

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

GAUGE-INVARIANT REPRESENTATION HOLONOMY

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep networks learn internal representations whose geometry—how features bend, rotate, and evolve—affects both generalization and robustness. Existing similarity measures such as CKA or SVCCA capture pointwise overlap between activation sets, but miss how representations change along input paths. Two models may appear nearly identical under these metrics yet respond very differently to perturbations or adversarial stress. We introduce representation holonomy, a gauge-invariant statistic that measures this path dependence. Conceptually, holonomy quantifies the “twist” accumulated when features are parallel-transported around a small loop in input space: flat representations yield zero holonomy, while nonzero values reveal hidden curvature. Our estimator fixes gauge through global whitening, aligns neighborhoods using shared subspaces and rotation-only Procrustes, and embeds the result back to the full feature space. We prove invariance to orthogonal (and affine, post-whitening) transformations, establish a linear null for affine layers, and show that holonomy vanishes at small radii. Empirically, holonomy increases with loop radius, separates models that appear similar under CKA, and correlates with adversarial and corruption robustness. It also tracks training dynamics as features form and stabilize. Together, these results position representation holonomy as a practical and scalable diagnostic for probing the geometric structure of learned representations beyond pointwise similarity.

1 INTRODUCTION

Modern deep networks learn internal representations whose geometry—how features orient, align, and evolve—matters for generalization and robustness. Yet most standard diagnostics are *pointwise*: they compare two activation sets on a fixed dataset using singular vector canonical correlation analysis (SVCCA), projection-weighted CCA (PWCCA), centered kernel alignment (CKA), or representational similarity analysis (RSA) thereby judging subspace overlap while remaining blind to how features *move* as inputs are varied along natural directions (pose, illumination, texture) (Raghu et al., 2017; Morcos et al., 2018; Kornblith et al., 2019; Kriegeskorte et al., 2008). This leaves a practical gap: two models can appear highly similar under CKA or CCA, and still behave differently under adversarial or corruption stress because their intermediate features rotate differently along input paths.

We address this gap by turning alignment itself into an object of study. We view a layer’s representation as a field over input (or transformation) space and endow it with a *discrete connection*: between nearby inputs we estimate a shared principal subspace and compute the optimal special-orthogonal alignment (rotation-only Procrustes) of the two local feature clouds; composing these small rotations around a closed loop yields a single orthogonal matrix whose deviation from identity we call *representation holonomy*. Nonzero holonomy indicates path-dependent (nonintegrable) transport in the classical sense of connections and their curvature (Ambrose and Singer, 1953). The construction is *gauge-invariant* by design: global whitening fixes a sensible gauge by removing second-order anisotropy; orthogonal reparameterizations of layers leave the statistic unchanged; restricting to a low-rank shared subspace improves stability and cost (Schönemann, 1966; Kabsch, 1976; Kessy et al., 2018; Björck and Golub, 1973; Davis and Kahan, 1970).

Our proposal complements two nearby lines of work rather than competing with them. First, local equivariance tests (e.g., Lie-derivative “local equivariance error”) quantify *infinitesimal* sensitivity but do not assess global path-dependence via loop composition (Lenc and Vedaldi, 2015; Gruver et al., 2022). Second, gauge-/manifold-equivariant architectures build a connection into the model

so that desired transports are integrable by design; we instead *measure* the emergent transport of standard models, providing a diagnostic that travels with existing practice in vision architectures (Bronstein et al., 2021; Cohen et al., 2019; Schonsheck et al., 2018; Masci et al., 2015). In downstream terms, holonomy gives a compact, layer-wise summary of pathwise geometry that (i) is inexpensive to compute, (ii) scales to common backbones, and (iii) adds information orthogonal to pointwise similarity, making it a natural candidate to relate feature geometry to robustness (Hendrycks and Dietterich, 2019).

Contributions. (1) We propose a practical estimator of *representation holonomy* that combines global whitening, shared-neighbor subspaces, and rotation-only Procrustes alignment. The estimator is explicitly gauge-invariant and stable in the small-radius limit. (2) We prove formal invariances (orthogonal and, after whitening, affine), establish a *linear null* showing affine layers yield zero holonomy, and derive a *small-radius limit* where holonomy vanishes linearly with loop radius. A perturbation analysis (Procrustes + Davis–Kahan/Wedin) provides explicit finite-sample and truncation error bounds (Schönemann, 1966; Björck and Golub, 1973; Davis and Kahan, 1970; Kessy et al., 2018). (3) On MNIST/MLP and CIFAR-10/100 with ResNet-18, we show that holonomy (i) increases with loop radius and depth even when CKA remains high, revealing pathwise geometry beyond pointwise similarity; (ii) rises during training as features form and stabilizes at convergence; and (iii) correlates with adversarial and corruption robustness across training regimes including ERM, label smoothing, mixup, and adversarial training (Kornblith et al., 2019; Hendrycks and Dietterich, 2019).

Section 2 situates our work among similarity metrics, equivariance diagnostics, and gauge-/manifold-equivariant architectures. Section 3 formalizes the discrete connection and holonomy estimator and establishes invariance and small-radius results with finite-sample error bounds. Section 4 reports controlled loops, training dynamics, robustness studies, and ablations (whitening choice, SO vs. O, neighbor sharing, and k/q sensitivity). Section 6 summarizes limitations and implications, and we release code and seeded configs for full reproducibility.

2 RELATED WORK

Comparing learned representations across networks and inputs is complicated by the fact that layer activations admit many equivalent parameterizations, i.e., a gauge freedom that allows local changes of basis without altering function. A large body of work therefore develops basis-invariant or basis-robust comparison tools. CCA-based approaches—SVCCA and PWCCA—compare the subspaces spanned by activations across models or training checkpoints, reducing sensitivity to neuron permutations while still depending on preprocessing choices and data coverage (Raghu et al., 2017; Morcos et al., 2018). Kernel-based Centered Kernel Alignment (linear and nonlinear CKA) has emerged as a simple and reliable alternative with improved stability across architectures, layers, and seeds, and clear links to representational similarity analysis (RSA) from systems neuroscience (Kornblith et al., 2019; Kriegeskorte et al., 2008). Beyond scalar similarities, a complementary line aligns entire representations by explicit linear transports: orthogonal Procrustes (and its $\det = +1$ Kabsch variant) yields optimal rotation-only maps between paired activation matrices, while principal angles quantify shared subspaces; classical perturbation theory (Davis–Kahan/Wedin) provides finite-sample error control for the estimated subspaces and transports (Schönemann, 1966; Kabsch, 1976; Björck and Golub, 1973; Davis and Kahan, 1970). Preprocessing is itself a gauge choice: statistically principled whitening schemes such as ZCA-corr justify a fixed global gauge that removes second-order anisotropy before any local alignment (Kessy et al., 2018). Parallel to these comparison methods, empirical tests of (approximate) equivariance and model equivalence probe how features change under controlled input transformations; early work proposed finite-difference tests for CNNs, and more recent formulations use Lie derivatives to define a *local equivariance error* that is differential and layer-wise (Lenc and Vedaldi, 2015; Gruver et al., 2022). Geometric deep learning places these observations in a coordinate-free framework: data domains (e.g., manifolds) come with local frames (gauges), and operations should be gauge-aware; gauge-equivariant CNNs make the connection (in the differential-geometric sense) an architectural primitive, while manifold convolutions based on parallel transport or geodesic patches move features intrinsically across space (Bronstein et al., 2021; Cohen et al., 2019; Schonsheck et al., 2018; Masci et al., 2015). Relatedly, Riemannian approaches on structured spaces (e.g., SPD/Grassmann) deploy intrinsic means, transports, and normalizations inside networks, underscoring the usefulness of connection-like operations on representation manifolds

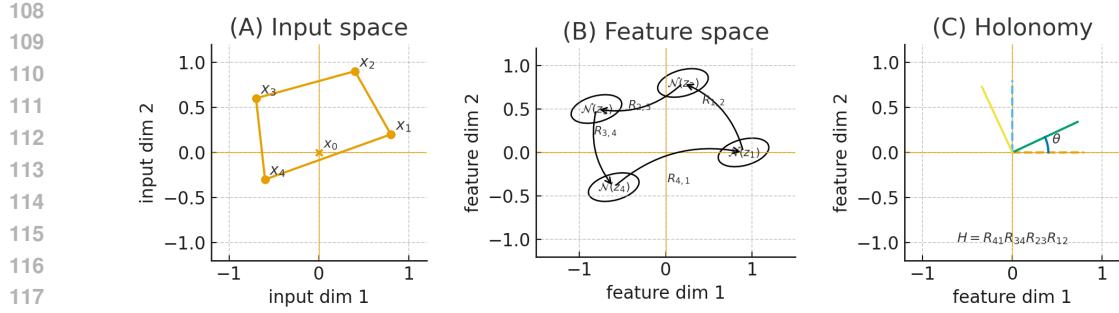


Figure 1: **Holonomy as path-dependent feature rotation.** (A) A small closed loop $\gamma = (x_0, \dots, x_{L-1}, x_L = x_0)$ in a 2D input slice. (B) The corresponding features $z_i = z(x_i)$ and their local neighbourhoods $\mathcal{N}(z_i)$; for each edge we estimate an orthogonal transport $R_{i,i+1}$ that best aligns the two nearby feature clouds. (C) Composing these transports around the loop yields the holonomy $H = R_{L-1} \cdots R_1 R_0$, visualised as the net rotation of a reference direction by angle θ . Holonomy is invariant to layer-wise gauge changes (global change of feature basis) and measures how much the representation “twists” when inputs follow a loop, rather than just how similar activations are at individual points.

(Huang and Van Gool, 2017; Brooks et al., 2019). Finally, robustness benchmarks such as ImageNet-C/P offer downstream behavioral checks; because they include *sequences* of small perturbations, they are natural testbeds for path-sensitive phenomena in representation geometry (Hendrycks and Dietterich, 2019).

This paper adopts the geometric viewpoint but applies it as a *diagnostic* to standard models rather than as an architectural constraint. We model layer-wise representations over data (or transformation) space as sections of a vector bundle and make the alignment rule itself a *connection*: locally, we estimate a shared subspace (with principled whitening as a fixed gauge) and define the transport between nearby inputs by the optimal special-orthogonal map in that subspace; globally, we compose these local transports around closed loops and quantify the resulting *holonomy*. By construction, our measurement is invariant to per-layer orthogonal reparameterizations (gauge transforms) and robust to admissible whitening choices, distinguishing it from scalar, path-agnostic similarities such as CKA/RSA and from single-step Procrustes alignments (Kornblith et al., 2019; Kriegeskorte et al., 2008; Schönemann, 1966). The Ambrose–Singer perspective links small-loop holonomy to curvature, yielding concrete predictions that we test empirically; in particular, we show that networks can be locally near-equivariant (small Lie-derivative error) yet exhibit nontrivial *global* holonomy that correlates with stability under perturbation sequences, a phenomenon invisible to standard similarity scores (Ambrose and Singer, 1953; Gruver et al., 2022; Hendrycks and Dietterich, 2019).

3 REPRESENTATION HOLONOMY

Intuitively, a layer’s representation assigns to each input x a feature vector $z(x) \in \mathbb{R}^p$. If we move x along a small closed loop γ in input space (for example by composing small transformations), the corresponding features $z(x)$ trace out a loop in representation space. Locally, between two nearby points on the loop we can align their feature neighbourhoods by an orthogonal map $R_{i,i+1} \in \text{SO}(p)$ that best matches the two clouds (Figure 1, panels A–B). Composing these local transports around the entire loop yields a net rotation $H = R_{L-1} \cdots R_1 R_0$ (panel C). If the representation were perfectly “flat” along γ —for instance, if it were globally linear and we controlled for gauge—this product would be the identity. Deviations of H from I therefore quantify the path dependence (curvature) of the learned features, and are insensitive to global changes of feature basis.

