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Figure 1: Comparison between importance sampling weights in Group Relative Policy Optimization
(GRPO), Group Sequence Policy Optimization (GSPO) and our proposed Multi-Grained Group
Policy Optimization (MGPO). GRPO utilizes token-level importance sampling weights for token
exploration, while GSPO introduces sequence-level importance sampling weights with much less
variation for training stabilization. MGPO derives multi-grained importance sampling weights that
strike a balance between token-level and sequence-level weights based on uncertainty estimation,
resulting in enhanced reasoning capabilities.

ABSTRACT

Reinforcement learning (RL) techniques, such as Group Relative Policy Opti-
mization (GRPO), have substantially advanced the reasoning capabilities of Large
Language Models (LLMs) and Multimodal LLMs (MLLMs). However, subsequent
studies have revealed two key limitations of GRPO: training instability and insuffi-
cient token exploration in the optimization objective. To address these issues, meth-
ods like Group Sequence Policy Optimization (GSPO) introduce sequence-level
importance sampling weights to mitigate training instability, and uncertainty-driven
approaches emphasize low-probability tokens to encourage exploration. However,
these approaches pay little attention to the balance of training stability and token
exploration. In this paper, we propose Multi-Grained Policy Optimization (MGPO),
a simple yet effective algorithm that introduces multi-grained importance sampling
weights for enhanced reasoning. We first examine the effect of diverse importance
sampling weights and identify their influence on training stability and token ex-
ploration during RL training. Leveraging the examination, we dynamically adjust
the ratio between token-level and sequence-level importance sampling weights via
uncertainty estimation on log probabilities, thereby balancing the training stability
and token exploration effectively. Extensive experiments on various multimodal
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reasoning benchmarks demonstrate that MGPO outperforms GRPO, GSPO, as
well as multiple open-source and R1-style 3B/7B models consistently across mul-
tiple widely adopted multimodal reasoning benchmarks with few lines of code
modification, highlighting its superior effectiveness and generalizability.

1 INTRODUCTION

Reinforcement Learning (RL) has recently achieved great advancements in reasoning with Large
Language Models (LLMs) and Multimodal LLMs (MLLMs) (Guo et al., 2025; Team et al., 2025; Chen
et al., 2025b; Huang et al., 2025). The state-of-the-art RL algorithm, such as Group Relative Policy
Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025) that computes the relative advantage with
various generated rollouts, has demonstrated superior performance on various reasoning benchmarks.
During the training process, GRPO utilizes token-level importance sampling weights to compute the
relative advantage for policy updates. It adopts the clipping operation in Proximal Policy Optimization
(PPO) (Schulman et al., 2017) to constrain the deviation of importance sampling weights, which
stabilizes the training process.

With the rapid development of RL algorithms, two typical constraints of GRPO have been identified,
namely, limited token exploration and instable training. Limited token exploration arises when
low-probability tokens, despite capturing affluent information, are restricted from being sampled
during policy updates. This issue has been mitigated by relaxing the clipping upper bound (Yu
et al., 2025) or leveraging high-uncertainty tokens (Wang et al., 2025a). Instable training arises
when the token-level importance sampling weights heavily fluctuate during policy updates, where
several studies strive to stabilize the training process (Zheng et al., 2025a; Zhao et al., 2025). Group
Sequence Policy Optimization (GSPO) (Zheng et al., 2025a) introduces more stable sequence-level
importance sampling weights that align with sequence-level rewards. However, the more stable
importance sampling weights suppress the variation, leading to degraded token exploration. This
raises a critical question: “Is it possible to harmonize training stability and token exploration
within a single system?”

To this end, this paper proposes Multi-Grained Policy Optimization (MGPO), a novel RL algorithm
that introduces multi-grained importance sampling weights to improve training stability and token
exploration simultaneously. MGPO works two novel designs. First, it derives multi-grained impor-
tance sampling weights by combining token-level and sequence-level importance sampling weights,
enhancing both token exploration and training stability effectively. Second, it introduces uncertainty
estimation for optimal token sampling, integrating importance sampling weights of high-uncertainty
tokens. As illustrated in Figure 1, MGPO avoids both the frequent occurrence of extreme token-level
importance sampling weights in GRPO, and the excessive flattening of sequence-level importance
sampling weights in GSPO, leading to consistently improved reasoning capability. Extensive experi-
ments on multiple MLLM benchmarks demonstrate that MGPO surpasses state-of-the-art models
on 3B and 7B scales. Notably, MGPO consistently achieves better performance compared with
vanilla GRPO and GSPO algorithms. Moreover, MGPO trained with only 2.1K samples from the
open-source Geometry3K (Lu et al., 2021) dataset, surpasses early methods that require a warm-up
Supervised Fine-Tuning (SFT) stage with large-scale training data (Zhang et al., 2025a; Shen et al.,
2025), as well as most R1-style models (Chen et al., 2025a; Meng et al., 2025) that employ much
more data during RL training. The contribution of this paper can be summarized as follows:

• We identify importance sampling weights as one key factor that could benefit both training
stability and token exploration in RL training.

• A novel RL algorithm, Multi-Grained Policy Optimization (MGPO), is proposed to leverage
uncertainty estimation to effectively integrate token-level and sequence-level importance
sampling weights.

