67  69.6510.84

Subject-Level Contrast 75.60+2.43 75.55+2.48 75.73+1.53 75.65+1.53 96.51+0.21 95.55+0.28 69.78+0.46 69.69+0.46 75.74+0.31 75.53+0.30

All 76.64+£0.87  76.64+£0.86 | 77.89+1.28  77.80+1.34 96.51£0.33 95.53£0.42 69.58+0.90  69.53£0.91 76.21£0.39  76.01+£0.39
Subject-Level Classification

Metrics

Models Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Sample-Level Contrast | 81.431+3.50  81.36+3.55 | 82.86+3.50  82.81+3.55 96.15+0.00 96.15+0.00 78.33+£2.08  78.31+2.08 | 80.5442.02  80.03+2.13

Subject-Level Contrast | 81.43+3.50  81.36%3.55 | 87.14£535  87.11+536 | 100.00+£0.00  100.001+0.00 | 82224333 82214333 | 90.27£1.32  90.23£1.34

All 80.00£5.35  79.96+5.36 | 90.00+3.50  89.98+3.48 100.00+£0.00  100.0040.00 | 84.44+2.22  84.42+2.21 | 91.89+1.71  91.86+1.73

Results. The results are presented in Table 7. The All is the same as the LEAD-Base model. We observe that subject-level
contrast significantly outperforms sample-level contrast for four out of five datasets (except for ADFTD), with around a 5%
improvement in F1 score for subject-level classification. Subject-level contrast performs poorly on ADFTD, likely due to
unknown factors, and this could be the reason that adding self-supervised pre-training does not work well for ADFTD. We
plan to investigate this in future work and explore alternative self-supervised training methods for the ADFTD dataset, such
as mask and reconstruction. Overall, in most cases, subject-level contrast performs better than sample-level contrast, and
using both contrastive modules together achieves comparable or better results than subject-level contrast alone.

F.4. Finetune or Validate on One Dataset

Table 8. Single-Dataset Finetuning or Validation. This table presents the results of single-dataset fine-tuning or unified fine-tuning but
validated on the single dataset. Two models are named with P-11-F-1-Base and P-11-F-5-V-1-Base.

ADFTD BrainLat CNBPM Cognision-ERP Cognision-rsEEG
Datasets (53,215 Samples) (29,788 Samples) (46,336 Samples) (61,300 Samples) (32,400 Samples)
(65 Subjects) (67 Subjects) (126 Subjects) (177 Subjects) (180 Subjects)
Sample-Level Classification
Metrics
Models Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score
P-11-F-1-Base(3.41M) 77.30+0.93  77.28+0.93 | 78.97+0.53  78.92+0.56 96.78+0.34 95.931+0.44 60.724+0.61  60.59+0.62 | 64.13+0.68  64.06+0.66
P-11-F-5-V-1-Base(3.41M) | 76.55+0.63  76.544+0.63 | 78.45+£0.85  78.391+0.89 96.68+0.34 95.7440.45 70.13+0.55  70.08+£0.56 | 75.95+0.26  75.76+0.28
LEAD-Base(3.41M) | 76.64+£0.87  76.64+0.86 | 77.89+£1.28  77.80+1.34 | 96.51£0.33 95.53+£0.42 | 69.58+0.90  69.53£0.91 | 76.21+0.39  76.01+0.39
Subject-Level Classification
Metrics .

m ‘ Accuracy F1 Score ‘ Accuracy F1 Score ‘ Accuracy F1 Score ‘ Accuracy F1 Score ‘ Accuracy F1 Score
P-11-F-1-Base(3.41M) 77.14+2.86  77.05+2.81 90.004+3.50  89.98+3.48 97.69+1.88 97.69+1.89 65.564+3.33  65.47+3.32 | 72434397  72.40+4.01
P-11-F-5-V-1-Base(3.41M) | 78.57+4.52  78.514+4.52 | 87.14+£2.86  87.14+2.84 100.00£0.00  100.00+0.00 | 85.00+£2.22  84.97+2.22 | 91.89+£1.71 91.86+1.73
LEAD-Base(3.41M) | 80.00+5.35  79.96+5.36 | 90.00+£3.50  89.98+3.48 | 100.00-0.00  100.00-£0.00 | 84444222 84424221 | 91.89+171  91.86+1.73

