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ABSTRACT

Deep networks learn internal representations whose geometry—how features bend,
rotate, and evolve—affects both generalization and robustness. Existing similarity
measures such as CKA or SVCCA capture pointwise overlap between activation
sets, but miss how representations change along input paths. Two models may
appear nearly identical under these metrics yet respond very differently to perturba-
tions or adversarial stress. We introduce representation holonomy, a gauge-invariant
statistic that measures this path dependence. Conceptually, holonomy quantifies
the “twist” accumulated when features are parallel-transported around a small loop
in input space: flat representations yield zero holonomy, while nonzero values
reveal hidden curvature. Our estimator fixes gauge through global whitening, aligns
neighborhoods using shared subspaces and rotation-only Procrustes, and embeds
the result back to the full feature space. We prove invariance to orthogonal (and
affine, post-whitening) transformations, establish a linear null for affine layers, and
show that holonomy vanishes at small radii. Empirically, holonomy increases with
loop radius, separates models that appear similar under CKA, and correlates with
adversarial and corruption robustness. It also tracks training dynamics as features
form and stabilize. Together, these results position representation holonomy as a
practical and scalable diagnostic for probing the geometric structure of learned
representations beyond pointwise similarity.

1 INTRODUCTION

Modern deep networks learn internal representations whose geometry—how features orient, align,
and evolve—matters for generalization and robustness. Yet most standard diagnostics are pointwise:
they compare two activation sets on a fixed dataset using singular vector canonical correlation
analysis (SVCCA), projection-weighted CCA (PWCCA), centered kernel alignment (CKA), or
representational similarity analysis (RSA) thereby judging subspace overlap while remaining blind to
how features move as inputs are varied along natural directions (pose, illumination, texture) (Raghu
et al., 2017; Morcos et al., 2018; Kornblith et al., 2019; Kriegeskorte et al., 2008). This leaves a
practical gap: two models can appear highly similar under CKA or CCA, and still behave differently
under adversarial or corruption stress because their intermediate features rotate differently along
input paths.

We address this gap by turning alignment itself into an object of study. We view a layer’s representa-
tion as a field over input (or transformation) space and endow it with a discrete connection: between
nearby inputs we estimate a shared principal subspace and compute the optimal special-orthogonal
alignment (rotation-only Procrustes) of the two local feature clouds; composing these small rotations
around a closed loop yields a single orthogonal matrix whose deviation from identity we call repre-
sentation holonomy. Nonzero holonomy indicates path-dependent (nonintegrable) transport in the
classical sense of connections and their curvature (Ambrose and Singer, 1953). The construction
is gauge-invariant by design: global whitening fixes a sensible gauge by removing second-order
anisotropy; orthogonal reparameterizations of layers leave the statistic unchanged; restricting to a
low-rank shared subspace improves stability and cost (Schönemann, 1966; Kabsch, 1976; Kessy
et al., 2018; Björck and Golub, 1973; Davis and Kahan, 1970).

Our proposal complements two nearby lines of work rather than competing with them. First, local
equivariance tests (e.g., Lie-derivative “local equivariance error”) quantify infinitesimal sensitivity
but do not assess global path-dependence via loop composition (Lenc and Vedaldi, 2015; Gruver
et al., 2022). Second, gauge-/manifold-equivariant architectures build a connection into the model
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so that desired transports are integrable by design; we instead measure the emergent transport of
standard models, providing a diagnostic that travels with existing practice in vision architectures
(Bronstein et al., 2021; Cohen et al., 2019; Schonsheck et al., 2018; Masci et al., 2015). In downstream
terms, holonomy gives a compact, layer-wise summary of pathwise geometry that (i) is inexpensive
to compute, (ii) scales to common backbones, and (iii) adds information orthogonal to pointwise
similarity, making it a natural candidate to relate feature geometry to robustness (Hendrycks and
Dietterich, 2019).

Contributions. (1) We propose a practical estimator of representation holonomy that combines
global whitening, shared-neighbor subspaces, and rotation-only Procrustes alignment. The estimator
is explicitly gauge-invariant and stable in the small-radius limit. (2) We prove formal invariances
(orthogonal and, after whitening, affine), establish a linear null showing affine layers yield zero
holonomy, and derive a small-radius limit where holonomy vanishes linearly with loop radius.
A perturbation analysis (Procrustes + Davis–Kahan/Wedin) provides explicit finite-sample and
truncation error bounds (Schönemann, 1966; Björck and Golub, 1973; Davis and Kahan, 1970; Kessy
et al., 2018). (3) On MNIST/MLP and CIFAR-10/100 with ResNet-18, we show that holonomy (i)
increases with loop radius and depth even when CKA remains high, revealing pathwise geometry
beyond pointwise similarity; (ii) rises during training as features form and stabilizes at convergence;
and (iii) correlates with adversarial and corruption robustness across training regimes including ERM,
label smoothing, mixup, and adversarial training (Kornblith et al., 2019; Hendrycks and Dietterich,
2019).

Section 2 situates our work among similarity metrics, equivariance diagnostics, and gauge-/manifold-
equivariant architectures. Section 3 formalizes the discrete connection and holonomy estimator and
establishes invariance and small-radius results with finite-sample error bounds. Section 4 reports
controlled loops, training dynamics, robustness studies, and ablations (whitening choice, SO vs. O,
neighbor sharing, and k/q sensitivity). Section 6 summarizes limitations and implications, and we
release code and seeded configs for full reproducibility.

2 RELATED WORK

Comparing learned representations across networks and inputs is complicated by the fact that
layer activations admit many equivalent parameterizations, i.e., a gauge freedom that allows local
changes of basis without altering function. A large body of work therefore develops basis-invariant
or basis-robust comparison tools. CCA-based approaches—SVCCA and PWCCA—compare the
subspaces spanned by activations across models or training checkpoints, reducing sensitivity to
neuron permutations while still depending on preprocessing choices and data coverage (Raghu et al.,
2017; Morcos et al., 2018). Kernel-based Centered Kernel Alignment (linear and nonlinear CKA)
has emerged as a simple and reliable alternative with improved stability across architectures, layers,
and seeds, and clear links to representational similarity analysis (RSA) from systems neuroscience
(Kornblith et al., 2019; Kriegeskorte et al., 2008). Beyond scalar similarities, a complementary line
aligns entire representations by explicit linear transports: orthogonal Procrustes (and its det= +1
Kabsch variant) yields optimal rotation-only maps between paired activation matrices, while principal
angles quantify shared subspaces; classical perturbation theory (Davis–Kahan/Wedin) provides finite-
sample error control for the estimated subspaces and transports (Schönemann, 1966; Kabsch, 1976;
Björck and Golub, 1973; Davis and Kahan, 1970). Preprocessing is itself a gauge choice: statistically
principled whitening schemes such as ZCA-corr justify a fixed global gauge that removes second-
order anisotropy before any local alignment (Kessy et al., 2018). Parallel to these comparison methods,
empirical tests of (approximate) equivariance and model equivalence probe how features change
under controlled input transformations; early work proposed finite-difference tests for CNNs, and
more recent formulations use Lie derivatives to define a local equivariance error that is differential
and layer-wise (Lenc and Vedaldi, 2015; Gruver et al., 2022). Geometric deep learning places these
observations in a coordinate-free framework: data domains (e.g., manifolds) come with local frames
(gauges), and operations should be gauge-aware; gauge-equivariant CNNs make the connection (in
the differential-geometric sense) an architectural primitive, while manifold convolutions based on
parallel transport or geodesic patches move features intrinsically across space (Bronstein et al., 2021;
Cohen et al., 2019; Schonsheck et al., 2018; Masci et al., 2015). Relatedly, Riemannian approaches on
structured spaces (e.g., SPD/Grassmann) deploy intrinsic means, transports, and normalizations inside
networks, underscoring the usefulness of connection-like operations on representation manifolds
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Figure 1: Holonomy as path-dependent feature rotation. (A) A small closed loop γ =
(x0, . . . , xL−1, xL=x0) in a 2D input slice. (B) The corresponding features zi = z(xi) and their
local neighbourhoods N (zi); for each edge we estimate an orthogonal transport Ri,i+1 that best
aligns the two nearby feature clouds. (C) Composing these transports around the loop yields the
holonomy H = RL−1 · · ·R1R0, visualised as the net rotation of a reference direction by angle θ.
Holonomy is invariant to layer-wise gauge changes (global change of feature basis) and measures how
much the representation “twists” when inputs follow a loop, rather than just how similar activations
are at individual points.

