

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONE-SHOT LEARNING FOR ROBOT MANIPULATION THROUGH EGOCENTRIC VIDEO DEMONSTRATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Learning robot manipulation from egocentric video demonstrations is a challenging and promising direction for embodied intelligence, as it involves dynamic perspectives and uncertain environments. While existing methods have shown success in one-shot or few-shot learning from static videos, they are not applicable to egocentric video inputs, which significantly limits their scalability and real-world deployment. In this paper, we propose a novel coarse-to-fine directional manipulation learning framework that enables robots to acquire manipulation skills from a single egocentric video demonstration. Our method integrates an ensemble action prediction module for coarse action generation and a reinforcement learning-based refinement module for fine-grained, adaptive control. The ensemble module improves robustness by combining multiple diffusion policies, while the reinforcement module ensures accurate execution by refining motions based on real-time feedback. We evaluate our framework on three complex, multi-step manipulation tasks and demonstrate its superior performance over three state-of-the-art baselines in terms of both success rate and task robustness under one-shot egocentric settings.

1 INTRODUCTION

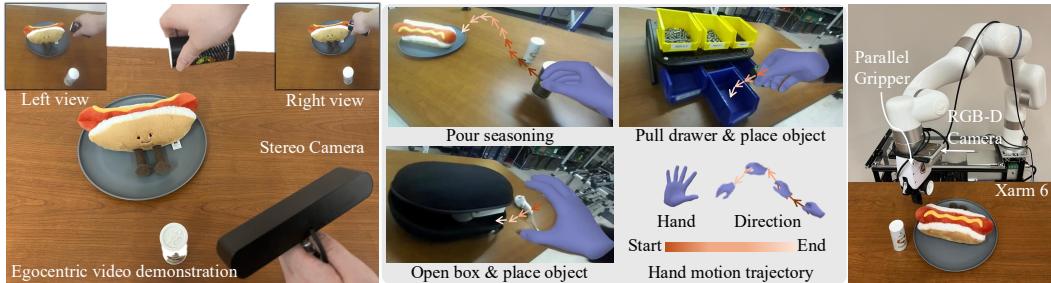


Figure 1: We propose a coarse-to-fine action prediction framework for learning robot tasks from egocentric video demonstrations. The framework requires only a single egocentric video of hand manipulation to predict both coarse- and fine-grained actions. The combined action sequence enables the robot to complete the multi-step tasks.

Robot learning from video demonstrations Kerr et al. (2024); Li et al. (2024) is considered a promising approach for effectively and efficiently acquiring manipulation skills and scaling up training datasets, as video demonstrations reduce the effort required from human demonstrators. A recent work, BiPD Zhou et al. (2025), enables one-shot learning for bimanual robot manipulation using demonstration videos and successfully performs tasks such as pulling a drawer or pouring water. This method processes the input video, extracts the trajectories of the human demonstrator's two hands, and generates actions based on these trajectories. Despite achieving one-shot learning, BiPD requires a fixed camera position and view angle, and the human hands must remain visible throughout the entire video which limits the applicability of demonstration videos.

Compared to videos with a static viewpoint, egocentric videos offer richer information about how humans perceive and interact with their environment, which is crucial for understanding human

actions. Nevertheless, learning from egocentric video demonstrations poses significant challenges, due to constantly changing camera positions and angles (see Figure 1). As a result, hand trajectories cannot be directly extracted to generate a diffusion policy as BiPD does. Additionally, for few-shot or one-shot learning, the recording perspective of egocentric videos often differs substantially from those used for task execution in real environments, which may cause the generated actions to fail. Given these challenges, the central research question is: **How can robot manipulation skills be effectively learned from only one human demonstration in an egocentric video?**

To address these challenges, we propose an ensemble-based coarse-to-fine action generation framework that efficiently learns manipulation skills from a one-shot egocentric demonstration video. Specifically, the framework consists of three modules: *3D motion extraction*, *diffusion-based coarse action prediction*, and *reinforcement learning (RL)-based action refinement*.

3D Motion Extraction As the human hand may not always appear in an egocentric video, it is necessary to preprocess the video and select only the frames in which a hand is visible. Subsequently, a 3D hand reconstruction from videos approach is applied to these selected frames to extract the hand motions. The resulting 3D hand motions are then used as input for the coarse action prediction.

Diffusion-based Coarse Action Prediction While a single diffusion policy can generate high-quality actions from video demonstrations with a static perspective, egocentric video demonstrations pose significant challenges due to constantly changing camera viewpoints and positions. Inspired by the concept of ensemble learning Rokach (2010), we propose an ensemble action prediction approach that, instead of training a single policy as in BiPD, trains multiple diffusion policies and combines them through ensembling. Additionally, we develop a contrastive orthography bagging method to assign weights to each policy based on the morphology of the interactive objects.

Reinforcement Learning (RL)-based Action Refinement Directly applying the predicted coarse actions to drive the robot to move may lead to failure for two main reasons: 1) The accuracy of coarse action prediction is limited due to the egocentric video input; and 2) the frame rate of coarse action prediction is low. To address this issue, we propose a reinforcement learning (RL) approach to guide the robot toward the interactive target objects identified in the egocentric video demonstration.

Unlike video-based methods that predict future frames to infer the next action Zhang et al. (2025) and approaches that rely on object meshes for pose estimation to address cross-embodiment transfer Lum et al. (2025), our method requires neither video prediction nor mesh-based pose estimation. Compared with the method that learns from egocentric video demonstrations Kaireer et al. (2024), our approach enables one-shot learning, making it more applicable and efficient for real-world applications.

The contributions of this paper are summarized as follows:

- A novel coarse-to-fine action generation framework that effectively and efficiently learns robot manipulation skills from a one-shot egocentric video demonstration.
- A diffusion-based coarse action prediction method that generates coarse actions via a weighted combination of multiple diffusion policies, along with an associated contrastive morphology bagging that determines the weights based on morphology information.
- A reinforcement learning-based action refinement approach that guides robot motion toward target objects to improve action accuracy and compensate for motion drift.

