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1 Introduction

Large Vision-Language Models (LVLMs) have made significant progress in understanding real-world
images [1–6]. Although LVLMs have demonstrated their versatility and linguistic fluency, they often
suffer from object hallucination in their generated text outputs [7–9]. Object hallucination refers
to the phenomenon of generating inaccurate descriptions for a given image, including non-existent
objects or omitting essential features. The issue with hallucinatory text generation in LVLMs is
that it can mislead and deceive users in downstream applications that depend on these captions or
descriptions, ultimately resulting in a negative impact on various fields that employ LVLMs, including
robotics [10, 11], medical imaging [12, 13], and human-computer interaction [14, 15].

Early works have attempted to address the problem of object hallucinations in small-scale multimodal
pre-trained models by performing either fine-grained alignment across different modalities [16] or
reducing object co-occurrence patterns with data augmentation [17, 18]. However, the auto-regressive
architecture of LVLMs differs significantly from small-scale multimodal pre-trained models, making
their direct utilization impractical. A few recent works [19, 8, 1] have studied to reduce object
hallucinations in LVLMs by enhancing the quality of datasets used for fine-tuning. Yet, acquiring
a substantial number of high-quality examples for fine-tuning can be time-consuming and labor-
intensive, requiring human expertise and effort. Instead, we aim to propose a lightweight method to
post-hoc handle object hallucination by introducing LURE: LVLM hallcUination REvisor.

Concretely, LURE is grounded in a rigorous statistical analysis that elucidates the underlying
causalities of object hallucinations in LVLMs. This analysis delves into the relationship between the
pre-training data and their corresponding textual responses from LVLMs that exhibit hallucinatory
contents [20–22, 1]. Both our empirical and theoretical findings reveal that object hallucinations can
be attributed to three key factors: co-occurrence, uncertainty, and object position. First, if the training
data contains spurious co-occurring patterns between objects, language models may generate outputs
based on these learned spurious associations, thus resulting in hallucinatory descriptions. Second,
hallucinations occur more frequently on objects characterized by high uncertainty during generation.
Lastly, positional factors also play a role, as more object hallucinations tend to appear in the latter
portions of the generated description due to the accumulation of misinterpretation.

Based on our statistical analysis, LURE develops a object hallucination revisor. This revisor takes
potentially hallucinatory descriptions as input and converts them into accurate ones. To create the
revisor, we first generate a hallucinatory dataset using GPT-3.5 by making two modifications to
the original correct captions: (1) Insert additional object texts into the description that are likely to
co-occur with the objects contained in the initial description. This modification allows LURE to learn
to disentangle such co-occurrence patterns effectively; (2) Replace uncertain objects or those at the
end of descriptions with a placeholder tag, encouraging the revisor to re-evaluate these objects. In the
end, we train our hallucination revisor leveraging the acquired hallucinatory dataset. Once trained,
the revisor can seamlessly integrate with any LVLM to correct potential hallucinatory descriptions.

Our primary contribution is LURE, a lightweight and compatible post-hoc approach for rectifying
object hallucination in LVLMs. This approach is grounded in our rigorous statistical analyses of
object hallucinatory phenomena in LVLMs. Our experiments evaluate LURE on multiple existing
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Figure 1: An illustration of LURE Framework: The orange-shaded section shows the training
paradigm of LURE, where the black-bordered part represents the hallucinatory data generation phase,
including introducing co-occurring objects and replacing either uncertain objects or objects in later
positions in the descriptions. The purple-bordered part indicates the revisor training process, with the
masking process that can be referenced in Alg. 1, which is located in Appendix B. The orange-shaded
section illustrates an example in the inference phase of LURE.

open-source LVLMs. Compared to the best prior method, the results demonstrate that LURE can
reduce object hallucination by approximately 23% under general object hallucination evaluation
metrics (e.g., CHAIR [17]). Furthermore, LURE ranks first in GPT evaluation and human evaluation.

2 LVLM Hallucination Revisor

In this section, we formally introduce our remedy, LURE, which mitigates object hallucinations in
large vision-language models. LURE is derived from a statistical analysis of the underlying factors
that can cause object hallucination. We will first discuss these factors in this section. Subsequently,
we will present LURE, which is designed to reconstruct clean data from corrupted input. To this end,
we employ a hallucination revisor in our approach, aiming to transform potentially LVLM-generated
hallucinatory descriptions into accurate ones. The framework of LURE is depicted in Figure 1.

