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ABSTRACT

Learning robot manipulation from egocentric video demonstrations is a challeng-
ing and promising direction for embodied intelligence, as it involves dynamic per-
spectives and uncertain environments. While existing methods have shown suc-
cess in one-shot or few-shot learning from static videos, they are not applicable to
egocentric video inputs, which significantly limits their scalability and real-world
deployment. In this paper, we propose a novel coarse-to-fine directional manipula-
tion learning framework that enables robots to acquire manipulation skills from a
single egocentric video demonstration. Our method integrates an ensemble action
prediction module for coarse action generation and a reinforcement learning-based
refinement module for fine-grained, adaptive control. The ensemble module im-
proves robustness by combining multiple diffusion policies, while the reinforce-
ment module ensures accurate execution by refining motions based on real-time
feedback. We evaluate our framework on three complex, multi-step manipulation
tasks and demonstrate its superior performance over three state-of-the-art base-
lines in terms of both success rate and task robustness under one-shot egocentric
settings.

1 INTRODUCTION

Pour seasoning Pull drawer & place object

Open box & place objectEgocentric video demonstration

Stereo Camera

Parallel

Gripper

Left view Right view

Xarm 6

Hand motion trajectory

DirectionHand

Start End

RGB-D 
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Figure 1: We propose a coarse-to-fine action prediction framework for learning robot tasks from
egocentric video demonstrations. The framework requires only a single egocentric video of hand
manipulation to predict both coarse- and fine-grained actions. The combined action sequence en-
ables the robot to complete the multi-step tasks.

Robot learning from video demonstrations Kerr et al. (2024); Li et al. (2024) is considered a promis-
ing approach for effectively and efficiently acquiring manipulation skills and scaling up training
datasets, as video demonstrations reduce the effort required from human demonstrators. A recent
work, BiPD Zhou et al. (2025), enables one-shot learning for bimanual robot manipulation using
demonstration videos and successfully performs tasks such as pulling a drawer or pouring water.
This method processes the input video, extracts the trajectories of the human demonstrator’s two
hands, and generates actions based on these trajectories. Despite achieving one-shot learning, BiPD
requires a fixed camera position and view angle, and the human hands must remain visible through-
out the entire video which limits the applicability of demonstration videos.

Compared to videos with a static viewpoint, egocentric videos offer richer information about how
humans perceive and interact with their environment, which is crucial for understanding human
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actions. Nevertheless, learning from egocentric video demonstrations poses significant challenges,
due to constantly changing camera positions and angles (see Figure 1). As a result, hand trajectories
cannot be directly extracted to generate a diffusion policy as BiPD does. Additionally, for few-shot
or one-shot learning, the recording perspective of egocentric videos often differs substantially from
those used for task execution in real environments, which may cause the generated actions to fail.
Given these challenges, the central research question is: How can robot manipulation skills be
effectively learned from only one human demonstration in an egocentric video?

To address these challenges, we propose an ensemble-based coarse-to-fine action generation frame-
work that efficiently learns manipulation skills from a one-shot egocentric demonstration video.
Specifically, the framework consists of three modules: 3D motion extraction, diffusion-based coarse
action prediction, and reinforcement learning (RL)-based action refinement.

3D Motion Extraction As the human hand may not always appear in an egocentric video, it is
necessary to preprocess the video and select only the frames in which a hand is visible. Subsequently,
a 3D hand reconstruction from videos approach is applied to these selected frames to extract the hand
motions. The resulting 3D hand motions are then used as input for the coarse action prediction.

Diffusion-based Coarse Action Prediction While a single diffusion policy can generate high-
quality actions from video demonstrations with a static perspective, egocentric video demonstrations
pose significant challenges due to constantly changing camera viewpoints and positions. Inspired
by the concept of ensemble learning Rokach (2010), we propose an ensemble action prediction ap-
proach that, instead of training a single policy as in BiPD, trains multiple diffusion policies and
combines them through ensembling. Additionally, we develop a contrastive orthography bagging
method to assign weights to each policy based on the morphology of the interactive objects.

Reinforcement Learning (RL)-based Action Refinement Directly applying the predicted coarse
actions to drive the robot to move may lead to failure for two main reasons: 1) The accuracy of
coarse action prediction is limited due to the egocentric video input; and 2) the frame rate of coarse
action prediction is low. To address this issue, we propose a reinforcement learning (RL) approach to
guide the robot toward the interactive target objects identified in the egocentric video demonstration.