2 RELATED WORKS

Egocentric Video Demonstration Different from static video demonstration, egocentric video demonstration is more challenging due to dynamic background and hand motion caused by camera motions Fan et al. (2023). Liu *et al.* Liu et al. (2022) first propose to represent the affordance in the egocentric video as an interaction heatmap using an automatic pipeline. Following that, Robo-ABC Ju et al. (2024) creates an affordance memory method based on semantic mapping and object retrieval to analyze the interaction between objects and human contact points. Some trials learn the complex manipulator behaviors by analyzing the human hand motions Grauman et al. (2024) in the video. Ego4D Grauman et al. (2022) benchmark provides hand annotations for egocentric video demonstration in 2D image space, which contains essential information about the interaction be-

108 tween hand and object in the video. Other information in the egocentric video demonstration, such
 109 as 3D hand pose Li et al. (2024); Kerr et al. (2024); Bahety et al. (2024), motion trajectories Chen
 110 et al. (2024); Zhang & Gienger (2024), and keypoints Gao et al. (2024); Wen et al. (2023) can be
 111 transformed into robot-related variables such as actions and trajectory. Our framework efficiently
 112 leverages a single egocentric video demonstration with hand motions to learn the manipulation task,
 113 enabling the robot to understand human actions from different perspectives.

114 **Trajectory Prediction** Trajectory prediction in robotics has been explored through various ap-
 115 proaches, including reinforcement learning Ajay et al. (2023); Wang et al. (2023) and imitation
 116 learning Pearce et al. (2022); Sridhar et al. (2024). Wang et al. Wang et al. (2023) apply diffusion
 117 policies as an expressive policy class for offline learning. Ajay et al. Ajay et al. (2023) propose a
 118 conditional generative diffuser for sequential decision-making in trajectory prediction. In the imi-
 119 tation learning domain, ACT3D Gervet et al. (2023) and PreAct Shridhar et al. (2023) demonstrate
 120 notable improvements in low-dimensional 3D robot control. These approaches predict future tra-
 121 jectories based on observation-action pairs collected from expert demonstrations. Recent works
 122 Zhang et al. (2025); Lum et al. (2025) have introduced more robust trajectory prediction techniques.
 123 Yang et al. Yang et al. (2024) enhance generalization by integrating $\text{SIM}(3)$ -equivariance into dif-
 124 fusion policies for trajectory prediction. BiPD Zhou et al. (2025) presents a bimanual robot tra-
 125 jectory prediction framework based on diffusion policies, incorporating action augmentation from
 126 video demonstrations. However, BiPD assumes static camera positions and fixed viewpoints in
 127 demonstration videos, and thus cannot handle egocentric video inputs. This limitation reduces its
 128 applicability, as egocentric video demonstrations both reduce the burden on human demonstrators
 129 and offer richer information about human intent and hand-object interactions. In contrast, we pro-
 130 pose a diffusion-based method for learning skills from egocentric videos, leveraging a multi-policy
 131 ensemble for coarse action prediction and a reinforcement learning approach for action refinement.

132 3 PROBLEM SETUP

133 The goal of our framework is to map the robot state S to the action A based on the observation O .
 134 The action space is defined as $A = \{a^p, a^r, a^g\}$, which includes the 6-DoF pose and the binary
 135 gripper status. Since egocentric video demonstrations do not provide accurate position and orienta-
 136 tion labels in a static world coordinate frame, actions are represented using directional instructions
 137 d over a unit time period. The direction instruction $d = \{d^v, d^r\}$ consists of linear and angular
 138 velocities at each step. Egocentric video demonstrations in the observations serve as references for
 139 robot actions, where hand motions are interpreted as gripper poses from the egocentric viewpoint.
 140 Both interactive objects and hands are present in the demonstrations, and the directional instructions
 141 describe the relative movement between the hand and the interactive object.

142 In this paper, we consider the directional instruction at each step is driven by an ensemble ac-
 143 tion prediction and a reinforcement action refinement. The ensemble action prediction result is
 144 a combined action result. Given multiple diffusion policies $\{\pi_{\theta_i}\}_{i=1}^M$, the final action is com-
 145 puted by bagging their outputs as $\hat{a} = \sum_{i=1}^M w_i a_i$, where w_i are normalized weights. We also
 146 leverage an off-policy reinforcement learning Haarnoja et al. (2018) to train policy π . The policy
 147 $\pi_{\theta}(a|s)$ is optimized to maximize the expected cumulative reward and policy entropy, formulated as:
 148 $J(\pi) = \mathbb{E}_{(s_t, a_t) \sim \rho_{\pi}} [\sum_t r(s_t, a_t) + \alpha \mathcal{H}(\pi(\cdot|s_t))]$, where $r(s_t, a_t)$ is the reward function designed
 149 to encourage fine manipulation behavior, \mathcal{H} denotes the entropy of the policy, and α is a temperature
 150 parameter balancing reward and entropy. The following assumptions are made in our framework:
 151 1) Egocentric video demonstrations are assumed to exhibit explicit hand-object interactions serving
 152 as informative signals for action inference. 2) The resultant action for robot manipulation can be
 153 represented as the linear combination of different actions generated from multiple diffusion policies
 154 and therefore can be composed using the parallelogram rule of vectors.

155 4 METHOD

156 In this section, we present the detailed architecture of the egocentric directional manipulation learn-
 157 ing framework. An overview of the framework is illustrated in Figure 2, which consists of three main
 158 modules: the egocentric motion extraction module, the ensemble action prediction module, and the
 159 reinforcement action refinement module. The egocentric motion extraction module analyzes hand