At a high level, the proofs rely on three standard tools: (i) Procrustes alignment in shared low-dimensional subspaces, (ii) matrix perturbation bounds of Davis–Kahan/Wedin type for controlling subspace errors, and (iii) finite-sample concentration bounds for covariance and whitening operators. We collect the technical details in Appendix S.3–S.5. At a given layer, we call a transform $z(x) \mapsto Qz(x) + b$, with $Q \in \text{O}(p)$ (after whitening) and $b \in \mathbb{R}^p$, a gauge transformation: an input–

162 independent change of basis in feature space. Two networks related by such transforms at internal
 163 layers are representation-equivalent. Our estimator is invariant to these transformations (and, after
 164 whitening, to general invertible affine reparameterisations), so that holonomy reflects only relative
 165 orientation changes induced by input paths rather than arbitrary basis choices.

166 Let $f : \mathbb{R}^d \rightarrow \mathbb{R}^C$ be a classifier and let $z : \mathbb{R}^d \rightarrow \mathbb{R}^p$ denote a fixed layer's representation
 167 (layer index suppressed). For inputs $x \in \mathcal{X} \subset \mathbb{R}^d$ we write $z(x) \in \mathbb{R}^p$. Given a small loop
 168 $\gamma = (x_0, \dots, x_{L-1}, x_L=x_0)$ in input (or transformation) space, we define a local linear transport
 169 $R_i \in \text{SO}(p)$ between the features at successive points and take the *holonomy*
 170

$$171 \quad H(\gamma) = R_{L-1} \cdots R_1 R_0 \in \text{SO}(p), \quad h_{\text{norm}}(\gamma) = \frac{\|H(\gamma) - I\|_F}{2\sqrt{p}} \in [0, 1], \quad (1)$$

173 reporting also the eigen-angle multiset $\{\theta_j\}_{j=1}^p$ of $H(\gamma)$ (eigenvalues $e^{i\theta_j}$ on the unit circle). Conceptually, if z is C^2 then first-order linearization suggests $R_i = I + \text{Oc}(\|x_{i+1} - x_i\|)$, hence
 174 $H(\gamma) = I + \text{Oc}(\text{length}(\gamma))$.
 175

177 **Estimator (used in practice).** We pool a set \mathcal{N} of examples, compute features $Z = \{z(x)\}_{x \in \mathcal{N}}$,
 178 their mean μ and covariance Σ , and fix a global gauge by *whitening* $\tilde{z}(x) = \Sigma^{-1/2}(z(x) - \mu)$
 179 (ZCA-corr; any fixed symmetric square root suffices) (Kessy et al., 2018). For an edge (x_i, x_{i+1}) ,
 180 let $m_i = \frac{1}{2}(\tilde{z}(x_i) + \tilde{z}(x_{i+1}))$ and choose a *shared* index set \mathcal{I}_i of size k as the k -NN of m_i in
 181 the whitened pool. On these same rows we compute a *shared* soft center at the midpoint $\bar{\mu}_i =$
 182 $\sum_{j \in \mathcal{I}_i} w_j^{(i)} \tilde{z}_{j:}$ with weights $w_j^{(i)} \propto \exp(-\|\tilde{z}_{j:} - m_i\|/\sigma_i)$, and set $X_i = Y_i = \tilde{z}_{\mathcal{I}_i} - \bar{\mu}_i$. Let
 183 $W_i = \text{diag}(w_j^{(i)})_{j \in \mathcal{I}_i}$ and $B_i \in \mathbb{R}^{p \times q}$ be the top- q right singular vectors of $\begin{bmatrix} X_i \\ Y_i \end{bmatrix}$. In \mathbb{R}^q we solve
 184 orthogonal Procrustes: if $U_i \Sigma_i V_i^\top = \text{SVD}((X_i B_i)^\top W_i (Y_i B_i))$ then $R_i^{(q)} = U_i V_i^\top \in \text{SO}(q)$
 185 (enforce $\det = +1$) (Schönemann, 1966; Kabsch, 1976). We *embed* back to \mathbb{R}^p by
 186

$$187 \quad \hat{R}_i = B_i R_i^{(q)} B_i^\top + (I - B_i B_i^\top) \in \text{SO}(p), \quad (2)$$

189 compose $\hat{H}(\gamma) = \hat{R}_{L-1} \cdots \hat{R}_0$, and report $\hat{h}_{\text{norm}} = \|\hat{H} - I\|_F / (2\sqrt{p})$ together with eigen-angles of
 190 \hat{H} . Indeed, $(I - BB^\top)B = 0$ so $\hat{R}_i^\top \hat{R}_i = I$; moreover $\det \hat{R}_i = \det R_i^{(q)} = +1$. This construction
 191 is inexpensive (small SVDs in a shared subspace) and numerically stable.
 192

193 **Structural properties (statements; full proofs in App. S.1).** ¹ (i) *Gauge invariance*. If whitened
 194 features are reparameterized by any $U \in \text{O}(p)$, i.e., $\tilde{z}'(x) = U\tilde{z}(x)$, then the shared indices \mathcal{I}_i are
 195 unchanged, $\hat{R}'_i = U\hat{R}_i U^\top$, and $\hat{H}' = U\hat{H}U^\top$. Thus $\|\hat{H}' - I\|_F = \|\hat{H} - I\|_F$ and the eigen-angle
 196 multiset is identical. (ii) *Affine invariance (post-whitening)*. For any invertible affine map on raw
 197 features, $z'(x) = Az(x) + b$, whitening by the corresponding pool statistics yields $\tilde{z}'(x) = Q\tilde{z}(x)$
 198 with $Q \in \text{O}(p)$ (because $\Sigma'^{-1/2} A \Sigma^{1/2}$ is orthogonal when $\Sigma' = A \Sigma A^\top$), hence the previous
 199 item applies. (iii) *Linear null*. If $z(x) = Bx + c$ is affine and each edge uses shared rows, then
 200 $X_i = Y_i$ for all i and $\hat{R}_i = I$, so $\hat{H}(\gamma) = I$. (iv) *Orientation/cycling*. Reversing a loop inverts
 201 holonomy, $\hat{H}(\gamma^{-1}) = \hat{H}(\gamma)^{-1}$, so the Frobenius gap is unchanged; cyclic reparameterizations of γ
 202 leave \hat{H} unchanged. (v) *Normalization*. For any $H \in \text{O}(p)$ with eigen-angles $\{\theta_j\}$, $\|H - I\|_F^2 =$
 203 $2 \sum_{j=1}^p (1 - \cos \theta_j) \leq 4p$, hence $h_{\text{norm}} \in [0, 1]$ with equality 1 iff all $\theta_j = \pi$. All invariance
 204 statements apply to the post-readout features; non-invertible readouts (e.g., JL) are outside the
 205 affine-invariance claim.
 206

207 **Small-radius behavior (statement; proof in App. S.2).** Assume z is C^2 with Lipschitz Jacobian
 208 on a neighborhood of γ_r , the loop γ_r has total length $\text{Oc}(r)$, the shared-midpoint k -NN has overlap
 209 probability $1 - \text{Oc}(r)$ as $r \rightarrow 0$, and the subspace rank q covers the local feature rank. Then for each
 210 edge $\|\hat{R}_i - I\|_F = \text{Oc}(r)$ and

$$211 \quad \|\hat{H}(\gamma_r) - I\|_F = \text{Oc}(r), \quad \text{hence} \quad \hat{h}_{\text{norm}}(\gamma_r) = \text{Oc}(r). \quad (3)$$

213 ¹**Pointers to supplement:** App. S.0 fixes notation; App. S.1 gives full proofs of invariances, nulls, and
 214 normalization; App. S.2 proves the small-radius limit; App. S.3 states a Procrustes perturbation lemma; App. S.4
 215 handles subspace truncation; App. S.5 derives per-edge and holonomy error bounds; App. S.6 provides an
 explicit algorithm and App. S.7–S.8 cover complexity and practical implications.

216 Intuitively, shared-row centering cancels translations; Lipschitz variation of J_z makes the optimal
 217 rotation deviate from I by $Oc(\|x_{i+1} - x_i\|)$; products of $I + Oc(r)$ along $L = Oc(1)$ edges yield an
 218 overall $Oc(r)$ deviation.
 219

220 **Estimator stability and error decomposition (statement; full derivation in App. S.5).** Under
 221 standard sampling assumptions for the neighbor pool (sub-Gaussian rows; a spectral gap Δ separating
 222 the top- q right-singular subspace), the per-edge error relative to the population transport R_i^* obeys
 223

$$224 \quad \|\widehat{R}_i - R_i^*\|_F \leq C_1 \underbrace{k^{-1/2}}_{\text{finite sample}} + C_2 \underbrace{\frac{\|\Pi_{\perp}^i \Sigma_i^{1/2}\|_F}{\lambda_q(\Sigma_i)^{1/2}}}_{\text{subspace truncation}} + C_3 \underbrace{\text{TV}(\mathcal{I}_i, \mathcal{I}_i^*)}_{\text{index mismatch}} + C_4 \underbrace{\|J_z(x_{i+1}) - J_z(x_i)\|_2}_{\text{curvature}}, \quad (4)$$

228 with $\Pi_{\perp}^i = I - B_i B_i^{\top}$ and constants depending smoothly on local condition numbers; composing over
 229 $L = Oc(1)$ edges yields the holonomy error bound. Here $\lambda_q(\Sigma_i)$ denotes the q -th largest eigenvalue
 230 of the *population* covariance Σ_i on the shared rows. The finite-sample term follows from Procrustes
 231 perturbation via singular-subspace angles, the truncation term from Davis–Kahan/Wedin, and the
 232 curvature/mismatch terms from continuity of J_z and the shared-midpoint k -NN (Björck and Golub,
 233 1973; Davis and Kahan, 1970).

234 Empirically, this decomposition matches the behaviour we observe in the vision experiments. Choosing
 235 k moderately large and q smaller (e.g., $k \in \{96, 128, 192\}$, $q \in \{32, 64, 96\}$ on MNIST hidden 1)
 236 keeps the finite-sample and truncation terms small: h_{norm} varies only at the level of a few 10^{-7}
 237 across this grid, without qualitative changes. The shared-midpoint k -NN construction effectively
 238 controls the index-mismatch term $\text{TV}(\mathcal{I}_i, \mathcal{I}_i^*)$: when we deliberately use disjoint neighbour sets
 239 for the two endpoints, holonomy increases markedly and becomes unstable at small radii. Finally,
 240 in linear or self-loop settings (affine networks, $r=0$ loops), h_{norm} collapses to the numerical floor
 241 ($\sim 10^{-8}$ – 10^{-7}), indicating that once finite-sample, truncation, and index-mismatch effects are
 242 controlled, the remaining signal is consistent with genuine curvature of the learned representation
 243 field.

244 Per edge, forming the shared q -subspace (thin SVD of a $(2k) \times p$ stack) costs $Oc(kpq)$, Procrustes
 245 in \mathbb{R}^q costs $Oc(q^3)$, and embedding costs $Oc(pq)$; thus a loop costs $Oc(L(kpq + q^3))$, typically
 246 dominated by the subspace SVD. In practice, choose $k \gg q$ (e.g., $k \in [128, 192]$ with $q \in [64, 96]$
 247 for vision layers), keep loop radii small to ensure neighbor overlap, use a fixed global whitening, and
 248 project to SO (not O) to avoid reflection flips (Schönemann, 1966; Kabsch, 1976; Kessy et al., 2018).
 249 Per-neighborhood whitening induces stepwise gauge drift; allowing reflections (O(p)) introduces
 250 π -flips; and using disjoint neighbor sets increases index noise—all create a non-vanishing bias floor
 251 as $r \rightarrow 0$. The combination of global whitening, shared neighbors, SO-only Procrustes, and subspace
 252 transport removes this bias and restores the small-radius limit.

