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Abstract
Operator learning for time-dependent partial
differential equations (PDEs) has seen rapid
progress, enabling efficient modeling of complex
spatiotemporal dynamics. However, most exist-
ing approaches use fixed time step sizes during
rollout, limiting their ability to adapt to varying
temporal complexity and leading to error accumu-
lation. We introduce COAST (Causal Operator
with Adaptive Solver Transformer), a novel op-
erator learning framework that integrates causal
attention with adaptive time stepping. COAST
jointly predicts the next step size and the corre-
sponding future system state. The learned step
sizes dynamically adapt both across and within
trajectories—assigning smaller step sizes to re-
gions with rapidly changing dynamics and larger
steps to smoother transitions. We evaluate the
COAST across a range of dynamical systems,
which consistently outperforms state-of-the-art
methods in both accuracy and efficiency, demon-
strating the potential of causal transformers for
adaptive operator learning in time-dependent sys-
tems.

1. Introduction
Partial differential equations (PDEs) underpin a vast spec-
trum of scientific models, from fluid mechanics to quantum
physics (Evans, 1998). Classical numerical schemes—finite
differences, finite volumes, and finite elements—form the
bedrock of scientific computing (LeVeque, 2007), yet they
struggle when confronted with multi-scale phenomena, ir-
regular geometries, or stringent real-time constraints. Adap-
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tive solvers have emerged as a powerful solution, dynam-
ically adjusting spatial and temporal discretization based
on local error estimates (Rannacher, 2003). These methods
significantly improve computational efficiency by concen-
trating computational resources where needed most. How-
ever, they face inherent limitations: high computational
overhead for frequent refinement, careful parameter tuning
requirements, and challenges with stiff problems (Hairer
et al., 1993).

Recent advances in operator learning have opened new av-
enues for PDE solving (Li et al., 2020a). Instead of tra-
ditional numerical approximations, these approaches learn
mappings between function spaces, enabling rapid solution
prediction for entire families of PDEs. Several architectures
have demonstrated remarkable success: Fourier Neural Op-
erators (FNO) leverage the spectral domain for efficient
learning (Li et al., 2020a), DeepONet employs the universal
approximation theorem for operators (Lu et al., 2021), and
transformer-based models like Oformer (Li et al., 2022),
DPOT (Hao et al., 2024a), CViT (Wang et al., 2024b), Tran-
solver (Wu et al., 2024a) adapt attention mechanisms for
PDE solving. These methods have achieved impressive
results across various applications, from fluid dynamics (Az-
izzadenesheli et al., 2024), solid mechanics (Wang et al.,
2024a), to heat transfer (Roy et al., 2024), often leading to
reasonable accuracy and great computational efficiency.

Despite these advances, current machine learning ap-
proaches for PDE solving face a significant limitation: they
typically operate with fixed time steps. This constraint be-
comes particularly problematic when dealing with problems
exhibiting multiple time scales or rapid temporal variations.
To address this limitation, we design Causal Operator with
Adaptive Solver Transformer (COAST) as shown in Fig-
ure 1, which dynamically adjusts temporal resolution. Our
contributions are:

• Causal Operator with Adaptive Solver Transformer
(COAST). A causal-attention transformer that jointly pre-
dicts physical states and adaptive time steps, enabling
efficient continuous-time inference through interpolation.

• State-of-the-art performance. COAST outperforms
prior operator learning models in accuracy and efficiency

1



COAST: Intelligent Time-Adaptive Neural Operators

Figure 1. Overview of the COAST framework for continuous operator learning. COAST is an intelligent, time-adaptive neural
operator that predicts both the system’s future evolution and the optimal time step. It takes historical frames (. . . , uj−2, uj−1, uj) as
input and predicts the next state u′

t and adaptive step size dt. Intermediate frames (uj+1, uj+2, . . .) are reconstructed via interpolation to
align with ground truth samples (GTj+1, GTj+2, . . .). By adaptively selecting time steps, COAST achieves continuous-time prediction
with fewer function calls while preserving accuracy. A complete schematic of model architecture can be found in Appendix Figure 9.

across challenging PDE benchmarks.

• Interpretable adaptivity. Learned step sizes correlate
with dynamical complexity, revealing the causal-attention
model’s ability to reason about physics.

2. Method
Conventional operator learning methods use uniform time
discretization, which fails to adapt to the uneven temporal
complexity inherent in many physical systems. This ineffi-
ciency leads to unnecessary computations during periods of
gradual change and insufficient resolution during rapid tran-
sitions. To overcome these limitations, we propose Causal
Operator with Adaptive Solver Transformer (COAST), a
framework that enables temporally continuous prediction
with adaptive time stepping informed by the underlying
dynamics.

Given spatial fields at arbitrary times, COAST: (a) encodes
frames with a spatio-temporal encoder, (b) processes tokens
through a causal transformer, (c) infers an adaptive step size
dt and modifies embedding, and (d) decodes to the next
spatial state, permitting interpolation in [0, dt].

2.1. Architecture

Spatio-Temporal Encoder. Following the neural operator
paradigm (Kovachki et al., 2024), we first discretize the
continuous field u on a spatio-temporal grid, resulting in an
input tensor uin ∈ RT×H×W×D. This tensor represents an
ordered sequence of T spatial frames Si ∈ RH×W×D, each
containing D physical channels.

The COAST encoder processes the spatio-temporal input

tensor uin. It also takes a corresponding sequence of relative
timestamps Tseq ∈ RT . When input frames are evenly
spaced, Tseq can be omitted since it is implicitly defined.

We define the most recent frame ST to be at t = 0, such
that u(0) = ST . Each spatial frame is independently tok-
enized using a CNN with overlapping kernels, resulting in
patchified inputs up ∈ RT×H

P ×W
P ×C , where P is the patch

size and C is the embedding dimension.