Notations. Large Vision-Language Models (LVLMs) typically generate sentences in a free-form and
auto-regressive manner, predicting the probability distribution of the next token progressively. In this
context, we denote the input as x, the correct answer as y, and the generated sequence with a length
of Ns as s = {z1, . . . , zNs}. For a given LVLM, the probability of generating zi as the i-th token
can be described as p(zi|s<i, x) (where 1 ≤ i ≤ Ns), and s<i refers to the previously generated
tokens {z1, . . . , zi−1}. Given a description s, we additionally define the complete object set, which
is arranged in the order of appearance, as Os = {os,1, . . . , os,nh+nr

}. Here, nh and nr represent the
number of hallucinatory and non-hallucinatory objects, respectively.

Why Do Large Vision-Language Models Experience Object Hallucination? We first scrutinize
the root causes of object hallucinations in vision-language models via comprehensive statistical
analyses from three critical viewpoints: co-occurrence, uncertainty, and position, recognized as the
primary factors contributing to object hallucination. Our analysis indicates that object hallucinations
are largely associated with co-occurrence patterns of frequently appearing objects in the dataset.
Additionally, object hallucinations often exhibit high uncertainty during the decoding process and tend
to appear in the latter half of the response text. A more detailed analysis of these three factors can be
found in Appendix D. Furthermore, we provide a rigorous theoretical explanation that complements
our empirical findings on object hallucinations. After thoroughly investigating the root causes of
hallucinations, we then introduce how to train the deploy LURE.

2



2.1 Training Hallucination Revisor

In LURE, to train the hallucination revisor, we first curate a training dataset. Each example in this
dataset consists of an image accompanied by a hallucinatory description, with the correct description
serving as the output target. A significant challenge encountered during dataset curation lies in the
generation of naturally-occurring hallucinatory descriptions. To overcome this challenge, LURE
generates hallucinatory descriptions by modifying the accurate descriptions using GPT-3.5. These
adjustments are guided by factors related to object hallucination, including co-occurrence, object
uncertainty, and object position. In the following, we detail these modifications:

Introducing Potential Co-Occurrence Objects. To create a more naturally occurring co-occurrence
scenario, rather than relying on counting co-occurrence frequencies from any specific datasets that
may contain bias co-occurrence records, LURE leverages GPT-3.5 to deduce and incorporate objects
that are most likely to co-occur in the scene into the original description.

Reconsidering Uncertain Objects & Objects in Later Position in the Descriptions. Hallucination
is more prone to occur in objects with greater uncertainty and objects exist later in the description.
In this context, we anticipate that the revisor should place greater emphasis on and reevaluate these
objects. To achieve this, we utilize string matching to replace objects with significant uncertainty
and those located at the end of the description with the placeholder tag “[IDK]". Here, to quantify
object uncertainty in descriptions, we use the uncertainty values of noun tokens as a proxy. Token
uncertainty is expressed as the entropy of each token, denoted as − log p(zi|s<i, x). We classify
tokens as uncertain objects if their corresponding uncertainty exceeds a threshold γ, and if they are
identified as nouns. Like uncertainty, we determine the later object’s position using the condition
Index(zi) ≥ η ∗ Length(s) and the thresold η. This approach enables the model to reassess and
either replace "[IDK]" with a more appropriate object based on the image or remove it entirely.

Using these modification strategies, for every accurate description, we provide GPT-3.5 with a list of
potential co-occurrence objects, and a list of uncertain objects. We then prompt GPT-3.5 to generate
the corresponding hallucinatory description using the prompts in Appendix C.3. Finally, we leverage
the constructed dataset to fine-tune a LVLM and use it as revisor. Some cases of hallucinatory
descriptions are in Appendix F.2. The training pipeline is illustrated in Alg. 1 in Appendix B.

2.2 Deploying Hallucination Revisor

In the inference stage, the trained revisor rectifies the generated descriptions. Specifically, similar to
the process of constructing hallucinated descriptions during the training phase, in the testing phase,
we similarly integrate the placeholder tag “[IDK]" into the generated descriptions. This integration
serves the purpose of enforcing the Revisor to reevaluate objects exhibiting high uncertainty or
appearing later in the generated text. The inference pipeline is detailed in Alg. 2 in Appendix B.