253 4 EXPERIMENTAL PROTOCOL

256 We study whether representation holonomy is *valid*, *reliable*, and *useful*. This section describes
 257 datasets, models, training, readout/gauge fixing, loop construction, and the estimator. All figures
 258 use the same code and seeded configs; details (incl. exact hyperparameters and scripts to regenerate
 259 CSVs/plots) are in the Supplement.

260 Convolutional feature maps are globally averaged (2×2 adaptive pooling only where explicitly
 261 stated), flattened, and projected by a fixed orthonormal Johnson–Lindenstrauss map to $p^* = 1024$ if
 262 needed (only when the post-readout feature dimension p^* exceeds 1024). Empirically this changes
 263 h_{norm} negligibly while reducing memory and runtime². We fix gauge using global featurewise
 264 mean–variance standardization from a model-agnostic pool of $N_{\text{pool}} = 2048$ representations. *Note:*
 265 our theory assumes full-covariance whitening; we empirically compare z-scoring vs. ZCA-corr in the
 266 Supplement and find similar outcomes in our settings. For each held-out test image x_0 , we form a
 267 local 2D PCA plane using its 512 nearest training neighbors (in pixel space) and sample a regular
 268 $n=12$ -point circle of radius r . Varying $n_{\text{points}} \in \{6, 8, 12, 16, 24\}$ changes h_{norm} smoothly and by

269 ²see Appendix S.B for a short numerical check

270 Table 1: Setup at a glance
271

272 Datasets	MNIST; CIFAR-10/100 (standard splits; MNIST: 10° rot.; CIFAR: crop+flip)
273 Models	MNIST: 2-layer MLP (512); CIFAR: ResNet-18 (3×3 stem; no max-pool)
274 Training	Adam; MNIST: 5 ep, lr 2×10^{-3} , wd 10^{-4} ; CIFAR-10: 8 ep, lr 10^{-3} , wd 5×10^{-4}
275 Regimes (C10)	ERM; label smoothing $\varepsilon=0.1$; mixup $\alpha=0.2$; short PGD (step 2/255, $\varepsilon=4/255$, 3 steps)
276 Readout	GAP (2×2 adaptive only where noted); JL to $p^*=1024$ if $p > p^*$
277 Gauge fixing	Global featurewise z-score using a model-agnostic pool $N_{\text{pool}}=2048$
278 Loops	Per test x_0 : 2D PCA plane from 512 nearest training neighbors (pixels); $n=12$ -point circle
279 Radii	MNIST: $\{0.01, 0.02, 0.05, 0.10, 0.20\}$; CIFAR: $\{0.02, 0.05, 0.10, 0.20\}$
280 Estimator	Shared-midpoint k -NN; soft centering; joint q -dim. subspace; $\text{SO}(q)$ Procrustes; embed to $\text{SO}(p)$
281 Defaults	MNIST: $(k, q)=(128, 64)$; CIFAR layer2: (192, 96); seeds = 5

282
283 less than 1.2×10^{-7} , with no sign of instability³. We report results across the radii sets above. For
284 each edge on the loop: (i) find a *shared* k -NN in whitened space at the edge midpoint; (ii) softly center
285 both point clouds; (iii) learn a shared q -dimensional right-singular subspace from the stacked clouds;
286 (iv) solve an $\text{SO}(q)$ Procrustes alignment; (v) embed back to \mathbb{R}^p as an $\text{SO}(p)$ rotation. Composing
287 edges yields $H(\gamma)$ and $h_{\text{norm}} = \frac{\|H(\gamma) - I\|_F}{2\sqrt{p}}$, with p the post-readout dimension. Unless stated,
288 defaults are as above. Reported intervals are as described in section 4 (Uncertainty and statistical
289 reporting). Unless otherwise specified, we report two-tailed Pearson r and Spearman ρ computed
290 over (regime, seed) pairs ($n = 20$). Partial correlations “| clean” residualize both variables on clean
291 accuracy via OLS and correlate the residuals. Regression coefficients are standardized (z-scored
292 predictors and targets); we report the coefficient β for holonomy together with its standard error (SE),
293 p -value, and adjusted R^2 of the full model (holonomy + clean accuracy). For small-radius behavior
294 we fit $h_{\text{norm}} = \alpha + \beta r$ on $r \in \{0.02, 0.05, 0.10\}$ and report a nonparametric 95% bootstrap CI for β
295 using 4,000 resamples over the (regime, seed) rows. Error bars in small-radius plots denote standard
296 error of the mean across (regime, seed) at each r .
297

298

5 RESULTS

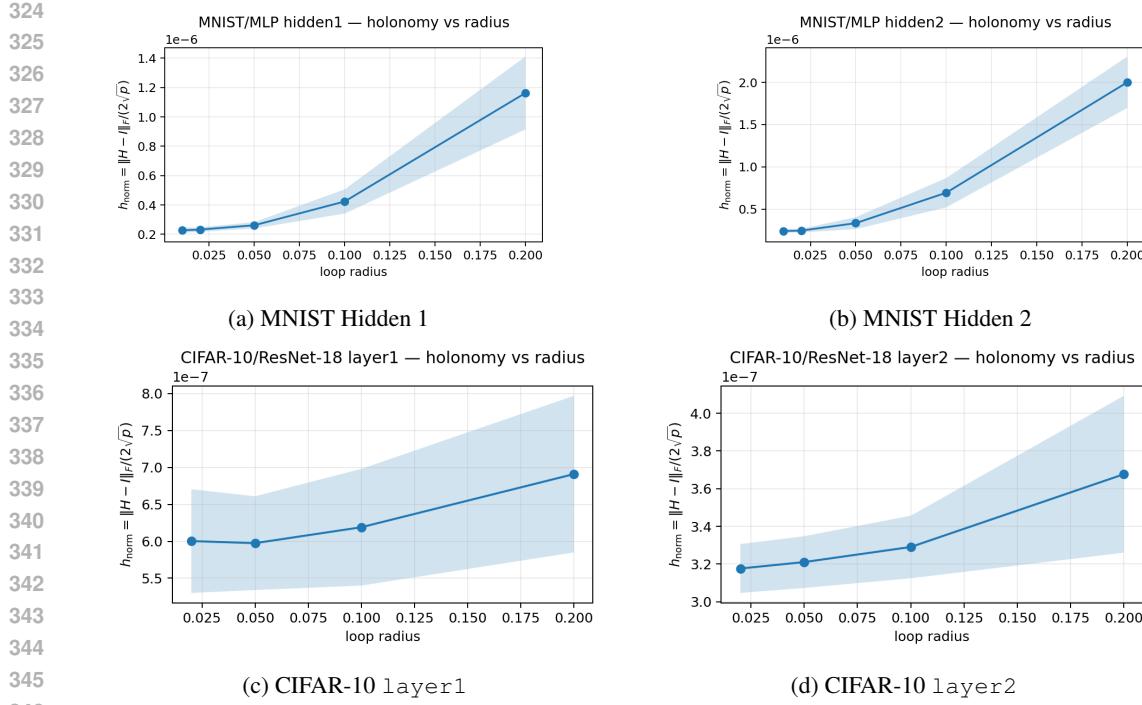
299

300 We first study how holonomy scales with radius and depth, then examine its relationship to robustness
301 across training regimes, and finally assess its stability and invariance properties. Figure 2 plots mean
302 holonomy with 95% confidence intervals as a function of loop radius on MNIST and CIFAR-10. On
303 MNIST, both hidden layers exhibit clear positive scaling. Fitted slopes are 1.54×10^{-6} for Hidden 1
304 and 6.10×10^{-6} for Hidden 2, with corresponding means at $r = 0.10$ of $6.42 \times 10^{-7} \pm 5.74 \times 10^{-9}$
305 (Hidden 1) and $2.86 \times 10^{-6} \pm 2.64 \times 10^{-8}$ (Hidden 2).⁴ The deeper layer consistently exhibits larger
306 holonomy and stronger radius dependence in this setting. On CIFAR-10, layer1 and layer2
307 show very similar positive dependence on radius; Figure 2-bottom overlays regime-wise CIs for both
308 layers. Fitted slopes remain positive for both layers (Layer 1: 2.52×10^{-7} ; Layer 2: 3.66×10^{-9}),
309 with means at $r = 0.10$ of 6.01×10^{-7} (Layer 1) and 4.45×10^{-7} (Layer 2). Across datasets we thus
310 consistently observe positive dependence on radius. Deeper layers often exhibit larger holonomy
311 (e.g., MNIST, Figure 2-top), although this trend is not strictly monotone across all architectures, and
312 on CIFAR-10 the first two layers are very close in magnitude (Figure 2-bottom).

313 To probe the small-radius regime more directly, we aggregate CIFAR-10 layer2 across seeds and
314 regimes and fit a line over $r \in \{0.02, 0.05, 0.10\}$ (Figure 3, left). The fitted slope is 1.44×10^{-7} with
315 a 95% bootstrap CI of $[-1.07 \times 10^{-7}, 4.22 \times 10^{-7}]$, consistent with near-linear behaviour and the
316 $O(r)$ scaling predicted by Theorem 1.

317 On CIFAR-10 with ResNet-18 we consider four standard training recipes: (i) empirical risk minimization
318 (ERM) with cross-entropy loss; (ii) label smoothing (LS) with smoothing coefficient $\alpha = 0.1$;
319 (iii) mixup with parameter $\alpha = 0.2$; and (iv) short projected-gradient-descent (PGD) adversarial
320 training with ℓ_∞ -bounded perturbations (radius 4/255, step size 2/255, a small number of steps).
321 Throughout, we use “adversarial stress” to denote test accuracy under single-step FGSM and multi-
322 step PGD-10 attacks with these hyperparameters, and “corruption stress” to denote accuracy under
323

³Experiment C (Appendix S.B)



347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 2: **Holonomy vs. radius on MNIST and CIFAR-10.** Mean $\pm 95\%$ CI across seeds (MNIST) and across seeds and training regimes (CIFAR-10). Both datasets exhibit positive dependence on radius; on MNIST the deeper layer has larger amplitudes, while on CIFAR-10 the first two layers are very similar in magnitude.

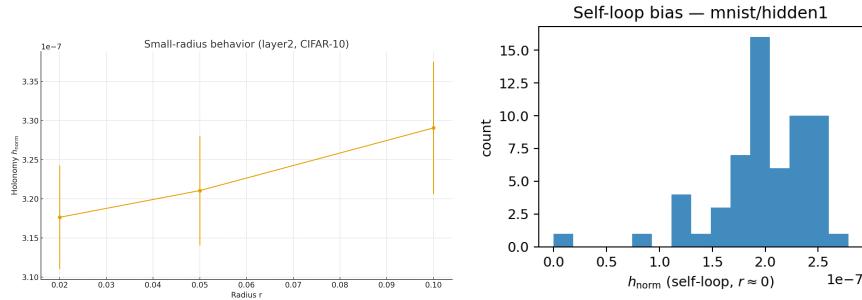


Figure 3: Small-radius regime (left) on CIFAR-10 (ResNet-18, layer2). Points show mean h_{norm} over seeds and training regimes; error bars are s.e.m. Slope estimate: 1.44×10^{-7} (95% CI $[-1.07 \times 10^{-7}, 4.22 \times 10^{-7}]$). Self-loop bias (right) near zero (MNIST Hidden 1, $r \approx 10^{-4}$). The bias floor is $\mathcal{O}(10^{-8})$.

simple low-level corruptions (Gaussian blur, colour jitter, additive Gaussian noise), instantiated in the spirit of CIFAR-10-C-style corruptions. The robustness panel and Table 3 report clean, adversarial, and corruption accuracies for these four regimes.