We add learnable 2D spatial positional embeddings PEs

and modulate each frame using FiLM Layer ((Perez et al.,
2017), implementation details in Appendix B.2) to embed
its corresponding temporal information:

us = up +PEs, PEs ∈ R1×H
P ×W

P ×C ;

ust = FiLM(Tseq,us).

Causal Transformer Processor. We use a causal attention
Transformer block to estimate the future state at the next
time step. The processor has an embedding size of C. The
input ust is reshaped to R(

H
P ·WP )×T×C , where each spatial

patch is treated as a temporal sequence of length T .

These sequences are processed by the Transformer block.
To obtain the latent representation of the future state at
the next time step, we extract the final token from each
sequence output by the Transformer block, yielding z ∈
R(

H
P ·WP )×1×C . Here, zk denotes the element corresponding

to the k-th spatial patch, representing the predicted state of
that patch at the next time step.

Interpret-Modify Mechanism. This module serves two
complementary purposes: (i) it infers an adaptive prediction
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time step dt, and (ii) it conditions the latent tokens z on this
value. For the time step size, we apply a lightweight MLP
to each token in the latent representation z and average the
resulting scalars to obtain a global inferred time step dt:

dt =
1

|z|
∑
k

MLP(zk).

To avoid a degenerate estimate of the step size, we constrain
dt with upper and lower bounds and introduce a regular-
ization loss term penalizing overly small values. We use a
piecewise power-exponential function as our regularization
loss term:

Ldt =

{
(1 + ε− dt)m, dt ≤ 1 + ε,

0, dt > 1 + ε,

with 0 < ε < 1 and m ≥ 1. A detailed ablation study of
the hyper-parameters m and ε is provided in Section 4.6.

We then modify each token in z via a FiLM conditioning
(see Appendix B.2) on dt and reshape them back to the
spatial grid:

z = FiLM(dt, z) ∈ R
H
P ×W

P ×1×C .

Interpolation Decoder. To reconstruct the predicted state
ũ(dt) ∈ RH×W×D from its latent representation z, we em-
ploy a Transposed-CNN decoder with overlapping kernels:

ũ(dt) = TransCNN(z).

For prediction at any time point t ∈ [0, dt], COAST com-
putes ũ(t) ∈ RH×W×D via linear interpolation between
u(0) and the decoder output ũ(dt):

ũ(t) = u(0) +
t

dt
(ũ(dt)− u(0)).

This interpolation yields temporally continuous predictions
within the interval [0, dt] without re-executing the network.
For horizons beyond dt, COAST operates autoregressively,
concatenating the input with previously predicted states and
rerunning the model with the new sequence.

2.2. Detailed Explanations

Causal Attention & Decoder. Causal attention Sec-
tion 2.1 prevents future information leakage, aligning infor-
mation flow with physical time. This enhances temporal
reasoning and step-size reliability. The decoder Section 2.1
uses final tokens that aggregate full-sequence context via
causal attention, ensuring dt reflects global dynamics.

Patch Continuity. Spatial continuity is preserved via over-
lapping kernels in the encoder/decoder CNNs, mitigating
boundary artifacts.

3. Related Work
Neural Operators. Neural operators aim to learn map-
pings between infinite-dimensional function spaces and have
emerged as powerful data-driven surrogates for solving par-
tial differential equations (PDEs). Foundational architec-
tures such as DeepONet (Lu et al., 2021) and the Fourier
Neural Operator (Li et al., 2020a) (FNO) introduced end-
to-end frameworks for approximating nonlinear operators,
inspiring a series of architectural extensions. Variants includ-
ing GNO (Li et al., 2020b), UNO (Rahman et al., 2023), and
AFNO (Guibas et al., 2022) have enhanced this paradigm
by improving expressivity, scalability, and generalization
across diverse PDE types. Transformer-based neural op-
erators—such as GK-Transformer (Cao, 2021), OFormer
(Li et al., 2023b), and CViT (Wang et al., 2025)—further
advance this line of work by leveraging self-attention to
capture global dependencies and long-range spatiotemporal
dynamics more effectively.

To address PDEs defined on irregular domains or complex
geometries, models like Transolver (Wu et al., 2024b), UPT
(Alkin et al., 2025), and GINO (Li et al., 2023a) incorporate
geometric priors or mesh-based representations. In parallel,
foundation models for PDEs—such as DPOT (Hao et al.,
2024a), Poseidon (Herde et al., 2024), MPP (McCabe et al.,
2024), and PDEformer (Ye et al., 2025)—seek to generalize
across a wide range of operators and boundary conditions
via large-scale pretraining. Another complementary direc-
tion integrates physics-based inductive biases into operator
learning: hybrid methods like PI-DeepONet (Wang et al.,
2021) and PINO (Li et al., 2023c) embed governing phys-
ical laws through physics-informed objectives, leading to
improved accuracy and data efficiency in low-data or extrap-
olative regimes.

Transformers as Neural Operators. The distinction of
neural operators lies in learning mappings between infinite-
dimensional function spaces. As defined in (Kovachki et al.,
2024), neural operators approximate operators through com-
positions of integral kernels and nonlinear activations.

Paper (Kovachki et al., 2024) shows that transformers are
special cases of neural operator. COAST aligns with this
framework:

• Function space setting: While inputs/outputs are dis-
cretized as tensors RH×W×D for numerical implementa-
tion, the model inherently learns a continuous operator.
The tensor represents functions analogous to FNOs that
discretize functions on grids but maintain resolution in-
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variance.

• Operator structure: The self-attention mechanism im-
plicitly parameterizes integral kernels. Each attention
head computes a kernel κ(x, y) over coordinates, akin
to the integral operators in neural operators Kv(x) =∫
κ(x, y)v(y)dy. Nonlinear activations and residual con-

nections further mirror the neural operator’s iterative ker-
nel integrations.

• Discretization invariance: The model’s position encoding
and attention are coordinate-based, enabling evaluation at
arbitrary resolutions, a hallmark of neural operator.