• Extensive experiments demonstrate that MGPO achieves superior performance that consis-
tently outperforms the prevalent GRPO, GSPO, as well as most open-source and R1-style
models on multimodal reasoning with few lines of code modification.
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Algorithm 1 Implementation of the Multi-Grained Importance Sampling Weights in MGPO

def Multi_Grained(log_probs, old_log_probs, response_mask):
"""
log_probs [N, L]: Log probabilities of tokens from the current model
old_log_probs [N, L]: Log probabilities of tokens from the old model
response_mask [N, L]: Valid response tokens
"""

# Token-level Importance Sampling Weights
negative_approx_kl = log_probs - old_log_probs
token_ratio = torch.exp(negative_approx_kl)

# Sequence-level Importance Sampling Weights
seq_lengths = torch.sum(response_mask, dim=-1)
normalized_seq_log_prob = torch.sum(log_probs * response_mask, dim=-1) / seq_lengths
normalized_old_seq_log_prob = torch.sum(old_log_probs * response_mask, dim=-1) /

seq_lengths
negative_approx_kl_seq = normalized_seq_log_prob - normalized_old_seq_log_prob
sequence_ratio = torch.exp(negative_approx_kl_seq)

# Multi-Grained Importance Sampling Weights
k = int(beta * L)
topk_values, topk_indices = torch.topk(-log_prob, k, dim=1, largest=True, sorted=True)
thresholds = topk_values[:, -1:]
mask = torch.where(-log_probs >= thresholds, 1.0, 0.0)

multi_grained = sequence_ratio.unsqueeze(1).expand(N, L).clone()
multi_grained[mask] = alpha * token_ratio[mask] + (1 - alpha) * sequence_ratio[mask]
return multi_grained

2 RELATED WORK

2.1 REINFORCEMENT LEARNING IN REASONING LLMS AND MLLMS

Reinforcement learning (RL) has emerged as a promising paradigm for the post-training of
Large Language Models (LLMs). RL is originally designed for alignment via Human Feedback
(RLHF) (Ouyang et al., 2022; Achiam et al., 2023; Yu et al., 2024), and has recently been devel-
oped for Verifiable Reward (RLVR) (Shao et al., 2024; Guo et al., 2025; Team et al., 2025) that
demonstrates great potential in enhanced reasoning capability. Originating from Proximal Policy Op-
timization (PPO) (Schulman et al., 2017), several algorithmic variants have been proposed, including
GRPO (Shao et al., 2024), DAPO (Yu et al., 2025), Dr.GRPO (Liu et al., 2025b), EMPO (Zhang
et al., 2025b), GSPO (Zheng et al., 2025a), GMPO (Zhao et al., 2025), with the aim of improving
efficiency, stability and scalability.

Beyond LLMs, the reasoning capability of Multimodal Large Language Models (MLLMs) has also
been widely investigated. Early attempts in multimodal domain focus on constructing R1-style
RL training methods, such as R1-V (Chen et al., 2025b), LMM-R1 (Peng et al., 2025b), Vision-
R1 (Huang et al., 2025), VLM-R1 (Shen et al., 2025), etc. Subsequent studies have shifted focus to
RL algorithm designs, such as specific reward functions (Zhang et al., 2025a; Peng et al., 2025a),
training strategies (Chen et al., 2025a; Wang et al., 2025b), and data augmentation schemes (Liu
et al., 2025a; Yao et al., 2025). Despite these advancements, the balance between token exploration
and training stability remains largely unexplored in the multimodal domain, which is essential for
generalization on various multimodal reasoning tasks.

2.2 UNCERTAINTY ESTIMATION IN REASONING LLMS AND MLLMS

Recent studies have leveraged entropy as the uncertainty estimation measure to revitalize training.
EMPO (Zhang et al., 2025b) claims that the semantic entropy is negatively correlated with model
accuracy, suggesting that entropy minimization incentivizes reasoning capability. Later studies, such
as SEED-GRPO (Chen et al., 2025c) compute semantic entropy among various rollouts to modulate
the magnitude of policy updates. 80/20 rule (Wang et al., 2025a) highlights the crucial impact of
minority tokens with high entropy for enhanced LLM reasoning capability. (Cheng et al., 2025)
inserts entropy regularization into the advantage term for better exploration of longer reasoning
chains. Despite these advancements, existing work neglects uncertainty on importance sampling
weights, leaving an significant aspect unaddressed.

3
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3 METHOD

In this section, we first introduce the preliminaries of GRPO (Shao et al., 2024) and GSPO (Zheng
et al., 2025a). Then, we propose our method MGPO, encouraging dynamic integration between
token-level and sequence-level importance sampling weights for enhanced MLLM reasoning. Guided
by the log probabilities as token uncertainty, MGPO dynamically adjusts the importance sampling
weights end-to-end during RL training with few lines of code modification. The overall algorithm is
provided in Algorithm 1.

3.1 PRELIMINARIES

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) is a variant of Proximal
Policy Optimization (PPO) (Schulman et al., 2017) that removes the requirement of the value and
reward model for efficient RL. For the multimodal setting, it first uses a pre-trained MLLM as
the initial policy model πθ and the reference model πθref . For a given image-text pair (I, T ) from
the training set, the old policy model πθold generates N rollouts {o1, o2, ..., oN}. A verifiable
reward function is designed and utilized to calculate the corresponding rewards for each rollout
{R1, R2, ..., RN}, and the relative advantage Âi,t can be defined as follows,

Âi,t = Âi =
Ri −mean

(
{Ri}Ni=1

)
std

(
{Ri}Ni=1

) , wi,t(θ) =
πθ(oi,t|(I, T ), oi,<t)

πθold(oi,t|(I, T ), oi,<t)
, (1)

where wi,t(θ) denotes the token-level importance sampling weights, which facilitate effective trans-
formation between current and old policy models, and thus enhance sample efficiency and improve
training stability. The overall objective of GRPO can be defined as,

JGRPO(θ) = E(I,T )∼D, {oi}N
i=1∼πθold

(·|(I,T )) 1

N

N∑
i=1

1

|oi|

|oi|∑
t=1

min
(
wi,t(θ)Âi,t, clip (wi,t(θ), 1− ε, 1 + ε) Âi,t

) ,
(2)

where ϵ sets the clipping range. Note that the KL divergence term DKL[πθ|πθref ] is omitted following
recent papers (Meng et al., 2025; Liu et al., 2025b) for better performance.