3 Experiments

Datasets. MSCOCO [21] is a comprehensive dataset used for image recognition, segmentation, and
captioning. It comprises over 300,000 images spanning more than 80 object categories, each with
detailed annotations. Following [23, 8], we selected 5,000 unique images from the COCO 2014
training dataset to evaluate performance. To train the hallucination revisor, we randomly selected
5000 image-text pairs from LLaVA-150k [24], ensuring that these images were different from the
ones used in testing.

Baselines. The comparison methods include: Original, which directly use the generated descriptions
from LVLMs; Teacher [25]; Chain-of-Thought (CoT) [26]; Greedy-Decoding; GPT-Ensemble; GPT-
Teacher. Detailed descriptions about baselines are in Appendix C.5.

Evaluated LVLMs. We performed experiments utilizing six of the most recent LVLMs, with their
corresponding language models specified in parentheses: MiniGPT-4 (Vicuna 13B) [2], LLaVa
(LLaMA 13B) [1], MMGPT (LLaMA 7B) [6], LLaMA-Adapter (LLaMA 7B) [27], mPLUG-Owl
(LLaMA 7B) [3], and InstructBLIP (Vicuna 7B) [28].

Hyperparameter Settings. Unless specified, all experiments in the paper are using MiniGPT-4 as
the backbone of the revisor, along with the training parameter settings provided in Appendix C.2.
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Table 1: Automated hallucination evaluation is performed under six LVLMs using CHAIRS (CS) and CHAIRI

(CI ), where smaller values indicate less object hallucination. For additional metrics, please refer to Appx. E.1.
MiniGPT-4 LLaVa MMGPT LLaMA-Adapter mPLUG-Owl InstructBLIP
CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓ CS ↓ CI ↓

Original 26.8 7.3 54.0 11.3 56.6 11.0 58.8 13.7 71.2 16.5 40.0 8.2
Teacher 24.0 5.7 49.9 9.3 53.4 7.5 40.8 9.4 62.4 13.0 36.4 7.5
CoT 31.6 9.4 47.6 9.0 48.8 17.5 43.3 9.4 56.9 13.4 35.7 7.8
Greedy-Decoding 25.1 6.6 50.9 10.0 50.6 8.4 55.9 13.7 55.1 12.8 35.5 7.8
GPT-Ensemble 41.0 10.6 43.0 10.7 51.0 11.1 47.1 13.0 52.0 15.2 51.0 13.0
GPT-Teacher 25.3 7.6 38.0 7.8 26.7 9.3 49.0 12.4 22.0 9.0 32.0 7.8

LURE (ours) 19.7 4.9 27.1 6.4 22.2 5.6 35.3 9.1 18.8 5.4 21.0 5.1

Table 2: We conducted evaluations for description ranking, comparing the four strongest baselines in both
human (’H’) and GPT (’G’) evaluations. Metrics represent the average rankings within the top 1-5 positions,
with lower rankings indicating less hallucination.

MiniGPT-4 LLaVa MMGPT LLaMA-Adapter mPLUG-Owl InstructBLIP
G ↓ H ↓ G ↓ H ↓ G ↓ H ↓ G ↓ H ↓ G ↓ H ↓ G ↓ H ↓

Original 3.97 3.10 4.55 4.62 3.66 3.25 4.79 4.45 4.25 3.98 4.29 4.77
Teacher 3.36 3.83 3.30 3.07 3.09 3.20 3.00 3.13 3.25 3.66 3.34 3.53
CoT 2.44 2.83 3.05 2.52 4.38 4.07 2.63 2.10 3.75 3.13 2.78 2.21
GPT-Teacher 3.56 3.28 2.45 2.96 2.16 2.90 2.68 3.24 2.50 2.44 3.12 2.56

LURE (ours) 1.67 1.96 1.65 1.83 1.61 1.58 1.90 2.08 1.25 1.79 1.47 1.93

3.1 Evaluation Strategies and Results

Evaluation Metrics. In our evaluation, we employ both automated and human assessment strategies
to evaluate the quality of object hallucination in images. The automated evaluation is based on the
CHAIR metrics presented in [17]. In addition, we extend our evaluation to include other widely used
metrics. Detailed descriptions and results for these additional metrics can be found in Appendix E.1.
Details about evaluation metrics can be found in Appendix C.4.