Thus, COAST satisfies neural operator criteria (Kovachki
et al., 2024); its tensor output is a discretization for practi-
cality, not a conceptual limit.

COAST vs. Traditional Adaptive Solvers. At first
glance COAST mimics an adaptive time-stepping scheme,
yet the two paradigms diverge fundamentally. So the com-
parison between operator learning models (i.e., COAST)
and adaptive solvers is fundamentally misaligned:

• Resolution & efficiency. Traditional solvers such as
RK45 target strict local-error tolerances, often forcing
∆t≈10−3–10−5 for stiff PDEs and thus > 103 steps for
modest horizons. Neural operators learn coarse-to-fine
mappings with much larger ∆t (10−2–10−1) (Li et al.,
2020a), yielding 102–103× fewer evaluations. Direct
comparison ignores this inherent efficiency gap (Krish-
napriyan et al., 2021).

• Error Accumulation: Adaptive solvers minimise local
truncation error but still accrue global error over long roll-
outs. Sequence-to-sequence training lets operator learners
optimise the multi-step error directly, reporting 3–5×
lower ℓ2 error at T = 10 (Brandstetter et al., 2023). This
aligns with COAST’s focus on PDE surrogate modeling,
not local step-wise precision.

• Baseline Alignment: COAST is evaluated under the stan-
dard neural-operator protocol (FNO (Li et al., 2020a),
DeepONet (Lu et al., 2021)), where advances are most
meaningfully measured. Comparing to high-fidelity adap-
tive solvers would parallel comparing symbolic surrogates
to finite-element solvers—a mismatch well argued in (Kr-
ishnapriyan et al., 2021; Brunton et al., 2020).

In short, COAST targets fast, accurate surrogate modelling,
not drop-in replacement of high-order solvers; the learned
adaptivity simply narrows the gap between data-driven sur-
rogates and physics-driven integrators.

4. Experiments
We benchmark COAST on four demanding PDE datasets,
compare it with state-of-the-art neural operators and strong
computer-vision surrogates, and analyse its error accumu-
lation, inference efficiency, adaptive step-size behaviour,
scalability, and ablation studies.

Datasets. All experiments use the The-Well collection
(Ohana et al., 2024), which provides high-resolution rollouts
for:

• Active matter (AM) (Maddu et al., 2024): Active mat-
ter systems, composed of energy-transforming agents
that generate orientation-dependent viscosity and transmit
forces, exhibit complex nonlinear spatiotemporal dynam-
ics in viscous fluids.

• Turbulent radiative layers (TR) (Fielding et al., 2020):
Turbulent mixing between cold dense gas clumps and
hot ambient gas generates rapidly cooling intermediate-
temperature regions, where the competition between radia-
tive energy loss and turbulent velocity fields nonlinearly
regulates cold phase growth or dissolution.

• Viscoelastic fluids (VF) (Beneitez et al., 2024): viscoelas-
tic FENE-P fluid flow in wall-bounded geometries, resolv-
ing coupled Navier-Stokes and nonlinear conformation
tensor dynamics to study multiscale elasto-inertial phe-
nomena.

• Rayleigh–Bénard convection (RB) at five Rayleigh num-
bers Ra ∈ {106, 107, 108, 109, 1010}(Burns et al., 2020):
A buoyancy-driven turbulent flow arising from thermally
induced density gradients in fluid layers bounded by con-
trasting thermal boundary conditions, exhibits nonlinear
multiscale transport phenomena critical to geophysical,
astrophysical, and engineered systems.

The full details on the underlying equations, dataset gen-
eration and problem setup for each case are provided in
Appendix B.6.

Training and evaluation. All models receive input data
uin ∈ RT×H×W×D with T = 4 history time steps, and
predict sequences upred ∈ RT ′×H×W×D for the next T ′

time steps. During training, we use single-step prediction,
comparing upred with the ground truth utrue by minimiz-
ing MSE loss across predicted frames. For COAST, the
additional Ldt for regularizing dt is also included. For eval-
uation, following standard practice (Li et al., 2021), we
perform autoregressive rollouts with T ′ = 8 and report
VRMSE (Variance Scaled Root Mean Squared Error, rec-
ommended in (Ohana et al., 2024)) between upred and utrue.
Full details of the training and evaluation procedures are
provided in B.1.
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Table 1. VRMSE (lower is better) of 8-step rollouts on four benchmark PDEs (AM, TR, VF, and RB with various Rayleigh numbers Ra).
The best result in each column is bolded, and the second-best result is underlined. COAST ranks first in nearly every setting, placing
second in only one column.

MODEL AM TR VF RB
RA=1E6 RA=1E7 RA=1E8 RA=1E9 RA=1E10

FNO 1.663 0.765 0.711 0.628 0.664 0.674 0.706 0.710
DILATED RESNET 0.848 0.514 0.636 0.263 0.408 0.360 0.496 0.570
CNEXTU-NET 0.573 0.614 0.561 0.205 0.316 0.361 0.379 0.485
AVIT 0.903 0.513 0.526 0.348 0.549 0.516 0.556 0.604
DPOT 0.521 0.538 0.655 0.213 0.351 0.393 0.463 0.513
COAST (OURS) 0.376 0.441 0.334 0.117 0.228 0.278 0.404 0.386

Baselines. We benchmark COAST against leading opera-
tor learning frameworks and vision-based models adapted
for operator learning that achieve strong performance, in-
cluding Fourier Neural Operator (FNO) (Li et al., 2021),
Dilated ResNet (Stachenfeld et al., 2022), ConvNeXt U-Net
(CNextU-Net) (Liu et al., 2022), Attention Vision Trans-
former (AViT) (Du et al., 2024), and Denoising Pre-training
Operator Transformer (DPOT) (Hao et al., 2024b). We place
particular emphasis on comparing with DPOT (Hao et al.,
2024b), which has been shown to outperform prior base-
lines across a wide range of PDE benchmarks. All baseline
implementations follow the configurations recommended in
their respective papers. Implementation details are provided
in Appendix B.4.