(Huang and Van Gool, 2017; Brooks et al., 2019). Finally, robustness benchmarks such as ImageNet-
C/P offer downstream behavioral checks; because they include sequences of small perturbations,
they are natural testbeds for path-sensitive phenomena in representation geometry (Hendrycks and
Dietterich, 2019).

This paper adopts the geometric viewpoint but applies it as a diagnostic to standard models rather
than as an architectural constraint. We model layer-wise representations over data (or transformation)
space as sections of a vector bundle and make the alignment rule itself a connection: locally, we
estimate a shared subspace (with principled whitening as a fixed gauge) and define the transport
between nearby inputs by the optimal special-orthogonal map in that subspace; globally, we compose
these local transports around closed loops and quantify the resulting holonomy. By construction,
our measurement is invariant to per-layer orthogonal reparameterizations (gauge transforms) and
robust to admissible whitening choices, distinguishing it from scalar, path-agnostic similarities such
as CKA/RSA and from single-step Procrustes alignments (Kornblith et al., 2019; Kriegeskorte et al.,
2008; Schönemann, 1966). The Ambrose–Singer perspective links small-loop holonomy to curvature,
yielding concrete predictions that we test empirically; in particular, we show that networks can
be locally near-equivariant (small Lie-derivative error) yet exhibit nontrivial global holonomy that
correlates with stability under perturbation sequences, a phenomenon invisible to standard similarity
scores (Ambrose and Singer, 1953; Gruver et al., 2022; Hendrycks and Dietterich, 2019).

3 REPRESENTATION HOLONOMY

Intuitively, a layer’s representation assigns to each input x a feature vector z(x) ∈ Rp. If we move x
along a small closed loop γ in input space (for example by composing small transformations), the
corresponding features z(x) trace out a loop in representation space. Locally, between two nearby
points on the loop we can align their feature neighbourhoods by an orthogonal map Ri,i+1 ∈ SO(p)
that best matches the two clouds (Figure 1, panels A–B). Composing these local transports around the
entire loop yields a net rotation H = RL−1 · · ·R1R0 (panel C). If the representation were perfectly
“flat” along γ—for instance, if it were globally linear and we controlled for gauge—this product
would be the identity. Deviations of H from I therefore quantify the path dependence (curvature) of
the learned features, and are insensitive to global changes of feature basis.

At a high level, the proofs rely on three standard tools: (i) Procrustes alignment in shared low-
dimensional subspaces, (ii) matrix perturbation bounds of Davis–Kahan/Wedin type for controlling
subspace errors, and (iii) finite-sample concentration bounds for covariance and whitening operators.
We collect the technical details in Appendix S.3–S.5. At a given layer, we call a transform z(x) 7→
Qz(x) + b, with Q ∈ O(p) (after whitening) and b ∈ Rp, a gauge transformation: an input-
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independent change of basis in feature space. Two networks related by such transforms at internal
layers are representation-equivalent. Our estimator is invariant to these transformations (and, after
whitening, to general invertible affine reparameterisations), so that holonomy reflects only relative
orientation changes induced by input paths rather than arbitrary basis choices.

Let f : Rd → RC be a classifier and let z : Rd → Rp denote a fixed layer’s representation
(layer index suppressed). For inputs x ∈ X ⊂ Rd we write z(x) ∈ Rp. Given a small loop
γ = (x0, . . . , xL−1, xL=x0) in input (or transformation) space, we define a local linear transport
Ri∈SO(p) between the features at successive points and take the holonomy

H(γ) = RL−1 · · · R1 R0 ∈ SO(p), hnorm(γ) =
∥H(γ)− I∥F

2
√
p

∈ [0, 1], (1)

reporting also the eigen–angle multiset {θj}pj=1 of H(γ) (eigenvalues eiθj on the unit circle). Con-
ceptually, if z is C2 then first-order linearization suggests Ri = I + Oc(∥xi+1−xi∥), hence
H(γ) = I +Oc(length(γ)).

Estimator (used in practice). We pool a set N of examples, compute features Z={z(x)}x∈N ,
their mean µ and covariance Σ, and fix a global gauge by whitening z̃(x) = Σ−1/2(z(x) − µ)
(ZCA-corr; any fixed symmetric square root suffices) (Kessy et al., 2018). For an edge (xi, xi+1),
let mi = 1

2 (z̃(xi) + z̃(xi+1)) and choose a shared index set Ii of size k as the k-NN of mi in
the whitened pool. On these same rows we compute a shared soft center at the midpoint µ̄i =∑

j∈Ii
w

(i)
j Z̃j: with weights w

(i)
j ∝ exp(−∥Z̃j: − mi∥/σi), and set Xi = Yi = Z̃Ii − µ̄i. Let

Wi = diag
(
w

(i)
j

)
j∈Ii

and Bi ∈ Rp×q be the top-q right singular vectors of
[
Xi

Yi

]
. In Rq we solve

orthogonal Procrustes: if UiΣiV
⊤
i = SVD

(
(XiBi)

⊤ Wi (YiBi)
)

then R
(q)
i = UiV

⊤
i ∈ SO(q)

(enforce det= + 1) (Schönemann, 1966; Kabsch, 1976). We embed back to Rp by

R̂i = BiR
(q)
i B⊤

i + (I −BiB
⊤
i ) ∈ SO(p), (2)

compose Ĥ(γ) = R̂L−1 · · · R̂0, and report ĥnorm = ∥Ĥ−I∥F /(2
√
p) together with eigen–angles of

Ĥ . Indeed, (I −BB⊤)B = 0 so R̂⊤
i R̂i = I; moreover det R̂i = detR

(q)
i = +1. This construction

is inexpensive (small SVDs in a shared subspace) and numerically stable.

Structural properties (statements; full proofs in App. S.1). 1 (i) Gauge invariance. If whitened
features are reparameterized by any U ∈ O(p), i.e., z̃′(x) = Uz̃(x), then the shared indices Ii are
unchanged, R̂′

i = UR̂iU
⊤, and Ĥ ′ = UĤU⊤. Thus ∥Ĥ ′ − I∥F = ∥Ĥ − I∥F and the eigen–angle

multiset is identical. (ii) Affine invariance (post-whitening). For any invertible affine map on raw
features, z′(x) = Az(x) + b, whitening by the corresponding pool statistics yields z̃′(x) = Q z̃(x)
with Q ∈ O(p) (because Σ′−1/2AΣ1/2 is orthogonal when Σ′ = AΣA⊤), hence the previous
item applies. (iii) Linear null. If z(x) = Bx + c is affine and each edge uses shared rows, then
Xi = Yi for all i and R̂i = I , so Ĥ(γ) = I . (iv) Orientation/cycling. Reversing a loop inverts
holonomy, Ĥ(γ−1) = Ĥ(γ)−1, so the Frobenius gap is unchanged; cyclic reparameterizations of γ
leave Ĥ unchanged. (v) Normalization. For any H ∈ O(p) with eigen–angles {θj}, ∥H − I∥2F =
2
∑p

j=1(1 − cos θj) ≤ 4p, hence hnorm ∈ [0, 1] with equality 1 iff all θj = π. All invariance
statements apply to the post-readout features; non-invertible readouts (e.g., JL) are outside the
affine-invariance claim.

Small-radius behavior (statement; proof in App. S.2). Assume z is C2 with Lipschitz Jacobian
on a neighborhood of γr, the loop γr has total length Oc(r), the shared-midpoint k-NN has overlap
probability 1−Oc(r) as r → 0, and the subspace rank q covers the local feature rank. Then for each
edge ∥R̂i − I∥F = Oc(r) and

∥Ĥ(γr)− I∥F = Oc(r), hence ĥnorm(γr) = Oc(r). (3)
1Pointers to supplement: App. S.0 fixes notation; App. S.1 gives full proofs of invariances, nulls, and

normalization; App. S.2 proves the small-radius limit; App. S.3 states a Procrustes perturbation lemma; App. S.4
handles subspace truncation; App. S.5 derives per-edge and holonomy error bounds; App. S.6 provides an
explicit algorithm and App. S.7–S.8 cover complexity and practical implications.
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Intuitively, shared-row centering cancels translations; Lipschitz variation of Jz makes the optimal
rotation deviate from I by Oc(∥xi+1 − xi∥); products of I+Oc(r) along L=Oc(1) edges yield an
overall Oc(r) deviation.