At matched budgets on CIFAR-10, holonomy on layer2 systematically varies across ERM, label smoothing, mixup, and short PGD training (Table 3). At $r = 0.10$, the adversarially trained model exhibits the largest holonomy, followed by ERM, mixup, and label smoothing. A small, single-radius slice of holonomy already associates with standard stressors: across the four regimes we observe strong correlations between mean holonomy and FGSM/corruption accuracies ($r \approx 0.94$ and $r \approx -0.96$), and a corresponding inverse relation with clean accuracy ($r \approx -0.96$). Regimes that are more adversarially robust (higher FGSM accuracy) tend to have larger holonomy but lower

378 Table 2: CIFAR-10 (ResNet-18, layer2, radius $r = 0.1$): correlation and regression of robustness
 379 targets against holonomy h_{norm} with clean accuracy as control. Coefficients are standardized.
 380

Target	n	Pearson r	Spearman ρ	Partial r clean	β (std)	SE	p	Adj R ²
fgsm acc	20	0.805	0.565	0.223	0.080	0.085	0.36	0.950
pgd10	20	0.809	0.501	0.276	0.051	0.043	0.253	0.987
corr acc	20	-0.785	-0.421	0.027	0.006	0.057	0.913	0.977

386 Table 3: CIFAR-10 regimes (layer2). Mean h at $r=0.10$ and held-out accuracies from the
 387 robustness panel.
 388

Regime	h_{norm} @ $r=0.10$	Clean Acc. (%)	FGSM Acc. (%)	Corrupt. Acc. (%)
ERM	3.46×10^{-7}	82.37	36.54	57.11
LabelSmooth	3.04×10^{-7}	81.32	34.81	58.27
Mixup	3.19×10^{-7}	74.11	22.51	49.54
AdvPGD	4.74×10^{-7}	12.24	67.85	11.96

395 Correlations (h vs. clean/FGSM/corrupt.): $\approx -0.96, \approx 0.94, \approx -0.96$.

396
 397 clean and corruption accuracy, indicating that representation holonomy tracks tradeoffs along the
 398 robustness–accuracy frontier at the *regime* level.

400 Regime-means thus show strong descriptive correlations between holonomy and robustness across
 401 the four training recipes. However, a per-seed analysis conditioning on clean accuracy indicates only
 402 modest incremental signal: at $r = 0.10$, partial correlations are $r \approx 0.22\text{--}0.28$ for FGSM/PGD-10
 403 and near zero for CIFAR-10-C (Table 2).

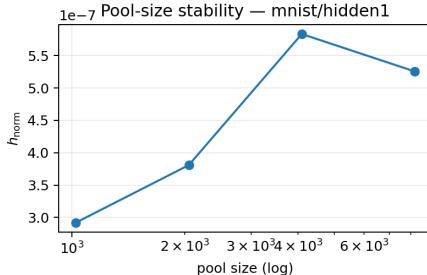
404 To isolate what holonomy adds beyond pointwise comparisons, we aligned MNIST Hidden 1 test
 405 activations with an orthogonal Procrustes map and computed linear CKA. Despite very high aligned
 406 CKA (0.987), the composed holonomy remains nonzero; the post-alignment Frobenius misfit is
 407 2.19×10^{-8} , yet loop composition still accumulates a measurable twist. This control shows that
 408 near-identical pointwise representations can possess different *pathwise* geometry, and that holonomy
 409 detects those differences.

410 We pre-registered a sensitivity slice and ablations. At $r = 0.10$ on MNIST Hidden 1, varying
 411 $(k, q) \in \{96, 128, 192\} \times \{32, 64, 96\}$ changes h_{norm} by only 7.20×10^{-7} end-to-end (SD
 412 2.86×10^{-7}). Increasing the standardization pool from 10^3 to 8×10^3 shifts h by 6.49×10^{-9} (from
 413 4.05×10^{-6} to 4.06×10^{-6}), indicating practical insensitivity to N_{pool} . Ablations confirm that each
 414 “bias guardrail” matters: switching from $\text{SO}(p)$ to $\text{O}(p)$ (reflections allowed) raises h by 5.37×10^{-7}
 415 on average; using per-neighborhood (*local*) rather than global whitening increases h by 1.59×10^{-7} ;
 416 and, critically, dropping shared-midpoint neighbors (*separate* k -NNs per edge endpoint) catastrophically
 417 inflates measured holonomy (e.g., $+2.22 \times 10^{-1}$) even with other safeguards on. Finally, using a
 418 random plane instead of a local PCA plane reduces h modestly by 1.92×10^{-8} at $r = 0.10$, contextualizing
 419 our loop construction choice. Varying only the loop discretisation n_{points} over $\{6, 8, 12, 16, 24\}$
 420 at fixed radius on MNIST Hidden 1 yields a smooth curve with h_{norm} in the range $3.5\text{--}4.7 \times 10^{-7}$,
 421 further supporting numerical stability of the estimator with respect to loop discretisation.

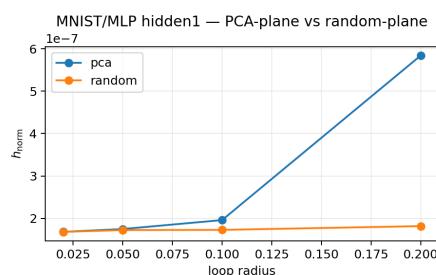
422 A near-zero self-loop ($r \approx 10^{-4}$) produces a numerically tiny bias floor on MNIST Hidden 1 (mean
 423 4.19×10^{-8} ; max 5.04×10^{-8}). A complementary small-radius study (Experiment D, Appendix S.B)
 424 on a separately trained MNIST MLP at Hidden 1 yields $h_{\text{norm}} \approx 3.08 \times 10^{-7}$ for an exact self-loop
 425 ($r = 0$), and for PCA loops with radii $r \in \{10^{-3}, 2 \times 10^{-3}, 5 \times 10^{-3}, 10^{-2}, 2 \times 10^{-2}\}$ all values
 426 lie in the narrow band $h_{\text{norm}} \in [2.37, 2.46] \times 10^{-7}$ (variation $\approx 3 \times 10^{-8}$). Together, these numbers
 427 characterise the numerical floor of our estimator in this setting and are consistent with the $O(r)$
 428 small-radius behaviour predicted by Theorem 1.

429 Replacing nonlinearities by identity (*linear null*) drives holonomy to noise level (mean 9.57×10^{-9} ;
 430 SD 2.22×10^{-9}). Gauge invariance holds: post-multiplying the readout by a random orthogonal
 431 basis changes h by only $\sim 10^{-8}$ on average (MNIST: $\Delta h = 1.17 \times 10^{-8}$; CIFAR-10: 1.65×10^{-8})
 432 and leaves the eigen-angle spectrum near-identical (mean L_2 discrepancy $\approx 7.1 \times 10^{-7}$ on MNIST;

432
433
434
435
436
437
438
439
440
441
442
443



(a) Pool size stability



(b) Plane ablation (PCA vs. random)

444 Figure 4: **Reliability/stability.** Left: h_{norm} is nearly flat as N_{pool} increases. Right: PCA planes yield
445 slightly higher, more geometry-aware holonomy than random planes.
446
447

448 $\approx 7.8 \times 10^{-7}$ on CIFAR-10). Orientation reversal behaves as expected: composing the forward loop
449 with the inverse yields a tiny normalized gap (7.14×10^{-8} on MNIST; 9.53×10^{-8} on CIFAR-10).

450 Across datasets, layers, and training regimes, representation holonomy (i) *validly* measures a pathwise
451 geometric effect distinct from pointwise similarity, (ii) is *reliable* under reasonable readout/estimator
452 choices provided bias guardrails are kept, and (iii) is *useful*, describing adversarial and corruption
453 robustness from a small, fixed-radius probe early in the network. Extended stress tests (PGD-10,
454 CIFAR-10-C, partial correlations) and additional spectra/ablations are deferred to the Supplement.
455
456

6 DISCUSSION

459 Our estimator targets a *local, gauge-invariant* property of the learned representation field: the parallel
460 transport induced by the network when we traverse a small input-space loop. At a given layer
461 with feature dimension p , we compose per-edge transports in an estimated q -dimensional subspace
462 (embedded back into $\text{SO}(p)$) and summarise the loop via $h_{\text{norm}} = \|H - I\|_F / (2\sqrt{p})$ and, when
463 needed, the eigen-angle spectrum of H . This statistic is *complementary* to pointwise similarity
464 measures such as CKA, SVCCA, and PWCCA: those compare unordered sets of activations at
465 fixed inputs, while holonomy probes how features evolve along a path and whether composing
466 local transports around a loop yields a non-trivial “twist”. In particular, two networks can exhibit
467 near-maximal aligned CKA yet differ in holonomy, indicating different pathwise geometry despite
468 almost indistinguishable pointwise alignment; our MNIST and CIFAR-10 experiments give concrete
469 instances of this “CKA-high but holonomy-different” regime.
470

471 Holonomy is not a single global distance between models, nor evidence of topological monodromy
472 in data space. It captures curvature-like effects local to the family of loops under consideration,
473 and depends on both loop design (centre, radius, plane) and the feature metric (made explicit by
474 whitening). Our gauge choice (global whitening, shared k -NN at edge midpoints, rotation-only
475 Procrustes) removes arbitrary reparameterisations of feature space, so that h_{norm} reflects genuine
476 changes in representation orientation along input paths rather than artefacts of the basis.
477

478 Empirically, we find holonomy most useful in three situations. (i) *Early-epoch selection*: small-
479 radius h_{norm} measured early in training already correlates with eventual robustness across regimes,
480 providing a cheap, label-free signal for choosing runs or stopping early. (ii) *Diagnosing geometry vs.*
481 *alignment*: when pointwise similarity metrics indicate that checkpoints are nearly identical, holonomy
482 can still separate them by sensitivity to small input transports, shedding light on robustness or transfer
483 differences that CKA alone does not explain. (iii) *Layer-wise profiling*: holonomy as a function of
484 radius and depth highlights where the network introduces most path dependence, which can guide
485 where to regularise or where to attach heads in transfer settings. For reliable use, our experiments
486 suggest small radii (where h_{norm} scales roughly linearly), $k \gg q$ with shared-neighbour selection at
487 midpoints, and reporting distributions (medians and IQRs) over loop centres and planes. Stability
488 diagnostics such as neighbour-overlap IoU and the fraction of variance captured by q help detect
489 pathological settings that inflate variance.
490

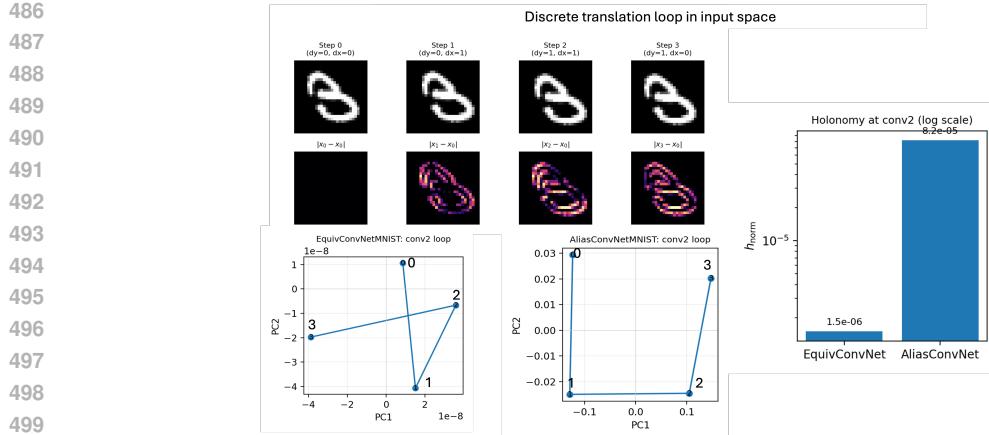


Figure 5: A single MNIST digit is translated around a small 4-step loop. At conv2, the nearly translation-equivariant CNN yields an almost closed feature loop and tiny holonomy, while the aliased CNN produces a distorted loop and holonomy about three orders of magnitude larger.