Group Sequence Policy Optimization (GSPO). GSPO (Zheng et al., 2025a) reveals that the key
weakness in GRPO is the mismatch between the unit of the optimization objective and the reward
function. As the reward function is sequence-level computed, the token-level importance sampling
weights cause high-variance noise during training. Thus, GSPO introduces the sequence-level
importance sampling weights,

si(θ) = exp

 1

|oi|

|oi|∑
t=1

log
πθ(oi,t|(I, T ), oi,<t)

πθold(oi,t|(I, T ), oi,<t)

 . (3)

The objective of GSPO can be defined as,

JGSPO(θ) = E(I,T )∼D, {oi}N
i=1∼πθold (·|(I,T ))

[
1

N

N∑
i=1

min
(
si(θ)Âi, clip (si(θ), 1− ε, 1 + ε) Âi

)]
,

(4)

3.2 MULTI-GRAINED POLICY OPTIMIZATION

While GSPO introduces the sequence-level importance sampling weights si(θ) to partially mitigate
the fluctuation caused by noise in wi,t(θ), we rethink whether wi,t(θ) possesses information that si(θ)
lacks. From the theoretical perspective, si(θ) estimates how far the overall response oi sampled
from πθold deviates from πθ, while wi,t(θ) is capable to estimate how far the current token oi,t
sampled from πθold deviates from πθ. Under a more fine-grained behavior, the token-level importance
sampling weights can timely impel the policy model for token-level corrections. Therefore, we believe
that the complementarity of these two importance sampling weights could yield better performance.

4
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Based on the aforementioned insights, we propose Multi-Grained Policy Optimization (MGPO), to
dynamically integrate the importance sampling weights of wi,t(θ) and si(θ).

Multi-grained Integration. The token-level importance sampling weights wi,t(θ) ∈ RN×L in
GRPO reflects an unequal distribution of the log likelihoods for all tokens in each rollout, while the
sequence-level importance sampling weights si(θ) ∈ RN in GSPO is equally distributed among all
tokens in each rollout, where L denotes the response length. Thus, a straightforward attempt is to
directly mix the importance sampling weights at token-level,

mi,t(θ) = α× wi,t(θ) + (1− α)× si,t(θ) (5)

where si,t(θ) ∈ RN×L is the token-level expansion of si(θ), and α denotes the blended ratio. The
blended ratio α can be defined either as a fixed value shared across all tokens, or as a dynamic value
that adapts throughout training to enable more flexible policy updates. From this perspective, we
investigate an optimal α to effectively integrate the two importance sampling weights according to
the statistics of the current policy. Inspired by uncertainty estimation techniques in reinforcement
learning (Wang et al., 2025a; Cheng et al., 2025), we posit that policy updates should place greater
emphasis on high-uncertainty tokens. Consequently, we adopt token-level uncertainty as the metric
to refine the α for integration, and the details are as follows.

Uncertainty-aware Token Sampling. Pi,t = πθ(oi,t | (I, T ), oi,<t) denotes the logits probability,
reflecting the log likelihood of generating the t-th token at its corresponding index. Accordingly,
−Pi,t serves as a measure of uncertainty: smaller value corresponds to the more confident tokens,
while larger values indicate higher uncertainty. We therefore employ −Pi,t as the uncertainty score
to guide token sampling for improved token exploration.

For each rollout oi ∈ RL with corresponding token uncertainty −Pi,t, we rank all tokens by −Pi,t

from highest to lowest. Tokens with larger uncertainty values are regarded as high-uncertainty tokens,
which should be retained with greater probability to encourage exploration. Consequently, for the
top-β (β ∈ [0, 1]) tokens, we apply Eq. 5 to integrate token-level and sequence-level importance
sampling weights, thereby timely exploiting high-uncertainty tokens to facilitate effective policy
updates. In contrast, the remaining tokens are assigned sequence-level importance sampling weights
to stabilize training.

Based on the aforementioned paradigm, we further propose a fixed and a dynamic α as shown in
Eq. 6. For the fixed α, we encourage exploration on high-uncertainty tokens with an identical value
for integration. For the dynamic α, we exploit the ranked uncertainty scores as a control signal.
Specifically, high-uncertainty tokens are assigned relatively larger α values, encouraging exploration
through wi,t(θ), whereas low-uncertainty tokens gradually allocate more weight to si,t(θ), thus
prioritizing stability in policy updates,

α =

{
α, k ≤ βL

0, k > βL
α =

{
1− k/(βL), k ≤ βL

0, k > βL
(6)

where k ∈ [0, L − 1] denotes the rank index of the token, and a smaller k indicates the index of a
higher uncertainty token. Accordingly, the clipped multi-grained importance sampling weights can
be defined as:

mclip
i,t (θ) = α× clip (si,t(θ), 1− ε, 1 + ε) + (1− α)× clip (wi,t(θ), 1− ε, 1 + ε) (7)

With the definition of multi-grained importance sampling weights, the MGPO objective function is
defined as,

JMGPO(θ) = E(I,T )∼D, {oi}N
i=1∼πθold

(·|(I,T ))

 1

N

N∑
i=1

1

|oi|

|oi|∑
t=1

min
(
mi,t(θ)Âi,t, m

clip
i,t (θ)Âi,t,

) ,

(8)

4 EXPERIMENTS

Dataset. The training dataset for all models is Geometry3K (Lu et al., 2021), with a total number
of 2.1K training samples. The evaluation datasets consist of four out-of-distribution multimodal

5
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Table 1: Comparison with prevalent 3B VLMs on five out-of-distribution multimodal reasoning
datasets. “*” indicates models evaluated using the official VLMEvalKit (Duan et al., 2024) by
ours, while others are the reported results in corresponding papers. Data sizes used for SFT and
RL are listed as SFT+RL. The best and second best values are respectively highlighted in bold and
underlined.