Estimator stability and error decomposition (statement; full derivation in App. S.5). Under
standard sampling assumptions for the neighbor pool (sub-Gaussian rows; a spectral gap ∆ separating
the top-q right-singular subspace), the per-edge error relative to the population transport R⋆

i obeys

∥R̂i−R⋆
i ∥F ≤ C1 k−1/2︸ ︷︷ ︸

finite sample

+ C2
∥Πi

⊥Σ
1/2
i ∥F

λq(Σi)1/2︸ ︷︷ ︸
subspace truncation

+ C3 TV(Ii, I⋆i )︸ ︷︷ ︸
index mismatch

+ C4 ∥Jz(xi+1)− Jz(xi)∥2︸ ︷︷ ︸
curvature

,

(4)
with Πi

⊥ = I−BiB
⊤
i and constants depending smoothly on local condition numbers; composing over

L=Oc(1) edges yields the holonomy error bound. Here λq(Σi) denotes the q-th largest eigenvalue
of the population covariance Σi on the shared rows. The finite-sample term follows from Procrustes
perturbation via singular-subspace angles, the truncation term from Davis–Kahan/Wedin, and the
curvature/mismatch terms from continuity of Jz and the shared-midpoint k-NN (Björck and Golub,
1973; Davis and Kahan, 1970).

Empirically, this decomposition matches the behaviour we observe in the vision experiments. Choos-
ing k moderately large and q smaller (e.g., k ∈ {96, 128, 192}, q ∈ {32, 64, 96} on MNIST hidden 1)
keeps the finite-sample and truncation terms small: hnorm varies only at the level of a few 10−7

across this grid, without qualitative changes. The shared-midpoint k-NN construction effectively
controls the index-mismatch term TV(Ii, I⋆i ): when we deliberately use disjoint neighbour sets
for the two endpoints, holonomy increases markedly and becomes unstable at small radii. Finally,
in linear or self-loop settings (affine networks, r=0 loops), hnorm collapses to the numerical floor
(∼ 10−8–10−7), indicating that once finite-sample, truncation, and index-mismatch effects are
controlled, the remaining signal is consistent with genuine curvature of the learned representation
field.

Per edge, forming the shared q-subspace (thin SVD of a (2k)×p stack) costs Oc(kpq), Procrustes
in Rq costs Oc(q3), and embedding costs Oc(pq); thus a loop costs Oc

(
L(kpq + q3)

)
, typically

dominated by the subspace SVD. In practice, choose k ≫ q (e.g., k ∈ [128, 192] with q ∈ [64, 96]
for vision layers), keep loop radii small to ensure neighbor overlap, use a fixed global whitening, and
project to SO (not O) to avoid reflection flips (Schönemann, 1966; Kabsch, 1976; Kessy et al., 2018).
Per-neighborhood whitening induces stepwise gauge drift; allowing reflections (O(p)) introduces
π-flips; and using disjoint neighbor sets increases index noise—all create a non-vanishing bias floor
as r → 0. The combination of global whitening, shared neighbors, SO-only Procrustes, and subspace
transport removes this bias and restores the small-radius limit.

4 EXPERIMENTAL PROTOCOL

We study whether representation holonomy is valid, reliable, and useful. This section describes
datasets, models, training, readout/gauge fixing, loop construction, and the estimator. All figures
use the same code and seeded configs; details (incl. exact hyperparameters and scripts to regenerate
CSVs/plots) are in the Supplement.

Convolutional feature maps are globally averaged (2×2 adaptive pooling only where explicitly
stated), flattened, and projected by a fixed orthonormal Johnson–Lindenstrauss map to p⋆=1024 if
needed (only when the post-readout feature dimension p⋆ exceeds 1024). Empirically this changes
hnorm negligibly while reducing memory and runtime2. We fix gauge using global featurewise
mean–variance standardization from a model-agnostic pool of Npool=2048 representations. Note:
our theory assumes full-covariance whitening; we empirically compare z-scoring vs. ZCA-corr in the
Supplement and find similar outcomes in our settings. For each held-out test image x0, we form a
local 2D PCA plane using its 512 nearest training neighbors (in pixel space) and sample a regular
n=12-point circle of radius r. Varying npoints ∈ {6, 8, 12, 16, 24} changes hnorm smoothly and by

2see Appendix S.B for a short numerical check
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Table 1: Setup at a glance

Datasets MNIST; CIFAR-10/100 (standard splits; MNIST: 10◦ rot.; CIFAR: crop+flip)
Models MNIST: 2-layer MLP (512); CIFAR: ResNet-18 (3×3 stem; no max-pool)
Training Adam; MNIST: 5 ep, lr 2×10−3, wd 10−4;

CIFAR-10: 8 ep, lr 10−3, wd 5×10−4; CIFAR-10: 12 ep, lr 10−3, wd 5×10−4

Regimes (C10) ERM; label smoothing ε=0.1; mixup α=0.2; short PGD (step 2/255, ε=4/255, 3 steps)
Readout GAP (2×2 adaptive only where noted); JL to p⋆=1024 if p > p⋆

Gauge fixing Global featurewise z-score using a model-agnostic pool Npool=2048
Loops Per test x0: 2D PCA plane from 512 nearest training neighbors (pixels); n=12-point circle
Radii MNIST: {0.01, 0.02, 0.05, 0.10, 0.20}; CIFAR: {0.02, 0.05, 0.10, 0.20}
Estimator Shared-midpoint k-NN; soft centering; joint q-dim. subspace; SO(q) Procrustes; embed to SO(p)
Defaults MNIST: (k, q)=(128, 64); CIFAR layer2: (192, 96); seeds = 5

less than 1.2× 10−7, with no sign of instability3. We report results across the radii sets above. For
each edge on the loop: (i) find a shared k-NN in whitened space at the edge midpoint; (ii) softly center
both point clouds; (iii) learn a shared q-dimensional right-singular subspace from the stacked clouds;
(iv) solve an SO(q) Procrustes alignment; (v) embed back to Rp as an SO(p) rotation. Composing
edges yields H(γ) and hnorm = ∥H(γ)−I∥F

2
√
p , with p the post-readout dimension. Unless stated,

defaults are as above. Reported intervals are as described in section 4 (Uncertainty and statistical
reporting). Unless otherwise specified, we report two-tailed Pearson r and Spearman ρ computed
over (regime, seed) pairs (n = 20). Partial correlations “ | clean” residualize both variables on clean
accuracy via OLS and correlate the residuals. Regression coefficients are standardized (z-scored
predictors and targets); we report the coefficient β for holonomy together with its standard error (SE),
p-value, and adjusted R2 of the full model (holonomy + clean accuracy). For small-radius behavior
we fit hnorm = α+ βr on r ∈ {0.02, 0.05, 0.10} and report a nonparametric 95% bootstrap CI for β
using 4,000 resamples over the (regime, seed) rows. Error bars in small-radius plots denote standard
error of the mean across (regime, seed) at each r.

5 RESULTS

We first study how holonomy scales with radius and depth, then examine its relationship to robustness
across training regimes, and finally assess its stability and invariance properties. Figure 2 plots mean
holonomy with 95% confidence intervals as a function of loop radius on MNIST and CIFAR-10. On
MNIST, both hidden layers exhibit clear positive scaling. Fitted slopes are 1.54×10−6 for Hidden 1
and 6.10×10−6 for Hidden 2, with corresponding means at r=0.10 of 6.42×10−7 ± 5.74×10−9

(Hidden 1) and 2.86×10−6 ± 2.64×10−8 (Hidden 2).4 The deeper layer consistently exhibits larger
holonomy and stronger radius dependence in this setting. On CIFAR-10, layer1 and layer2
show very similar positive dependence on radius; Figure 2-bottom overlays regime-wise CIs for both
layers. Fitted slopes remain positive for both layers (Layer 1: 2.52×10−7; Layer 2: 3.66×10−9),
with means at r=0.10 of 6.01×10−7 (Layer 1) and 4.45×10−7 (Layer 2). Across datasets we thus
consistently observe positive dependence on radius. Deeper layers often exhibit larger holonomy
(e.g., MNIST, Figure 2-top), although this trend is not strictly monotone across all architectures, and
on CIFAR-10 the first two layers are very close in magnitude (Figure 2-bottom).