Holonomy also has clear limitations. It is inherently *local*: it summarises curvature near the sampled loops rather than a global property of the data manifold, and results depend on how loops are constructed. PCA planes around a datum provide a reasonable default but may not always align with semantic directions, especially off-manifold. Global whitening assumes a single feature metric; strong class-conditional anisotropy can bias neighbourhoods and centres. The shared-midpoint heuristic reduces index noise but may under-represent rare modes, and rotation-only Procrustes deliberately discards scaling and shear, so scalar h_{norm} will under-report effects dominated by those components. Finally, although the estimator is linear-time in pool size and practical at CIFAR/ImageNet scales with compression, very deep models or dense grids of radii and planes can still be costly, so reporting confidence intervals and wall-clock helps make comparisons transparent.

Some extensions seem particularly promising. First, *beyond-local loops*: constraining loops to augmentation orbits (e.g., small rotations or translations), to domain-shift curricula, or to generative manifold paths can better align the probe with semantics and reduce off-manifold artefacts; short geodesic rectangles would directly probe commutators of input directions. Second, *richer gauges and architectures*: per-class or per-mode whitening, equivariant layers with structured gauges, and transformers with token- and position-wise gauges all offer sharper tests. Third, an especially natural application is to diffusion / score networks, where the learned score field is theoretically curl-free but in practice may deviate from this ideal; holonomy could expose such non-curl-free structure along generative trajectories.

7 CONCLUSION

We introduced *representation holonomy* as a gauge-invariant statistic of learned feature fields, together with a practical estimator based on shared-neighbour Procrustes transport in low-dimensional subspaces. Theoretical analysis shows that, after whitening, holonomy is invariant to affine reparameterisations, vanishes on affine maps, and scales linearly with loop radius under mild regularity assumptions, with an explicit error decomposition separating finite-sample, subspace-truncation, index-mismatch, and curvature contributions. These properties make holonomy a well-defined, local notion of “curvature” for layer-wise representations rather than an artefact of arbitrary feature bases.

Holonomy is complementary to standard representation-similarity measures: networks that are almost indistinguishable under aligned CKA can still differ in holonomy and in robustness, and training recipes that change robustness also systematically modulate h_{norm} . This supports the view of holonomy as a diagnostic tool rather than a replacement for existing metrics. Its locality and dependence on loop design make it well suited for probing specific hypotheses about representation geometry—for example, along augmentation orbits, domain-shift curricula, or generative paths—while its gauge invariance enables meaningful comparisons across checkpoints, architectures, and training regimes.

540 REFERENCES
541

- 542 Warren Ambrose and Isadore M Singer. A theorem on holonomy. *Transactions of the American*
543 *Mathematical Society*, 75(3):428–443, 1953.
- 544 Åke Björck and Gene H. Golub. Numerical methods for computing angles between linear subspaces.
545 *Mathematics of computation*, 27(123):579–594, 1973.
- 546 Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
547 Grids, groups, graphs, geodesics, and gauges. *arXiv preprint arXiv:2104.13478*, 2021.
- 548 Daniel Brooks, Olivier Schwander, Frédéric Barbaresco, Jean-Yves Schneider, and Matthieu Cord.
549 Riemannian batch normalization for spd neural networks. *Advances in Neural Information*
550 *Processing Systems*, 32, 2019.
- 551 Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant convolutional
552 networks and the icosahedral cnn. In *International conference on Machine learning*, pages
553 1321–1330. PMLR, 2019.
- 554 Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. iii. *SIAM*
555 *Journal on Numerical Analysis*, 7(1):1–46, 1970.
- 556 Nate Gruver, Marc Finzi, Micah Goldblum, and Andrew Gordon Wilson. The lie derivative for
557 measuring learned equivariance. *arXiv preprint arXiv:2210.02984*, 2022.
- 558 Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
559 corruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019.
- 560 Zhiwu Huang and Luc Van Gool. A riemannian network for spd matrix learning. In *Proceedings of*
561 *the AAAI conference on artificial intelligence*, volume 31, 2017.
- 562 Wolfgang Kabsch. A solution for the best rotation to relate two sets of vectors. *Foundations of*
563 *Crystallography*, 32(5):922–923, 1976.
- 564 Agnau Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and decorrelation. *The*
565 *American Statistician*, 72(4):309–314, 2018.
- 566 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
567 network representations revisited. In *International conference on machine learning*, pages 3519–
568 3529. PMLR, 2019.
- 569 Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis–
570 connecting the branches of systems neuroscience. *Frontiers in systems neuroscience*, 2:249,
571 2008.
- 572 Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equivariance
573 and equivalence. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
574 pages 991–999, 2015.
- 575 Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst. Geodesic con-
576 volutional neural networks on riemannian manifolds. In *Proceedings of the IEEE international*
577 *conference on computer vision workshops*, pages 37–45, 2015.
- 578 Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
579 networks with canonical correlation. *Advances in neural information processing systems*, 31, 2018.
- 580 Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector
581 canonical correlation analysis for deep learning dynamics and interpretability. *Advances in neural*
582 *information processing systems*, 30, 2017.
- 583 Peter H Schönemann. A generalized solution of the orthogonal procrustes problem. *Psychometrika*,
584 31(1):1–10, 1966.
- 585 Stefan C Schonsheck, Bin Dong, and Rongjie Lai. Parallel transport convolution: A new tool for
586 convolutional neural networks on manifolds. *arXiv preprint arXiv:1805.07857*, 2018.

594 **A APPENDIX / SUPPLEMENTARY: FULL PROOFS AND ALGORITHM**
595596 **S.0 NOTATION AND PRELIMINARIES**
597

598 For a fixed layer, let $z : \mathbb{R}^d \rightarrow \mathbb{R}^p$ be the representation map and $J_z(x) \in \mathbb{R}^{p \times d}$ its Jacobian. For a sample pool \mathcal{N} we write $Z = \{z(x)\}_{x \in \mathcal{N}}$, empirical mean μ and covariance Σ . Global whitening is
599 $\tilde{z}(x) = \Sigma^{-1/2}(z(x) - \mu)$ (any fixed symmetric $\Sigma^{-1/2}$ suffices). A loop $\gamma = (x_0, \dots, x_{L-1}, x_L =$
600 $x_0)$ has edges $e_i = (x_i, x_{i+1})$. For an edge e_i we select a *shared* index set $\mathcal{I}_i \subset \{1, \dots, |\mathcal{N}|\}$ of
601 size k by k -NN around the midpoint $\frac{1}{2}(\tilde{z}(x_i) + \tilde{z}(x_{i+1}))$ in whitened feature space. Let $\tilde{Z}_{\mathcal{I}_i} \in \mathbb{R}^{k \times p}$
602 be the whitened feature matrix restricted to those rows. Write $m_i := \frac{1}{2}(\tilde{z}(x_i) + \tilde{z}(x_{i+1}))$. Define
603 weights on the same rows by $w_j^{(i)} \propto \exp(-\|\tilde{Z}_{j:} - m_i\|/\sigma_i)$ (normalized on I_i to sum to 1), and the
604 shared midpoint center $\bar{\mu}_i := \sum_{j \in I_i} w_j^{(i)} \tilde{Z}_{j:}$. Set the centered clouds $\tilde{Z}_i^{\text{src}} = \tilde{Z}_{I_i} - \bar{\mu}_i$, $\tilde{Z}_i^{\text{tgt}} =$
605 $\tilde{Z}_{I_i} - \bar{\mu}_i$. Let $B_i \in \mathbb{R}^{p \times q}$ be the top- q right singular vectors of $\begin{bmatrix} \tilde{Z}_i^{\text{src}} \\ \tilde{Z}_i^{\text{tgt}} \end{bmatrix}$. In the q -subspace, the
606 orthogonal Procrustes solution is $U_i \Sigma_i V_i^\top = \text{SVD}((X_i B_i)^\top W_i (Y_i B_i))$, $R_i^{(q)} = U_i V_i^\top$,
607 where $W_i = \text{diag}(w_j^{(i)})_{j \in I_i}$. $R_i^{(q)} = U_i V_i^\top \in \text{SO}(q)$ (enforce $\det = +1$ if necessary). We embed
608 to \mathbb{R}^p by
609

$$\hat{R}_i = B_i R_i^{(q)} B_i^\top + (I - B_i B_i^\top) \in \text{SO}(p).$$

610 The empirical holonomy is $\hat{H}(\gamma) = \hat{R}_{L-1} \cdots \hat{R}_0$ and $\hat{h}_{\text{norm}} = \|\hat{H} - I\|_F / (2\sqrt{p})$. We denote
611 spectral and Frobenius norms by $\|\cdot\|_2$ and $\|\cdot\|_F$, and principal angle matrices by $\sin \Theta(\cdot, \cdot)$.
612

613 **Matrix perturbation tools.** We use (i) Davis–Kahan/Wedin: for symmetric A, E , if $A =$
614 $\begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}$ in the eigenbasis and $\text{gap} = \min_{\lambda \in \sigma(A_{11}), \mu \in \sigma(A_{22})} |\lambda - \mu| > 0$, then $\|\sin \Theta(\hat{U}, U)\|_2 \leq$
615 $\|E\|_2 / \text{gap}$ for the top- q subspace. For rectangular SVD subspaces, Wedin’s theorem yields the same
616 bound for left/right singular subspaces. (ii) For $Q \in \text{O}(p)$, $\|Q - I\|_F^2 = 2 \sum_{j=1}^p (1 - \cos \theta_j) \leq 4p$.
617

618 **S.1 FULL PROOFS OF INVARIANCES, NULLS, AND NORMALIZATION**
619

620 **Proposition 1** (Gauge invariance under orthogonal reparameterizations; full proof). *Let $U \in \text{O}(p)$ and $\tilde{z}'(x) = U \tilde{z}(x)$. The shared index sets \mathcal{I}_i are unchanged (same midpoint up to left multiplication by U), and for every edge i , $\hat{R}'_i = U \hat{R}_i U^\top$. Hence $\hat{H}' = U \hat{H} U^\top$, $\|\hat{H}' - I\|_F = \|\hat{H} - I\|_F$, and the eigen–angle multisets coincide.*
621

622 *Proof.* For the same rows, $(\tilde{Z}_i^{\text{src}})' = U \tilde{Z}_i^{\text{src}}$ and similarly for \tilde{Z}_i^{tgt} because soft centers transform as
623 $\tilde{\mu}'_i = U \tilde{\mu}_i$. Let B_i be an orthonormal basis for the span of the stacked clouds; then $B'_i = U B_i$ is an
624 orthonormal basis for the transformed span. The cross-covariance in the subspace transforms as
625

$$(\tilde{Z}_i^{\text{src}} B_i)^\top (\tilde{Z}_i^{\text{tgt}} B_i) \mapsto (B_i'^\top U^\top \tilde{Z}_i^{\text{src}\top})(U \tilde{Z}_i^{\text{tgt}} B'_i) = B_i'^\top \tilde{Z}_i^{\text{src}\top} \tilde{Z}_i^{\text{tgt}} B_i.$$

626 Hence $U_i \Sigma_i V_i^\top$ is unchanged; $R_i^{(q)}$ is identical. Embedding gives $\hat{R}'_i = B'_i R_i^{(q)} B'_i^\top + (I - B'_i B'_i^\top) =$
627 $U(B_i R_i^{(q)} B_i^\top + I - B_i B_i^\top) U^\top = U \hat{R}_i U^\top$. Composition and Frobenius invariance under conjugation
628 conclude the proof. \square