Model Data Size MathVerse MathVision MathVista WeMath Average
Open-Source Models

InternVL3-2B (Zhu et al., 2025) - 24.5 20.2 57.6 22.9 31.3
SAIL-VL-1.5-2B (Dong et al., 2025) - 20.9 17.9 67.0 16.7 30.6

R1-style Models

R1-VL-2B (Zhang et al., 2025a) 260K+10K 26.2 - 52.1 - -
VLM-R1-3B (Shen et al., 2025) - 32.2 21.9 62.7 30.0 36.7
VLAA-Thinker-3B (Chen et al., 2025a) 25K 36.4 24.4 61.0 33.8 38.9

Qwen2.5-VL-3B-Instruct⋆ (Bai et al., 2025) - 30.2 22.3 62.4 24.1 34.8
+ vanilla GRPO⋆ (Shao et al., 2024) 2.1K (Geometry3K) 33.8 23.2 61.9 32.8 37.9
+ vanilla GSPO⋆ (Zheng et al., 2025a) 2.1K (Geometry3K) 34.1 22.4 61.4 29.4 36.8
+ Ours⋆ 2.1K (Geometry3K) 35.5 24.2 62.5 34.7 39.2

Table 2: Comparison with prevalent 7B VLMs on four out-of-distribution multimodal reasoning
datasets. Other notations are consistent with Table 1.

Model Data Size MathVerse MathVision MathVista WeMath Average
Open-Source Models

InternVL3-8B (Zhu et al., 2025) - 38.5 30.0 70.5 39.5 44.6
LLaVA-OneVision-7B (Li et al., 2024) - 26.2 - 63.2 - -
Kimi-VL-16B (Kimi Team, 2025) - 44.9 21.4 68.7 - -
URSA-8B (Luo et al., 2025) - 45.7 26.2 59.8 - -

R1-style Models

R1-VL-7B (Zhang et al., 2025a) 260K+10K 40.0 24.7 63.5 - -
Vision-R1-7B (Huang et al., 2025) 200K+10K 52.4 - 73.5 - -
R1-OneVision-7B (Li et al., 2024) 155K+10K 47.1 23.5 64.1 61.8 49.1
OpenVLThinker-7B (Deng et al., 2025) 35K+15K 47.9 25.3 70.2 64.3 51.9
VLAA-Thinker-7B⋆ (Chen et al., 2025a) 25K 50.6 26.4 68.0 61.5 51.6
ADORA-7B (Gui & Ren, 2025) 2.1K 50.1 23.0 73.5 64.2 52.7

Qwen2.5-VL-7B-Instruct⋆ (Bai et al., 2025) - 42.7 25.7 68.3 35.9 43.2
+ vanilla GRPO⋆ (Shao et al., 2024) 2.1K (Geometry3K) 50.3 27.6 69.1 63.1 52.5
+ vanilla GSPO⋆ (Zheng et al., 2025a) 2.1K (Geometry3K) 48.6 25.1 67.3 61.0 50.5
+ Ours⋆ 2.1K (Geometry3K) 50.9 27.0 71.2 65.0 53.5

reasoning benchmarks, including MathVerse (Zhang et al., 2024), MathVision (Wang et al., 2024),
MathVista (Lu et al., 2023) and WeMath (Qiao et al., 2024).

Implementation Details. The base model for training is Qwen2.5-VL-3B/7B-Instruct (Bai et al.,
2025). We use EasyR1 (Zheng et al., 2025b) as the training framework, which is built on VeRL (Sheng
et al., 2024) that exclusively designed for VLMs. Most hyper-parameters remain consistent with
EasyR1, including a rollout batch size of 512, rollout temperature of 1.0, learning rate of 1e-6. For
training efficiency, we generate 5 rollouts for 3B model, while 10 rollouts for 7B model on all the
re-implemented algorithms for fair comparison. For specific configurations, we set the blended ratio
α = 0.5 and adopt β = 0.5.

4.1 MAIN RESULTS

Comparison with state-of-the-art models. Compared with open-source baselines and recent R1-
style methods, our approach achieves superior performance at 3B scale. As shown in Table 1, our
method yields substantial gains on four out-of-distribution datasets, with an average improvement of
4.4% on the strong base model Qwen2.5-VL-3B-Instruct. Results on 7B models in Table 2, further
confirm this advantage: our method achieves 50.9% on MathVerse, 71.2% on MathVista, surpassing
most existing state-of-the-art R1-style methods, such as ADORA-7B by an average of 0.8%.
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GRPO vs. GSPO vs. Ours. We further compare our approach against baseline RL algorithms,
GRPO and GSPO at both the 3B and 7B scales. For 3B models, our method consistently outperforms
GRPO and GSPO, achieving an improvement of 1.7% and 1.4% on MathVerse, and 1.9% and 5.3%
on WeMath, respectively. At the 7B scale, both GRPO and GSPO have a stronger effect on vanilla
Qwen2.5-VL-7B-Instruct, with GRPO in particular yielding 9.3% on average. Nevertheless, our
method still improves on GRPO and GSPO by 1.0% and 3.0% on average, while incurring negligible
additional training cost, thus validating the effectiveness and efficiency of our design.

Training efficiency with limited data. A key strength of our approach lies in its exceptional data
efficiency. Using only 2.1K training samples from Geometry3K, our method achieves substantially
stronger results than prior R1-style approaches. For instance, R1-VL and R1-OneVision rely on an
additional SFT warm-up stage with over 200K training samples, yet attain only 40.0% and 46.1% on
MathVerse. More recent approaches, such as VLAA-Thinker-7B, require over 10K training samples
but still underperform our method. In contrast, by simply adjusting the importance sampling weights
with few lines of code modification, our method achieves superior performance with dramatically
fewer samples, highlighting both its efficiency and scalability.

4.2 ABLATION STUDY

Table 3: Ablation study on different components.