Results. In Table 1 and Table 2, we report the results of automated evaluations and human and GPT
evaluations under different LVLMs, respectively. Here, taking cost into account, we only compare
LURE with the four strongest methods in human and GPT evaluations. Although Teacher, CoT,
and GPT-Teacher can improve the performance compared to the original descriptions in most cases,
LURE significantly enhances performance over these strong baselines, which effectively reduces
object hallucination in generated descriptions. One potential reason for this is that all of these
baselines experience error propagation to some extent. For instance, CoT’s linear guidance can lead
to errors if the object listing step is incorrect. In contrast, LURE directly corrects hallucinatory
descriptions using guidance from potential factors that can trigger hallucinations.

3.2 Analysis of LURE
We also evaluate the performance of LURE and present the following conclusions: (1) The perfor-
mance gains of LURE are mainly derived from the revisor’s power in reducing hallucination rather
than the use of constructed hallucination datasets. (2) The key factors we’ve identified do help reduce
hallucinations in LVLMs and benefit the training process of the revisor. (3) Different LVLMs can
be used as the backbone of the revisor, and all of them indicate strong performance. For these three
conclusions, we provide a detailed analysis below:

Table 3: Compared LURE to fine-tuning method
using the training data of revisor.

Model CHAIRS ↓ CHAIRI ↓
Original 26.8 7.3
FT (add’l data) 31.0 7.2

LURE (Ours) 19.7 4.9

Are the Performance Gains of LURE from Using
Constructed Hallucination Datasets? To verify that
the performance gains of our method are not from us-
ing additional data to train the revisor, we fine-tuned
the original LVLMs with the additional dataset. The
results on MiniGPT-4 are shown in Table 3, where
“Original" represents the descriptions of MiniGPT-4.
According to Table 3, LURE outperforms the fine-
tuned LVLMs, which indicates that our method indeed reduces object hallucination by post-hoc
rectifying potential hallucinatory descriptions rather than using additional data.
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The image features a table in a restaurant with a 
sandwich and a glass of wine placed on it. The 
sandwich is positioned on the right side of the 
table, while the wine glass is located closer to 
the center. The table is surrounded by chairs, 
with one on the left side, another on the right, 
and a third one further back. There are also other 
people in the scene, both sitting at separate 
dining tables. Additional items on the table 
include a fork near the sandwich and a handbag 
placed on the left side of the table.

Original Teacher
The image features a delicious sandwich on a plate, 
placed on a dining table. The sandwich is 
accompanied by a glass of wine, which is sitting 
close to the plate. The table is surrounded by 
several chairs, indicating a comfortable dining 
setup. In the background, there are a few people, 
suggesting that the scene might be taking place at 
a restaurant or a social gathering. Additionally, 
there are a few handbags placed around the room, 
likely belonging to the people present.

GPT-
Teacher

The image depicts a plate with a sandwich on it, 
placed on a table in a restaurant. The sandwich is 
positioned on the right side of the plate. The table 
is surrounded by chairs, with one on the left side 
and another on the right.
There are other people in the scene, with one 
person visible in the background on the left side. A 
fork can be seen near the sandwich.

LURE

The image features a sandwich and a glass of wine 
placed on a table. The sandwich is located near the 
center of the table, while the wine glass is 
positioned towards the top left corner. 
The table is surrounded by several chairs, with one 
on the left side, another on the right side, and two 
more in the background.

Figure 2: A case study comparing the levels of hallucination among various baselines.

Table 4: Ablation studies on three hallucination
factors.

Model CHAIRS ↓ CHAIRI ↓
Original 26.8 7.3
w/o Co-occurrence 22.6 4.9
w/o Uncertainty 21.2 5.4
w/o Position 22.3 5.8

LURE (Ours) 19.7 4.9

Ablation Study – Do the Hallucination Factors
Contribute Performance Gains? To demonstrate
the impact of considering co-occurrence, uncertainty,
and object position in reducing hallucination, we con-
ducted ablation experiments and report the results
in Table 4, where “Original" represents the descrip-
tions of MiniGPT-4. In the ablation experiments, we
trained and deployed the revisor without each of the
three factors, one at a time. The results show that all
three factors contribute to training a strong hallucina-
tion revisor to reduce object hallucination. Furthermore, we have also conducted an analysis of the
changes in these three factors before and after applying the revisor, as presented in Appendix E.2.
This analysis demonstrates that LURE can effectively reduce instances of hallucination caused by
these factors.