Unlike video-based methods that predict future frames to infer the next action Zhang et al. (2025)
and approaches that rely on object meshes for pose estimation to address cross-embodiment transfer
Lum et al. (2025), our method requires neither video prediction nor mesh-based pose estimation.
Compared with the method that learns from egocentric video demonstrations Kareer et al. (2024),
our approach enables one-shot learning, making it more applicable and efficient for real-world ap-
plications.

The contributions of this paper are summarized as follows:

• A novel coarse-to-fine action generation framework that effectively and efficiently learns robot
manipulation skills from a one-shot egocentric video demonstration.

• A diffusion-based coarse action prediction method that generates coarse actions via a weighted
combination of multiple diffusion policies, along with an associated contrastive morphology bagging
that determines the weights based on morphology information.

• A reinforcement learning-based action refinement approach that guides robot motion toward target
objects to improve action accuracy and compensate for motion drift.

2 RELATED WORKS

Egocentric Video Demonstration Different from static video demonstration, egocentric video
demonstration is more challenging due to dynamic background and hand motion caused by cam-
era motions Fan et al. (2023). Liu et al. Liu et al. (2022) first propose to represent the affordance in
the egocentric video as an interaction heatmap using an automatic pipeline. Following that, Robo-
ABC Ju et al. (2024) creates an affordance memory method based on semantic mapping and object
retrieval to analyze the interaction between objects and human contact points. Some trials learn the
complex manipulator behaviors by analyzing the human hand motions Grauman et al. (2024) in the
video. Ego4D Grauman et al. (2022) benchmark provides hand annotations for egocentric video
demonstration in 2D image space, which contains essential information about the interaction be-
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tween hand and object in the video. Other information in the egocentric video demonstration, such
as 3D hand pose Li et al. (2024); Kerr et al. (2024); Bahety et al. (2024), motion trajectories Chen
et al. (2024); Zhang & Gienger (2024), and keypoints Gao et al. (2024); Wen et al. (2023) can be
transformed into robot-related variables such as actions and trajectory. Our framework efficiently
leverages a single egocentric video demonstration with hand motions to learn the manipulation task,
enabling the robot to understand human actions from different perspectives.

Trajectory Prediction Trajectory prediction in robotics has been explored through various ap-
proaches, including reinforcement learning Ajay et al. (2023); Wang et al. (2023) and imitation
learning Pearce et al. (2022); Sridhar et al. (2024). Wang et al. Wang et al. (2023) apply diffusion
policies as an expressive policy class for offline learning. Ajay et al. Ajay et al. (2023) propose a
conditional generative diffuser for sequential decision-making in trajectory prediction. In the imi-
tation learning domain, ACT3D Gervet et al. (2023) and PreAct Shridhar et al. (2023) demonstrate
notable improvements in low-dimensional 3D robot control. These approaches predict future tra-
jectories based on observation-action pairs collected from expert demonstrations. Recent works
Zhang et al. (2025); Lum et al. (2025) have introduced more robust trajectory prediction techniques.
Yang et al. Yang et al. (2024) enhance generalization by integrating SIM(3)-equivariance into dif-
fusion policies for trajectory prediction. BiPD Zhou et al. (2025) presents a bimanual robot tra-
jectory prediction framework based on diffusion policies, incorporating action augmentation from
video demonstrations. However, BiPD assumes static camera positions and fixed viewpoints in
demonstration videos, and thus cannot handle egocentric video inputs. This limitation reduces its
applicability, as egocentric video demonstrations both reduce the burden on human demonstrators
and offer richer information about human intent and hand-object interactions. In contrast, we pro-
pose a diffusion-based method for learning skills from egocentric videos, leveraging a multi-policy
ensemble for coarse action prediction and a reinforcement learning approach for action refinement.