Method WeMath MathVision
Qwen2.5-VL-7B-Instruct 24.1 22.3
+ GRPO 32.8 23.2
+ ours w.o. UTS 33.6 23.7
+ MGPO 34.7 24.2

Effectiveness of different components. Our ap-
proach consists of two key components: Multi-
Grained Integration (MGI) mechanism and
Uncertainty-aware Token Sampling (UTS) strat-
egy. To evaluate their contributions, we begin by
re-implementing the vanilla GRPO algorithm,
which already achieves an improvement of 8.7%
and 0.9% on WeMath and MathVision over the
base model Qwen2.5-VL-3B-Instruct, as shown
in Table 3. Building upon this, we introduce
the MGI mechanism across all tokens, which improves GRPO by 0.8% on WeMath and 0.5% on
MathVision, suggesting that the multi-grained importance sampling weights benefit vanilla GRPO.
With further UTS strategy, which selectively emphasizes high-uncertainty tokens based on uncertainty
estimation, our method yields additional improvements of 1.1% and 0.5% on WeMath and MathVi-
sion, respectively. These results underscore the complementary roles of MGI and UTS, particularly
highlighting the effectiveness of leveraging uncertainty estimation during policy updates.

Blended Ratio α. We investigate the blended ratio α for effective integration of token-level and
sequence-level importance sampling weights. As illustrated in Figure 2, the optimal fixed value of α is
0.5, while the performance degrades when α = 0, which corresponds to the vanilla GSPO. Moreover,
the dynamic α that smoothly integrates multi-grained weights in Eq. 6, achieving comparable
performance of α = 0.5, highlighting the strong generalizability of our paradigm.

Figure 2: Experimental results on the blended ra-
tio α for integration of token-level and sequence-
level importance sampling weights. ‘Dyn’ de-
notes the dynamic α in Eq. 6.

Figure 3: Experimental results on hyper-
parameter β for token sampling ratio based on
uncertainty estimation.
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Uncertainty-aware Sampling Ratio β. Since our method samples tokens based on uncertainty
estimation, we conduct an ablation study to examine the effect of the sampling ratio β. As shown
in Figure 3, our approach consistently outperforms the baseline GRPO and GSPO methods across
different values of β, demonstrating the robustness of β. The optimal performance is achieved when
β = 0.5, suggesting that sampling a certain fraction of high-uncertainty tokens strikes a desirable
balance: it avoids the excessive flattening of importance sampling weights as observed in GSPO,
while mitigating the instability issues inherent to GRPO.

The effect of temperature τ and clipping ratio εhigh. We show the effect of temperature τ for
decoding in Figure 4. From the theoretical perspective, a larger temperature indicates a more smooth
logits distribution, which generates a diversified rollouts, and vice versa. The results indicate that
excessively high or low values of τ negatively impact model performance, with the optimal setting
achieved at τ = 1 by default. Meanwhile, Table 4 shows that the clipping ratio in MGPO attains
optimal performance at a moderate value εhigh = 0.2. This suggests that excessively large εhigh,
such as εhigh = 0.28 in DAPO, may allow extreme multi-grained importance sampling weights and
compromise stability for MGPO, whereas small εhigh restricts token exploration.

Figure 4: Experimental results of temperature τ
for decoding during training.

Table 4: Experimental results on the upper bound
of the clipping ratio εhigh during training.

Method MathVerse WeMath
Qwen2.5-VL-3B-Instruct 30.2 24.1

+ MGPO (εhigh = 0.15) 35.9 31.3
+ MGPO (εhigh = 0.2) 35.7 34.7
+ MGPO (εhigh = 0.25) 35.7 33.1
+ MGPO (εhigh = 0.28) 34.0 33.1

4.3 DETAILED ANALYSIS

Importance Sampling Weights. The key of our design lies in the multi-grained importance sam-
pling weights that integrate token-level and sequence-level counterparts. For better illustration, we
visualize the gap between the maximum and minimum values of the importance sampling weights for
GRPO, GSPO, and our method, as shown in Figure 5. The results reveal that GRPO exhibits sharp
spikes during training, where extreme values may compromise training stability. In contrast, GSPO
produces overly flattened curves, which diminish the contribution of high-uncertainty tokens and
risk information loss. Our method effectively balances these two extremes by retaining informative
token-level weights for high-uncertainty tokens while simultaneously ensuring stability through
sequence-level weights.

Response Length. We further compare the response length produced by GRPO, GSPO, and our
method. As shown in Figure 5, our approach achieves the shortest average response length, with an
average of 241 tokens per response. Particularly, GSPO generates the longest responses. This can
be attributed to the under-emphasis of high-uncertainty tokens during training, thereby weakening
the optimization of important tokens that leads to verbose outputs. In contrast, the curves of GRPO
and our method exhibit similar trends, suggesting that our approach preserves the information of
token-level importance sampling weights by enhancing the emphasis on high-uncertainty tokens. As a
result, MGPO presents a more concise and informative response to avoid overthinking in multimodal
reasoning.

Entropy Loss. Figure 5 illustrates the entropy loss trajectories of GRPO, GSPO, and our method.
Our approach yields an intermediate entropy level, striking a balance between the two baselines.
Compared with GRPO, it exhibits a steeper decline, indicating faster and more stable convergence;
Compared with GSPO, it maintains a smoother trend that promotes token exploration. These results
underscore the strength of our integration design, which effectively balances stability and exploration
by reducing uncertainty while preserving sufficient diversity during training.
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Figure 5: Comparison of GRPO, GSPO and our method in terms of training dynamics, including the
importance sampling weights, response length and entropy loss.

Case Study. We present an illustrative example of mathematical reasoning questions in Figure 6.
Compared with GRPO and GSPO, our approach is able to correctly parse the problem statements
and generate coherent reasoning traces that lead to a correct answer. In contrast, GRPO and GSPO
often produce convoluted reasoning paths, accompanied by incorrect solutions and over-length
responses. For example, GRPO misinterprets the notion of ‘base area’ in the formula for the
volume of a cone, leading to an incorrect answer and ultimately output repetition. Similarly, GSPO
confuses the definitions of ‘radius’ and ‘diameter’, resulting in an incorrect answer. In contrast, our
method accurately analyzes each reasoning trace and produces the correct answer. The case further
demonstrates that our method achieves greater reliability in reasoning. Refer to Appendix A.1 for
more illustrative cases.

𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏

𝑮𝑹𝑷𝑶

𝑴𝑮𝑷𝑶 (𝒐𝒖𝒓𝒔)𝑮𝑺𝑷𝑶

As shown in the figure, 
triangle ABC is the front 
view of a cone. The area of 
triangle ABC is 12 cm² . 
What is the volume of the 
cone with triangle ABC as 
its front view? ( ) cm³?(π = 
3.14)

（Dataset: WeMath）

<think>
Given that the area of triangle ABC is 12 cm²  and it represents the front view of 
a cone, we can use the formula for the area of a triangle to find the base length 
of the cone. The area of a triangle is given by \( \frac{1}{2} \times \text{base} 
\times \text{height} \). Here, the height is 4 cm, so we have:
\[ 12 = \frac{1}{2} \times \text{base} \times 4 \]
Solving for the base, we get:
\[ \text{base} = \frac{12 \times 2}{4} = 6 \text{ cm} \]
This base length of 6 cm is the slant height of the cone, which is the radius \( r \) 
of the base of the cone. The height \( h \) of the cone is given as 4 cm. The 
volume \( V \) of a cone is given by the formula:
\[ V = \frac{1}{3} \pi r^2 h \]
Substituting the values, we get:
\[ V = \frac{1}{3} \times 3.14 \times 6^2 \times 4 = \frac{1}{3} \times 3.14 
\times 36 \times 4 = 150.72 \times \frac{1}{3} = 50.24 \text{ cm}^3 \]
Therefore, the volume of the cone is 50.24 cm³ .
</think>
\boxed{A}

<think>
To find the volume of the cone, we need to use the formula for the volume of a cone, 
which is \( V = \frac{1}{3} \pi r^2 h \), where \( r \) is the radius of the base and \( h 
\) is the height of the cone. The height of the cone is the same as the length of the 
altitude from vertex A to the base BC, which is given as 4 cm. The area of triangle ABC 
is given as 12 cm² . The area of a triangle is also given by \( \frac{1}{2} \times 
\text{base} \times \text{height} \). Here, the base is BC and the height is AD (the 
altitude from A to BC), so we have:
\[ \text{Area} = \frac{1}{2} \times BC \times AD = 12 \]
\[ \frac{1}{2} \times BC \times 4 = 12 \]
\[ BC \times 2 = 12 \]
\[ BC = 6 \text{ cm} \]
The radius \( r \) of the base of the cone is half the length of the base BC, so \( r = 
\frac{6}{2} = 3 \text{ cm} \). Now we can calculate the volume of the cone:
\[ V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi (3)^2 (4) = \frac{1}{3} \pi \times 9 \times 
4 = 12 \pi \]
\[ V = 12 \times 3.14 = 37.68 \text{ cm}^3 \]
Therefore, the volume of the cone is 37.68 cm³ .
</think>
\boxed{B}

<think>
The area of triangle ABC is given as 12 cm² . Since triangle ABC is the front view of a 
cone, the area of the triangle represents the base area of the cone. The height of the 
triangle (AD) is given as 4 cm. The volume \(V\) of a cone is given by the formula:
\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} \]
Substituting the given values:
\[ V = \frac{1}{3} \times 12 \times 4 = \frac{1}{3} \times 48 = 16 \text{ cm}^3 \]
However, this calculation seems incorrect based on the options provided. Let's recheck 
the formula and the given values. The correct formula for the volume of a cone is:
\[ V = \frac{1}{3} \times \text{Base Area} \times \text{Height} = \frac{1}{3} \times 
12 \times 4 = 16 \text{ cm}^3 \]
But since the options provided are different, let's consider the correct interpretation 
of the problem. The area of the triangle is 12 cm² , and the height is 4 cm. The volume 
of the cone should be:
\[ V = \frac{1}{3} \times 12 \times 4 = 16 \text{ cm}^3 \]
But since the options provided are different, let's consider the correct interpretation 
of the problem. The area of the triangle is 12 cm² , and the height is 4 cm. The volume 
of the cone should be:
\[ V = \frac{1}{3} \times 12 \times 4 = 16 \text{ cm}^3 \] ......A. 50.24; B. 37.68; C. 125.6; D. 62.8; E. No correct answer

Figure 6: Case visualization of our method over vanilla GRPO and GSPO on reasoning capability.

5 CONCLUSION

In this paper, we investigate the balance between token exploration and training stability, and
propose Multi-Grained Policy Optimization (MGPO), a simple yet effective algorithm that introduces
multi-grained importance sampling weights from both token-level and sequence-level with the
guidance of uncertainty estimation. Extensive experiments demonstrate that MGPO consistently
outperforms strong baselines GRPO and GSPO, as well as open-source state-of-the-art models for
multimodal reasoning. Comprehensive analyses further reveal its advantages in terms of training
efficiency, response length, and entropy reduction, providing additional evidence of the robustness
and effectiveness of our approach.
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A APPENDIX

A.1 ADDITIONAL CASE STUDY

We visualize additional cases to further demonstrate the advantages of our proposed MGPO over
GRPO and GSPO, while also highlighting several failure cases to guide future research.

As illustrated in Figure 7, the question involves intentionally confusing conditions, such as the
connector ‘AB’, which misleads both GRPO and GSPO into an incorrect reasoning path. In contrast,
our method successfully identifies the key concept of an ‘isosceles trapezoid’ and produces the correct
answer with a shorter token length, reflecting higher reasoning efficiency. However, when confronted
with more complex problems, such as Figure 8, our method still struggles in a manner similar to
that of GRPO and GSPO, drifting into an incorrect reasoning direction. This limitation suggests the
potential of incorporating additional high-quality CoT datasets for supervised fine-tuning.