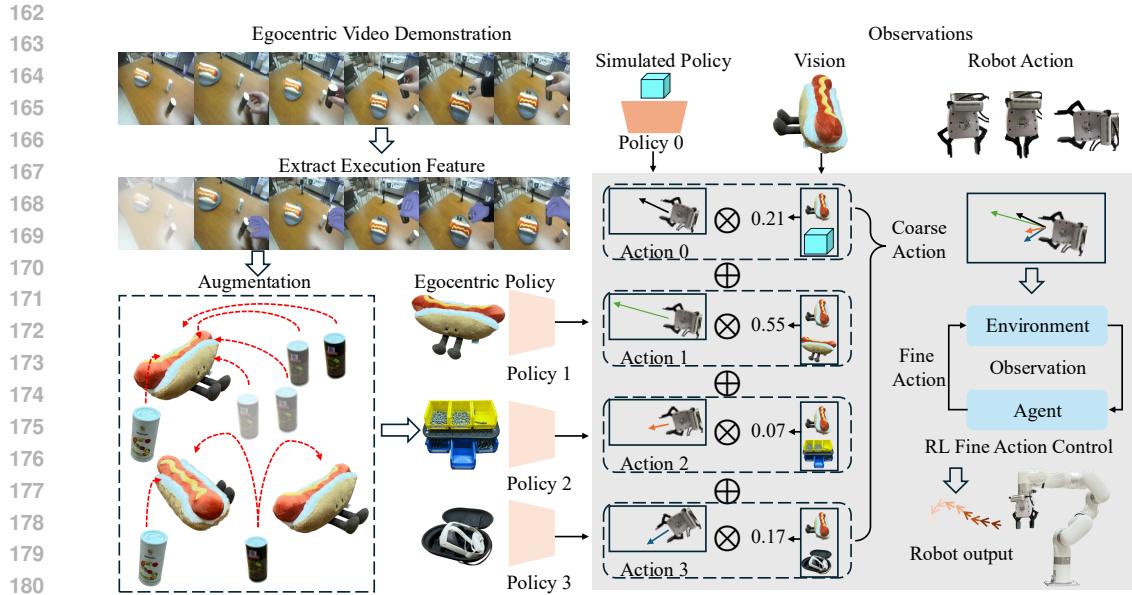


Figure 2: Overview of the coarse-to-fine action prediction framework. The input is an egocentric video demonstration. Hand execution features are extracted from the video and then transformed into robot trajectories, with frames where the hand is not visible excluded from the processing (grey color). Additional robot actions are generated through data augmentation involving positional transformations and rotations. During inference, the coarse action is combined with multiple actions and then integrated with the reinforcement fine action.

motions from the egocentric video and processes the morphology information of the interactive objects. The ensemble action prediction module employs multiple diffusion-based action models Chi et al. (2023) to predict the next action for coarse robot manipulation. Finally, the reinforcement action refinement module reduces the discrepancy between consecutive coarse action predictions by adjusting the robot’s motion direction based on the egocentric video demonstration.

4.1 3D MOTION EXTRACTION

Hand motion in the egocentric video demonstration provides crucial information for the robot manipulation task. To collect the video demonstration, we record the egocentric videos where one hand randomly holds the camera and the other hand performs interactions with tabletop objects. In preparing an egocentric video demonstration, the recorder is required only to capture the interactive objects on the table and the manipulating hand within the field of view. This video demonstration collection setup enables a focus on hand movements while neglecting camera motion.

Video Capturing and 3D Hand Estimation As shown in Figure 2, the video demonstration is captured by a stereo RGB-D camera. The recorded egocentric video contains RGB frames from the left and right streams and the depth map. To extract the hand motion in the recorded egocentric video demonstration, we mainly use the left camera stream as the RGB observation and align the depth map with the left camera. Right stream frames are used for accurate 3D information Xu et al. (2023). After capturing the video demonstrations, we extract 3D hand information from the videos using WiLoR Potamias et al. (2024). Specifically, WiLoR estimates the 3D hand shape into the MANO hand representation Romero et al. (2017) and detects bounding boxes for both the left and right hands. The MANO representation is then converted into 21 joints corresponding to the hand model. While WiLoR estimates frame-level MANO representations for 3D hand poses, the resulting shapes exhibit instability due to varying camera perspectives in the egocentric video. As shown in Figure 2, the hand orientation fluctuates across frames, making the reconstructed pose unsuitable for direct use as an action reference. The hand motion extraction process is proposed to handle the perspective-changing problem in the egocentric video demonstration.

216 **Hand Motion Extraction** The hand motion extraction process aims to extract stabilized hand information
 217 that can be used as an action reference. The hand information $h = \{h^p, h^r, h^g\}$ includes the
 218 position, orientation, and gripping status of the hand, which are used in object-oriented hand motion
 219 trajectories. First, we remove severely fluctuating hand shapes in the egocentric video demonstra-
 220 tion. Since only one hand typically appears in a small spatial region, cases where the detected hand
 221 switches between left and right across consecutive frames are removed. After that, we segment the
 222 interactive object in the egocentric video and compare the relative distance between the hand and the
 223 object. To identify gripper status changing time of the egocentric video demonstration, we calculate
 224 the distance between the hand motion and the interactive object. When the distance is closer than 5
 225 millimeters, the key frame is labeled as gripper status changing time.
 226

227 4.2 ENSEMBLE ACTION PREDICTION

228 Given that only one egocentric video demonstration is available for real-world action learning, the
 229 learned policy may lack robustness for real robot manipulation. To address this limitation, we in-
 230 troduce an ensemble action prediction module that leverages multiple policy outputs to achieve
 231 more reliable coarse action prediction. Inspired by ensemble learning Rokach (2010), we design
 232 the ensemble action prediction module based on bagging techniques, also known as bootstrap ag-
 233 gregating Ganaie et al. (2022). The core idea is to train multiple policies independently using a
 234 combination of simulated demonstrations and a single egocentric video demonstration and to aggre-
 235 gate their predicted actions through morphology bagging. Specifically, for each task, the training
 236 dataset is divided into two parts: one containing the egocentric video demonstration and the other
 237 consisting exclusively of simulated demonstrations. After generating multiple action predictions, a
 238 contrastive point cloud model Dengxiong et al. (2024) is used to evaluate the morphology of the
 239 manipulated object and to combine the actions based on morphological similarity. The final coarse
 240 control action is then derived by aggregating the outputs of multiple diffusion policies via bagging.
 241

242 **Diffusion-based Action Prediction** To enhance the ability of action prediction, we propose to train
 243 different diffusion policies for action prediction. We define the base simulated training data set as
 244 $D_s = \{O_s, A_s\}$. Dataset D_s is sampled from the simulation dataset from robomimc Mandlekar
 245 et al. (2023), where observation $O_s = \{o_i, s_i\}$ and action $A = \{a_i^p, a_i^r, a_i^g\}$. Then we utilize
 246 the denoising diffusion probabilistic model (DDPM) to model the conditional distribution $p(A|O)$.
 247 Starting from the noise action a^i , we decrease the level of noise and produce a series of actions
 a_i, a_{i-1}, \dots, a_0 after i iterations. The denoise process can be formulated as follows:
 248

$$\mathbf{a}^{i-1} = \alpha (a^i - \gamma \epsilon_\theta(\mathbf{o}, a^i, i) + \mathcal{N}(0, \sigma^2, I)), \quad (1)$$

249 where ϵ_θ is the noise prediction network. $\mathcal{N}(0, \sigma^2, I)$ is the Gaussian noise. α, γ are functions of the
 250 iteration step and can be used as learning rate scheduling in the gradient descent process Ho et al.
 251 (2020).
 252