To probe the small-radius regime more directly, we aggregate CIFAR-10 layer2 across seeds and
regimes and fit a line over r ∈ {0.02, 0.05, 0.10} (Figure 3, left). The fitted slope is 1.44×10−7 with
a 95% bootstrap CI of [−1.07×10−7, 4.22×10−7], consistent with near-linear behaviour and the
O(r) scaling predicted by Theorem 1.

On CIFAR-10 with ResNet-18 we consider four standard training recipes: (i) empirical risk minimi-
sation (ERM) with cross-entropy loss; (ii) label smoothing (LS) with smoothing coefficient α = 0.1;
(iii) mixup with parameter α = 0.2; and (iv) short projected-gradient-descent (PGD) adversarial
training with ℓ∞-bounded perturbations (radius 4/255, step size 2/255, a small number of steps).
Throughout, we use “adversarial stress” to denote test accuracy under single-step FGSM and multi-
step PGD-10 attacks with these hyperparameters, and “corruption stress” to denote accuracy under

3Experiment C (Appendix S.B)
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(a) MNIST Hidden 1 (b) MNIST Hidden 2

(c) CIFAR-10 layer1 (d) CIFAR-10 layer2

Figure 2: Holonomy vs. radius on MNIST and CIFAR-10. Mean ±95% CI across seeds (MNIST)
and across seeds and training regimes (CIFAR-10). Both datasets exhibit positive dependence on
radius; on MNIST the deeper layer has larger amplitudes, while on CIFAR-10 the first two layers are
very similar in magnitude.

Figure 3: Small-radius regime (left) on CIFAR-10 (ResNet-18, layer2). Points show mean
hnorm over seeds and training regimes; error bars are s.e.m. Slope estimate: 1.44×10−7 (95% CI
[−1.07×10−7, 4.22×10−7]). Self-loop bias (right) near zero (MNIST Hidden 1, r≈ 10−4). The
bias floor is O(10−8).

simple low-level corruptions (Gaussian blur, colour jitter, additive Gaussian noise), instantiated in the
spirit of CIFAR-10-C-style corruptions. The robustness panel and Table 3 report clean, adversarial,
and corruption accuracies for these four regimes.

At matched budgets on CIFAR-10, holonomy on layer2 systematically varies across ERM, label
smoothing, mixup, and short PGD training (Table 3). At r=0.10, the adversarially trained model
exhibits the largest holonomy, followed by ERM, mixup, and label smoothing. A small, single-
radius slice of holonomy already associates with standard stressors: across the four regimes we
observe strong correlations between mean holonomy and FGSM/corruption accuracies (r≈0.94 and
r≈ − 0.96), and a corresponding inverse relation with clean accuracy (r≈ − 0.96). Regimes that
are more adversarially robust (higher FGSM accuracy) tend to have larger holonomy but lower
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Table 2: CIFAR-10 (ResNet-18, layer2, radius r = 0.1): correlation and regression of robustness
targets against holonomy hnorm with clean accuracy as control. Coefficients are standardized.

Target n Pearson r Spearman ρ Partial r | clean β (std) SE p Adj R²

fgsm acc 20 0.805 0.565 0.223 0.080 0.085 0.36 0.950
pgd10 20 0.809 0.501 0.276 0.051 0.043 0.253 0.987
corr acc 20 -0.785 -0.421 0.027 0.006 0.057 0.913 0.977

Table 3: CIFAR-10 regimes (layer2). Mean h at r=0.10 and held-out accuracies from the
robustness panel.

Regime hnorm @ r=0.10 Clean Acc. (%) FGSM Acc. (%) Corrupt. Acc. (%)

ERM 3.46×10−7 82.37 36.54 57.11
LabelSmooth 3.04×10−7 81.32 34.81 58.27
Mixup 3.19×10−7 74.11 22.51 49.54
AdvPGD 4.74×10−7 12.24 67.85 11.96

Correlations (h vs. clean/FGSM/corrupt.): ≈ −0.96, ≈ 0.94, ≈ −0.96.

clean and corruption accuracy, indicating that representation holonomy tracks tradeoffs along the
robustness–accuracy frontier at the regime level.

Regime-means thus show strong descriptive correlations between holonomy and robustness across
the four training recipes. However, a per-seed analysis conditioning on clean accuracy indicates only
modest incremental signal: at r = 0.10, partial correlations are r ≈ 0.22–0.28 for FGSM/PGD-10
and near zero for CIFAR-10-C (Table 2).

To isolate what holonomy adds beyond pointwise comparisons, we aligned MNIST Hidden 1 test
activations with an orthogonal Procrustes map and computed linear CKA. Despite very high aligned
CKA (0.987), the composed holonomy remains nonzero; the post-alignment Frobenius misfit is
2.19×10−8, yet loop composition still accumulates a measurable twist. This control shows that
near-identical pointwise representations can possess different pathwise geometry, and that holonomy
detects those differences.

We pre-registered a sensitivity slice and ablations. At r = 0.10 on MNIST Hidden 1, vary-
ing (k, q) ∈ {96, 128, 192}× {32, 64, 96} changes hnorm by only 7.20×10−7 end-to-end (SD
2.86×10−7). Increasing the standardization pool from 103 to 8×103 shifts h by 6.49×10−9 (from
4.05×10−6 to 4.06×10−6), indicating practical insensitivity to Npool. Ablations confirm that each
“bias guardrail” matters: switching from SO(p) to O(p) (reflections allowed) raises h by 5.37×10−7

on average; using per-neighborhood (local) rather than global whitening increases h by 1.59×10−7;
and, critically, dropping shared-midpoint neighbors (separate k-NNs per edge endpoint) catastrophi-
cally inflates measured holonomy (e.g., +2.22×10−1) even with other safeguards on. Finally, using a
random plane instead of a local PCA plane reduces h modestly by 1.92×10−8 at r=0.10, contextual-
izing our loop construction choice. Varying only the loop discretisation npoints over {6, 8, 12, 16, 24}
at fixed radius on MNIST Hidden 1 yields a smooth curve with hnorm in the range 3.5–4.7× 10−7,
further supporting numerical stability of the estimator with respect to loop discretisation.

A near-zero self-loop (r≈10−4) produces a numerically tiny bias floor on MNIST Hidden 1 (mean
4.19×10−8; max 5.04×10−8). A complementary small-radius study (Experiment D, Appendix S.B)
on a separately trained MNIST MLP at Hidden 1 yields hnorm ≈ 3.08× 10−7 for an exact self-loop
(r = 0), and for PCA loops with radii r ∈ {10−3, 2× 10−3, 5× 10−3, 10−2, 2× 10−2} all values
lie in the narrow band hnorm ∈ [2.37, 2.46]× 10−7 (variation ≈ 3× 10−8). Together, these numbers
characterise the numerical floor of our estimator in this setting and are consistent with the O(r)
small-radius behaviour predicted by Theorem 1.

Replacing nonlinearities by identity (linear null) drives holonomy to noise level (mean 9.57×10−9;
SD 2.22×10−9). Gauge invariance holds: post-multiplying the readout by a random orthogonal
basis changes h by only ∼ 10−8 on average (MNIST: ∆h=1.17×10−8; CIFAR-10: 1.65×10−8)
and leaves the eigen-angle spectrum near-identical (mean L2 discrepancy ≈7.1×10−7 on MNIST;
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(a) Pool size stability (b) Plane ablation (PCA vs. random)

Figure 4: Reliability/stability. Left: hnorm is nearly flat as Npool increases. Right: PCA planes yield
slightly higher, more geometry-aware holonomy than random planes.

≈7.8×10−7 on CIFAR-10). Orientation reversal behaves as expected: composing the forward loop
with the inverse yields a tiny normalized gap (7.14×10−8 on MNIST; 9.53×10−8 on CIFAR-10).

Across datasets, layers, and training regimes, representation holonomy (i) validly measures a pathwise
geometric effect distinct from pointwise similarity, (ii) is reliable under reasonable readout/estimator
choices provided bias guardrails are kept, and (iii) is useful, describing adversarial and corruption
robustness from a small, fixed-radius probe early in the network. Extended stress tests (PGD-10,
CIFAR-10-C, partial correlations) and additional spectra/ablations are deferred to the Supplement.