The MathVerse Vision Only dataset poses an additional challenge, since each problem is presented
solely as an image that contains both the question and the diagram. Nevertheless, our method exhibits
strong reasoning capability by directly extracting the key information for the solution. For instance,
as shown in Figure 9, MGPO correctly interprets the given conditions to compute ‘angle C’ as the
answer, while GRPO and GSPO hallucinate a false equivalence of ‘angle B = angle CDE’, leading to
an incorrect answer. Similarly in Figure 10, our method successfully leverages the geometric property
that the angle at the center of an arc is twice the angle at the circumference, whereas GRPO and
GSPO misinterpret this relation and fail to solve the problem. However, during the reasoning process,
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our method occasionally introduces minor errors in the reasoning path (e.g., mislabeling angle OBA
instead of angle AOB). Furthermore, in Figure 11, all three methods misidentify a critical angle in
the diagram, which may be due to the limited performance of the vision encoder.

𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏

𝑮𝑹𝑷𝑶

𝑴𝑮𝑷𝑶 (𝒐𝒖𝒓𝒔)𝑮𝑺𝑷𝑶

（Dataset: WeMath）

<think>
We know the perimeter of the isosceles trapezoid 
GBCD is 40cm. The non-parallel sides (GB and CD) are 
equal in length, and the parallel sides are 14cm and 
6cm. Let's denote the length of GB and CD as \(x\). 
The perimeter can be expressed as \(x + x + 14 + 6 = 
40\). Simplifying, we get \(2x + 20 = 40\), which 
further simplifies to \(2x = 20\), and thus \(x = 10\). 
Therefore, the length of CD is 10cm.
</think>
\boxed{A}

<think>
The perimeter of trapezoid GBCD is given as 40 cm. Since GBCD is an 
isosceles trapezoid, the non-parallel sides (GB and CD) are equal in length. 
Let's denote the length of GB and CD as x. The lengths of the parallel sides 
are GB = x and CD = x, and the non-parallel sides are both 6 cm. The length 
of AD is given as 14 cm. Therefore, the perimeter can be expressed as:
\[ x + 6 + x + 6 + 14 = 40 \]
\[ 2x + 26 = 40 \]
\[ 2x = 14 \]
\[ x = 7 \]
So, the length of CD is 7 cm. However, this does not match any of the given 
options. It seems there might be a mistake in the problem statement or the 
options provided, as the correct length of CD should be 7 cm, not listed 
among the options.
</think>
\boxed{D}

<think>
Given that GBCD is an isosceles trapezoid, we know that GB = 
CD and BC = AD. We are given GB = 14cm, BC = 6cm, and the 
perimeter is 40cm. Let's denote the length of CD as x. The 
perimeter can be expressed as: GB + CD + BC + AD = 40cm. 
Substituting the known values, we get: 14 + x + 6 + 14 = 40. 
Simplifying, we have: 34 + x = 40. Solving for x, we find: x = 40 
- 34 = 6. However, this contradicts the fact that GB = CD, as 
GB is given as 14cm and CD should be 14cm. Therefore, the 
correct interpretation should be that CD = GB = 14cm, as the 
trapezoid is isosceles and the only consistent length for CD 
given the perimeter and the other sides is 14cm.
</think>
\boxed{14}

As shown in the figure, 
quadrilateral GBCD is an 
isosceles trapezoid with a 
perimeter of 40cm. What is 
the length of CD in cm?

A. 10; B. 8; C. 24; D. No correct answer

Figure 7: Case visualization of our method over vanilla GRPO and GSPO on the WeMath benchmark.

𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏

𝑮𝑹𝑷𝑶

𝑴𝑮𝑷𝑶 (𝒐𝒖𝒓𝒔)𝑮𝑺𝑷𝑶

（Dataset: WeMath）

<think>
Given that the area of the sector is half of the area of the 
circle, we can deduce that the central angle of the sector is 
180 degrees, which is half of the full circle (360 degrees). The 
area of the sector is therefore \( \frac{1}{2} \pi r^2 \), 
where \( r \) is the radius of the circle. Since the radius is 2 
cm, the area of the sector is \( \frac{1}{2} \pi (2)^2 = 2\pi \) 
square cm. The length of the arc corresponding to the sector 
is \( \frac{180}{360} \times 2\pi r = \frac{1}{2} \times 2\pi 
\times 2 = 2\pi \) cm. Given \( \pi = 3.14 \), the length of the 
arc is \( 2 \times 3.14 = 6.28 \) cm.
</think>
\boxed{D}

As shown in the figure, the 
radius of the sector coincides 
with the diameter of the 
circle. The area of the sector 
is half of the area of the 
circle. What is the length of 
the arc corresponding to the 
sector in cm?(π = 3.14)

<think>
The area of the sector is half the area of the circle, which 
means the central angle of the sector is 180 degrees, making it a 
semicircle. The radius of the circle is 1 cm (since the diameter is 
2 cm). The length of the arc of a semicircle is half the 
circumference of the full circle. The circumference of the full 
circle is \(2\pi \times \text{radius} = 2\pi \times 1 = 2\pi\). 
Therefore, the length of the arc is \(\pi\). Given \(\pi = 3.14\), 
the length of the arc is \(3.14\) cm.
</think>
\boxed{A}

<think>
The area of the sector is half of the area of the circle, which 
means the central angle of the sector is 180 degrees (or π 
radians), since a semicircle's area is half of the full circle's area. 
The radius of the circle is 1 cm (since the diameter is 2 cm). The 
formula for the area of a sector is (1/2) * r^2 * θ, where θ is in 
radians. Substituting the values, we get:
(1/2) * 1^2 * π = (1/2) * π = π/2
The area of the sector is π/2, which is half the area of the circle. 
The area of the circle is π * r^2 = π * 1^2 = π. The length of the 
arc corresponding to the sector is (θ/2π) * 2πr = θ * r = π * 1 = π 
cm. Given π = 3.14, the length of the arc is 3.14 cm.
</think>
\boxed{A}A. 3.14; B. 1.57; C. 12.56; D. 6.28; E. No correct answer

Figure 8: Case visualization of our method over vanilla GRPO and GSPO on the WeMath benchmark.