3 PROBLEM SETUP

The goal of our framework is to map the robot state S to the action A based on the observation O.
The action space is defined as A = {ap, ar, ag}, which includes the 6-DoF pose and the binary
gripper status. Since egocentric video demonstrations do not provide accurate position and orienta-
tion labels in a static world coordinate frame, actions are represented using directional instructions
d over a unit time period. The direction instruction d = {dv, dr} consists of linear and angular
velocities at each step. Egocentric video demonstrations in the observations serve as references for
robot actions, where hand motions are interpreted as gripper poses from the egocentric viewpoint.
Both interactive objects and hands are present in the demonstrations, and the directional instructions
describe the relative movement between the hand and the interactive object.

In this paper, we consider the directional instruction at each step is driven by an ensemble ac-
tion prediction and a reinforcement action refinement. The ensemble action prediction result is
a combined action result. Given multiple diffusion policies {πθi}Mi=1, the final action is com-
puted by bagging their outputs as â =

∑M
i=1 wiai, where wi are normalized weights. We also

leverage an off-policy reinforcement learning Haarnoja et al. (2018) to train policy π. The policy
πθ(a|s) is optimized to maximize the expected cumulative reward and policy entropy, formulated as:
J(π) = E(st,at)∼ρπ

[
∑

t r(st, at) + αH(π(·|st))] , where r(st, at) is the reward function designed
to encourage fine manipulation behavior, H denotes the entropy of the policy, and α is a temperature
parameter balancing reward and entropy. The following assumptions are made in our framework:
1) Egocentric video demonstrations are assumed to exhibit explicit hand-object interactions serving
as informative signals for action inference. 2) The resultant action for robot manipulation can be
represented as the linear combination of different actions generated from multiple diffusion policies
and therefore can be composed using the parallelogram rule of vectors.

4 METHOD

In this section, we present the detailed architecture of the egocentric directional manipulation learn-
ing framework. An overview of the framework is illustrated in Figure 2, which consists of three main
modules: the egocentric motion extraction module, the ensemble action prediction module, and the
reinforcement action refinement module. The egocentric motion extraction module analyzes hand
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Figure 2: Overview of the coarse-to-fine action prediction framework. The input is an egocentric
video demonstration. Hand execution features are extracted from the video and then transformed
into robot trajectories, with frames where the hand is not visible excluded from the processing
(grey color). Additional robot actions are generated through data augmentation involving positional
transformations and rotations. During inference, the coarse action is combined with multiple actions
and then integrated with the reinforcement fine action.

motions from the egocentric video and processes the morphology information of the interactive ob-
jects. The ensemble action prediction module employs multiple diffusion-based action models Chi
et al. (2023) to predict the next action for coarse robot manipulation. Finally, the reinforcement
action refinement module reduces the discrepancy between consecutive coarse action predictions by
adjusting the robot’s motion direction based on the egocentric video demonstration.

4.1 3D MOTION EXTRACTION

Hand motion in the egocentric video demonstration provides crucial information for the robot ma-
nipulation task. To collect the video demonstration, we record the egocentric videos where one
hand randomly holds the camera and the other hand performs interactions with tabletop objects. In
preparing an egocentric video demonstration, the recorder is required only to capture the interactive
objects on the table and the manipulating hand within the field of view. This video demonstration
collection setup enables a focus on hand movements while neglecting camera motion.

Video Capturing and 3D Hand Estimation As shown in Figure 2, the video demonstration is
captured by a stereo RGB-D camera. The recorded egocentric video contains RGB frames from
the left and right streams and the depth map. To extract the hand motion in the recorded egocentric
video demonstration, we mainly use the left camera stream as the RGB observation and align the
depth map with the left camera. Right stream frames are used for accurate 3D information Xu et al.
(2023). After capturing the video demonstrations, we extract 3D hand information from the videos
using WiLoR Potamias et al. (2024). Specifically, WiLoR estimates the 3D hand shape into the
MANO hand representation Romero et al. (2017) and detects bounding boxes for both the left and
right hands. The MANO representation is then converted into 21 joints corresponding to the hand
model. While WiLoR estimates frame-level MANO representations for 3D hand poses, the resulting
shapes exhibit instability due to varying camera perspectives in the egocentric video. As shown in
Figure 2, the hand orientation fluctuates across frames, making the reconstructed pose unsuitable
for direct use as an action reference. The hand motion extraction process is proposed to handle the
perspective-changing problem in the egocentric video demonstration.
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Hand Motion Extraction The hand motion extraction process aims to extract stabilized hand infor-
mation that can be used as an action reference. The hand information h = {hp, hr, hg} includes the
position, orientation, and gripping status of the hand, which are used in object-oriented hand motion
trajectories. First, we remove severely fluctuating hand shapes in the egocentric video demonstra-
tion. Since only one hand typically appears in a small spatial region, cases where the detected hand
switches between left and right across consecutive frames are removed. After that, we segment the
interactive object in the egocentric video and compare the relative distance between the hand and the
object. To identify gripper status changing time of the egocentric video demonstration, we calculate
the distance between the hand motion and the interactive object. When the distance is closer than 5
millimeters, the key frame is labeled as gripper status changing time.