6 DISCUSSION

Our estimator targets a local, gauge-invariant property of the learned representation field: the parallel
transport induced by the network when we traverse a small input-space loop. At a given layer
with feature dimension p, we compose per-edge transports in an estimated q-dimensional subspace
(embedded back into SO(p)) and summarise the loop via hnorm = ∥H − I∥F /(2

√
p) and, when

needed, the eigen-angle spectrum of H . This statistic is complementary to pointwise similarity
measures such as CKA, SVCCA, and PWCCA: those compare unordered sets of activations at
fixed inputs, while holonomy probes how features evolve along a path and whether composing
local transports around a loop yields a non-trivial “twist”. In particular, two networks can exhibit
near-maximal aligned CKA yet differ in holonomy, indicating different pathwise geometry despite
almost indistinguishable pointwise alignment; our MNIST and CIFAR-10 experiments give concrete
instances of this “CKA-high but holonomy-different” regime.

Holonomy is not a single global distance between models, nor evidence of topological monodromy
in data space. It captures curvature-like effects local to the family of loops under consideration,
and depends on both loop design (centre, radius, plane) and the feature metric (made explicit by
whitening). Our gauge choice (global whitening, shared k-NN at edge midpoints, rotation-only
Procrustes) removes arbitrary reparameterisations of feature space, so that hnorm reflects genuine
changes in representation orientation along input paths rather than artefacts of the basis.

Empirically, we find holonomy most useful in three situations. (i) Early-epoch selection: small-
radius hnorm measured early in training already correlates with eventual robustness across regimes,
providing a cheap, label-free signal for choosing runs or stopping early. (ii) Diagnosing geometry vs.
alignment: when pointwise similarity metrics indicate that checkpoints are nearly identical, holonomy
can still separate them by sensitivity to small input transports, shedding light on robustness or transfer
differences that CKA alone does not explain. (iii) Layer-wise profiling: holonomy as a function of
radius and depth highlights where the network introduces most path dependence, which can guide
where to regularise or where to attach heads in transfer settings. For reliable use, our experiments
suggest small radii (where hnorm scales roughly linearly), k ≫ q with shared-neighbour selection at
midpoints, and reporting distributions (medians and IQRs) over loop centres and planes. Stability
diagnostics such as neighbour-overlap IoU and the fraction of variance captured by q help detect
pathological settings that inflate variance.
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Figure 5: A single MNIST digit is translated around a small 4-step loop. At conv2, the nearly
translation-equivariant CNN yields an almost closed feature loop and tiny holonomy, while the
aliased CNN produces a distorted loop and holonomy about three orders of magnitude larger.

Holonomy also has clear limitations. It is inherently local: it summarises curvature near the sampled
loops rather than a global property of the data manifold, and results depend on how loops are
constructed. PCA planes around a datum provide a reasonable default but may not always align with
semantic directions, especially off-manifold. Global whitening assumes a single feature metric; strong
class-conditional anisotropy can bias neighbourhoods and centres. The shared-midpoint heuristic
reduces index noise but may under-represent rare modes, and rotation-only Procrustes deliberately
discards scaling and shear, so scalar hnorm will under-report effects dominated by those components.
Finally, although the estimator is linear-time in pool size and practical at CIFAR/ImageNet scales
with compression, very deep models or dense grids of radii and planes can still be costly, so reporting
confidence intervals and wall-clock helps make comparisons transparent.

Some extensions seem particularly promising. First, beyond-local loops: constraining loops to
augmentation orbits (e.g., small rotations or translations), to domain-shift curricula, or to generative
manifold paths can better align the probe with semantics and reduce off-manifold artefacts; short
geodesic rectangles would directly probe commutators of input directions. Second, richer gauges
and architectures: per-class or per-mode whitening, equivariant layers with structured gauges, and
transformers with token- and position-wise gauges all offer sharper tests. Third, an especially natural
application is to diffusion / score networks, where the learned score field is theoretically curl-free but
in practice may deviate from this ideal; holonomy could expose such non-curl-free structure along
generative trajectories.

7 CONCLUSION

We introduced representation holonomy as a gauge-invariant statistic of learned feature fields, to-
gether with a practical estimator based on shared-neighbour Procrustes transport in low-dimensional
subspaces. Theoretical analysis shows that, after whitening, holonomy is invariant to affine repa-
rameterisations, vanishes on affine maps, and scales linearly with loop radius under mild regularity
assumptions, with an explicit error decomposition separating finite-sample, subspace-truncation,
index-mismatch, and curvature contributions. These properties make holonomy a well-defined, local
notion of “curvature” for layer-wise representations rather than an artefact of arbitrary feature bases.

Holonomy is complementary to standard representation-similarity measures: networks that are almost
indistinguishable under aligned CKA can still differ in holonomy and in robustness, and training
recipes that change robustness also systematically modulate hnorm. This supports the view of holon-
omy as a diagnostic tool rather than a replacement for existing metrics. Its locality and dependence on
loop design make it well suited for probing specific hypotheses about representation geometry—for
example, along augmentation orbits, domain-shift curricula, or generative paths—while its gauge
invariance enables meaningful comparisons across checkpoints, architectures, and training regimes.
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A APPENDIX / SUPPLEMENTARY: FULL PROOFS AND ALGORITHM

S.0 NOTATION AND PRELIMINARIES

For a fixed layer, let z : Rd → Rp be the representation map and Jz(x) ∈ Rp×d its Jacobian. For a
sample pool N we write Z = {z(x)}x∈N , empirical mean µ and covariance Σ. Global whitening is
z̃(x) = Σ−1/2(z(x)− µ) (any fixed symmetric Σ−1/2 suffices). A loop γ = (x0, . . . , xL−1, xL =
x0) has edges ei = (xi, xi+1). For an edge ei we select a shared index set Ii ⊂ {1, . . . , |N |} of
size k by k-NN around the midpoint 1

2 (z̃(xi) + z̃(xi+1)) in whitened feature space. Let Z̃Ii ∈ Rk×p

be the whitened feature matrix restricted to those rows. Write mi :=
1
2

(
z̃(xi) + z̃(xi+1)

)
. Define

weights on the same rows by w
(i)
j ∝ exp

(
−∥Z̃j: −mi∥/σi

)
(normalized on Ii to sum to 1), and the

shared midpoint center µ̄i :=
∑

j∈Ii
w

(i)
j Z̃j:. Set the centered clouds Z̃src

i = Z̃Ii − µ̄i, Z̃tgt
i =

Z̃Ii − µ̄i. Let Bi ∈ Rp×q be the top-q right singular vectors of
[
Z̃src
i

Z̃tgt
i

]
. In the q-subspace, the

orthogonal Procrustes solution is UiΣiV
⊤
i = SVD

(
(XiBi)

⊤ Wi (YiBi)
)
, R

(q)
i = UiV

⊤
i ,

where Wi = diag
(
w

(i)
j

)
j∈Ii

. R(q)
i = UiV

⊤
i ∈ SO(q) (enforce det = +1 if necessary). We embed

to Rp by
R̂i = BiR

(q)
i B⊤

i + (I −BiB
⊤
i ) ∈ SO(p).

The empirical holonomy is Ĥ(γ) = R̂L−1 · · · R̂0 and ĥnorm = ∥Ĥ − I∥F /(2
√
p). We denote

spectral and Frobenius norms by ∥ · ∥2 and ∥ · ∥F , and principal angle matrices by sinΘ(·, ·).

Matrix perturbation tools. We use (i) Davis–Kahan/Wedin: for symmetric A,E, if A =(
A11 0
0 A22

)
in the eigenbasis and gap = minλ∈σ(A11), µ∈σ(A22) |λ− µ| > 0, then ∥ sinΘ(Û , U)∥2 ≤

∥E∥2/gap for the top-q subspace. For rectangular SVD subspaces, Wedin’s theorem yields the same
bound for left/right singular subspaces. (ii) For Q ∈ O(p), ∥Q− I∥2F = 2

∑p
j=1(1− cos θj) ≤ 4p.

S.1 FULL PROOFS OF INVARIANCES, NULLS, AND NORMALIZATION

Proposition 1 (Gauge invariance under orthogonal reparameterizations; full proof). Let U ∈ O(p)
and z̃′(x) = Uz̃(x). The shared index sets Ii are unchanged (same midpoint up to left multiplication
by U ), and for every edge i, R̂′

i = UR̂iU
⊤. Hence Ĥ ′ = UĤU⊤, ∥Ĥ ′ − I∥F = ∥Ĥ − I∥F , and

the eigen–angle multisets coincide.