253 Diffusion models trained on simulation datasets are referred to as pre-trained diffusion policies. To
 254 adapt these models to real-world scenarios, we additionally train an egocentric diffusion policy us-
 255 ing egocentric video demonstrations. During demonstration collection, actions $A = \{a^p, a^r, a^g\}$ are
 256 represented as relative positions with respect to the interactive object. To align these actions with
 257 the robot’s coordinate frame, we transform them by adjusting their positions along the x , y , and z
 258 axes. Given the limited number of egocentric demonstrations, we apply demonstration proliferation
 259 techniques, similar to those used in BiPD Zhou et al. (2025), to augment the dataset. The egocen-
 260 tric diffusion policy is then trained using 3D point cloud observations derived from the augmented
 261 dataset D_e .
 262

263 **Contrastive Morphology Bagging** Although the pretrained diffusion policy and egocentric dif-
 264 fusion policy are prepared before the inference, the generalizability of the single diffusion model
 265 still cannot narrow the sim-to-real gap due to the lack of real-world demonstration. Inspired by
 266 the ensemble learning Rokach (2010) and the contrastive learning Chen et al. (2020), we propose
 267 a contrastive morphology bagging to determine the weight of action results generated by multiple
 268 diffusion policies. Specifically, we employ a contrastive point cloud comparison model to determine
 269 the similarity between the point cloud of objects. Similar to the point cloud similarity model Dengx-
 270 iong et al. (2024), we augment the original point cloud into two samples by jittering, resizing, or
 271 flipping. Then we extract the augmented sample by the ResNet encoder $f(\cdot)$ to get the represen-
 272 tation vectors h_{ui}, h_{uj} . These representation vectors are projected by a trainable MLP $g(\cdot)$ to map
 273

270 the representation in the latent space. The contrastive point cloud comparison model is trained in a
 271 self-supervised manner. Given N point cloud samples, the contrastive NT-Xtent loss is formulated
 272 as

$$273 \quad \mathcal{L}_{i,j} = -\log \frac{\exp\left(\frac{\text{sim}(z_{ui}, z_{uj})}{\tau}\right)}{\sum_{k=1}^{2N} \mathbf{1}_{[k \neq i]} \exp\left(\frac{\text{sim}(z_{ui}, z_{uk})}{\tau}\right)}, \quad (2)$$

$$274$$

$$275$$

$$276$$

277 with the cosine similarity $\text{sim}(z_{ui}, z_{uj})$, and temperature parameter τ . $\mathbf{1}_{[k \neq i]}$ is an indicator function
 278 equal to 1 only if $k \neq i$. The contrastive point cloud comparison model is able to measure
 279 the similarity between two point clouds, which can be used to compare the morphology similarity
 280 between the observed object during real-world inference and the object appearing in policy training.
 281 Therefore, we adapt the normalized similarity score between point clouds as the weight of bagging
 282 when processing multiple action outputs from diffusion policies.

283 4.3 REINFORCEMENT ACTION REFINEMENT

284 Since the ensemble action prediction needs to run multiple diffusion policies in one inference, the
 285 frame rate of prediction is low, and it can only be considered as a coarse result for further refinement.
 286 To refine the action for better accuracy and generalizability real-world scenarios, we propose the re-
 287 enforcement action refinement to fine-grain actions based on the coarse actions. Specifically, we
 288 leverage an off-policy soft-actor-critic reinforcement learning to train policy π and finally combine
 289 the action from contrastive morphology bagging and reinforcement policy based on the parallelo-
 290 gram rule of vector composition.

291 **Soft-Actor-Critic (SAC) Action Refinement** The SAC fine action control aims to control the
 292 end-effector move to the target keypose. We propose to use an off-policy reinforcement learning
 293 method to balance the expected rewards and the policy entropy and maximize the re-
 294 ward. The SAC fine action control module contains an actor network that outputs the ac-
 295 tion distribution based on the robot state and a critic network to evaluate the state-action
 296 pairs. The actor network $\pi_\theta(a|s)$ is trained by minimizing the following loss: $J_\pi(\theta) =$
 297 $\mathbb{E}_{s_t \sim \mathcal{D}} [\mathbb{E}_{a_t \sim \pi_\theta} [\alpha \log \pi_\theta(a_t|s_t) - \min(Q_{\phi_1}(s_t, a_t), Q_{\phi_2}(s_t, a_t))]]$. The objective is to generate
 298 fine-grained actions that drive the end-effector closer to the target keypose.

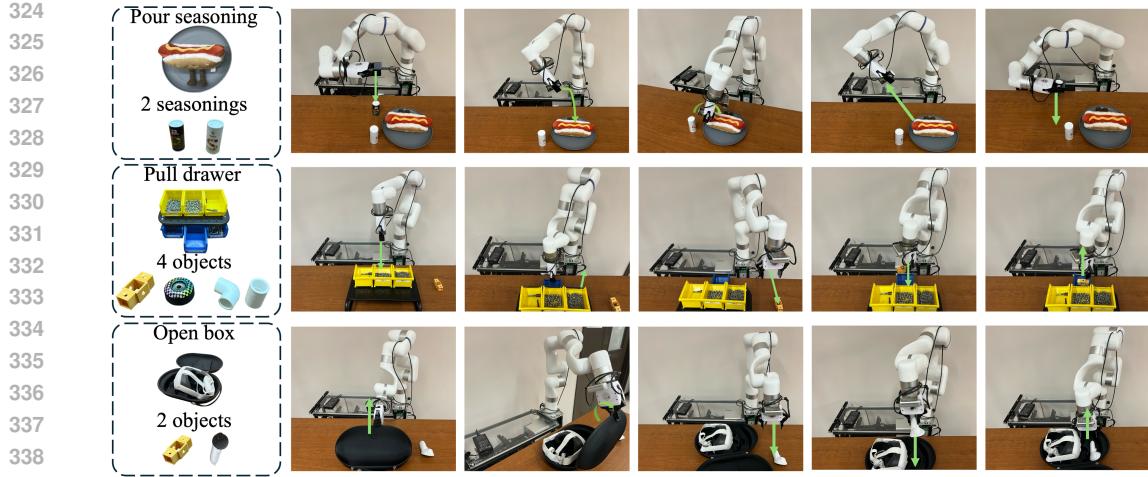
299 **Action Composition** Based on the ensemble action prediction and reinforcement action control,
 300 the predicted actions are transformed into directional vectors. During inference, a contrastive point
 301 cloud comparison model computes a bagging score that represents the similarity between the real-
 302 world interactive object and the objects present in the diffusion policy training data. These bagging
 303 scores are used to determine the magnitude parameters of the directional vectors during action
 304 composition. The positional combination follows the parallelogram rule for vector addition, while the
 305 rotation of the end-effector is determined by the pose prediction associated with the highest bagging
 306 score. To further constrain the fine action, we define an action space around the coarse action. This
 307 action space is modeled as a sphere with a radius of 5 cm. Fine actions are executed at a higher
 308 frequency and are combined with coarse actions to ensure precise and responsive manipulation.