4.2 ENSEMBLE ACTION PREDICTION

Given that only one egocentric video demonstration is available for real-world action learning, the
learned policy may lack robustness for real robot manipulation. To address this limitation, we in-
troduce an ensemble action prediction module that leverages multiple policy outputs to achieve
more reliable coarse action prediction. Inspired by ensemble learning Rokach (2010), we design
the ensemble action prediction module based on bagging techniques, also known as bootstrap ag-
gregating Ganaie et al. (2022). The core idea is to train multiple policies independently using a
combination of simulated demonstrations and a single egocentric video demonstration and to aggre-
gate their predicted actions through morphology bagging. Specifically, for each task, the training
dataset is divided into two parts: one containing the egocentric video demonstration and the other
consisting exclusively of simulated demonstrations. After generating multiple action predictions, a
contrastive point cloud model Dengxiong et al. (2024) is used to evaluate the morphology of the
manipulated object and to combine the actions based on morphological similarity. The final coarse
control action is then derived by aggregating the outputs of multiple diffusion policies via bagging.

Diffusion-based Action Prediction To enhance the ability of action prediction, we propose to train
different diffusion policies for action prediction. We define the base simulated training data set as
Ds = {Os, As}. Dataset Ds is sampled from the simulation dataset from robomimc Mandlekar
et al. (2023), where observation Os = {oi, si} and action A = {api , ari , a

g
i }. Then we utilize

the denoising diffusion probabilistic model (DDPM) to model the conditional distribution p(A|O).
Starting from the noise action ai, we decrease the level of noise and produce a series of actions
ai, ai−1, · · · , a0 after i iterations. The denoise process can be formulated as follows:

ai−1 = α
(
ai − γϵθ(o, a

i, i) +N (0, σ2, I)
)
, (1)

where ϵθ is the noise prediction network. N (0, σ2, I) is the Gaussian noise. α, γ are functions of the
iteration step and can be used as learning rate scheduling in the gradient descent process Ho et al.
(2020).

Diffusion models trained on simulation datasets are referred to as pre-trained diffusion policies. To
adapt these models to real-world scenarios, we additionally train an egocentric diffusion policy us-
ing egocentric video demonstrations. During demonstration collection, actions A = {ap, ar, ag} are
represented as relative positions with respect to the interactive object. To align these actions with
the robot’s coordinate frame, we transform them by adjusting their positions along the x, y, and z
axes. Given the limited number of egocentric demonstrations, we apply demonstration proliferation
techniques, similar to those used in BiPD Zhou et al. (2025), to augment the dataset. The egocen-
tric diffusion policy is then trained using 3D point cloud observations derived from the augmented
dataset De.

Contrastive Morphology Bagging Although the pretrained diffusion policy and egocentric dif-
fusion policy are prepared before the inference, the generalizability of the single diffusion model
still cannot narrow the sim-to-real gap due to the lack of real-world demonstration. Inspired by
the ensemble learning Rokach (2010) and the contrastive learning Chen et al. (2020), we propose
a contrastive morphology bagging to determine the weight of action results generated by multiple
diffusion policies. Specifically, we employ a contrastive point cloud comparison model to determine
the similarity between the point cloud of objects. Similar to the point cloud similarity model Dengx-
iong et al. (2024), we augment the original point cloud into two samples by jittering, resizing, or
flipping. Then we extract the augmented sample by the ResNet encoder f(·) to get the represen-
tation vectors hui, huj . These representation vectors are projected by a trainable MLP g(·) to map

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the representation in the latent space. The contrastive point cloud comparison model is trained in a
self-supervised manner. Given N point cloud samples, the contrastive NT-Xtent loss is formulated
as

Li,j = − log
exp

(
sim(zui,zuj)

τ

)
∑2N

k=1 1[k ̸=i] exp
(

sim(zui,zuk)
τ

) , (2)

with the cosine similarity sim(zui, zuj), and temperature parameter τ . 1[k ̸=i] is an indicator func-
tion equal to 1 only if k ̸= i. The contrastive point cloud comparison model is able to measure
the similarity between two point clouds, which can be used to compare the morphology similarity
between the observed object during real-world inference and the object appearing in policy training.
Therefore, we adapt the normalized similarity score between point clouds as the weight of bagging
when processing multiple action outputs from diffusion policies.