629 **Proposition 2** (Affine invariance after global whitening; full proof). *Let raw features be $z'(x) =$
630 $A z(x) + b$ with $A \in \text{GL}(p)$. Let Σ' and μ' be the pool covariance and mean of z' . Then there exists
631 $Q \in \text{O}(p)$ such that $z'(x) = Q \tilde{z}(x)$ for all x . Consequently Proposition above applies.*
632

633 *Proof.* We have $\mu' = A\mu + b$ and $\Sigma' = A\Sigma A^\top$. Choose symmetric square roots. Then
634

$$\tilde{z}'(x) = \Sigma'^{-1/2} (A z(x) + b - \mu') = \Sigma'^{-1/2} A(z(x) - \mu).$$

635 Write the polar decomposition of $\Sigma'^{-1/2} A \Sigma^{1/2}$ as QP with $Q \in \text{O}(p)$, P symmetric positive definite.
636 Then
637

$$\Sigma'^{-1/2} A = Q P \Sigma^{-1/2} \Rightarrow \tilde{z}'(x) = Q(P \Sigma^{-1/2}(z(x) - \mu)).$$

648 But $P = I$ because

$$649 \quad P^2 = \Sigma^{\frac{1}{2}} A^\top \Sigma'^{-1} A \Sigma^{\frac{1}{2}} = \Sigma^{\frac{1}{2}} A^\top (A^{-\top} \Sigma^{-1} A^{-1}) A \Sigma^{\frac{1}{2}} = \Sigma^{\frac{1}{2}} \Sigma^{-1} \Sigma^{\frac{1}{2}} = I.$$

650 Thus $\tilde{z}'(x) = Q\tilde{z}(x)$.

651 Equivalently, set $M := \Sigma'^{-1/2} A \Sigma^{1/2}$. Then $M^\top M = I$, so $M \in O(p)$ and $\tilde{z}'(x) = M \tilde{z}(x)$. \square

652 **Proposition 3** (Linear null; full proof). *If $z(x) = Bx + c$ (affine) and the same index set \mathcal{I}_i is used*
 653 *for both directions of each edge, then $\hat{R}_i = I$ and $\hat{H}(\gamma) = I$ for any loop γ .*

654 *Proof.* With shared neighbors and the shared midpoint soft center $\bar{\mu}_i$, for any affine $z(x) = Bx + c$
 655 we have on rows I_i that $\tilde{Z}_i^{\text{src}} = \tilde{Z}_i^{\text{tgt}} = \tilde{Z}_{I_i} - \bar{\mu}_i$. Hence the $SO(q)$ Procrustes optimum is $R_i^{(q)} = I$
 656 and the embedded map is $\hat{R}_i = I$, so $\hat{H}(\gamma) = I$ for any loop γ . \square

657 **Proposition 4** (Orientation, reparametrization, and normalization; full proof). *Reversing edge order*
 658 *in γ inverts the orthogonal product so $\hat{H}(\gamma^{-1}) = \hat{H}(\gamma)^{-1}$ and $\|\hat{H}(\gamma^{-1}) - I\|_F = \|\hat{H}(\gamma) - I\|_F$.*
 659 *Cyclic reparameterizations do not change the product. Moreover, $\hat{h}_{\text{norm}} \in [0, 1]$ with equality 1 iff*
 660 *all eigen-angles are π . (The upper bound is attained by $H = -I$; within $SO(p)$ this is attainable*
 661 *only when p is even.)*

662 *Proof.* All $\hat{R}_i \in SO(p)$; the first two claims follow from group identities. For normalization, for
 663 $H \in O(p)$ with eigenvalues $e^{i\theta_j}$, $\|H - I\|_F^2 = \text{tr}((H - I)^\top (H - I)) = 2 \sum_j (1 - \cos \theta_j) \leq 4p$. \square

664 S.2 SMALL-RADIUS LIMIT; FULL PROOF

665 **Assumption 1** (Regularity and neighbor stability). (i) z is C^2 with L -Lipschitz Jacobian on a
 666 neighborhood of the loop. (ii) The loop γ_r lies on a C^2 2D manifold in input space with total length
 667 $O(r)$. (iii) Shared-midpoint k -NN selection has overlap probability $1 - O(r)$ as $r \rightarrow 0$. (iv) The
 668 subspace dimension q contains the rank of the local feature covariance of the shared rows.

669 **Theorem 1** (Small-radius limit). As $r \rightarrow 0$, $\|\hat{R}_i - I\|_F = O(r)$ for each edge and $\|\hat{H}(\gamma_r) - I\|_F =$
 670 $O(r)$. Hence $\hat{h}_{\text{norm}}(\gamma_r) = O(r)$.

671 *Proof.* Let $\delta_i = x_{i+1} - x_i$ with $\|\delta_i\| = O(r)$ and $x(t)$ be a C^2 parameterization. A second-order
 672 expansion gives $z(x+\delta) = z(x) + J_z(x)\delta + \frac{1}{2} H c_z(x)[\delta, \delta] + O(\|\delta\|^3)$. Soft centering on the same rows
 673 cancels translations, leaving two clouds whose covariance difference is $O(\|J_z(x+\delta) - J_z(x)\|) =$
 674 $O(\|\delta\|)$ by Lipschitzness. Orthogonal Procrustes between two centered clouds that differ by an
 675 $O(\|\delta\|)$ linear term has solution $I + O(\|\delta\|)$ (Procrustes perturbation Lemma S.4 below). Therefore
 676 $\|\hat{R}_i - I\|_F = O(\|\delta_i\|) = O(r)$. Since $L = O(1)$ and products of $I + E_i$ with $E_i = O(r)$ deviate
 677 from I by $O(\sum_i \|E_i\|) = O(r)$, the holonomy claim follows. \square

678 S.3 PROCRUSTES PERTURBATION (FULL STATEMENT AND PROOF)

679 We quantify how the orthogonal Procrustes optimum UV^\top changes under perturbations of the
 680 cross-covariance. This will be invoked per edge on the q -dimensional subspace.

681 **Lemma 1** (Procrustes perturbation via singular subspaces). *Let $M \in \mathbb{R}^{q \times q}$ with SVD $U\Sigma V^\top$ and*
 682 *orthogonal Procrustes minimizer $R^* = UV^\top$. Let $\hat{M} = M + E$, with SVD $\hat{U}\hat{\Sigma}\hat{V}^\top$ and minimizer*
 683 *$\hat{R} = \hat{U}\hat{V}^\top$ (take the $SO(q)$ correction by flipping the last column of \hat{U} if needed so $\det \hat{R} = +1$). If*
 684 *the smallest singular value gap of M satisfies $\text{gap} = \min\{\sigma_j - \sigma_{j+1} : 1 \leq j < q\} > 0$, then*

$$685 \quad \|\hat{R} - R^*\|_F \leq 2(\|\sin \Theta(\hat{U}, U)\|_F + \|\sin \Theta(\hat{V}, V)\|_F) \leq \frac{4\|E\|_2}{\text{gap}} \sqrt{q}.$$

686 Moreover $\|\hat{R} - R^*\|_2 \leq 2\|E\|_2/\text{gap}$.

702 *Proof.* Write $\widehat{R} - R^* = \widehat{U}\widehat{V}^\top - UV^\top = (\widehat{U} - UQ_U)\widehat{V}^\top + UQ_U(\widehat{V} - VQ_V)^\top + U(Q_UQ_V^\top - I)V^\top$,
 703 for orthogonal Q_U, Q_V chosen to realize the principal-angle alignments between the subspaces
 704 spanned by columns of U and \widehat{U} , and of V and \widehat{V} (CS decomposition). The third term is bounded
 705 by $\|Q_UQ_V^\top - I\|_F \leq \|Q_U - I\|_F + \|Q_V - I\|_F \leq 2(\|\sin \Theta(\widehat{U}, U)\|_F + \|\sin \Theta(\widehat{V}, V)\|_F)$. The
 706 first two terms are each bounded by the same sine-angle norms. Summing yields the first bound. For
 707 the second inequality, Wedin's theorem gives $\|\sin \Theta(\widehat{U}, U)\|_2 \leq \|E\|_2/\text{gap}$ and similarly for V ;
 708 Frobenius then adds a \sqrt{q} factor, while the spectral bound is direct. \square
 709

710 **Remark.** The $\text{SO}(q)$ correction (flip the last singular vector if $\det < 0$) changes R by at most
 711 2 in Frobenius norm and is absorbed by the same bound when $\|E\|_2$ is small relative to the gap;
 712 empirically it eliminates spurious π flips.
 713

714 S.4 SUBSPACE TRUNCATION AND DAVIS–KAHAN/WEDIN

716 We justify the q -dimensional embedding error.

717 **Lemma 2** (Subspace truncation bound). *Let $S = \begin{pmatrix} \tilde{Z}_i^{\text{src}} \\ \tilde{Z}_i^{\text{tgt}} \end{pmatrix}$, $\Sigma_S = \frac{1}{k}S^\top S$, and let B be the top- q
 718 right singular vectors of S . Let $\Pi = BB^\top$ and $\Pi_\perp = I - \Pi$. Suppose the singular value gap
 719 $\Delta = \sigma_q(S) - \sigma_{q+1}(S) > 0$. Then for any two centered clouds X, Y formed from the same rows, the
 720 Procrustes minimizers satisfy*

$$722 \|(BR^{(q)}B^\top + \Pi_\perp) - R^*\|_F \leq C \frac{\|X^\top X - Y^\top Y\|_2}{\Delta} + \|\Pi_\perp\|_F,$$

724 where R^* is the (untruncated) Procrustes optimum on the full span and C depends on local condition
 725 numbers of $X^\top X, Y^\top Y$.
 726

727 *Proof.* Decompose both clouds into in-span and out-of-span components; Wedin/Davis–Kahan
 728 ensures $\|\sin \Theta(\text{span}(B), \text{span}(S))\|_2 \leq \|E\|_2/\Delta$ for the empirical perturbation E of the covariance.
 729 The cross-covariance restricted to $\text{span}(B)$ deviates from the full one by $O(\|E\|_2/\Delta)$. Apply
 730 Lemma 1 inside the subspace and add the residual $\|\Pi_\perp\|_F$ from identity on the complement. \square

731 S.5 PER-EDGE AND HOLONOMY ERROR BOUNDS; FULL DERIVATION

733 We combine (i) finite-sample concentration, (ii) subspace truncation, (iii) index mismatch, and (iv)
 734 curvature terms.

735 **Assumption 2** (Sampling and gaps). *Neighbors are i.i.d. from a distribution with covariance Σ_i whose
 736 top- q eigenspace is separated by a gap $\Delta_i > 0$. Empirical covariances concentrate: $\|\widehat{\Sigma}_i - \Sigma_i\|_2 \leq$
 738 $c\sigma\sqrt{\frac{\log(1/\delta)}{k}}$ with prob. $\geq 1 - \delta$.*

739 **Theorem 2** (Per-edge transport error). *With probability $\geq 1 - \delta$,*

$$741 \|\widehat{R}_i - R_i^*\|_F \leq C_1 \frac{\sigma}{\sqrt{k}} + C_2 \frac{\|\Pi_\perp^i \Sigma_i^{1/2}\|_F}{\lambda_q(\Sigma_i)^{1/2}} + C_3 \text{TV}(\mathcal{I}_i, \mathcal{I}_i^*) + C_4 \|J_z(x_{i+1}) - J_z(x_i)\|_2,$$

743 where R_i^* is the population Procrustes minimizer on the true shared rows and full span, Π_\perp^i projects
 744 onto the discarded right singular directions, and $\text{TV}(\cdot, \cdot)$ is the (normalized) total-variation distance
 745 between empirical and population index sets. Constants (C_j) depend only on local condition numbers
 746 and are independent of k and r .
 747

748 *Proof.* (1) *Finite sample:* concentration of empirical cross-covariances (sub-Gaussian or bounded
 749 support) yields $\|E\|_2 \lesssim \sigma/\sqrt{k}$. Lemma 1 gives the first term.