310 5 EXPERIMENT

311 The experiments aim to answer the following research questions: 1) Does the proposed coarse-to-
 312 fine action generation approach effectively generate robot actions to complete real-world manipu-
 313 lation tasks by learning from a one-shot egocentric demonstration? 2) Do the ensemble learning-based
 314 multi-policy composition approach and the associated contrastive morphology bagging effectively
 315 improve the success rate and overall performance of robot manipulation? 3) Does the RL-based
 316 action refinement further enhance the success rate and performance of robot manipulation?

317 5.1 EXPERIMENT SETUPS

318 The egocentric video demonstration is captured using the ZED 2 stereo camera. The camera is
 319 handheld, either in the left or right hand, allowing the user to move around the target object while
 320 completing the demonstration.

340 Figure 3: Tasks overview and qualitative results. Arrows indicate the intended movements.
341
342

Task Description We evaluate our framework on three real-world multi-step tasks: *Pull Drawer*, *Open Box*, and *Pour Seasoning*. These tasks require the robot to perform basic manipulation actions and interact with objects. *Pull Drawer*: The robot pulls out the drawer beneath the shelf, picks up a wheel or a 3D-printed structure, and places the object back into the drawer. *Open Box*: The robot first holds the case, rotates the gripper to open it, and then picks up a controller or a 3D-printed structure from the table. *Pour Seasoning*: The robot picks up a seasoning container from the table, moves to the plate, and pours the seasoning onto it.

Evaluation We evaluate our framework on three tasks learned from egocentric video demonstrations, using two metrics: average task length and final success rate. The average length follows the definition used in CLAVIN Mees et al. (2022), where each substep is considered as part of a sequential long-horizon task. The final success rate refers to the success rate of the last substep. For the *Pull Drawer* task, we evaluate the framework using four different objects, with 10 trials per object. For both the *Open Box* and *Pour Seasoning* tasks, we conduct 20 trials across two different objects. In addition, we report the number of successful trials for each subtask (e.g., Reach, Open, Release).

357 5.2 RESULTS

359 Open Case Tasks							
360 Process	Reach	Open	Release	Grab	Place	Ave. Len.	Succ. Rate
361 ACT Zhao et al. (2023)	36	20	18	5	3	2.05	0.075
362 DP3 Ze et al. (2024)	39	28	18	12	7	2.60	0.175
363 Ours	40	34	33	27	22	3.90	0.550
364 Pour Seasoning Tasks							
365 Process	Grab	Move	Pour	Place	–	Ave. Len.	Succ. Rate
366 ACT Zhao et al. (2023)	37	30	6	2	–	1.875	0.050
367 DP3 Ze et al. (2024)	35	24	16	8	–	2.075	0.200
368 Ours	40	35	35	33	–	3.575	0.825
369 Pull Drawer Tasks							
370 Process	Reach	Pull	Leave	Grab	Place	Ave. Len.	Succ. Rate
371 ACT Zhao et al. (2023)	35	13	8	5	2	1.575	0.050
372 DP3 Ze et al. (2024)	38	30	28	18	9	3.075	0.225
373 BiDP Zhou et al. (2025)	40	30	30	26	22	3.700	0.550
374 Ours	40	33	32	27	23	3.875	0.575

375 Table 1: Performance of open case, pour seasoning, and pull drawer. Each task consists of 40 inde-
376 pendent trials. The number of trials successfully accomplished in each subtask is shown, highlighting
377 differences in task complexity and final success rates across scenarios.

Open Case Tasks							
Process	Reach	Open	Release	Grab	Place	Ave. Len.	Succ. Rate
Classical control	36	29	21	20	20	3.15	0.50
Behavior cloning	39	33	30	24	21	3.675	0.525
Ours	40	34	33	27	22	3.90	0.550
Pour Seasoning Tasks							
Process	Grab	Move	Pour	Place	-	Ave. Len.	Succ. Rate
Classical control	39	35	33	31	-	3.45	0.775
Behavior cloning	40	34	32	30	-	3.40	0.75
Ours	40	35	35	33	-	3.575	0.825
Pull Drawer Tasks							
Process	Reach	Pull	Leave	Grab	Place	Ave. Len.	Succ. Rate
Classical control	37	29	22	21	20	3.325	0.50
Behavior cloning	40	33	30	23	20	3.65	0.50
Ours	40	33	32	27	23	3.875	0.55

Table 2: Comparison of classical control Coleman et al. (2014), behavior cloning control Torabi et al. (2018), and our proposed solution. We report the number of successful trials for each subtask, the average completion length, and the final task success rate.

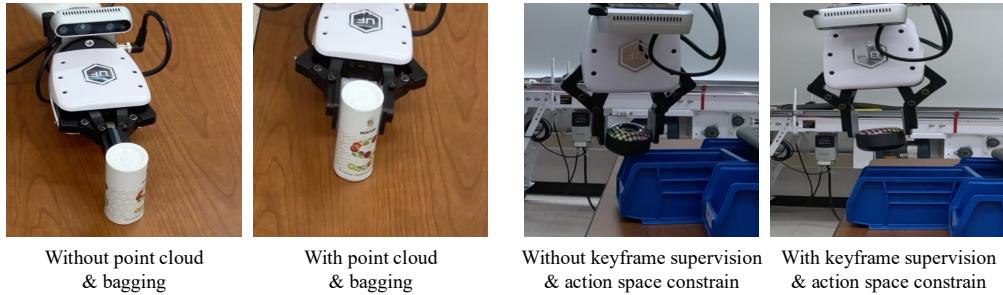
We compare our framework with two teleoperation demonstration-based methods and one video demonstration-based learning method. **Action Chunking Transformers (ACT)** Zhao et al. (2023) is a transformer-based model that learns from RGB frames and teleoperated demonstration data. **3D Diffusion Policy (DP3)** Ze et al. (2024) is a diffusion policy model that uses a point cloud encoder. **BiDP** Zhou et al. (2025) is a diffusion policy that learns from a single static video demonstration to perform dual-arm manipulation. The *Open Box* and *Pour Seasoning* tasks are evaluated using ACT and DP3 but not BiDP, as BiDP is not applicable to these tasks. The *Pull Drawer* task is evaluated using all three baselines.