4.1. Rollout accuracy

Table 1 presents a comprehensive comparison of our
COAST models against competitive baselines. Our pro-
posed method achieves the lowest VRMSE on nearly all
benchmarks. The best results are shown in bold and the next
best results are underlined. Additional visualizations of our
models are shown in Figure 2 and Appendix B.7.

4.2. Error accumulation

Error accumulation is a central challenge in operator learn-
ing when performing autoregressive rollout. The models
iteratively feed their predictions back as input for future
steps. Consequently, errors compound over time—early
inaccuracies propagate and amplify, degrading long-horizon
forecasts. Therefore, understanding this error propagation
mechanism is crucial for evaluating model capabilities and
explains why time-adaptive approaches outperform fixed-
step methods.

To quantify error accumulation behavior, we compare the
temporal error trajectories of models on each benchmark.
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Figure 2. Turbulent radiative layer benchmark. Representative
COAST rollout prediction of the density field, and point-wise
error against the ground truth.

Specifically, we compute the VRMSE at each rollout step
(T ′ = 8). The averaged trajectories, presented in Figure 3,
visualise the temporal evolution of error.COAST not only
achieves the lowest overall error across all benchmarks but
also exhibits the smallest cumulative growth in error. Al-
though COAST may incur slightly higher initial errors on
some tasks, it quickly stabilizes and maintains the lowest
cumulative error. These results demonstrate the superior sta-
bility of time-adaptivity in long-term predictions compared
to fixed-step alternatives and other baseline methods.

4.3. Inference time

Inference speed is another key consideration in operator
learning, especially for long rollouts. Our time-adaptive
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Figure 3. VRMSE (y-axis) at each of 8 rollout time points (x-axis) for four PDE benchmarks (AM, TR, VF, and RB). COAST (red) shows
the lowest average error across all time steps and the minimum cumulative error compared to the other baseline methods.
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Figure 4. (a) Distribution of the number of time steps taken by COAST to roll out over all benchmarks. (b) Average rollout inference time
of COAST and other baselines for the next 8 moments versus their VRMSE; bubble size indicates the number of parameters. (c) Average
inference time of COAST and other baselines at rollout lengths 8, 16, 32, and 64. Notably, in (b) COAST attains lower error (higher
accuracy) yet remains as fast as some baselines with larger errors and similar parameter counts, while in (c) COAST’s inference time
grows only modestly across longer rollouts, unlike the steeper curves for other methods.

approach leverages the adaptive time step dt to reduce the
number of prediction steps required during rollout when
r̃t > 1, potentially enhancing inference speed without sacri-
ficing accuracy. The distribution of the number of steps used
by COAST to perform rollout prediction on all benchmarks
is shown in Figure 4 (a), where the rollout length T ′ = 8.

We compared the average rollout inference time of COAST
and other baseline models over the 4 benchmarks when the
rollout length is 8. The results are presented in Figure 4 (b).
We find that COAST achieves the lowest VRMSE while
maintaining inference speeds comparable to or faster than
baselines.

A horizon of 8, however, underutilizes COAST’s adaptive
advantage. Because our interpolation scheme often pro-
duces step sizes that exceed the interpolation window, the
fraction of these “over-reaching” steps is higher in shorter
rollouts. Longer horizons, in contrast, give COAST more
opportunities to generate larger adaptive steps. To eval-
uate efficiency more thoroughly, we therefore extend the

rollout length T ′ to 16, 32, and 64, recomputing average
inference times; see Figure 4(c). COAST’s runtime grows
only mildly with the rollout length, whereas the baselines ex-
hibit markedly steeper growth. Consequently, the speed gap
between COAST and other models widens as the horizon
increases.

4.4. Adaptive step-size analysis

As shown in Figure 4 (a), COAST uses a variable time step
size, dt, which adapts dynamically across rollout steps. We
analyze how these variations relate to underlying physical
system properties and temporal evolution.

Adaptivity across system parameters. Figure 5 shows
the distributions of time step sizes given by the model when
rolling out inferences for subdatasets with different param-
eters. Here the step sizes are averaged over each rollout
trajectory. It can be seen that under the same dataset, dif-
ferent subdatasets can be distinguished according to the
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Figure 5. Violin plots of COAST’s predicted time-step distribu-
tions across different parameters in two benchmarks: (a) Active
Matter (AM) and (b) Rayleigh–Bénard convection (RB). The p-
values from a Mann-Whitney U test (indicated as ***, **, *) con-
firm that step sizes differ significantly between adjacent parameter
settings. Notably, as the parameters vary, COAST’s predicted step
sizes shift accordingly, illustrating that the model learns and adapts
its temporal resolution to the underlying dynamical complexity of
each system.

distribution of step sizes predicted by COAST.

We begin by examining how dt varies across different sub-
sets of the same dataset, each defined by different physical
parameters. These PDE parameters are significantly corre-
lated with the complexity of the system. For example, in
Active Matter (AM) benchmark, larger |α| correspond to
simpler dynamics. In contrast, in Rayleigh–Bénard Con-
vection (RB) benchmark, higher Rayleigh numbers (Ra)
indicate more complex flows. Details on parameter impacts
and complexity correlations are provided in Appendix Ap-
pendix B.6.1 and Appendix B.6.4.

As shown in Figure 5, the distribution of dt values differs sig-
nificantly between parameter regimes across all four bench-
marks. Statistical tests (Mann–Whitney U, Appendix B.3;
annotated as ***, **, *) confirm that COAST meaningfully
distinguishes between subsets based on system dynamics.
As system complexity increases, COAST predicts smaller
dt, indicating more conservative step sizes. Conversely, in
simpler regimes, larger dt reflects more confident, longer-
step predictions. These patterns suggest that COAST im-
plicitly learns to adjust its temporal resolution based on the
local complexity of the governing dynamics.