4.3 REINFORCEMENT ACTION REFINEMENT

Since the ensemble action prediction needs to run multiple diffusion policies in one inference, the
frame rate of prediction is low, and it can only be considered as a coarse result for further refinement.
To refine the action for better accuracy and generalizability real-world scenarios, we propose the re-
inforcement action refinement to fine-grain actions based on the coarse actions. Specifically, we
leverage an off-policy soft-actor-critic reinforcement learning to train policy π and finally combine
the action from contrastive morphology bagging and reinforcement policy based on the parallelo-
gram rule of vector composition.

Soft-Actor-Critic (SAC) Action Refinement The SAC fine action control aims to control the
end-effector move to the target keypose. We propose to use an off-policy reinforcement learn-
ing method to balance the expected rewards and the policy entropy and maximize the re-
ward. The SAC fine action control module contains an actor network that outputs the ac-
tion distribution based on the robot state and a critic network to evaluate the state-action
pairs. The actor network πθ(a|s) is trained by minimizing the following loss: Jπ(θ) =
Est∼D [Eat∼πθ

[α log πθ(at|st)−min(Qϕ1
(st, at), Qϕ2

(st, at))]] . The objective is to generate
fine-grained actions that drive the end-effector closer to the target keypose.

Action Composition Based on the ensemble action prediction and reinforcement action control,
the predicted actions are transformed into directional vectors. During inference, a contrastive point
cloud comparison model computes a bagging score that represents the similarity between the real-
world interactive object and the objects present in the diffusion policy training data. These bagging
scores are used to determine the magnitude parameters of the directional vectors during action com-
position. The positional combination follows the parallelogram rule for vector addition, while the
rotation of the end-effector is determined by the pose prediction associated with the highest bagging
score. To further constrain the fine action, we define an action space around the coarse action. This
action space is modeled as a sphere with a radius of 5 cm. Fine actions are executed at a higher
frequency and are combined with coarse actions to ensure precise and responsive manipulation.

5 EXPERIMENT

The experiments aim to answer the following research questions: 1) Does the proposed coarse-to-
fine action generation approach effectively generate robot actions to complete real-world manipula-
tion tasks by learning from a one-shot egocentric demonstration? 2) Do the ensemble learning-based
multi-policy composition approach and the associated contrastive morphology bagging effectively
improve the success rate and overall performance of robot manipulation? 3) Does the RL-based
action refinement further enhance the success rate and performance of robot manipulation?

5.1 EXPERIMENT SETUPS

The egocentric video demonstration is captured using the ZED 2 stereo camera. The camera is
handheld, either in the left or right hand, allowing the user to move around the target object while
completing the demonstration.

6
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Figure 3: Tasks overview and qualitative results. Arrows indicate the intended movements.

Task Description We evaluate our framework on three real-world multi-step tasks: Pull Drawer,
Open Box, and Pour Seasoning. These tasks require the robot to perform basic manipulation actions
and interact with objects. Pull Drawer: The robot pulls out the drawer beneath the shelf, picks up
a wheel or a 3D-printed structure, and places the object back into the drawer. Open Box: The robot
first holds the case, rotates the gripper to open it, and then picks up a controller or a 3D-printed
structure from the table. Pour Seasoning: The robot picks up a seasoning container from the table,
moves to the plate, and pours the seasoning onto it.

Evaluation We evaluate our framework on three tasks learned from egocentric video demonstra-
tions, using two metrics: average task length and final success rate. The average length follows the
definition used in CLAVIN Mees et al. (2022), where each substep is considered as part of a sequen-
tial long-horizon task. The final success rate refers to the success rate of the last substep. For the
Pull Drawer task, we evaluate the framework using four different objects, with 10 trials per object.
For both the Open Box and Pour Seasoning tasks, we conduct 20 trials across two different objects.
In addition, we report the number of successful trials for each subtask (e.g., Reach, Open, Release).