The coarse-to-fine action generation framework effectively enhances action prediction capabilities (**Q1**). With the ensemble action prediction module, the coarse action prediction successfully accomplishes multi-step tasks with a longer average length, indicating greater robustness at each subtask compared to ACT, DP3, and BiDP. As shown in Table 1, the reinforcement-based action refinement effectively mitigates action drift between two consecutive ensemble predictions, guiding the end-effector accurately toward the interactive target and improving the final success rate. In all three tasks, our framework outperforms all compared baselines. In the *Pour Seasoning* task, our framework achieves a success rate exceeding 82%. We also compare our method with BiPD on a similar *Pull Drawer* task, which requires pulling out the drawer, picking up an object, and placing it back into the drawer (Table 1). Our framework demonstrates superior performance in handling each subtask and completing the overall multi-step tasks from a single egocentric video demonstration.

We further compare our proposed reinforcement fine-control method with behavior cloning control Torabi et al. (2018), and classical control Coleman et al. (2014). As shown in Table 2, behavior cloning is stable when the action sequence is complex but highly imitable, achieving competitive results. However, it generalizes poorly when the scene varies; in the more variable Pour Seasoning task its success rate drops to 0.75, trailing both the feedback controller and our method. The feedback controller can exploit visual-spatial cues more accurately and is relatively tolerant to scene changes, but it accumulates trajectory bias during imitation—reflected in lower success and shorter average completion length. In contrast, our SAC consistently achieves the best overall performance: the highest success rates across all three tasks, and the longest average completion lengths. From Table 2, the classical control baselines show a sharp drop in success on the open-case (open-and-pull) and pull-drawer tasks. Both are contact-rich and require fine end-effector adjustments on end effector, which is difficult for the classical control on robot. Behavior cloning often drifts in the terminal phase (e.g., approach angle predicted in the grab task), reducing reliability, whereas our approach remains robust across these variations. These results indicate that starting from demonstrations and then improving the policy with reinforcement learning enables SAC to master complex action chains and generalize better to scene variation, mitigating behavior cloning’s covariate-shift issues and outperforming the geometric alignment ability of the feedback controller.

432	Point	Cloud	Bagging	Key	frames	Action	Space	Reach	Pull	Leave	Grab	Place	Ave.	Succ.
433													Len.	Rate
434	X	X	X	X				36	23	22	18	9	2.70	0.225
435	✓	X	X	X				38	26	22	15	13	2.85	0.325
436	✓	✓	X	X				40	28	25	23	19	3.375	0.475
437	✓	✓	✓	X				40	31	29	26	22	3.70	0.550
438	✓	✓	✓	✓				40	32	32	27	23	3.85	0.575

439
440 Table 3: Ablation study showing the effect of point cloud, bagging, keyframe supervision, and action
441 space constraint. ✓: enabled, X: disabled.



453 Figure 4: Qualitative results for ablation study on proposed module. The proposed modules generate
454 action predictions that better adapt to the environment.

455
456 We also conduct an ablation study to evaluate the contributions of each component in our frame-
457 work, demonstrating their effectiveness in improving robot manipulation performance (Q2, Q3).
458 As shown in Table 3, *Point Cloud* refers to using point cloud data as input to the diffusion policy.
459 *Bagging* indicates the coarse action combination based on contrastive morphology bagging. *Key*
460 *Frames* represents whether the relative distance between hand motion and the object is used to de-
461 termine the gripper status. *Action Space* denotes whether action space constraints are applied during
462 reinforcement-based fine control. The results show that the bagging, 3D hand motion extraction,
463 and reinforcement learning-based action refinement significantly improve both the average number
464 of completed subtasks and the final success rate.

465 We also provide some qualitative results in the ablation study. In the seasoning-pouring task (Figure
466 4), with point-cloud and bagging assistance, the gripper securely grasps the salt bottle; without
467 these modules, it fails to maintain a stable grasp due to the lack of morphological cues. As shown in
468 Figure 4, with the keyframe supervision and action space constrain, the robot can move to a better
469 pose to place the wheel in the drawer. The keyframe supervision and action space constrain helps
470 hanging the wheel above the drawer. This allows the robot to decrease the risk of place the wheel
471 outside the drawer.

473 6 CONCLUSION

474
475 In this work, we propose a novel coarse-to-fine action generation framework that enables robots
476 to learn manipulation skills from a single egocentric video demonstration. By integrating 3D hand
477 motion extraction, an ensemble-based diffusion policy for coarse action prediction, and a reinforce-
478 ment learning-based action refinement, our method effectively addresses the challenges posed by
479 egocentric viewpoints and one-shot learning. Extensive evaluations on three real-world multi-step
480 tasks demonstrate that our approach significantly outperforms state-of-the-art baselines in both task
481 success rate and robustness. Additionally, the ablation study confirms the importance of each com-
482 ponent in improving performance. The proposed modules show better performance in handling ma-
483 nipulation details by fully using the additional information provided in the egocentric video demon-
484 stration. Our framework opens up new possibilities for scalable and efficient robot learning from
485 unstructured, first-person video data, making it well-suited for practical deployment in real-world
environments.