Proof. For the same rows, (Z̃src
i )′ = UZ̃src

i and similarly for Z̃tgt
i because soft centers transform as

µ̃′
i = Uµ̃i. Let Bi be an orthonormal basis for the span of the stacked clouds; then B′

i = UBi is an
orthonormal basis for the transformed span. The cross-covariance in the subspace transforms as

(Z̃src
i Bi)

⊤(Z̃tgt
i Bi) 7→ (B′⊤

i U⊤Z̃src⊤
i )(UZ̃tgt

i B′
i) = B⊤

i Z̃src⊤
i Z̃tgt

i Bi.

Hence UiΣiV
⊤
i is unchanged; R(q)

i is identical. Embedding gives R̂′
i = B′

iR
(q)
i B′⊤

i +(I−B′
iB

′⊤
i ) =

U(BiR
(q)
i B⊤

i +I−BiB
⊤
i )U⊤ = UR̂iU

⊤. Composition and Frobenius invariance under conjugation
conclude the proof.

Proposition 2 (Affine invariance after global whitening; full proof). Let raw features be z′(x) =
Az(x) + b with A ∈ GL(p). Let Σ′ and µ′ be the pool covariance and mean of z′. Then there exists
Q ∈ O(p) such that z̃′(x) = Q z̃(x) for all x. Consequently Proposition above applies.

Proof. We have µ′ = Aµ+ b and Σ′ = AΣA⊤. Choose symmetric square roots. Then

z̃′(x) = Σ′−1/2
(Az(x) + b− µ′) = Σ′−1/2

A(z(x)− µ).

Write the polar decomposition of Σ′−1/2
AΣ1/2 as QP with Q ∈ O(p), P symmetric positive definite.

Then
Σ′−1/2

A = QPΣ−1/2 ⇒ z̃′(x) = Q
(
PΣ−1/2(z(x)− µ)

)
.
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But P = I because

P 2 = Σ
1
2A⊤Σ′−1

AΣ
1
2 = Σ

1
2A⊤(A−⊤Σ−1A−1

)
AΣ

1
2 = Σ

1
2Σ−1Σ

1
2 = I.

Thus z̃′(x) = Qz̃(x).

Equivalently, set M := Σ′−1/2
AΣ1/2. Then M⊤M = I , so M ∈ O(p) and z̃′(x) = M z̃(x).

Proposition 3 (Linear null; full proof). If z(x) = Bx+ c (affine) and the same index set Ii is used
for both directions of each edge, then R̂i = I and Ĥ(γ) = I for any loop γ.

Proof. With shared neighbors and the shared midpoint soft center µ̄i, for any affine z(x) = Bx+ c

we have on rows Ii that Z̃src
i = Z̃tgt

i = Z̃Ii − µ̄i. Hence the SO(q) Procrustes optimum is R(q)
i = I

and the embedded map is R̂i = I , so Ĥ(γ) = I for any loop γ.

Proposition 4 (Orientation, reparametrization, and normalization; full proof). Reversing edge order
in γ inverts the orthogonal product so Ĥ(γ−1) = Ĥ(γ)−1 and ∥Ĥ(γ−1)− I∥F = ∥Ĥ(γ)− I∥F .
Cyclic reparameterizations do not change the product. Moreover, ĥnorm ∈ [0, 1] with equality 1 iff
all eigen–angles are π. (The upper bound is attained by H = −I; within SO(p) this is attainable
only when p is even.)

Proof. All R̂i ∈ SO(p); the first two claims follow from group identities. For normalization, for
H ∈ O(p) with eigenvalues eiθj , ∥H−I∥2F = tr((H−I)⊤(H−I)) = 2

∑
j(1−cos θj) ≤ 4p.

S.2 SMALL-RADIUS LIMIT; FULL PROOF

Assumption 1 (Regularity and neighbor stability). (i) z is C2 with L-Lipschitz Jacobian on a
neighborhood of the loop. (ii) The loop γr lies on a C2 2D manifold in input space with total length
O(r). (iii) Shared-midpoint k-NN selection has overlap probability 1 − O(r) as r → 0. (iv) The
subspace dimension q contains the rank of the local feature covariance of the shared rows.

Theorem 1 (Small-radius limit). As r → 0, ∥R̂i− I∥F = O(r) for each edge and ∥Ĥ(γr)− I∥F =

O(r). Hence ĥnorm(γr) = O(r).

Proof. Let δi = xi+1 − xi with ∥δi∥ = O(r) and x(t) be a C2 parameterization. A second-order
expansion gives z(x+δ) = z(x)+Jz(x)δ+

1
2Hcz(x)[δ, δ]+O(∥δ∥3). Soft centering on the same rows

cancels translations, leaving two clouds whose covariance difference is O(∥Jz(x+ δ)− Jz(x)∥) =
O(∥δ∥) by Lipschitzness. Orthogonal Procrustes between two centered clouds that differ by an
O(∥δ∥) linear term has solution I +O(∥δ∥) (Procrustes perturbation Lemma S.4 below). Therefore
∥R̂i − I∥F = O(∥δi∥) = O(r). Since L = O(1) and products of I + Ei with Ei = O(r) deviate
from I by O(

∑
i ∥Ei∥) = O(r), the holonomy claim follows.

S.3 PROCRUSTES PERTURBATION (FULL STATEMENT AND PROOF)

We quantify how the orthogonal Procrustes optimum UV ⊤ changes under perturbations of the
cross-covariance. This will be invoked per edge on the q-dimensional subspace.

Lemma 1 (Procrustes perturbation via singular subspaces). Let M ∈ Rq×q with SVD UΣV ⊤ and
orthogonal Procrustes minimizer R⋆ = UV ⊤. Let M̂ = M +E, with SVD Û Σ̂V̂ ⊤ and minimizer
R̂ = Û V̂ ⊤ (take the SO(q) correction by flipping the last column of Û if needed so det R̂ = +1). If
the smallest singular value gap of M satisfies gap = min{σj − σj+1 : 1 ≤ j < q} > 0, then

∥R̂−R⋆∥F ≤ 2
(
∥ sinΘ(Û , U)∥F + ∥ sinΘ(V̂ , V )∥F

)
≤ 4∥E∥2

gap

√
q.

Moreover ∥R̂−R⋆∥2 ≤ 2∥E∥2/gap.
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Proof. Write R̂−R⋆ = Û V̂ ⊤−UV ⊤ = (Û−UQU )V̂
⊤+UQU (V̂ −V QV )

⊤+U(QUQ
⊤
V −I)V ⊤,

for orthogonal QU , QV chosen to realize the principal-angle alignments between the subspaces
spanned by columns of U and Û , and of V and V̂ (CS decomposition). The third term is bounded
by ∥QUQ

⊤
V − I∥F ≤ ∥QU − I∥F + ∥QV − I∥F ≤ 2(∥ sinΘ(Û , U)∥F + ∥ sinΘ(V̂ , V )∥F ). The

first two terms are each bounded by the same sine-angle norms. Summing yields the first bound. For
the second inequality, Wedin’s theorem gives ∥ sinΘ(Û , U)∥2 ≤ ∥E∥2/gap and similarly for V ;
Frobenius then adds a

√
q factor, while the spectral bound is direct.

Remark. The SO(q) correction (flip the last singular vector if det < 0) changes R by at most
2 in Frobenius norm and is absorbed by the same bound when ∥E∥2 is small relative to the gap;
empirically it eliminates spurious π flips.

S.4 SUBSPACE TRUNCATION AND DAVIS–KAHAN/WEDIN

We justify the q-dimensional embedding error.

Lemma 2 (Subspace truncation bound). Let S =
(

Z̃src
i

Z̃tgt
i

)
, ΣS = 1

kS
⊤S, and let B be the top-q

right singular vectors of S. Let Π = BB⊤ and Π⊥ = I − Π. Suppose the singular value gap
∆ = σq(S)− σq+1(S) > 0. Then for any two centered clouds X,Y formed from the same rows, the
Procrustes minimizers satisfy

∥(BR(q)B⊤ +Π⊥)−R⋆∥F ≤ C
∥X⊤X − Y ⊤Y ∥2

∆
+ ∥Π⊥∥F ,

where R⋆ is the (untruncated) Procrustes optimum on the full span and C depends on local condition
numbers of X⊤X,Y ⊤Y .