Setup. We conduct experiments that fine-tune on a single dataset and fine-tune on multiple datasets while validating on
a single dataset. In the LEAD-Base model, we perform unified fine-tuning, which involves fine-tuning five downstream
AD datasets simultaneously and using the mean F1 score across all five datasets for early stopping based on the best
performance. We aim to compare the functionality of unified fine-tuning against single-dataset fine-tuning, and investigate
whether validating on a specific dataset could improve performance. Two new models are named with P-11-F-1-Base and
P-11-F-5-V-1-Base. Other setups are the same as the LEAD-Base model.

Results. The results are presented in Table 8. For ADFTD, BrainLat, and CNBPM, we observe a performance improvement
in sample-level classification when using single-dataset fine-tuning. However, fine-tuning across the five AD datasets
together still yields better performance in subject-level classification on these three datasets. This supports the idea that
unified fine-tuning leads to more balanced results among subjects, reducing the likelihood of overfitting to specific subjects.
For the two Cognision datasets, performance drops significantly when fine-tuning on a single dataset. Since the raw channels
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for these two datasets are fewer compared to other datasets and inherently contain less information, we can infer that datasets
with fewer channels rely more heavily on unified fine-tuning.

When validating on a single dataset, we observe no improvement, except for a subtle improvement in Cognision-ERP. We
believe this is due to using the average metrics across datasets for early stopping, which helps alleviate the risk of overfitting
to the validation set on specific datasets, leading to more robust performance on the test set.

F.5. Public Datasets Training

Table 9. Public Datasets Training. This table presents the training results only on the public datasets. We follow the same training strategy
as LEAD-Sup and LEAD-Base but use only two public AD datasets. The new models are named with S-2-Sup and P-11-F-2-Base.

ADFTD BrainLat
Datasets (53,215 Samples) (29,788 Samples)
(65 Subjects) (67 Subjects)

Sample-Level Classification

Metrics
m ‘ Accuracy F1 Score ‘ Accuracy F1 Score

S-2-Sup(3.21M)
P-11-F-2-Base(3.41M)

LEAD-Vanilla(3.21M)
LEAD-Sup(3.21M)
LEAD-Base(3.41M)

77.80+1.40  77.67+1.42
77.78+£1.20  77.77£1.20

73.81+£1.02  73.75+1.00
80.841+0.84  80.68+0.79
76.641+0.87  76.64+0.86

71.91+£0.56  71.91+£0.56
77.66£1.19  77.59£1.20

62.15+1.28  62.07+1.28
70.36+0.62  70.31+£0.65
77.89+1.28  77.80+1.34

Subject-Level Classification

Metrics
Models

S-2-Sup(3.21M)
P-11-F-2-Base(3.41M)

LEAD-Vanilla(3.21M)
LEAD-Sup(3.21M)
LEAD-Base(3.41M)

Accuracy F1 Score ‘ Accuracy F1 Score

82.86+5.71 82.74£5.95
82.86+3.50  82.81%3.55

82.864+3.50  82.81+3.55
91.43+2.86  91.34+2.81
80.004£5.35  79.961+5.36

80.00+2.86  79.914+2.90
88.574+3.50  88.56+3.48

75.71£5.71  75.39£5.78
78.57£0.00  78.46+0.00
90.00+£3.50  89.98+3.48

Setup. We conduct an experiment where we train only on public datasets. Since all the pretraining datasets are public,
we modify only the fine-tuning or unified fully supervised learning setups. Specifically, we use ADFTD and BrainLat
for unified supervised learning by training the two datasets together, referred to as S-2-Sup. All other setups remain the
same as the LEAD-Sup model. We also perform unified fine-tuning by fine-tuning the two datasets together, referred to as
P-11-F-2-Base, with all other setups remaining the same as the LEAD-Base model.