A.2 LLMS USAGE

We only use LLMs to polish writing of our manuscript. There’s no other usage of LLMs in the paper,
such as retrieval and discovery, and research ideation.
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𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝑮𝑹𝑷𝑶

𝑴𝑮𝑷𝑶 (𝒐𝒖𝒓𝒔)𝑮𝑺𝑷𝑶

<think>
Given that \(AB \parallel CD\) and \(CD = CE\), we 
can deduce that \(\triangle CDE\) is isosceles with 
\(CD = CE\). Therefore, \(\angle CED = \angle D = 
74^\circ\). Since \(AB \parallel CD\), \(\angle B = 
\angle D = 74^\circ\).
</think>
\boxed{A}

<think>
We know that AB is parallel to CD and angle D is 74 
degrees. Since CD = CE, triangle CDE is isosceles 
with angle CDE equal to angle CED, both being 74 
degrees. The sum of angles in triangle CDE is 180 
degrees, so angle DCE is 180 - 74 - 74 = 32 degrees. 
Because AB is parallel to CD, angle B is equal to 
angle DCE, which is 32 degrees.
</think>
\boxed{B}

<think>
Since AB is parallel to CD and angle D is given as 74 degrees, angle B is 
equal to angle D because they are corresponding angles. Therefore, 
angle B is 74 degrees. However, this does not match any of the given 
choices. Let's re-evaluate considering the triangle properties. Since CD 
= CE, triangle CDE is isosceles, and thus angle CDE = angle DEC = 74 
degrees. Since AB is parallel to CD, angle B is equal to angle CDE, which 
is 74 degrees. But this still doesn't match the choices. Let's consider 
the properties of the triangle again. Since AB is parallel to CD, angle B 
is actually equal to angle DEC, which is 74 degrees. However, this still 
doesn't match the choices. Let's consider the triangle properties again. 
Since CD = CE, triangle CDE is isosceles, and thus angle CDE = angle 
DEC = 74 degrees ……

（Dataset: MathVerse_Vision_Only）

Figure 9: Case visualization of our method over vanilla GRPO and GSPO on the MathVerse
benchmark.

<think>
Given that AB is tangent to circle O at point B, we know 
that the angle between the tangent and the radius at the 
point of tangency is 90 degrees. Therefore, angle ABO is 
90 degrees. Since angle A is given as 36 degrees, we can 
find angle C by subtracting the sum of angle A and angle 
ABO from 180 degrees (since the sum of angles in a 
triangle is 180 degrees). So, angle C = 180 - 36 - 90 = 54 
degrees.
</think>
\boxed{B}

<think>
We know that AB is tangent to circle O at point B, so 
angle OBA is 90 degrees. Since angle A is 36 degrees, 
angle OBA can be expressed as 90 degrees - 36 degrees = 
54 degrees. Because angle C is an inscribed angle that 
intercepts the same arc as angle OBA, it is half of angle 
OBA. Therefore, angle C is 54 degrees / 2 = 27 degrees.
</think>
\boxed{D}

<think>
Since AB is tangent to circle O at point B, angle OBA is a 
right angle (90 degrees). Given that angle A is 36 degrees, 
we can find angle C by noting that angle C is an exterior 
angle to triangle OBC, and thus angle C is equal to angle A 
(36 degrees) because they subtend the same arc.
Therefore, angle C is 36 degrees.
</think>
\boxed{A}

𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 （Dataset: MathVerse_Vision_Only） 𝑮𝑹𝑷𝑶

𝑮𝑺𝑷𝑶 𝑴𝑮𝑷𝑶 (𝒐𝒖𝒓𝒔)

Figure 10: Case visualization of our method over vanilla GRPO and GSPO on the MathVerse
benchmark.
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𝑸𝒖𝒆𝒔𝒕𝒊𝒐𝒏 𝑮𝑹𝑷𝑶

𝑴𝑮𝑷𝑶 (𝒐𝒖𝒓𝒔)𝑮𝑺𝑷𝑶

<think>
Since CD is a tangent to circle O, angle OCD is 90 degrees. 
Given that angle CDB is 50 degrees, angle ODB is 90 degrees 
- 50 degrees = 40 degrees. Since angle AOB is twice angle 
ODB (as it is a central angle subtending the same arc as the 
angle at the circumference), angle AOB is 2 * 40 degrees = 
80 degrees. Since OA = OB, triangle AOB is isosceles, so 
angle A = angle B = (180 degrees - 80 degrees) / 2 = 50 
degrees.
</think>
\boxed{D}

<think>
We know that the angle between a tangent and a chord 
through the point of tangency is half the measure of the 
intercepted arc. Here, the angle subtended by the arc \(CD\) 
at the center \(O\) is \(50^\circ\). Therefore, the angle 
between the tangent and the chord \(AB\) is half of 
\(50^\circ\), which is \(25^\circ\). So, the degree of angle 
\(A\) is \(25^\circ\).
</think>
\boxed{B}

<think>
Given that \( \angle BCD = 50^\circ \) and \( \angle BCD \) is 
an inscribed angle, the central angle \( \angle BOD \) that 
subtends the same arc \( BD \) is twice the inscribed angle, 
so \( \angle BOD = 2 \times 50^\circ = 100^\circ \). Since 
\( CD \) is a tangent to the circle at \( C \), \( OC \) is 
perpendicular to \( CD \), making \( \angle OCD = 90^\circ \). 
Therefore, \( \angle OCA = 90^\circ - 50^\circ = 40^\circ \). 
Since \( OA = OC \), \( \triangle OAC \) is isosceles, and thus 
\( \angle OAC = \angle OCA = 40^\circ \).
</think>
\boxed{C}

（Dataset: MathVerse_Vision_Only）

Figure 11: Case visualization of our method over vanilla GRPO and GSPO on the MathVerse
benchmark.
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