486 REFERENCES
487

- 488 Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B Tenenbaum, Tommi S Jaakkola, and Pulkit Agrawal.
489 Is conditional generative modeling all you need for decision making? In *The Eleventh Interna-*
490 *tional Conference on Learning Representations*, 2023.
- 491 Arpit Bahety, Priyanka Mandikal, Ben Abbate, and Roberto Martín-Martín. Screwmimic:
492 Bimanual imitation from human videos with screw space projection. In *RSS 2024 Workshop on*
493 *Geometric and Algebraic Structure in Robot Learning*, 2024.
- 494 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
495 contrastive learning of visual representations. In *International conference on machine learning*,
496 pp. 1597–1607. PMLR, 2020.
- 497 Yuanpei Chen, Chen Wang, Yaodong Yang, and Karen Liu. Object-centric dexterous manipulation
498 from human motion data. In *8th Annual Conference on Robot Learning*, 2024.
- 499 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
500 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The Interna-*
501 *tional Journal of Robotics Research*, pp. 02783649241273668, 2023.
- 502 David T Coleman, Ioan A Sucan, Sachin Chitta, and Nikolaus Correll. Reducing the barrier to entry
503 of complex robotic software: a moveit! case study. *JOURNAL OF SOFTWARE ENGINEERING*
504 *IN ROBOTICS*, 5(1):3–16, 2014.
- 505 Xiwen Dengxiong, Xuetong Wang, Shi Bai, and Yunbo Zhang. Self-supervised 6-dof robot grasp-
506 ing by demonstration via augmented reality teleoperation system. In *2024 IEEE International*
507 *Conference on Robotics and Automation (ICRA)*, pp. 7819–7826. IEEE, 2024.
- 508 Zicong Fan, Omid Taheri, Dimitrios Tzionas, Muhammed Kocabas, Manuel Kaufmann, Michael J
509 Black, and Otmar Hilliges. Arctic: A dataset for dexterous bimanual hand-object manipulation.
510 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
511 12943–12954, 2023.
- 512 Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer, and Ponnuthurai N
513 Suganthan. Ensemble deep learning: A review. *Engineering Applications of Artificial Intelli-*
514 *gence*, 115:105151, 2022.
- 515 Jianfeng Gao, Xiaoshu Jin, Franziska Krebs, Noémie Jaquier, and Tamim Asfour. Bi-kvil:
516 Keypoints-based visual imitation learning of bimanual manipulation tasks. In *2024 IEEE Inter-*
517 *national Conference on Robotics and Automation (ICRA)*, pp. 16850–16857. IEEE, 2024.
- 518 Theophile Gervet, Zhou Xian, Nikolaos Gkanatsios, and Katerina Fragkiadaki. Act3d: Infinite res-
519 olution action detection transformer for robotic manipulation. *arXiv preprint arXiv:2306.17817*,
520 1(3), 2023.
- 521 Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
522 har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world in
523 3,000 hours of egocentric video. In *Proceedings of the IEEE/CVF conference on computer vision*
524 *and pattern recognition*, pp. 18995–19012, 2022.
- 525 Kristen Grauman, Andrew Westbury, Lorenzo Torresani, Kris Kitani, Jitendra Malik, Triantafyllos
526 Afouras, Kumar Ashutosh, Vijay Baiyya, Siddhant Bansal, Bikram Boote, et al. Ego-exo4d:
527 Understanding skilled human activity from first-and third-person perspectives. In *Proceedings of*
528 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19383–19400, 2024.
- 529 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
530 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-*
531 *ence on machine learning*, pp. 1861–1870. Pmlr, 2018.
- 532 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
533 *neural information processing systems*, 33:6840–6851, 2020.

- 540 Yuanchen Ju, Kaizhe Hu, Guowei Zhang, Gu Zhang, Mingrun Jiang, and Huazhe Xu. Robo-abc:
 541 Affordance generalization beyond categories via semantic correspondence for robot manipulation.
 542 In *European Conference on Computer Vision*, pp. 222–239. Springer, 2024.
- 543
- 544 Simar Kareer, Dhruv Patel, Ryan Punamiya, Pranay Mathur, Shuo Cheng, Chen Wang, Judy Hoffman,
 545 and Danfei Xu. Egomimic: Scaling imitation learning via egocentric video. In *CoRL
 546 Workshop on Learning Robot Fine and Dexterous Manipulation: Perception and Control*, 2024.
- 547 Justin Kerr, Chung Min Kim, Mingxuan Wu, Brent Yi, Qianqian Wang, Ken Goldberg, and Angjoo
 548 Kanazawa. Robot see robot do: Imitating articulated object manipulation with monocular 4d
 549 reconstruction. In *8th Annual Conference on Robot Learning*, 2024.
- 550 Jinhan Li, Yifeng Zhu, Yuqi Xie, Zhenyu Jiang, Mingyo Seo, Georgios Pavlakos, and Yuke Zhu.
 551 Okami: Teaching humanoid robots manipulation skills through single video imitation. In *8th
 552 Annual Conference on Robot Learning*, 2024.
- 553
- 554 Shaowei Liu, Subarna Tripathi, Somdeb Majumdar, and Xiaolong Wang. Joint hand motion and
 555 interaction hotspots prediction from egocentric videos. In *Proceedings of the IEEE/CVF Confer-
 556 ence on Computer Vision and Pattern Recognition*, pp. 3282–3292, 2022.
- 557 Tyler Ga Wei Lum, Olivia Y Lee, C Karen Liu, and Jeannette Bohg. Crossing the human-
 558 robot embodiment gap with sim-to-real rl using one human demonstration. *arXiv preprint
 559 arXiv:2504.12609*, 2025.
- 560 Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
 561 Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
 562 human demonstrations. *arXiv preprint arXiv:2310.17596*, 2023.
- 563
- 564 Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
 565 language-conditioned policy learning for long-horizon robot manipulation tasks. *IEEE Robotics
 566 and Automation Letters*, 7(3):7327–7334, 2022.
- 567 Tim Pearce, Tabish Rashid, Anssi Kanervisto, David Bignell, Mingfei Sun, Raluca Georgescu, Ser-
 568 gio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating human
 569 behaviour with diffusion models. In *Deep Reinforcement Learning Workshop NeurIPS*, 2022.
- 570
- 571 Rolandos Alexandros Potamias, Jinglei Zhang, Jiankang Deng, and Stefanos Zafeiriou. Wilor: End-
 572 to-end 3d hand localization and reconstruction in-the-wild, 2024.
- 573 Lior Rokach. Ensemble-based classifiers. *Artificial intelligence review*, 33:1–39, 2010.
- 574
- 575 Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands: Modeling and capturing
 576 hands and bodies together. *ACM Transactions on Graphics, (Proc. SIGGRAPH Asia)*, 36(6),
 577 November 2017.
- 578
- 579 Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-actor: A multi-task transformer for
 580 robotic manipulation. In *Conference on Robot Learning*, pp. 785–799. PMLR, 2023.
- 581
- 582 Kaustubh Sridhar, Souradeep Dutta, Dinesh Jayaraman, James Weimer, and Insup Lee. Memory-
 583 consistent neural networks for imitation learning. In *The Twelfth International Conference on
 584 Learning Representations*, 2024.
- 585
- 586 Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In *Proceedings
 587 of the 27th International Joint Conference on Artificial Intelligence*, pp. 4950–4957, 2018.
- 588
- 589 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 590 class for offline reinforcement learning. In *The Eleventh International Conference on Learning
 591 Representations*, 2023.
- 592
- 593 Chuan Wen, Xingyu Lin, John So, Kai Chen, Qi Dou, Yang Gao, and Pieter Abbeel. Any-point
 594 trajectory modeling for policy learning. *arXiv preprint arXiv:2401.00025*, 2023.
- 595
- 596 Gangwei Xu, Xianqi Wang, Xiaohuan Ding, and Xin Yang. Iterative geometry encoding volume
 597 for stereo matching. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 598 recognition*, pp. 21919–21928, 2023.