Results. The results are presented in Table 9. We observe that unified supervised learning or fine-tuning still benefits
performance compared to the LEAD-vanilla model, which is trained on a single dataset with raw channel numbers. The
improvement is not as pronounced for ADFTD, but it is significant for BrainLat, with approximately 15% and 13% F1 score
improvements in sample-level and subject-level classification, respectively.

G. Supplementary Experiments
G.1. Frequency Bands Analysis

Setup. We conduct experiments that fine-tune on AD datasets across different frequency bands. Recall that in the data
preprocessing stage, we filter the frequency band from 0.5-45Hz. In this setup, the pretraining remains unchanged, but we
filter the downstream AD datasets into different frequency bands. Other fine-tuning setups are the same as in the LEAD-Base
model. Specifically, the bands are Delta () (0.5-4Hz), Theta (6) (4—7Hz), Alpha («) (8-12Hz), Beta (/3) (12-30Hz), and
Gamma () (30—45Hz). We perform unified fine-tuning using the data filtered into these different bands.

Results. The results for different frequency bands are presented in Table 10. The All model is the same as the LEAD-Base
model. We observe that the Theta (6) (4—7Hz), Alpha («) (8—12Hz), and Beta (5) (12-30Hz) bands are usually the most
critical for classification performance. These three bands consistently yield the highest sample-level F1 scores, as well as
strong performance in subject-level classification. However, there are two exceptions. First, for subject-level classification in
BrainLat, the highest performance is achieved in the Gamma () (30—45Hz) band. We speculate that this may be due to the
imbalanced number of subjects per sample, which could cause overfitting to specific subjects. The second exception is the
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Table 10. Frequency Bands Analysis. This table presents the results of fine-tuning on different frequency bands. We use bold and
underline to highlight the most and second important bands, respectively. The results for all bands are presented as a reference.

ADFTD BrainLat CNBPM Cognision-ERP Cognision-rsEEG
Datasets (53,215 Samples) (29,788 Samples) (46,336 Samples) (61,300 Samples) (32,400 Samples)
(65 Subjects) (67 Subjects) (126 Subjects) (177 Subjects) (180 Subjects)

Sample-Level Classification

Models Metrics ‘ Accuracy F1 Score ‘ Accuracy F1 Score ‘ Accuracy F1 Score ‘ Accuracy F1 Score ‘ Accuracy F1 Score

Delta § (0.5-4Hz) 65.97£0.63  65.691+0.66 59.78+0.82 59.65+0.77 85.21+0.41 80.23+0.58 59.06+£0.40  58.68+0.35 | 60.661+0.49  59.951-0.48
Theta 6 (4-7Hz) 68.09£0.76  67.97+0.69 61.5240.41 61.23+0.36 88.73+0.17 85.07+0.25 59.13+0.44  58.5940.56 | 65.5440.68  64.6740.66
Alpha « (8-12Hz) 66.60£0.77  66.57£0.76 67.321£0.54 67.171£0.53 93.13£0.27 91.1540.35 57.944£0.40  57.574£0.35 | 63.59£0.26  62.94+0.20
Beta 3 (12-30Hz) 69.65+0.39  69.29+0.41 65.51£1.19 6547+1.16 93.92+0.46 92.14+0.64 54.20+£0.78  53.90£0.79 | 67.11+0.24  66.671+0.33

Gamma v (30-45Hz) | 62.32+0.81  62.14+0.88 64.69£6.55 64.6546.55 84.16+0.48 78.08+0.93 51.174£2.01  50.90+1.94 | 57.38+£0.48  57.03+0.62
All (0.5-45Hz) 76.64+0.87  76.64+0.86 69.58+0.90  69.531+0.91 76.214£0.39  76.01+0.39