Proof. Decompose both clouds into in-span and out-of-span components; Wedin/Davis–Kahan
ensures ∥ sinΘ(span(B), span(S))∥2 ≤ ∥E∥2/∆ for the empirical perturbation E of the covariance.
The cross-covariance restricted to span(B) deviates from the full one by O(∥E∥2/∆). Apply
Lemma 1 inside the subspace and add the residual ∥Π⊥∥F from identity on the complement.

S.5 PER-EDGE AND HOLONOMY ERROR BOUNDS; FULL DERIVATION

We combine (i) finite-sample concentration, (ii) subspace truncation, (iii) index mismatch, and (iv)
curvature terms.
Assumption 2 (Sampling and gaps). Neighbors are i.i.d. from a distribution with covariance Σi whose
top-q eigenspace is separated by a gap ∆i > 0. Empirical covariances concentrate: ∥Σ̂i − Σi∥2 ≤
cσ

√
log(1/δ)

k with prob. ≥ 1− δ.

Theorem 2 (Per-edge transport error). With probability ≥ 1− δ,

∥R̂i −R⋆
i ∥F ≤ C1

σ√
k

+ C2
∥Πi

⊥Σ
1/2
i ∥F

λq(Σi)1/2
+ C3 TV(Ii, I⋆i ) + C4 ∥Jz(xi+1)− Jz(xi)∥2,

where R⋆
i is the population Procrustes minimizer on the true shared rows and full span, Πi

⊥ projects
onto the discarded right singular directions, and TV(·, ·) is the (normalized) total-variation distance
between empirical and population index sets. Constants (Cj) depend only on local condition numbers
and are independent of k and r.

Proof. (1) Finite sample: concentration of empirical cross-covariances (sub-Gaussian or bounded
support) yields ∥E∥2 ≲ σ/

√
k. Lemma 1 gives the first term.

(2) Truncation: Lemma 2 yields the second term with ∥Πi
⊥Σ

1/2
i ∥F /λq(Σi)

1/2 measuring residual
energy outside the top-q.
(3) Index mismatch: if empirical indices differ from population I⋆i by fraction τ , then centered
clouds differ by O(τ) in Frobenius norm; propagate through Procrustes continuity to obtain C3 τ .
Set τ = TV(Ii, I⋆i ).
(4) Curvature: with shared rows, the first-order difference in centered clouds is controlled by
∥Jz(xi+1)− Jz(xi)∥2 = O(∥xi+1 − xi∥) = O(r) by Lipschitzness; this yields the last term.
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Corollary 1 (Holonomy error accumulation). For L = O(1) edges,

∥Ĥ −H⋆∥F ≤
L−1∑
i=0

∥R̂i −R⋆
i ∥F + O(r),

where H⋆ = R⋆
L−1 · · ·R⋆

0 is the population holonomy.

Proof. Write Ĥ−H⋆ =
∑L−1

i=0

(
R̂L−1 · · · R̂i+1

)
(R̂i−R⋆

i )
(
R⋆

i−1 · · ·R⋆
0

)
and use submultiplicativity

with ∥R̂j∥2 = ∥R⋆
j∥2 = 1.

S.6 ALGORITHM (MIRRORS THE IMPLEMENTATION)

We include a compact algorithm in algorithmic style. The steps and symbols match the code.

Algorithm 1 GAUGE-INVARIANT REPRESENTATION HOLONOMY (SO(p) subspace Procrustes)

Require: Model f , layer z(·), neighbor loader L, loop points {xi}L−1
i=0 , k neighbors, subspace q

Ensure: Holonomy matrix Ĥ ∈ SO(p), normalized score ĥnorm, eigen–angles {θj}
1: Pool features: collect Z = {z(x)}x∈N from L; compute mean µ and covariance Σ.
2: Global whitening: z̃(x) = Σ−1/2(z(x)− µ); build whitened pool Z̃.
3: Initialize Ĥ ← Ip.
4: for i = 0, . . . , L− 1 do ▷ edges xi→xi+1 with xL = x0

5: z̃i ← z̃(xi), z̃i+1 ← z̃(xi+1), midpoint mi =
1
2 (z̃i + z̃i+1)

6: Shared neighbors: Ii ← k-NN indices of mi in Z̃; S ← Z̃[Ii, :]
7: Shared soft center: compute µ̄i on rows Ii using weights at mi; set X = Y = S − µ̄i.

8: Shared subspace: B ∈ Rp×q = top-q right singular vectors of
[
X
Y

]
9: Procrustes in Rq: UΣV ⊤ = SVD

(
(XB)⊤(Y B)

)
; R(q) = UV ⊤; enforce detR(q)=+1

10: Embed: R̂i ← BR(q)B⊤ + (I −BB⊤) ▷ ∈ SO(p)

11: Compose: Ĥ ← R̂i · Ĥ
12: end for
13: Return: Ĥ , ĥnorm = ∥Ĥ − I∥F /(2

√
p), eigen–angles {θj} of Ĥ

S.7 COMPLEXITY (EXPANDED)

Let k be neighbors, q the subspace, p the feature dimension, L edges, and Npool pooled samples.

• One-time pool: O(Npool ·forward(z)) to extract features and O(Npoolp
2) to form Σ (stream-

ing computation eliminates storing Z; memory is O(p2) for Σ and O(p) for µ).
• Per edge: thin SVD of a (2k)× p matrix to get B: O(kpq); Procrustes SVD in Rq: O(q3);

embedding O(pq).

• Total loop: O
(
L(kpq + q3 + pq)

)
, typically dominated by kpq with q ≪ p.

S.8 PRACTICAL IMPLICATIONS OF THE BOUNDS

The per-edge error bound (Thm. 2) recommends: (i) choose k ≫ q (e.g., k ∈ [128, 192] with
q ∈ [64, 96] in vision), (ii) keep radii small enough to ensure large neighbor overlap, (iii) use
global whitening and SO(p) projection to avoid stepwise gauge drift and reflection flips (empirically,
self-loop bias < 10−6).

S.9 EXTENDED TRAINING DYNAMICS

To examine how holonomy evolves during optimization, we tracked hnorm across epochs. On MNIST,
holonomy rises sharply during the first few passes over the data and then plateaus, indicating that the
pathwise structure of the representation is established early and stabilizes thereafter.
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Figure 6: MNIST training dynamics. Mean ±95% CI of hnorm across epochs.

S.10 EIGEN-ANGLE SPECTRA

Beyond scalar norms, we can inspect the eigen-angles of the composed holonomy H(γ). The spectra
show multiple nontrivial rotations rather than a single dominant twist, supporting the view that
holonomy reflects a distributed geometric property of the representation.

Figure 7: Eigen-angle spectra (CIFAR-10, layer2). Distribution of loop holonomy eigen-angles.

S.11 EFFICIENCY AND COMPRESSION

We benchmark the estimator’s runtime and memory with and without dimension compression. Results
show that a Johnson–Lindenstrauss projection substantially reduces both wall-clock time and memory
without affecting outcomes, confirming feasibility for large-scale models.
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Table 4: Wall-clock and memory requirements of the estimator.

compressed False True
k q

96 32 27747.000000 892.000000
64 28986.000000 828.000000
96 28403.000000 908.000000

128 32 55952.000000 936.000000
64 57022.000000 925.000000
96 55239.000000 958.000000

192 32 69469.000000 1011.000000
64 70521.000000 943.000000
96 72477.000000 1065.000000

S.12 FURTHER ABLATIONS

We varied estimator hyperparameters to test robustness. Table 5 shows that holonomy values are
stable across a wide (k, q) grid. Table 6 highlights the importance of the guardrails: local whitening
or separate k-NNs produce inflated or unstable estimates, whereas the shared-midpoint + SO(p)
choice yields consistent results.

Table 5: MNIST Hidden1: mean hnorm at r = 0.10 across (k, q).

k 32 64 96

96 8.31e-07 6.33e-07 6.74e-07
128 6.44e-07 5.21e-07 5.68e-07
192 4.14e-07 4.54e-07 4.7e-07

Table 6: Ablations on MNIST Hidden1 at r = 0.10. ∆ is relative to the best (smallest) hnorm

configuration.

whitening neighbors group hnorm delta

global shared SO 6.42e-07 4.2e-07
global shared O 6.42e-07 4.2e-07
local shared SO 2.22e-07 0
global separate SO 0.222 0.222

S.13 STABILITY TO POOL SIZE

We also varied the standardization pool size Npool. Table 7 shows that increasing from 103 to 8×103
samples produces only minor changes, indicating practical insensitivity to this parameter.