Temporal adaptivity within trajectories. We further an-
alyze COAST’s adaptive behavior across different tempo-
ral regions within the same dynamical system. We select
the initial stages of Rayleigh–Bénard convection (RB) to
perform rollouts of length T ′ = 8. In the RB system, dy-
namics evolve from initial stabilization to growing perturba-
tions, with complexity gradually increasing (visualized in
Appendix B.7).

Figure 6 shows the average dt at each time point during roll-
out. COAST gradually reduces its predicted dt as prediction

Figure 6. Average predicted time-step size from COAST across
eight rollout points in Rayleigh–Bénard convection (RB) for dif-
ferent parameter values. Each line shows how COAST adaptively
adjusts its temporal resolution over the course of the simulation.
As the predictive horizon extends and the system’s evolution be-
comes more complex, COAST gradually decreases the step size.

proceeds. As system complexity increases, COAST be-
comes more conservative to maintain accuracy. This demon-
strates that COAST not only predicts appropriate time steps
for different system types but also dynamically adjusts step
sizes during rollout. Such adaptivity enables it to balance
accuracy and efficiency, particularly in long-horizon rollouts
where system behavior evolves significantly.

4.5. Scalability

Here we verify the effect of the model’s scalability on the
Turbulent Radiative Layer (TR) benchmark.

We evaluated COAST at three parameter scales, and the
rollout validation accuracies are shown in Figure 7(a). The
corresponding hyper-parameter settings are summarised in
Table 2. Prediction accuracy positively correlates with pa-
rameter count, confirming the strong scalability of our ap-
proach.

Figure 7. (a) Convergence of test rollout errors for COAST at three
different model sizes (7 M, 20 M, and 105 M parameters). As the
model size grows, the error decreases more rapidly and converges
to a lower value. (b) Corresponding average rollout step sizes
during training. The larger, more accurate model can afford to take
fewer steps in each rollout—thus using larger time steps—while
still maintaining lower error.
A complementary trend appears in Figure 7(b): models with
fewer parameters adopt noticeably larger average time-step
sizes. Our training objective consists of two terms—a spatial
reconstruction loss, Lspatial, and a step-size regularisation
loss, Ldt, which penalises overly small steps. When a com-

7



COAST: Intelligent Time-Adaptive Neural Operators

Table 2. Details of COAST model variants

MODEL EMBEDDING DIM BLOCKS HEADS # PARAMS

COAST-S 256 8 6 7.3M
COAST-M 384 12 8 20M
COAST-L 768 12 12 105M

pact model can no longer meaningfully reduce Lspatial, it can
still decrease the total loss by enlarging the step size, thereby
lowering Ldt. This compensatory behaviour explains the
inverse correlation between parameter count and the chosen
time step.

4.6. Ablation Studies

We perform ablation studies on key structures and hyper-
parameters on benchmarks. Results are summarized in Fig-
ure 8.

Figure 8. Ablation studies for COAST. Convergence of validation
errors for: (a) two types of attention (with/without causal attention
mask); (b) two step-types (adaptive/fixed framework); (c) different
ε in Ldt; (d) different power m in Ldt. Convergence of dt in
validation for: (e) different ε in Ldt; (f) different power m in
Ldt. Results obtained using COAST with ε = 0.5 and m = 2,
varying each hyper-parameter of interest while keeping others fixed.
Figures (a-b) are obtained on the active matter (AM) benchmark
and Figures (c-f) are obtained on the viscoelastic instability fluid
(VF) benchmark.

We begin by evaluating the effect of type of attention mask
on model performance. Causal attention is key for the causal
inference. If we remove the causal mask, the model will
see information from all time steps including the “future”

within the same layer, undermining the consistency between
the direction of attention and the direction of time evolution.
Figure 8(a) shows bad performance without the causal at-
tention mask. Then we show that COAST with fixed time
step achieves higher rollout loss though dt = 1 as in Fig-
ure 8(b). This is because each prediction step accumulates
errors. Over an extended rollout, errors compound more
severely than adaptive COAST.

We investigate the impact of the regularization term Ldt,
introduced in Section 2.1 to penalize small values of dt.
Specifically, we ablate its two hyper-parameters: the thresh-
old ε and the exponent m. Figure 8(b–e) show that varying ε
and m has little effect on predictive accuracy or convergence
of dt, suggesting that COAST is robust to these choices.
Overall, these studies validate our default hyper-parameter
settings and highlight practical design considerations for
future time-adaptive operator learning models.

5. Discussion
Summary. This work introduces COAST, a new neural
operator architecture that utilizes causal attention trans-
former at its core to address the challenges of learning
complex physical systems. COAST combines the strengths
of causal attention transformer and adaptive solution meth-
ods to achieve state-of-the-art accuracy and minimal error
accumulation behavior on challenging benchmarks in en-
ergy transformation, fluid dynamics, and thermodynamic
processes. Our approach demonstrates the potential of em-
ploying advanced causal attention transformer to develop
more flexible and accurate machine learning models for the
physical sciences. Key innovations of our work include:
(a) an efficient solver on continuous time for autonomous
decision prediction step sizes, (b) a rational method for eval-
uating time-adaptive solvers, and (c) an exploration of the
deep understanding of PDE systems embodied in causal
attention transformer for operator learning.

Our empirical results in various PDE benchmark tests show
that COAST’s time-adaptive approach endows it with higher
solving efficiency in prediction over longer sequences. This
time-adaptive behavior helps to build more general solvers.
In addition, the step size distributions predicted by COAST
when confronted with different systems and states can also
be used to explore some of the more intrinsic properties of
dynamical systems. The broader impact of this work based
on COAST is that it has the potential to accelerate scien-
tific discovery by more efficiently and accurately modeling
complex physical systems over longer time horizons, with
applications ranging from energy transformation modeling
to engineering design.