77.89£1.28 77.80+1.34 | 96.51+0.33 95.531+0.42

Subject-Level Classification

Models Metrics ‘ Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Delta 6 (0.5-4Hz) 72.86+£535  72.66+5.39 75.71£7.28 73.69+8.99 79.23+4.62 78.93+4.68 70.56+3.33  69.17+3.55 | 76.76+£2.76  74.56+3.15
Theta 6 (4-7Hz) 81.43+3.50  81.36+3.55 68.57+5.71 66.3615.06 84.62+0.00 84.24+0.00 61.67+2.08  60.30+3.43 | 78.92+3.59  77.66+4.25
Alpha « (8-12Hz) 82.861+3.50  82.81+3.55 78.57£0.00 78.46+0.00 96.15+0.00 96.15+0.00 65.56+£3.77  65.05£4.00 | 81.62+1.08  81.27+1.11
Beta 3 (12-30Hz) 78.57+£0.00  78.46:0.00 77.14£2.86 76.94+3.05 92.31+£2.43 92.30+2.44 5833£1.76  58.14£1.65 | 74.594+4.71 73.98+4.75
Gamma v (30-45Hz) | 60.004+3.50  59.3943.85 82.86+10.69  82.78+10.75 76.92+£2.43 75.58+2.86 47.78+6.67  47.38+6.50 | 64.32+£2.02  63.00+£2.93
All (0.5-45Hz) | 80.00£535  79.96+£5.36 | 90.0043.50 89.984+3.48 | 100.00+0.00 100.00+£0.00 | 84.44+222 84424221 | 91.89£1.71  91.86+1.73

Cognision-ERP dataset, where the highest performance comes from the Delta (§) (0.5-4Hz) band. This result is plausible
since Cognision-ERP is an event-related potentials dataset rather than resting-state EEG. Previous studies have shown that
biomarkers in continuous attention tasks may manifest in this band (Kirmizi-Alsan et al., 2006).

G.2. Channels Importance Analysis

Table 11. Channels Importance Analysis. This table presents the importance of different brain regions in the CNBPM dataset by
masking specific channels during testing with a trained LEAD-Base model. We use bold and underline to highlight the most important
and the second most important regions, respectively. Note that we define the most important regions as those that cause the greatest
performance drop when masked. The results for all regions are presented as a reference.

CNBPM

Datasets ‘ (46,336 Samples, 126 Subjects)

| Sample-Level Classification | Subject-Level Classification

Metrics
#-Datasets Accuracy F1 Score Accuracy F1 Score

No Frontopolar 94.46+0.46  92.924+0.60 93.85+3.08 93.84+3.08
No Frontal 79.524+3.57  71.27+3.62 76.151+4.49 74.68+5.46
No Temporal 94.27+£0.70  92.39+£0.99 91.541+4.49 91.46+4.53
No Parietal 93.15£0.75 90.83£1.09 93.08+2.88 93.07£2.88
No Occipital 89.97+1.53 85.97+2.49 91.5443.77 91.4443.90
No Central 92.9240.62  90.95+0.79 93.85+3.08 93.841£3.08
All Regions | 96514033 95.5340.42 | 100.0040.00 100.0040.00

Setup. We conduct experiments to assess the importance of different brain regions. Specifically, we keep the training
stage the same, but mask the channels in specific regions during testing. The trained LEAD-Base model is used for this
experiment. We perform this research on the CNBPM dataset, as it achieves the highest results and can mostly alleviate the
interference of other factors, such as data quality. We define the masked region that causes the highest performance drop as
the most critical region. The regions include: Frontopolar (Fp1, Fp2), Frontal (F7, F3, Fz, F4, F8), Temporal (T3, T4, T5,
T6), Parietal (P3, Pz, P4), Occipital (O1, O2), and Central (C3, Cz, C4).