5.2 RESULTS

Open Case Tasks
Process Reach Open Release Grab Place Ave. Len. Succ. Rate
ACT Zhao et al. (2023) 36 20 18 5 3 2.05 0.075
DP3 Ze et al. (2024) 39 28 18 12 7 2.60 0.175
Ours 40 34 33 27 22 3.90 0.550

Pour Seasoning Tasks
Process Grab Move Pour Place – Ave. Len. Succ. Rate
ACT Zhao et al. (2023) 37 30 6 2 – 1.875 0.050
DP3 Ze et al. (2024) 35 24 16 8 – 2.075 0.200
Ours 40 35 35 33 – 3.575 0.825

Pull Drawer Tasks
Process Reach Pull Leave Grab Place Ave. Len. Succ. Rate
ACT Zhao et al. (2023) 35 13 8 5 2 1.575 0.050
DP3 Ze et al. (2024) 38 30 28 18 9 3.075 0.225
BiDP Zhou et al. (2025) 40 30 30 26 22 3.700 0.550
Ours 40 33 32 27 23 3.875 0.575

Table 1: Performance of open case, pour seasoning, and pull drawer. Each task consists of 40 inde-
pendent trials.The number of trials successfully accomplished in each subtask is shown, highlighting
differences in task complexity and final success rates across scenarios.

7
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Open Case Tasks
Process Reach Open Release Grab Place Ave. Len. Succ. Rate
Classical control 36 29 21 20 20 3.15 0.50
Behavior cloning 39 33 30 24 21 3.675 0.525
Ours 40 34 33 27 22 3.90 0.550

Pour Seasoning Tasks
Process Grab Move Pour Place – Ave. Len. Succ. Rate
Classical control 39 35 33 31 - 3.45 0.775
Behavior cloning 40 34 32 30 - 3.40 0.75
Ours 40 35 35 33 - 3.575 0.825

Pull Drawer Tasks
Process Reach Pull Leave Grab Place Ave. Len. Succ. Rate
Classical control 37 29 22 21 20 3.325 0.50
Behavior cloning 40 33 30 23 20 3.65 0.50
Ours 40 33 32 27 23 3.875 0.55

Table 2: Comparison of classical control Coleman et al. (2014), behavior cloning control Torabi
et al. (2018), and our proposed solution. We report the number of successful trials for each subtask,
the average completion length, and the final task success rate.

We compare our framework with two teleoperation demonstration-based methods and one video
demonstration-based learning method. Action Chunking Transformers (ACT) Zhao et al. (2023)
is a transformer-based model that learns from RGB frames and teleoperated demonstration data. 3D
Diffusion Policy (DP3) Ze et al. (2024) is a diffusion policy model that uses a point cloud encoder.
BiDP Zhou et al. (2025) is a diffusion policy that learns from a single static video demonstration to
perform dual-arm manipulation. The Open Box and Pour Seasoning tasks are evaluated using ACT
and DP3 but not BiDP, as BiDP is not applicable to these tasks. The Pull Drawer task is evaluated
using all three baselines.

The coarse-to-fine action generation framework effectively enhances action prediction capabilities
(Q1). With the ensemble action prediction module, the coarse action prediction successfully accom-
plishes multi-step tasks with a longer average length, indicating greater robustness at each subtask
compared to ACT, DP3, and BiDP. As shown in Table 1, the reinforcement-based action refine-
ment effectively mitigates action drift between two consecutive ensemble predictions, guiding the
end-effector accurately toward the interactive target and improving the final success rate. In all
three tasks, our framework outperforms all compared baselines. In the Pour Seasoning task, our
framework achieves a success rate exceeding 82%. We also compare our method with BiPD on a
similar Pull Drawer task, which requires pulling out the drawer, picking up an object, and placing it
back into the drawer (Table 1). Our framework demonstrates superior performance in handling each
subtask and completing the overall multi-step tasks from a single egocentric video demonstration.