- 594 Jingyun Yang, Congyue Deng, Jimmy Wu, Rika Antonova, Leonidas Guibas, and Jeannette Bohg.
595 Equivact: Sim (3)-equivariant visuomotor policies beyond rigid object manipulation. In 2024
596 *IEEE international conference on robotics and automation (ICRA)*, pp. 9249–9255. IEEE, 2024.
597
- 598 Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
599 policy: Generalizable visuomotor policy learning via simple 3d representations. In *2nd Workshop*
600 *on Dexterous Manipulation: Design, Perception and Control (RSS)*, 2024.
- 601 Chuye Zhang, Xiaoxiong Zhang, Wei Pan, Linfang Zheng, and Wei Zhang. Generative visual
602 foresight meets task-agnostic pose estimation in robotic table-top manipulation. *arXiv preprint*
603 *arXiv:2509.00361*, 2025.
- 604 Fan Zhang and Michael Gienger. Affordance-based robot manipulation with flow matching. *arXiv*
605 *preprint arXiv:2409.01083*, 2024.
- 606
- 607 Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
608 manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.
- 609
- 610 Huayi Zhou, Ruixiang Wang, Yunxin Tai, Yueci Deng, Guiliang Liu, and Kui Jia. You only teach
611 once: Learn one-shot bimanual robotic manipulation from video demonstrations. *arXiv preprint*
612 *arXiv:2501.14208*, 2025.
- 613
- 614
- 615
- 616
- 617
- 618
- 619
- 620
- 621
- 622
- 623
- 624
- 625
- 626
- 627
- 628
- 629
- 630
- 631
- 632
- 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648
649

A APPENDIX

650
651
652
653
654
655
656

Problem Definition The demonstrations are captured as egocentric videos with a non-static camera perspective that naturally follows the user’s hand during manipulation. The task we define is a one-shot learning task, as our setting provides only a single real demonstration per test task, and the experimental task is not identical to the pretraining data. Since the dynamic viewpoint may not consistently capture both the hand and the object in every frame, our framework models the hand’s motion trajectory as the primary signal, using object observations as reference cues only when they are visible.

657
658
659
660
661
662

Simulation Data To equip our policy with basic manipulation primitives, we pre-train it on simulated pick-and-place trajectories derived from common daily activities. These include reaching, grasping, and placing a variety of simple objects (e.g., controllers, boxes) in MuJoCo, without any particular selection to closely match the testing tasks. The simulated trajectories provide diverse motion examples that can be reused across tasks, effectively bootstrapping the policy prior to fine-tuning on the single available real-world demonstration.

663
664
665
666
667
668
669
670
671
672
673
674
675
676

Object and Morphology Comparison For each task we first segment the “interactive region” in the wrist-camera RGB-D stream, for example, the box and its contents in the “open box” task, by generating a binary mask of pixels corresponding to the object(s) of interest. Segmentation results assist the model to focus on the interactive object in the RGB image and the depth map. We then extract two parallel feature streams: (1) RGB branch: a standard 3-channel ResNet backbone (2) Depth branch: a single-channel ResNet backbone. Their outputs are concatenated and passed through a lightweight fusion layer that learns per-modality weights. The resulting fused feature vector encodes the object’s morphology, which we use to compare against each policy’s reference morphology during ensemble-weight computation. We estimate the hand–object distance directly in the camera coordinate frame by projecting both the segmented hand and object point clouds from the same RGB-D image using the camera’s intrinsic parameters. Because the hand and object are observed under identical lighting and viewpoint, this relative distance remains consistent and reliable. We extract “key frames” from the egocentric video only when the entire hand is fully visible, and we segment both the hand and object using the Segment Anything Model (SAM) to ensure precise mask generation before computing their spatial relationship.

677
678
679
680
681
682
683
684
685
686

Ensemble Weight At every coarse-level decision step, we update the ensemble weights by measuring the similarity between the current object morphology and each policy’s stored morphology prototype. The policy’s stored morphology prototype is collected from the one-shot egocentric video demonstration. 1. Observation: The wrist camera provides an RGB image and a depth map. 2. Feature extraction and fusion: As described above, these inputs are processed to yield a morphology embedding f . 3. Similarity: We compute the cosine similarity between the policy’s stored object feature f_p and the observed object feature f_o , obtained after projection from the raw input. 4. Normalization: We apply a softmax over these cosine scores to produce positive, sum-to-one weights $\{w_i\}$. These weights are recomputed at each coarse-level step based on the latest observation, allowing the ensemble to dynamically adapt to changes in object appearance and pose.

687
688
689
690
691
692
693
694
695
696

RL Details The fine-level control will apply after determine the ensemble weights. The frequency ratio between coarse-level control (Ensemble Action Prediction) and fine-level control (Reinforcement Action Refinement) is 1:10. We define the reward r_t as: $r_t = -\alpha \|p_t - p_{\text{target}}\|_2 + k \mathbf{1}(\Delta\theta_t \leq \theta_{\max}) + \beta \mathbf{1}(d_m \leq d_c \wedge \Delta\theta_t \leq \theta_{\max}) - \delta \mathbf{1}(\Delta\theta_t > \theta_{\max})$, where the function represents the distance reward and the action space reward for fine-level control. The coefficient α, k, β, δ can adjust the reward. The robot gets a higher reward when end-effector p_t is close to the target position p_{target} . The action space reward is based on the direction of the next position and the moving distance d_m of each step. The moving distance threshold of each step is d_c , and the direction angle threshold is θ_{\max} . The robot is encouraged to move forward in the action space aligned with the coarse-level direction and receives a smaller penalty when the end-effector is closer to the target.

697
698
699
700

Baseline Comparison The pull-drawer task in our setup closely mirrors the drawer-opening behavior used in BiDP, whereas the other two tasks involve actions that differ substantially from those in BiDP. To ensure a fair comparison, all baseline methods were trained exclusively on the demonstrations recorded for this study.