Table 5: Performance under different hallucina-
tion revisor backbones.

Backbone CHAIRS ↓ CHAIRI ↓
Original 26.8 7.3

MiniGPT-4 19.7 4.9
LLaMA-adapter 21.3 5.2
mPLUG-Owl 22.1 5.4

Robustness Analysis of the Hallucination Revi-
sor. We further analyze the robustness of the re-
visor with respect to different backbones. Specifi-
cally, we trained the revisor on the same dataset using
different backbones: MiniGPT-4, LLaMA-adapter,
and mPLUG-Owl. The results are reported in Table
5, where “Original" represents the descriptions of
MiniGPT-4. We can observe that despite the varying
performance of each backbone, LURE consistently
improve the performance compared to the original description, which further indicate the effective-
ness of LURE. Additionally, we analyze the results of LURE with respect to various uncertainty
thresholds in Appendix E.3. The findings demonstrate that LURE exhibits strong performance across
a wide range of uncertainty thresholds.

Case Analysis. We select several strong baselines and presented a case with rectified descriptions
in Figure 2. Compared with other approaches, LURE excels in providing a more accurate image
description. In the case, LURE accurately depicts the primary elements (e.g., sandwich, chair, plate)
while avoiding hallucinatory objects like the fork and handbag. Although other baselines partially
reduce hallucination, they still exhibit object hallucinations in their descriptions. Additionally, we
also mitigate logical errors to some extent, including object orientation and actions. Further case
analyses can be found in Appendices F.3 and F.4.

4 Conclusion
In this paper, our objective is to address the challenge of object hallucination in LVLMs. We
introduce a lightweight post-hoc method, named LVLM Hallucination Revisor (LURE), designed to
rectify object hallucination in the generated descriptions produced by LVLMs. LURE is grounded
in three key factors known to contribute to object hallucination: co-occurrence, uncertainty, and
object position. These factors have been demonstrated to induce hallucination both empirically and
theoretically. Our experiments, conducted on six open-source LVLMs, demonstrate the effectiveness
of LURE in mitigating object hallucination in LVLM-generated descriptions.
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A Related Work

Vision-Language Models. Vision-language pre-trained models, as exemplified by [29, 30], demon-
strate substantial capabilities in modeling interactions between visual and textual information, es-
pecially when fine-tuned for specific tasks. Recently, autoregressive large-scale language models
(LLMs) [31–36] have ushered in a new era of vision-language models. These models, known as
LVLMs, integrate LLMs with visual modality and showcase impressive visual understanding through
end-to-end training techniques that directly decode visual and text tokens in a unified manner [1–4].
However, similar to VLMs, LVLMs also face the challenge of object hallucination [7, 17]. This form
of object hallucination is more pronounced and widespread in the long-form descriptions produced
by LVLMs compared to the shorter descriptions generated by VLMs [37].

Hallucination in VLMs and LVLMs. In VLMs, hallucination typically refers to scenarios where
the generated descriptions contain information that does not exist in the visual modality [17, 16, 7].
Addressing object hallucination in VLMs is primarily achieved through techniques such as fine-
grained contrastive learning [30], ROI feature fusion [16], and eliminating co-occurrence patterns
through data augmentation [18]. However, the training paradigms between traditional VLMs and
recent LVLMs differ, and the new autoregressive training paradigm in LVLMs makes it challenging
to directly apply hallucination mitigation methods used in VLMs to LVLMs. Recent research has
begun to address the issue of object hallucination in LVLMs, including hallucination evaluation and
detection [7, 8, 23], as well as the construction of higher-quality datasets for fine-tuning [9, 19, 8, 1].
Nevertheless, acquiring a substantial number of high-quality examples can be time-consuming and
labor-intensive. Instead, grounded in statistical analysis of hallucination, we propose a conceptually
different approach, LURE, to post-hoc rectify object hallucination. We have already demonstrated its
effectiveness in reducing hallucination and its compatibility with various LVLMs.