We further compare our proposed reinforcement fine-control method with behavior cloning control
Torabi et al. (2018), and classical control Coleman et al. (2014). As shown in Table 2, behavior
cloning is stable when the action sequence is complex but highly imitable, achieving competitive
results. However, it generalizes poorly when the scene varies; in the more variable Pour Seasoning
task its success rate drops to 0.75, trailing both the feedback controller and our method. The feed-
back controller can exploit visual–spatial cues more accurately and is relatively tolerant to scene
changes, but it accumulates trajectory bias during imitation—reflected in lower success and shorter
average completion length. In contrast, our SAC consistently achieves the best overall performance:
the highest success rates across all three tasks, and the longest average completion lengths. From
Table 2, the classical control baselines show a sharp drop in success on the open-case (open-and-
pull) and pull-drawer tasks. Both are contact-rich and require fine end-effector adjustments on end
effector, which is difficult for the classical control on robot. Behavior cloning often drifts in the
terminal phase (e.g., approach angle predicted in the grab task), reducing reliability, whereas our
approach remains robust across these variations. These results indicate that starting from demon-
strations and then improving the policy with reinforcement learning enables SAC to master complex
action chains and generalize better to scene variation, mitigating behavior cloning’s covariate-shift
issues and outperforming the geometric alignment ability of the feedback controller.
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Point
Cloud Bagging Key

frames
Action
Space Reach Pull Leave Grab Place Ave.

Len.
Succ.
Rate

✗ ✗ ✗ ✗ 36 23 22 18 9 2.70 0.225
✓ ✗ ✗ ✗ 38 26 22 15 13 2.85 0.325
✓ ✓ ✗ ✗ 40 28 25 23 19 3.375 0.475
✓ ✓ ✓ ✗ 40 31 29 26 22 3.70 0.550
✓ ✓ ✓ ✓ 40 32 32 27 23 3.85 0.575

Table 3: Ablation study showing the effect of point cloud, bagging, keyframe supervision, and action
space constraint. ✓: enabled, ✗: disabled.

Without point cloud 

& bagging

Without keyframe supervision  

& action space constrain

With keyframe supervision  

& action space constrain

With point cloud 

& bagging

Figure 4: Qualitative results for ablation study on proposed module. The proposed modules generate
action predictions that better adapt to the environment.

We also conduct an ablation study to evaluate the contributions of each component in our frame-
work, demonstrating their effectiveness in improving robot manipulation performance (Q2, Q3).
As shown in Table 3, Point Cloud refers to using point cloud data as input to the diffusion policy.
Bagging indicates the coarse action combination based on contrastive morphology bagging. Key
Frames represents whether the relative distance between hand motion and the object is used to de-
termine the gripper status. Action Space denotes whether action space constraints are applied during
reinforcement-based fine control. The results show that the bagging, 3D hand motion extraction,
and reinforcement learning-based action refinement significantly improve both the average number
of completed subtasks and the final success rate.

We also provide some qualitative results in the ablation study. In the seasoning-pouring task (Fig-
ure 4), with point-cloud and bagging assistance, the gripper securely grasps the salt bottle; without
these modules, it fails to maintain a stable grasp due to the lack of morphological cues. As shown in
Figure 4, with the keyframe supervision and action space constrain, the robot can move to a better
pose to place the wheel in the drawer. The keyframe supervision and action space constrain helps
hanging the wheel above the drawer. This allows the robot to decrease the risk of place the wheel
outside the drawer.

6 CONCLUSION

In this work, we propose a novel coarse-to-fine action generation framework that enables robots
to learn manipulation skills from a single egocentric video demonstration. By integrating 3D hand
motion extraction, an ensemble-based diffusion policy for coarse action prediction, and a reinforce-
ment learning-based action refinement, our method effectively addresses the challenges posed by
egocentric viewpoints and one-shot learning. Extensive evaluations on three real-world multi-step
tasks demonstrate that our approach significantly outperforms state-of-the-art baselines in both task
success rate and robustness. Additionally, the ablation study confirms the importance of each com-
ponent in improving performance. The proposed modules show better performance in handling ma-
nipulation details by fully using the additional information provided in the egocentric video demon-
stration. Our framework opens up new possibilities for scalable and efficient robot learning from
unstructured, first-person video data, making it well-suited for practical deployment in real-world
environments.
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A APPENDIX

Problem Definition The demonstrations are captured as egocentric videos with a non-static camera
perspective that naturally follows the user’s hand during manipulation. The task we define is a one-
shot learning task, as our setting provides only a single real demonstration per test task, and the
experimental task is not identical to the pretraining data. Since the dynamic viewpoint may not
consistently capture both the hand and the object in every frame, our framework models the hand’s
motion trajectory as the primary signal, using object observations as reference cues only when they
are visible.