Limitations & Future Work. While COAST advances
neural operator capabilities, several limitations need atten-
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tion. First, current experiments focus on systems with regu-
lar geometries and uniform grids, leaving performance on
complex geometries (e.g., fractured porous media, turbulent
multiphase flows) unexplored. Second, while the architec-
ture shows empirical stability in moderate rollout lengths, its
error propagation behavior under extended autoregressive
prediction horizons remains unexamined. Third, the current
implementation operates as a specialized solver rather than
a generalizable framework, limiting direct applicability to
PDE systems requiring coupled multi-physics modeling.

Future research should prioritize extending COAST’s frame-
work toward multimodal PDE foundation models capable
of unifying diverse physical systems under a single archi-
tecture. This could involve integrating physical constraints
via hybrid symbolic-neural frameworks that enforce various
physical laws. Another particularly promising direction lies
in coupling COAST with LLMs—such integration could
enable cross-modal reasoning where textual system de-
scriptions guide dynamics prediction, or conversely, where
learned physical representations enhance LLMs’ capacity
for quantitative scientific reasoning. We believe that address-
ing these challenges will enable the synergistic integration
of physics-informed machine learning and foundation mod-
els, paving the way for next-generation computational tools
across scientific domains.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Nomenclature
Table 3 summarizes the main symbols and notation used in this work.

Table 3. Summary of the main symbols and notations used in this work.
Notation Description

Operator Learning
u Input function (continuous field)
uin Spatio-temporal input tensor
upred Predicted output tensor
utrue Ground-truth output tensor
Si i-th spatial frames of input tensor
Tseq Sequence of relative timestamps of input tensor
T Input sequence length / Number of previous time-steps
T ′ Output sequence length / Number of rollout length

H ×W Resolution of spatial discretization
COAST

up Patchified inputs
us Patchified inputs after spatial positional embedding
ust Patchified inputs after spatial-temporal embedding
z Representation of predicted result at time point dt
zk Predicted representation of the k-th spatial patch
dt Predicted local time step / Adaptive time step size
u(t) Ground truth at time point t
ũ(t) Predicted result for time point t in [0, dt]

PEs Spatial positional embedding
FiLM(·) FiLM layer
MLP(·) Multi-Layer Perceptron network

TransCNN(·) Transposed Convolutional Neural Network
Ldt(·) Regularization loss term penalizing overly small dt values
D The number of physical channels
C Embedding dimension of Transformer Processor
P Hyper-parameter: Patch size of Spatio-Temporal Encoder

ϵ, m Hyper-parameters in Ldt(·)

B. Experimental details
B.1. Training and evaluation

Training recipe. We use a unified training recipe for all COAST experiments. We employ AdamW optimizer (Loshchilov
& Hutter, 2019) with a weight decay 10−5. Our learning rate schedule includes an initial linear warm up phase of 5 epochs,
starting from zero and gradually increasing to 5× 10−5, followed by an exponential decay at a rate of 0.9 for every 5, 000
steps. Each model in the main experiments was trained for 75, 000 optimization steps. All experiments are conducted
on a single NVIDIA A100 GPU, taking roughly 9 ∼ 12 hours, depending on the model architecture and the particular
benchmark.

The spatial loss function is an average Mean Squared Error (MSE) between the model predictions and the corresponding
targets at the predicted time steps, average over all coordinates:
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MSE =
1

B

1

T

1

D

B∑
i=1

T∑
t=1

D∑
k=1

∥ŝ(k)t,i − s
(k)
t,i ∥2,

where skt,i denotes the k-th channel of the t-th time point in the output sequence of the i-th sample in the training dataset,
evaluated at all coordinates, and ŝkt,i denotes the corresponding model prediction. All models are trained for the same
number of epochs with a equal batch size B = 4 on each benchmark.

For COAST, we add a term to the loss function to penalize comparatively small dt in the model outputs. Here we choose to
use a piecewise power-exponential function of dt as Ldt, where 0 < ε < 1 and n is the power that no less than 1:

Ldt =

{
(1 + ε− dt)m, dt ≤ 1 + ε,

0, dt > 1 + ε,

Based on our ablation study, changing the values of ϵ and n does not affect the training results. Without loss of generality,
we take ε to be 0.5 and m to be 2.

Note that during training, we will have the model output on several sequences of dynamics, thus collecting a batch of dt,
which is then averaged for Ldt’s computation and backpropagation. This method of computing the Ldt on the average of the
dt enables the diversity of dt outputs.

Evaluation. After training, we obtain the predicted trajectory by performing an auto-regressive rollout of T ′ time points
on the test dataset. All evaluation workloads (e.g., results of Inference time reported in Section 4.3 ) are executed on the
same NVIDIA A100 GPU used for training.

We evaluate model accuracy using VRMSE, following the recommendation in (Ohana et al., 2024):

VRMSE =
1

T

1

D

T∑
t=1

D∑
k=1

√√√√ ∥ŝ(k)t − s
(k)
t ∥2

∥s(k)t − s̄
(k)
t ∥2 + ϵ

.

Note that, since VRMSE(s, s̄) ≈ 1, having VRMSE > 1 indicates worse results than an accurate estimation of the spatial
mean s̄.

B.2. FiLM Layer

FiLM Layer (Feature-wise Linear Modulation layer) (Perez et al., 2017) takes as input a scalar tensor t ∈ R and a feature
vector z ∈ RC . It then computes two learnable transformations, γ(t) and β(t), both of which are derived from t. The feature
vector z is modulated as follows:

ẑ = γ(t)⊙ z + β(t).

Here, ⊙ represents element-wise multiplication.

In our Section 2.1, when applying the FiLM Layer to (Tseq,us), Tseq is a sequence of T scalar values, and us consists of T
corresponding feature tensors. Each pair (Tseq[i],us[i]) undergoes the FiLM operation in the same manner as (t, z) above.