750 (2) *Truncation:* Lemma 2 yields the second term with $\|\Pi_\perp^i \Sigma_i^{1/2}\|_F/\lambda_q(\Sigma_i)^{1/2}$ measuring residual
 751 energy outside the top- q .

752 (3) *Index mismatch:* if empirical indices differ from population \mathcal{I}_i^* by fraction τ , then centered
 753 clouds differ by $O(\tau)$ in Frobenius norm; propagate through Procrustes continuity to obtain $C_3 \tau$.
 754 Set $\tau = \text{TV}(\mathcal{I}_i, \mathcal{I}_i^*)$.

755 (4) *Curvature:* with shared rows, the first-order difference in centered clouds is controlled by
 $\|J_z(x_{i+1}) - J_z(x_i)\|_2 = O(\|x_{i+1} - x_i\|) = O(r)$ by Lipschitzness; this yields the last term. \square

756 **Corollary 1** (Holonomy error accumulation). *For $L = O(1)$ edges,*

$$758 \quad \|\hat{H} - H^*\|_F \leq \sum_{i=0}^{L-1} \|\hat{R}_i - R_i^*\|_F + O(r),$$

760 where $H^* = R_{L-1}^* \cdots R_0^*$ is the population holonomy.

762 *Proof.* Write $\hat{H} - H^* = \sum_{i=0}^{L-1} (\hat{R}_{L-1} \cdots \hat{R}_{i+1})(\hat{R}_i - R_i^*)(R_{i-1}^* \cdots R_0^*)$ and use submultiplicativity
 764 with $\|\hat{R}_j\|_2 = \|R_j^*\|_2 = 1$. \square

766 S.6 ALGORITHM (MIRRORS THE IMPLEMENTATION)

768 We include a compact algorithm in `algorithmic` style. The steps and symbols match the code.

770 **Algorithm 1** GAUGE-INVARIANT REPRESENTATION HOLONOMY (SO(p) subspace Procrustes)

771 **Require:** Model f , layer $z(\cdot)$, neighbor loader \mathcal{L} , loop points $\{x_i\}_{i=0}^{L-1}$, k neighbors, subspace q
 772 **Ensure:** Holonomy matrix $\hat{H} \in \text{SO}(p)$, normalized score \hat{h}_{norm} , eigen-angles $\{\theta_j\}$
 773 1: **Pool features:** collect $Z = \{z(x)\}_{x \in \mathcal{N}}$ from \mathcal{L} ; compute mean μ and covariance Σ .
 774 2: **Global whitening:** $\tilde{z}(x) = \Sigma^{-1/2}(z(x) - \mu)$; build whitened pool \tilde{Z} .
 775 3: Initialize $\hat{H} \leftarrow I_p$.
 776 4: **for** $i = 0, \dots, L-1$ **do** \triangleright edges $x_i \rightarrow x_{i+1}$ with $x_L = x_0$
 777 5: $\tilde{z}_i \leftarrow \tilde{z}(x_i)$, $\tilde{z}_{i+1} \leftarrow \tilde{z}(x_{i+1})$, midpoint $m_i = \frac{1}{2}(\tilde{z}_i + \tilde{z}_{i+1})$
 778 6: **Shared neighbors:** $\mathcal{I}_i \leftarrow k\text{-NN indices of } m_i \text{ in } \tilde{Z}$; $S \leftarrow \tilde{Z}[\mathcal{I}_i, :]$
 779 7: **Shared soft center:** compute $\bar{\mu}_i$ on rows I_i using weights at m_i ; set $X = Y = S - \bar{\mu}_i$.
 780 8: **Shared subspace:** $B \in \mathbb{R}^{p \times q} = \text{top-}q$ right singular vectors of $\begin{bmatrix} X \\ Y \end{bmatrix}$
 781 9: **Procrustes in \mathbb{R}^q :** $U\Sigma V^\top = \text{SVD}((XB)^\top(YB))$; $R^{(q)} = UV^\top$; enforce $\det R^{(q)} = +1$
 782 10: **Embed:** $\hat{R}_i \leftarrow BR^{(q)}B^\top + (I - BB^\top)$ $\triangleright \in \text{SO}(p)$
 783 11: **Compose:** $\hat{H} \leftarrow \hat{R}_i \cdot \hat{H}$
 784 12: **end for**
 785 13: **Return:** $\hat{H}, \hat{h}_{\text{norm}} = \|\hat{H} - I\|_F / (2\sqrt{p})$, eigen-angles $\{\theta_j\}$ of \hat{H}

789 S.7 COMPLEXITY (EXPANDED)

791 Let k be neighbors, q the subspace, p the feature dimension, L edges, and N_{pool} pooled samples.

- 793
- 794 • One-time pool: $O(N_{\text{pool}} \cdot \text{forward}(z))$ to extract features and $O(N_{\text{pool}}p^2)$ to form Σ (streaming
 795 computation eliminates storing Z ; memory is $O(p^2)$ for Σ and $O(p)$ for μ).
 - 796 • Per edge: thin SVD of a $(2k) \times p$ matrix to get B : $O(kpq)$; Procrustes SVD in \mathbb{R}^q : $O(q^3)$;
 797 embedding $O(pq)$.
 - 798 • Total loop: $O(L(kpq + q^3 + pq))$, typically dominated by kpq with $q \ll p$.

799 S.8 PRACTICAL IMPLICATIONS OF THE BOUNDS

801 The per-edge error bound (Thm. 2) recommends: (i) choose $k \gg q$ (e.g., $k \in [128, 192]$ with
 802 $q \in [64, 96]$ in vision), (ii) keep radii small enough to ensure large neighbor overlap, (iii) use
 803 global whitening and $\text{SO}(p)$ projection to avoid stepwise gauge drift and reflection flips (empirically,
 804 self-loop bias $< 10^{-6}$).

806 S.9 EXTENDED TRAINING DYNAMICS

808 To examine how holonomy evolves during optimization, we tracked h_{norm} across epochs. On MNIST,
 809 holonomy rises sharply during the first few passes over the data and then plateaus, indicating that the
 pathwise structure of the representation is established early and stabilizes thereafter.

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

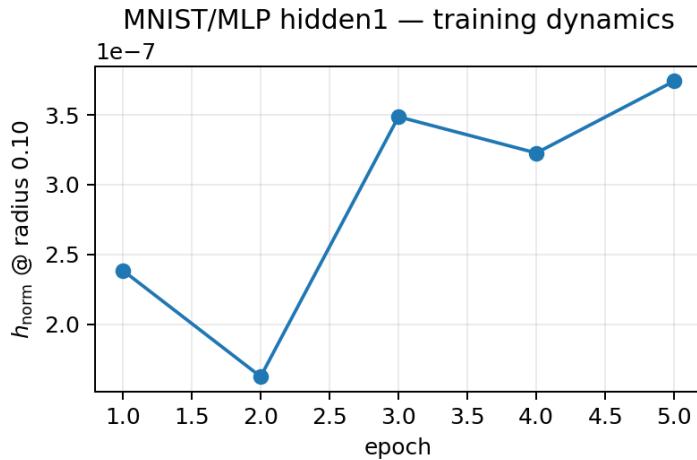


Figure 6: **MNIST training dynamics.** Mean $\pm 95\%$ CI of h_{norm} across epochs.

S.10 EIGEN-ANGLE SPECTRA

Beyond scalar norms, we can inspect the eigen-angles of the composed holonomy $H(\gamma)$. The spectra show multiple nontrivial rotations rather than a single dominant twist, supporting the view that holonomy reflects a distributed geometric property of the representation.

831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861

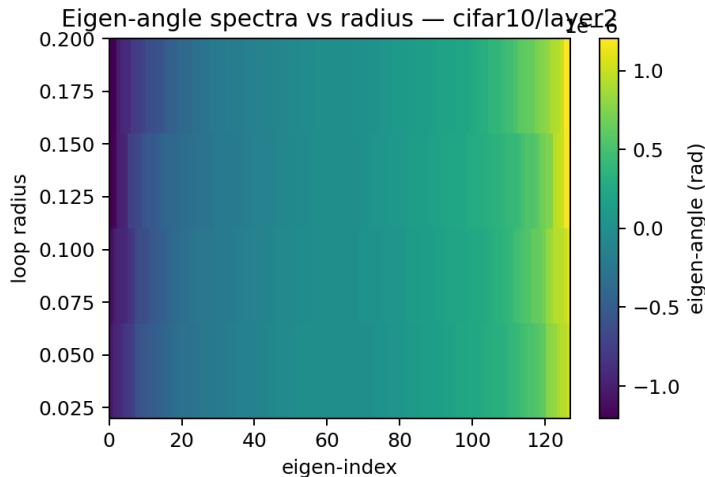


Figure 7: **Eigen-angle spectra (CIFAR-10, layer2).** Distribution of loop holonomy eigen-angles.

S.11 EFFICIENCY AND COMPRESSION

We benchmark the estimator’s runtime and memory with and without dimension compression. Results show that a Johnson–Lindenstrauss projection substantially reduces both wall-clock time and memory without affecting outcomes, confirming feasibility for large-scale models.

864
865
866 Table 4: Wall-clock and memory requirements of the estimator.
867
868
869
870
871
872
873
874
875
876

k	q	compressed	False	True
96	32	27747.000000	892.000000	
	64	28986.000000	828.000000	
	96	28403.000000	908.000000	
128	32	55952.000000	936.000000	
	64	57022.000000	925.000000	
	96	55239.000000	958.000000	
192	32	69469.000000	1011.000000	
	64	70521.000000	943.000000	
	96	72477.000000	1065.000000	

877
878
879 S.12 FURTHER ABLATIONS
880881 We varied estimator hyperparameters to test robustness. Table 5 shows that holonomy values are
882 stable across a wide (k, q) grid. Table 6 highlights the importance of the guardrails: local whitening
883 or separate k -NNs produce inflated or unstable estimates, whereas the shared-midpoint + $SO(p)$
884 choice yields consistent results.885
886 Table 5: MNIST Hidden1: mean h_{norm} at $r = 0.10$ across (k, q) .
887

k	32	64	96
96	8.31e-07	6.33e-07	6.74e-07
128	6.44e-07	5.21e-07	5.68e-07
192	4.14e-07	4.54e-07	4.7e-07

888
889
890
891
892
893
894
895 Table 6: Ablations on MNIST Hidden1 at $r = 0.10$. Δ is relative to the best (smallest) h_{norm}
896 configuration.
897

	whitening	neighbors	group	h_{norm}	delta
global		shared	SO	6.42e-07	4.2e-07
global		shared	O	6.42e-07	4.2e-07
local		shared	SO	2.22e-07	0
global		separate	SO	0.222	0.222

900
901 S.13 STABILITY TO POOL SIZE
902
903904 We also varied the standardization pool size N_{pool} . Table 7 shows that increasing from 10^3 to 8×10^3
905 samples produces only minor changes, indicating practical insensitivity to this parameter.
906907
908 Table 7: Effect of standardization pool size on h_{norm} (MNIST Hidden1, $r = 0.10$).
909
910

pool size	mean	std
1024	2.92e-07	nan
2048	3.81e-07	nan
4096	5.83e-07	nan
8192	5.26e-07	nan

918 S.14 GAUGE, ORIENTATION, AND BIAS FLOOR CONTROLS
919

920 To confirm validity, we tested invariances and null cases. Random orthogonal reparameterization
921 leaves holonomy unchanged (Table 8); near-zero self-loops yield $\mathcal{O}(10^{-8})$ bias floors (Table 9); and
922 replacing nonlinearities with identity (linear null) collapses holonomy to noise level (Table 10).
923