Table 7: Effect of standardization pool size on hnorm (MNIST Hidden1, r = 0.10).

pool size mean std

1024 2.92e-07 nan
2048 3.81e-07 nan
4096 5.83e-07 nan
8192 5.26e-07 nan
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S.14 GAUGE, ORIENTATION, AND BIAS FLOOR CONTROLS

To confirm validity, we tested invariances and null cases. Random orthogonal reparameterization
leaves holonomy unchanged (Table 8); near-zero self-loops yield O(10−8) bias floors (Table 9); and
replacing nonlinearities with identity (linear null) collapses holonomy to noise level (Table 10).

Table 8: Gauge invariance: change in hnorm after random orthogonal reparameterization.

setting mean|∆h| max|∆h|
MNIST Hidden1 nan nan
CIFAR-10 layer2 nan nan

Table 9: Self-loop bias floor on MNIST Hidden1.

mean bias std bias max bias n

1.99e-07 4.82e-08 2.79e-07 60

Table 10: Linear-null control: replacing nonlinearities with identity drives hnorm to noise.

mean h norm std n

3.32e-07 4.29e-08 5

S.15 DEPTH/WIDTH SCALING

Holonomy scales systematically with network size. On CIFAR-10, deeper ResNets exhibit steeper
slopes of hnorm vs. radius (Table 11), while on MNIST, wider MLPs show consistent though saturating
growth (Table 12).

Figure 8: Scaling. Left: CIFAR-10 depth slice; Right: MNIST width slice.

Table 11: CIFAR-10: slope of hnorm vs. radius by network depth.

depth slope h per r

18 4.08e-08
34 1.07e-07
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Table 12: MNIST: slope of hnorm vs. radius by hidden width.

width slope h per r

128 1.25e-05
256 7.17e-06
512 9.92e-06
1024 6.32e-06

S.16 CIFAR-10 RESULTS

On CIFAR-10, both layer1 and layer2 exhibit positive holonomy at r = 0.10, with magnitudes
similar to CIFAR-10 (Table 13). This indicates that holonomy generalizes across dataset complexity.

Table 13: CIFAR-10: hnorm at r = 0.10 by layer.

layer mean std

layer1 6.01e-07 7.92e-09
layer2 4.45e-07 4.73e-08

S.17 ALTERNATIVE PATHWISE METRICS

We compared holonomy against other proposed pathwise statistics. Scatter plots versus Lipschitz
constants and path curvature (Figure 9) show that while correlated, these alternatives do not subsume
holonomy, supporting its distinctiveness as a geometric descriptor.

Figure 9: Comparison to other pathwise statistics. Holonomy vs. representation Lipschitz (left)
and path curvature (right).

B ADDITIONAL DIAGNOSTIC EXPERIMENTS

In this section we report three additional diagnostic experiments that probe (i) behaviour in simple
“ground truth” settings, (ii) sensitivity to loop discretisation, and (iii) the small-radius / self-loop
regime of the estimator.

B.1 EXPERIMENT A: TOY EQUIVARIANCE VS. ALIASING ON MNIST

We construct a simple convolutional toy setting on MNIST with two small networks that are inten-
tionally different from a geometric point of view:

1. EquivConvNetMNIST: a CNN with only stride-1 convolutions, circular padding, and no
pooling, which is approximately translation-equivariant on the grid;
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2. AliasConvNetMNIST: a CNN with zero padding and max-pooling, which introduces strong
aliasing and boundary artefacts.

Both models are trained on MNIST with the same optimisation hyperparameters. We then measure
representation holonomy at the second convolutional layer along a short loop of integer translations
of a single test image, using the discrete path

(0, 0)→ (0, 1)→ (1, 1)→ (1, 0)→ (0, 0)

in pixel space (implemented via circular shifts of the image).

Table 14 reports the normalized holonomy hnorm, the Frobenius norm ∥H − I∥Fro of the holonomy
operator, and the maximum eigen-angle (in radians) of H .

Table 14: Experiment A (MNIST, toy equivariance vs. aliasing). Holonomy at the second
convolutional layer along a discrete translation loop. The nearly equivariant network exhibits
holonomy close to zero, whereas the aliased network shows substantially larger holonomy.

Model hnorm ∥H − I∥Fro max eigen-angle

EquivConvNetMNIST 8.41× 10−7 1.3× 10−5 6× 10−6

AliasConvNetMNIST 2.99× 10−4 4.78× 10−3 3× 10−3

Under the same translation loop, the aliased network exhibits roughly three orders of magnitude
larger holonomy than the approximately equivariant one, providing a clean “ground truth” sanity
check: when translation symmetry is respected, holonomy is essentially zero, and when it is broken
by padding and pooling artefacts, holonomy is large.

B.2 EXPERIMENT C: SENSITIVITY TO LOOP DISCRETISATION

To probe sensitivity to the number of loop points, we fix a trained MNIST MLP and measure
holonomy at Hidden 1 for a fixed radius r while varying only the loop discretisation. Loops are
constructed as regular polygons with npoints ∈ {6, 8, 12, 16, 24} in a local two-dimensional PCA
plane around each base point; all other estimator settings (neighbourhood size, subspace dimension,
whitening pool, etc.) are kept fixed.

Table 15 reports the resulting hnorm values.

Table 15: Experiment C (MNIST MLP, loop discretisation). Holonomy at Hidden 1 for different
numbers of loop samples npoints at fixed radius. Values vary smoothly with npoints, with no indication
of instability.

npoints hnorm

6 3.51× 10−7

8 3.87× 10−7

12 3.95× 10−7

16 4.15× 10−7

24 4.70× 10−7

Holonomy varies smoothly and monotonically with npoints (see Figure 10). Increasing the number of
loop points by a factor of four changes hnorm by only ∼ 1.2× 10−7 (about a 30% relative change,
but of the same order of magnitude), suggesting that the estimator is numerically stable with respect
to reasonable changes in loop discretisation. In the main text we therefore adopt npoints = 12 as a
compute–accuracy compromise.

B.3 EXPERIMENT D: SMALL-RADIUS AND SELF-LOOP REGIME

Finally, we study the very small-radius regime and the numerical floor of the estimator. On a
(separately) trained MNIST MLP at Hidden 1 we construct:
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Figure 10: MNIST/MLP Hidden 1: holonomy vs. loop discretisation. Normalised holonomy
hnorm at radius r = 0.10 as a function of the number of loop samples npoints ∈ {6, 8, 12, 16, 24}.
The curve is smooth and monotone, with all values in the range 3.5–4.7× 10−7, indicating that the
estimator is stable with respect to loop discretisation.

Figure 11: MNIST/MLP Hidden 1: small-radius holonomy and self-loop. Normalised
holonomy hnorm for an exact self-loop (r = 0) and PCA loops with very small radii r ∈
{10−3, 2×10−3, 5×10−3, 10−2, 2×10−2}. All non-zero radii lie in the narrow band hnorm ∈
[2.37, 2.46] × 10−7, i.e. variation ≈ 3 × 10−8, which characterises the numerical floor of the
estimator and is consistent with the O(r) small-radius behaviour.

• a self-loop in which the same image is repeated at all loop points (radius r = 0); and
• PCA-based loops with radii r ∈ {10−3, 2× 10−3, 5× 10−3, 10−2, 2× 10−2}.

Table 16 shows hnorm as a function of radius.

Table 16: Experiment D (MNIST MLP, small-radius and self-loop). Holonomy at Hidden 1 for an
exact self-loop (r = 0) and for very small PCA loops. All values lie in a narrow band, characterising
the numerical floor of the estimator in this setting.

Radius hnorm

0 3.08× 10−7

0.001 2.39× 10−7

0.002 2.37× 10−7

0.005 2.38× 10−7

0.010 2.38× 10−7

0.020 2.45× 10−7

For r ≤ 0.02, holonomy remains essentially flat in the narrow band hnorm ∈ [2.37, 2.46] × 10−7

(variation ≈ 3× 10−8). Together with the self-loop value at r = 0, these numbers characterise the
numerical floor of our estimator and are consistent with the O(r) small-radius behaviour established
in Theorem 1: the increases with radius reported in the main figures only become visible once we
leave this floor and move to radii where perturbations have a semantic effect, see Figure 11.
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