While in our Section 2.1, when applying the FiLM Layer to (dt, z), dt is the scalar tensor, and z ∈ R(H
P ·WP )×C is composed

of (HP · W
P ) subtensors, each of size C. We perform the FiLM operation on each of these subtensors with the same dt.

This design allows a single FiLM module to handle differently shaped inputs (i.e., Tseq and us) by applying the same
feature-wise modulation process to each pair of scalar and feature tensor.

B.3. Mann-Whitney U test

The Mann-Whitney U test is a non-parametric procedure for assessing whether two independent samples originate from the
same continuous distribution without presuming normality. Given two samples of sizes n1 and n2, let R1 and R2 denote the
sums of the ranks assigned after pooling and ordering all observations. The test statistics are:
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U1 = n1n2 +
n1(n1 + 1)

2
−R1, U2 = n1n2 +

n2(n2 + 1)

2
−R2,

And one sets U = min(U1, U2). Under the null hypothesis H0 (identical distributions), the sampling distribution of U is
known exactly for small samples; for n1, n2 ≥ 20 it is well-approximated by a normal deviate:

Z =
U − µU

σU
, µU =

n1n2

2
, σU =

√
n1n2(n1 + n2 + 1)

12
,

From which a two-sided p-value is obtained. Because it relies only on ranks, the Mann-Whitney U test is robust to outliers
and suitable when sample distributions are skewed or ordinal in nature, making it ideal for the comparative analyses reported
in this study.

We therefore apply the Mann-Whitney U test in the Adaptivity Across System Parameters experiment (Section 4.4), where
ample independent trajectories satisfy the test’s asymptotic requirements. Conversely, we omit it in the Temporal Adaptivity
Within Trajectories experiment (Section 4.4), whose limited data of initial stages would yield an under-powered inference.

B.4. Model details

Figure 9. Full architecture of COAST.
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COAST. We use a patch size of 32× 32 for embedding data. The encoder consists of 3-layer convolutional neural network
(CNN) layers with padding and overlapping kernels and so do the decoders. We use a 2-layer MLP to interpret dt from
output tokens by Transformer Processor. We use two FiLM Layers in COAST, one is for embedding time series and another
is for output tokens modification using output dt. We use Gaussian Error Linear Units (GELU, (Hendrycks & Gimpel,
2023)) as activation function in the structures above. The hyper-parameters ε and m are set to 0.5 and 2 respectively.

FNO. We implement the two–dimensional Fourier Neural Operator (FNO) following (Li et al., 2021) The network consists
of an initial lifting layer, 4 spectral–convolution blocks with 128 feature channels and 16 retained Fourier modes in each
spatial dimension, followed by point-wise activations and a linear projection head.

Dilated ResNet. We adopt the Dilated ResNet which has a hidden dimension of 96 and 32 residual blocks.

CNextUNet. Our ConvNext-U-Net uses a ConvNext encoder (8 ConvNext blocks per stage, 42 initial filters) as proposed
in (Liu et al., 2022). The decoder mirrors the encoder with transposed-convolution up-sampling and skip concatenations;
GELU activations and layer scaling are retained from ConvNext.

AViT. We adopt the base Attention Vision Transformer variant from (Du et al., 2024): a vision-transformer encoder of
hidden size 768, 6 multi-head Fourier-attention layers, 12 attention heads, and 4 processor blocks, preceded by a 32×32
patchifier and learned positional embeddings.

DPOT. The Denoising Pre-training Operator Transformer (DPOT) is configured according to Hao et al. (Hao et al., 2024a).
We employ a DPOT with an AFNO as mixing type and Exp-MLP time aggregation. The patch size is 4 and blocks number
is 16. For challenging comparison, We set its embedding dimension to 1024, depth to 16 and number of attention head to 16.
The out layer of the model has a dimension of 32. The active function in it is also GELU.

Because the official DPOT checkpoints were pre-trained on a 100 k-trajectory multi-PDE corpus rather than on The-
Well(Ohana et al., 2024), we re-initialise and train DPOT from scratch to ensure a fair comparison while respecting our
compute budget. We omit larger DPOT version (> 500 M parameters) to keep training costs comparable across baselines.

B.5. Dataset and problem setup

We make use of the datasets released by The Well (Ohana et al., 2024). This dataset consists of 15T data of discretized
initial conditions on diverse types and parameter-sets.

We compare COAST’s performance against several strong baseline models as above. We use different training, validation
and testing data split(Ohana et al., 2024).

Problem setup. We modified the problem setup by The Well (Ohana et al., 2024). Our objective is to predict the future
solution within 8 timepoints from the previous 4 timepoints.

For the complex systems in The Well dataset, this rollout length is not considered short, given that our input sequence length
is 4. By comparison, in the DPOT (Hao et al., 2024a) and CViT (Wang et al., 2025) works, their input sequence length is 10,
with rollout lengths ranging from 4 to 10 in all of their main experiments.

B.6. Benchmarks

Here we present a detailed description of the benchmarks, which may include the physical settings, governing equations,
dataset specifics, and relevant parameters. The discussion also incorporates a complexity analysis of the benchmarks’
specific parameters referenced in the main text.

B.6.1. ACTIVE MATTER (AM)

This dataset comprises simulations of a continuum theory describing the dynamics of N rod-like active particles in a Stokes
fluid within a two-dimensional domain of linear size L. The data include 81 time-steps of 256×256 resolution per trajectory,
with fields such as concentration (scalar), velocity (vector), orientation tensor, and strain-rate tensor. Simulations explore
parameter variations in alignment (ζ), dipole strength (α), and other coefficients, capturing phenomena like energy transfer

15



COAST: Intelligent Time-Adaptive Neural Operators

across scales, vorticity-orientation coupling, and the isotropic-to-nematic phase transition. Periodic boundary conditions
and uniform Cartesian grids are employed, with data stored at 0.25-second intervals over a 20-second timespan. Refer to
(Maddu et al., 2024) for details on problem formulation and detailed equations.