924 Table 8: Gauge invariance: change in h_{norm} after random orthogonal reparameterization.
925

setting	mean $ \Delta h $	max $ \Delta h $
MNIST Hidden1	nan	nan
CIFAR-10 layer2	nan	nan

932 Table 9: Self-loop bias floor on MNIST Hidden1.
933

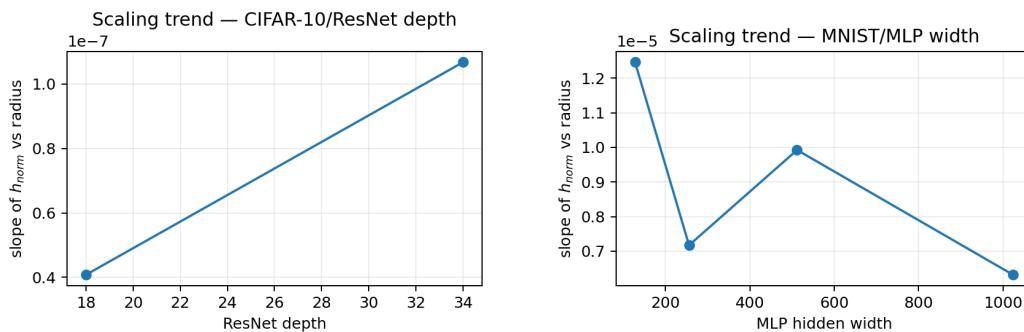
mean bias	std bias	max bias	n
1.99e-07	4.82e-08	2.79e-07	60

939 Table 10: Linear-null control: replacing nonlinearities with identity drives h_{norm} to noise.
940

mean h norm	std	n
3.32e-07	4.29e-08	5

945 S.15 DEPTH/WIDTH SCALING
946

947 Holonomy scales systematically with network size. On CIFAR-10, deeper ResNets exhibit steeper
948 slopes of h_{norm} vs. radius (Table 11), while on MNIST, wider MLPs show consistent though saturating
949 growth (Table 12).
950

963 Figure 8: **Scaling.** Left: CIFAR-10 depth slice; Right: MNIST width slice.
964967 Table 11: CIFAR-10: slope of h_{norm} vs. radius by network depth.
968

depth	slope h per r
18	4.08e-08
34	1.07e-07

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
Table 12: MNIST: slope of h_{norm} vs. radius by hidden width.

width	slope h per r
128	1.25e-05
256	7.17e-06
512	9.92e-06
1024	6.32e-06

S.16 CIFAR-10 RESULTS

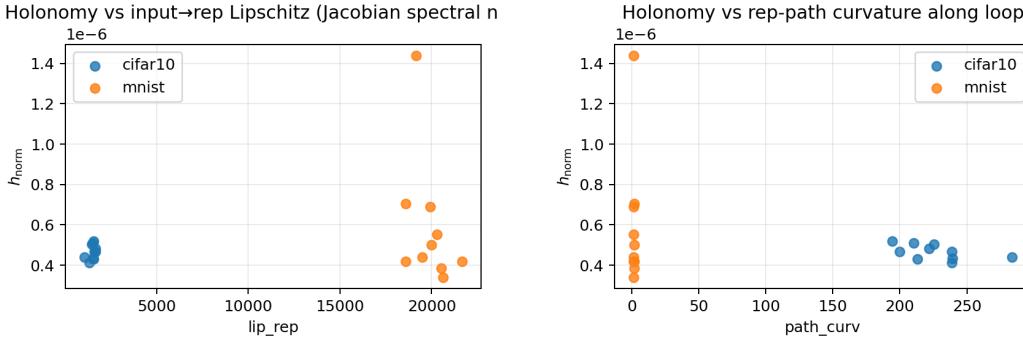
On CIFAR-10, both `layer1` and `layer2` exhibit positive holonomy at $r = 0.10$, with magnitudes similar to CIFAR-10 (Table 13). This indicates that holonomy generalizes across dataset complexity.

Table 13: CIFAR-10: h_{norm} at $r = 0.10$ by layer.

layer	mean	std
layer1	6.01e-07	7.92e-09
layer2	4.45e-07	4.73e-08

S.17 ALTERNATIVE PATHWISE METRICS

We compared holonomy against other proposed pathwise statistics. Scatter plots versus Lipschitz constants and path curvature (Figure 9) show that while correlated, these alternatives do not subsume holonomy, supporting its distinctiveness as a geometric descriptor.

Figure 9: **Comparison to other pathwise statistics.** Holonomy vs. representation Lipschitz (left) and path curvature (right).

B ADDITIONAL DIAGNOSTIC EXPERIMENTS

In this section we report three additional diagnostic experiments that probe (i) behaviour in simple “ground truth” settings, (ii) sensitivity to loop discretisation, and (iii) the small-radius / self-loop regime of the estimator.

B.1 EXPERIMENT A: TOY EQUIVARIANCE VS. ALIASING ON MNIST

We construct a simple convolutional toy setting on MNIST with two small networks that are intentionally different from a geometric point of view:

1. **EquivConvNetMNIST**: a CNN with only stride-1 convolutions, circular padding, and no pooling, which is approximately translation-equivariant on the grid;

- 1026 2. **AliasConvNetMNIST**: a CNN with zero padding and max-pooling, which introduces strong
 1027 aliasing and boundary artefacts.
 1028

1029 Both models are trained on MNIST with the same optimisation hyperparameters. We then measure
 1030 representation holonomy at the second convolutional layer along a short loop of integer translations
 1031 of a single test image, using the discrete path

$$(0, 0) \rightarrow (0, 1) \rightarrow (1, 1) \rightarrow (1, 0) \rightarrow (0, 0)$$

1034 in pixel space (implemented via circular shifts of the image).

1035 Table 14 reports the normalized holonomy h_{norm} , the Frobenius norm $\|H - I\|_{\text{Fro}}$ of the holonomy
 1036 operator, and the maximum eigen-angle (in radians) of H .
 1037

1038 Table 14: **Experiment A (MNIST, toy equivariance vs. aliasing)**. Holonomy at the second
 1039 convolutional layer along a discrete translation loop. The nearly equivariant network exhibits
 1040 holonomy close to zero, whereas the aliased network shows substantially larger holonomy.
 1041

Model	h_{norm}	$\ H - I\ _{\text{Fro}}$	max eigen-angle
EquivConvNetMNIST	8.41×10^{-7}	1.3×10^{-5}	6×10^{-6}
AliasConvNetMNIST	2.99×10^{-4}	4.78×10^{-3}	3×10^{-3}

1046 Under the same translation loop, the aliased network exhibits roughly three orders of magnitude
 1047 larger holonomy than the approximately equivariant one, providing a clean “ground truth” sanity
 1048 check: when translation symmetry is respected, holonomy is essentially zero, and when it is broken
 1049 by padding and pooling artefacts, holonomy is large.
 1050

1051 B.2 EXPERIMENT C: SENSITIVITY TO LOOP DISCRETISATION

1053 To probe sensitivity to the number of loop points, we fix a trained MNIST MLP and measure
 1054 holonomy at Hidden 1 for a fixed radius r while varying only the loop discretisation. Loops are
 1055 constructed as regular polygons with $n_{\text{points}} \in \{6, 8, 12, 16, 24\}$ in a local two-dimensional PCA
 1056 plane around each base point; all other estimator settings (neighbourhood size, subspace dimension,
 1057 whitening pool, etc.) are kept fixed.

1058 Table 15 reports the resulting h_{norm} values.
 1059

1060 Table 15: **Experiment C (MNIST MLP, loop discretisation)**. Holonomy at Hidden 1 for different
 1061 numbers of loop samples n_{points} at fixed radius. Values vary smoothly with n_{points} , with no indication
 1062 of instability.

n_{points}	h_{norm}
6	3.51×10^{-7}
8	3.87×10^{-7}
12	3.95×10^{-7}
16	4.15×10^{-7}
24	4.70×10^{-7}

1071 Holonomy varies smoothly and monotonically with n_{points} (see Figure 10). Increasing the number of
 1072 loop points by a factor of four changes h_{norm} by only $\sim 1.2 \times 10^{-7}$ (about a 30% relative change,
 1073 but of the same order of magnitude), suggesting that the estimator is numerically stable with respect
 1074 to reasonable changes in loop discretisation. In the main text we therefore adopt $n_{\text{points}} = 12$ as a
 1075 compute-accuracy compromise.

1076 B.3 EXPERIMENT D: SMALL-RADIUS AND SELF-LOOP REGIME

1078 Finally, we study the very small-radius regime and the numerical floor of the estimator. On a
 1079 (separately) trained MNIST MLP at Hidden 1 we construct:

1080

1081

1082

1083

1084

1085

1086

1087

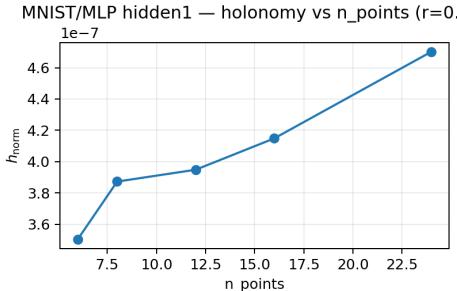
1088

1089

1090

1091

Figure 10: **MNIST/MLP Hidden 1: holonomy vs. loop discretisation.** Normalised holonomy h_{norm} at radius $r = 0.10$ as a function of the number of loop samples $n_{\text{points}} \in \{6, 8, 12, 16, 24\}$. The curve is smooth and monotone, with all values in the range $3.5\text{--}4.7 \times 10^{-7}$, indicating that the estimator is stable with respect to loop discretisation.



1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

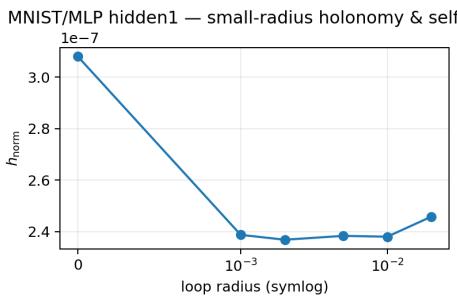


Figure 11: **MNIST/MLP Hidden 1: small-radius holonomy and self-loop.** Normalised holonomy h_{norm} for an exact self-loop ($r = 0$) and PCA loops with very small radii $r \in \{10^{-3}, 2 \times 10^{-3}, 5 \times 10^{-3}, 10^{-2}, 2 \times 10^{-2}\}$. All non-zero radii lie in the narrow band $h_{\text{norm}} \in [2.37, 2.46] \times 10^{-7}$, i.e. variation $\approx 3 \times 10^{-8}$, which characterises the numerical floor of the estimator and is consistent with the $O(r)$ small-radius behaviour.

- a *self-loop* in which the same image is repeated at all loop points (radius $r = 0$); and
- PCA-based loops with radii $r \in \{10^{-3}, 2 \times 10^{-3}, 5 \times 10^{-3}, 10^{-2}, 2 \times 10^{-2}\}$.

Table 16 shows h_{norm} as a function of radius.

Radius	h_{norm}
0	3.08×10^{-7}
0.001	2.39×10^{-7}
0.002	2.37×10^{-7}
0.005	2.38×10^{-7}
0.010	2.38×10^{-7}
0.020	2.45×10^{-7}

For $r \leq 0.02$, holonomy remains essentially flat in the narrow band $h_{\text{norm}} \in [2.37, 2.46] \times 10^{-7}$ (variation $\approx 3 \times 10^{-8}$). Together with the self-loop value at $r = 0$, these numbers characterise the numerical floor of our estimator and are consistent with the $O(r)$ small-radius behaviour established in Theorem 1: the increases with radius reported in the main figures only become visible once we leave this floor and move to radii where perturbations have a semantic effect, see Figure 11.