Results. The results are presented in Table 11. The All Regions is the same as the LEAD-Base model. We observe that
the Frontal region is the most important, causing the most significant performance drop when masked, with a 24.26% and
25.32% F1 score reduction in sample-level and subject-level classification, respectively. The second most important region
is the Occipital region, which causes a 9.56% and 8.56% F1 score drop in sample-level and subject-level classification.
However, the performance drop here is not as pronounced as that seen with the Frontal region.
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H. Discussion
H.1. Comparison With Existing Large EEG Model

To address the challenges posed by heterogeneous channels in EEG large foundational model pre-training, existing methods
typically use single-channel patches as embedding tokens for transformers (Yang et al., 2024; Jiang et al., 2024; Wang et al.,
2024a). However, this approach introduces two trade-offs concerning flexibility and computational resources.

First, there is a trade-off between model flexibility and unified dataset training. While single-channel patching allows the
model to train on EEG data with varying numbers of channels, the token embedding methods are fixed, limiting the model to
adopt backbone architectures different from BIOT (Yang et al., 2024). In such architectures, spatial features among channels
can only be learned by attaching channel embeddings to each patch embedding. This approach restricts the model’s ability
to capture more prosperous spatial relationships, thus limiting the ability to extract spatial features.

Second, there is a trade-off between patch length and computational resources. With single-channel patch embedding,
the channel number becomes a factor in determining the final number of input tokens. For instance, if each sample has
1024 timestamps and 19 channels, and the patch size is 32, the total number of patches would be 19 x (1024 / 32) = 608.
As the patch size decreases, the number of patches increases, making the model computationally expensive to train. For
example, if we choose a smaller patch length like 4, the number of patches increases significantly, which requires additional
computational power to map all these patches into the d_model dimension tokens. This computational cost leads many
existing methods to opt for larger patch sizes, such as 64 or 200 (Jiang et al., 2024; Wang et al., 2024a), which limits the
model’s ability to learn fine-grained temporal features.

To avoid these trade-offs, we perform channel alignment during data preprocessing. This strategy offers more flexibility for
choosing the backbone model, reduces the computational burden, and enables unified fine-tuning on all downstream datasets
in one run, which enhances model performance without compromising efficiency.

H.2. Effectiveness of Subject-Level Contrast

We speculate that there are three potential reasons why subject-level contrastive pre-training significantly benefits downstream
AD detection: 1) Purification of Noise within the Subject: By treating all samples from a single subject as positive pairs,
subject-level contrastive learning forces the model to make the sample representations within each subject more similar. This
helps the model focus on the subject’s inherent characteristics and purifies the noise caused by irrelevant subject-specific
features such as artifacts. 2) Learning General Features Associated with Subjects: Subject-level contrasting aims to
differentiate subjects by pushing different subjects apart uniformly in the embedding space. This subject-discrimination task
encourages the model to learn general features related to the subject, such as brain structure, age, gender, EEG devices, and
brain health. These features are essential for downstream tasks where the goal is to classify AD based on subject-specific
patterns. 3) Compare with SImCLR: In computer vision, SimCLR is designed to perform sample-discrimination tasks for
image classification during pre-training. In contrast, our ultimate goal is to classify subjects for AD detection. Treating each
subject’s EEG data as one "sample," subject-level contrastive learning becomes analogous to SimCLR, making it reasonable
to perform subject-level contrasting during pre-training for better subject-level classification during downstream tasks.

H.3. Limitations and Future Works

In this paper, to enable pre-training on various EEG datasets and perform unified fine-tuning, we align all the EEG data to
19 standard channels in data preprocessing. For datasets with more than 19 channels, we simply drop the extra channels,
which may result in some potential information loss. However, we have demonstrated that this trade-off is manageable, as
channel alignment still significantly benefits the overall training pipeline. Moving forward, we plan to explore methods
to better utilize the information from additional channels, aiming to minimize any loss and enhance model performance.
Additionally, while this study focuses on the potential of contrastive-based pre-training for AD detection, we also recognize
the potential of other techniques, such as combining contrastive learning with mask-reconstruction modules or adopting a
decoder-only architecture. These avenues will be explored in future works to enhance our model’s performance.
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