B Training and Inference Algorithms

Algorithm 1 Training LVLM Hallucination Revisor in LURE

Require: training image setX ; groundtruth descriptionsY ; LVLMM(·); uncertainty threshold γ; hallucination
revisorRθ(·) with parameters θ; position threshold η

1: Use GPT-3.5 to construct hallucinatory description setHold (see Appendix C.3 for more details)
2: Initialize the revisor’s parameter θ and an empty setHnew ← {}
3: while not converged do
4: for each image x ∈ X and the correpsonding hallucinatory description h ∈ Hold do
5: Generate description s =M(x) with object set Os

6: for object os,i ∈ Os do
7: if os,i in h and − log p(os,i|M, x) ≥ γ then
8: Add placeholder tag “[IDK]" to h, i.e., h← Mask(h, os,i)
9: if os,i in h and Index(os,i) ≥ η ∗ Length(h) then

10: Add placeholder tag “[IDK]" to h, i.e., h← Mask(h, os,i)
Put h into Hnew

11: Update parameter θ with autoregressive loss L(Rθ(Hnew),Y)

Algorithm 2 Inference Pipline of LURE

Require: test image xt; LVLMM(·); trained hallucination revisorR∗
θ(·); uncertainty threshold γ, position

threshold η
1: Generate description st =M(xt) with object set Ost

2: for object ost,i ∈ Ost do
3: if − log p(object|M, x) ≥ γ then
4: Add placeholder tag “[IDK]" to st, i.e., st ← Mask(st, ost,i)
5: if Index(ost,i) ≥ η ∗ Length(st) then
6: Add placeholder tag “[IDK]" to st, i.e., st ← Mask(st, ost,i)
7: return R∗

θ(st)
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C Experimental Details

C.1 Experimental Setting for the Hallucination Analysis

Experimental Setting for D.1. The objects in this experiment are based on the 80 object labels
annotated in [17] from the COCO dataset, and the image descriptions are generated by MiniGPT-4
based on inference results from 5000 images in the COCO 2014 train dataset.

Experimental Setting for D.2. Because uncertainty and position analysis are relatively independent
from co-occurrence, in order to avoid conducting statistical analysis on the training set distribution, the
statistical data for uncertainty analysis is derived from MiniGPT-4’s descriptions of 200 images from
the COCO 2014 test dataset. The computation of uncertainty is performed using − log p(zi|s<i, x).

Experimental Setting for the Analysis of D.3. Similar to the uncertainty analysis, we used the
manually annotated descriptions of MiniGPT-4 for 200 images from the COCO 2014 test dataset,
due to the need for precise positioning.

C.2 Training Settings For Revisor

The overall revisor training setting is similar to MiniGPT-4. Here, we only need one A100 80G GPU
for training, which takes approximately 10 minutes. We present hyperparameter settings of the LURE
during the training phase, as shown in Table 6.

Table 6: Training hyperparameters.
Hyperparameters
Training steps 410
Warmup steps 50
Max length 512
Batch size of multi-modal instruction data 12
Optimizer AdamW
Learning rate 3e-5
Learning rate decay Cosine
AdamW ϵ 1e-6
AdamW β (0.9, 0.999)
Weight decay 0.05

C.3 Prompts for Training Dataset

We leverage the in-context few-shot learning capability of GPT-3.5 to generate hallucinatory data
automatically for revising. Initially, we prompt GPT-3.5 to provide a list of objects that are highly
likely to co-occur with the objects mentioned in the given description. Next, we use LVLMs (such as
MiniGPT-4) to generate descriptions for the training set of 5000 images. During this process, we will
save nouns with − log p(zi|s<i, x) greater than the uncertain threshold γ in the decoding process to
the list of uncertain objects corresponding to each image. Subsequently, we direct the model to take
the original description and incorporate a randomly chosen word from the “co-occur objects" list, as
well as another randomly chosen word from the “uncertain objects" list, into it. Detailed prompts are
listed in Table 7 and a few examples are presented in Table 12.

C.4 Details about Evaluation

In this section, we will provide the details about our evaluation metrics.

Automated Object Hallucination Evaluation. We follow the guidelines presented in [17] to perform
an automated calculation of CHAIR metrics for the MSCOCO dataset, where 80 objects are involved
in this automated evaluation process.