Simulation Data To equip our policy with basic manipulation primitives, we pre-train it on sim-
ulated pick-and-place trajectories derived from common daily activities. These include reaching,
grasping, and placing a variety of simple objects (e.g., controllers, boxes) in MuJoCo, without any
particular selection to closely match the testing tasks. The simulated trajectories provide diverse
motion examples that can be reused across tasks, effectively bootstrapping the policy prior to fine-
tuning on the single available real-world demonstration.

Object and Morphology Comparison For each task we first segment the “interactive region” in
the wrist-camera RGB-D stream, for example, the box and its contents in the “open box” task,
by generating a binary mask of pixels corresponding to the object(s) of interest. Segmentation
results assist the model to focus on the interactive object in the RGB image and the depth map. We
then extract two parallel feature streams: (1) RGB branch: a standard 3-channel ResNet backbone
(2) Depth branch: a single-channel ResNet backbone Their outputs are concatenated and passed
through a lightweight fusion layer that learns per-modality weights. The resulting fused feature
vector encodes the object’s morphology, which we use to compare against each policy’s reference
morphology during ensemble-weight computation. We estimate the hand–object distance directly
in the camera coordinate frame by projecting both the segmented hand and object point clouds
from the same RGB-D image using the camera’s intrinsic parameters. Because the hand and object
are observed under identical lighting and viewpoint, this relative distance remains consistent and
reliable. We extract “key frames” from the egocentric video only when the entire hand is fully
visible, and we segment both the hand and object using the Segment Anything Model (SAM) to
ensure precise mask generation before computing their spatial relationship.

Ensemble Weight At every coarse-level decision step, we update the ensemble weights by mea-
suring the similarity between the current object morphology and each policy’s stored morphology
prototype. The policy’s stored morphology prototype is collected from the one-shot egocentric video
demonstration. 1. Observation: The wrist camera provides an RGB image and a depth map. 2. Fea-
ture extraction and fusion: As described above, these inputs are processed to yield a morphology
embedding f . 3. Similarity: We compute the cosine similarity between the policy’s stored object
feature fp and the observed object feature fo, obtained after projection from the raw input. 4. Nor-
malization: We apply a softmax over these cosine scores to produce positive, sum-to-one weights
{wi}. These weights are recomputed at each coarse-level step based on the latest observation, al-
lowing the ensemble to dynamically adapt to changes in object appearance and pose.

RL Details The fine-level control will apply after determine the ensemble weights. The frequency
ratio between coarse-level control (Ensemble Action Prediction) and fine-level control (Reinforce-
ment Action Refinement) is 1:10. We define the reward rt as: rt = −α||pt− ptarget||2+k1

(
∆θt ≤

θmax

)
+ β 1

(
dm ≤ dc ∧ ∆θt ≤ θmax

)
− δ 1

(
∆θt > θmax

)
, where the function represents

the distance reward and the action space reward for fine-level control. The coefficient α, k, β, δ can
adjust the reward. The robot gets a higher reward when end-effector pt is close to the target posi-
tion ptarget. The action space reward is based on the direction of the next position and the moving
distance dm of each step. The moving distance threshold of each step is dc, and the direction angle
threshold is θmax. The robot is encouraged to move forward in the action space aligned with the
coarse-level direction and receives a smaller penalty when the end-effector is closer to the target.

Baseline Comparison The pull-drawer task in our setup closely mirrors the drawer-opening behav-
ior used in BiDP, whereas the other two tasks involve actions that differ substantially from those in
BiDP. To ensure a fair comparison, all baseline methods were trained exclusively on the demonstra-
tions recorded for this study.

13


	Introduction
	Related Works
	Problem Setup
	Method
	3D Motion Extraction
	Ensemble Action Prediction
	Reinforcement Action Refinement

	Experiment
	Experiment Setups
	Results

	Conclusion
	Appendix