Note that α is the dimensionless active dipole strength. Based on the original paper(Maddu et al., 2024), the greater the
absolute value of α, the faster the system approaches order/stability. It can be analogous to viscosity in the fluid problem to
some extent. So smaller |α| means higher complexity.

B.6.2. TURBULENT RADIATIVE LAYER (TR)

This dataset explores the dynamics of turbulent radiative layers in astrophysical systems, where hot and cold gases mix,
leading to the formation of intermediate-temperature gas that rapidly cools. The simulations model the Kelvin-Helmholtz
instability in a 2D domain, with cold, dense gas at the bottom and hot, dilute gas at the top. The data capture key phenomena
such as mass flux from the hot to cold phase, turbulent velocities, and the distribution of mass across temperature bins.
The dataset includes 101 timesteps of 384×128 resolution for 90 trajectories, varying the cooling time tcool across nine
values. Simulations were performed using Athena++ on a uniform Cartesian grid with periodic boundary conditions in
the x-direction and zero-gradient in the y-direction. This dataset provides insights into the phase structure, energetics, and
dynamics of multiphase gas in astrophysical environments, such as the interstellar and circumgalactic media.

∂ρ

∂t
+∇ · (ρv⃗) = 0, (1)

∂ρv⃗

∂t
+∇ · (ρv⃗v⃗ + P ) = 0, (2)

∂E

∂t
+∇ · ((E + P )v⃗) = − E

tcool
, (3)

E = P/(γ − 1) γ = 5/3, (4)

where ρ is the density, v⃗ is the 2D velocity, P is the pressure, E is the total energy, and tcool is the cooling time.

B.6.3. VISCOELASTIC FLUIDS (VF)

This dataset explores the multistability of viscoelastic fluids in a two-dimensional channel flow, capturing four distinct
attractors: the laminar state (LAM), a steady arrowhead regime (SAR), Elasto-inertial turbulence (EIT), and a chaotic
arrowhead regime (CAR). These states coexist for the same set of parameters, with their emergence dependent on initial
conditions. The dataset includes snapshots of these attractors as well as edge states, which lie on the boundary between
basins of attraction and provide insight into transitions between flow regimes. The data were generated using direct numerical
simulations of the FENE-P model, solving for velocity, pressure, and the conformation tensor fields. Key phenomena include
chaotic dynamics in EIT and CAR, as well as the multistability of the system. The dataset, comprising 260 trajectories with
512×512 resolution, is valuable for studying viscoelastic turbulence and evaluating simulators capable of capturing these
complex flow behaviors. Simulations were performed using the Dedalus framework, with parameters set to Re = 1000,
Wi = 50, β = 0.9, ϵ = 2× 10−6, and Lmax = 70.

Re(∂tu
∗ + (u∗ · ∇)u∗) +∇p∗ = β∆u∗ + (1− β)∇ ·T(C∗),

∂tC
∗ + (u∗ · ∇)C∗ +T(C∗) = C∗ · ∇u∗ + (∇u∗)T ·C∗ + ϵ∆C∗,

∇u∗ = 0,

with T(C∗) =
1

Wi
(f(tr(C∗))C∗ − I), and f(s) :=

(
1− s− 3

L2
max

)−1

,

where u∗ = (u∗, v∗) is the streamwise and wall-normal velocity components, p∗ is the pressure, C∗ is the positive definite
conformation tensor which represents the ensemble average of the product of the end-to-end vector of the polymer molecules.
In 2D, 4 components of the tensor are solved: c∗xx, c

∗
yy, c

∗
zz, c

∗
xy. T(C∗) is the polymer stress tensor given by the FENE-P

model.
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B.6.4. RAYLEIGH-BÉNARD CONVECTION (RB)

This dataset comprises simulations of two-dimensional, horizontally periodic Rayleigh-Bénard convection, capturing the
dynamics of fluid motion driven by thermal gradients. The system consists of a fluid layer heated from below and cooled
from above, leading to the formation of convective cells and complex flow patterns. The dataset includes 200 timesteps
of 512 × 128 resolution for 1,750 simulations, varying the Rayleigh number (106 to 1010), Prandtl number (0.1 to 10),
and initial buoyancy perturbations. Fields such as buoyancy (scalar), pressure (scalar), and velocity (vector) are provided,
with periodic boundary conditions horizontally and Dirichlet conditions vertically. The data, generated using the Dedalus
framework, offer insights into turbulent eddies, convection cells, and the sensitivity of flow structures to initial conditions.
This dataset is valuable for studying thermal convection phenomena and validating numerical models in fluid dynamics.

The time domain problem is formulated as:

∂b

∂t
− κ∆b = −u∇b,

∂u

∂t
− ν∆u+∇p− be⃗z = −u∇u,

with boundary conditions:

b(z = 0) = Lz , b(z = Lz) = 0,

u(z = 0) = u(z = Lz) = 0.

Note that the Rayleigh number (Ra) satisfies the relation: (viscosity) ν = ( Ra
Prandtl )

− 1
2 . It means that the greater Ra

means smaller viscosity, then the system will approach order/stability slower. So greater Ra means higher complexity.

B.7. Visualization
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Figure 10. Active Matter (AM). Representative COAST rollout prediction of all the different fields in y direction, and point-wise error
against the ground truth.
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Figure 11. Turbulent Radiative Layer (TR). Representative COAST rollout prediction of all the different fields in y direction, and point-
wise error against the ground truth.
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Figure 12. Viscoelastic Fluids (VF). Representative COAST rollout prediction of all the different fields in y direction, and point-wise error
against the ground truth.
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Figure 13. Rayleigh-Bénard Convection (RB). Representative COAST rollout prediction of all the different fields, and point-wise error
against the ground truth.
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