Human and GPT Evaluations. Although automated evaluation strategies are efficient, they cannot
encompass all objects present in the evaluated images. To overcome this limitation, we conducted a

10



Table 7: The prompt for the GPT-3.5 API to generate the required hallucination dataset. “Instruction
1" is used to ask ChatGPT to provide a list of co-occurring objects based on the description, while
“Instruction 2" is used to integrate the objects obtained from the co-occurring object list and the
objects from the list of uncertain objects into the given description.

Instruction 1:
List three other objects that you think are most likely to appear with the objects in the scene
described below:
{description}
Output in strict accordance with the following format:
Object one
Object two
Object three

Instruction 2:
Input caption: {description}
co_objects list: {co_objects list}
uncertain_objets list: {uncertain_objets list}
Select one object from “co_objects list" and “uncertain_objects list" respectively and add it to
“Input caption" to get “Output caption". (Try not to change the format)
Output caption:

comprehensive human evaluation involving several native speakers. Please refer to Appendix C.6 for
the evaluation interface. In this human evaluation, participants are assigned the task of annotating
hallucinatory objects and we rank different methods based on human feedback. In addition to human
evaluation, inspired from [38], we also prompt GPT-3.5 to compare different descriptions. In this
GPT evaluation, we provide the annotated information, including detection boxes and captions, and
anticipate that GPT-3.5 can provide an ranking for the descriptions from various methods. For GPT
evaluation, we use the prompts referenced in Table 9 in the Appendix.

C.5 Details about Baseline

In this section, we will provide a detailed explanation of the settings used for the baseline in Table 1,
including some parameter settings and prompt configurations. The detailed prompt for baselines can
be seen in Table 8.

• Teacher: The “Teacher" approach involves generating short descriptions for the images via
blip2 [39] and using them as context to guide the model in generating descriptions. By providing
these descriptions as additional information, the model can benefit from the guidance and produce
more accurate or relevant descriptions.

• CoT: The “CoT" method asks the model to first list the objects it identifies in the image and
then describe the image based on those objects. It draws inspiration from the concept of chain of
thought [26] and aims to guide the model in generating accurate descriptions by focusing on object
recognition.

• Greedy-Decoding: The difference between the “Greedy-Decoding" strategy and the “Original"
strategy is that in the "Greedy-Decoding" strategy, the model uses greedy decoding instead of
sampling during the generation of image descriptions to produce the most deterministic output.
This approach is used to explore the potential connection between the generation of illusions and
the use of sampling.

• GPT-Ensemble: In "GPT-Ensemble," we utilize GPT-3.5 to summarize the common elements in
the descriptions generated by multiple LVLMs, excluding the one being evaluated. Subsequently,
we employ GPT-3.5 to rewrite the description of the evaluated LVLM, using the identified common
elements from the descriptions of the other models to correct any dissimilar parts in the evaluated
model’s description.
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Table 8: Prompts for baselines.

Teacher:
Reference caption:
{blip2 caption}
Please refer to reference caption and describe this picture:

CoT:
Human:
Please list the main objects in the picture and strictly follow the following format:
{object1, object2, object3......}
AI:
{objects list}
Human:
Describe this image
AI:
{description}

GPT-Ensemble:
Reference captions 1:{description of model 1}
Reference captions 2:{description of model 2}
Reference captions 3:{description of model 3}
Reference captions 4:{description of model 4}
Reference captions 5:{description of model 5}
Original Description:{description}
Synthesizing the commonalities of Reference captions 1-5, and then removing the parts in the
Original Description that do not align with the commonalities, while preserving the original
format. Answer:

GPT-Teacher:
Reference caption:
{blip2 caption}
Original description:
{description}
Rewrite the original description to align it with the reference caption, delete some objects that
you think are hallucinations, and keep the original format. Answer:

• GPT-Teacher: “GPT-Teacher" represents the process of providing the GPT-3.5 API with contextual
references and descriptions from the model’s output, allowing it to revise the inaccurate description
generated by the model into a more accurate version based on the contextual information.

C.6 Details about Manual annotation evaluations

The manual evaluation annotation interface provides a user-friendly interface for performing manual
annotations and capturing evaluation feedback. The interface is hosted on the Amazon Web Services
(AWS) platform, which offers scalability, reliability, and security for handling annotation tasks. As
shown in Figure 3, we annotated all objects and hallucinated objects in the descriptions based on
the images. We then provided a binary label (0/1) to indicate whether each description contained
hallucinations. Based on the fine-grained annotation results, similar to GPT evaluation, we sorted the
results from different baselines.
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Figure 3: Human evaluation annotation interface.
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Figure 4: Comparison between hallucinatory and non-hallucinatory captions under different factors.

D Detailed Analysis and Proof

D.1 Co-Occurrence and Spurious Correlation Among Objects

In the realm of multi-modal models, “co-occurrence" denotes the frequent appearance of specific
objects. When the training data includes spurious co-occurring patterns among objects, language
models can generate outputs based on these learned associations. However, these associations may
not hold true for test examples, resulting in hallucinatory outputs. For example, “grass" and “sky"
frequently co-occur in the training data. The model falsely associates them and tends to generate
“grass" and “sky" together even when only “grass" is present in the context.

In order to assess the influence of co-occurrence on object hallucination, we draw inspiration
from [16]and introduce a Co-occurrence Score denoted as CoScore. For each image description s,
the corresponding co-occurrence score CoScores is computed as the summation of co-occurrence
degrees across all hallucinatory objects {os,1, . . . , os,nh

}, which is defined as:

CoScores =

nh∑
i=1

nr+nh∑
j=1,os,j ̸=os,i

|S(os,i) ∩ S(os,j)|
|S(os,i)|+ |S(os,j)|

. (1)

Here, S(·) denotes the set of all descriptions that mention a specific object, and |S(·)| represents the
cardinality of this set.

Based on the definition of CoScore, we compare the distribution of co-occurrence scores between
hallucinatory and non-hallucinatory captions (please refer to Appendix C.1 for our experimental
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setting), As shown in Figure 4a, hallucinatory captions tend to exhibit higher co-occurrence scores,
which suggests a stronger association between object hallucination and co-occurrence.

D.2 Object Uncertainty

In language modeling, beam search [40, 41] is employed to predict words iteratively, introducing
inherent uncertainty into the search process (Please refer to illustrative examples in Appendix F.1).
This uncertainty is used as a measure of the model’s confidence in generating the next token, and
can be related to the hallucination problem, as objects with higher uncertainty are more likely to
be inaccurate. Here, we aim to quantitatively investigate the potential relationship between the
uncertainty associated with objects at each prediction step and the hallucinations.

Concretely, we represent the probability of autoregressive decoding for each object token as
p(os,i|s<k, x), where k denotes the positional index of object os,i. For each object os,i, the corre-
sponding Uncertainty Score is defined as:

UnScores,i = − log p(os,i|s<i, x), (2)

where a higher value of the uncertainty score indicates greater uncertainty. In Figure 4b, we perform
a statistical analysis examining the connection between hallucination and object uncertainty (refer
to Appendix C.1 for experimental details). Similar to the analysis of co-occurrence, hallucinatory
objects are predominantly observed in the high-uncertainty range, while non-hallucinatory objects
are more frequently generated in the certain range.

D.3 Object Position in Generated Descriptions

Interestingly, we also find a significant correlation between the object position in the generated de-
scriptions and hallucination, where dominant hallucinations occur in the latter part of the descriptions.
To validate it, we introduce the Positioning Score denoted as PoScore for each object os,i as follows:

PoScores,i =
Index(os,i)

Ns
, (3)

where Index(os,i) signifies the position index of object os,i within the entire description. Based on
the definition of PoScore, we conduct a analysis of the positions of hallucination in the descriptions,
illustrated in Figure 4c (refer to Appendix C.1 for experimental details). These findings indicate
that high-density areas of hallucinatory objects predominantly appear towards the end of the se-
quence. This pattern corroborates our observation that object hallucination frequently occurs in the
latter segments of generated text. One plausible explanation for this observed trend is rooted in
the autoregressive text generation process. In the initial stages, the model closely adheres to the
semantic information of its input image, resulting in coherent beginnings. However, as the generation
progresses, the accumulation of past hallucinatory information and emerging uncertainties may steer
the model off-course, ultimately leading to a more pronounced emergence of object hallucination.

D.4 Theoretical Explanation

After examining these empirical correlations, we proceed to offer theoretical insights to explain them
(all proofs can be found in Appendix D). Specifically, we focus on predicting the i-th token, denoted
as zi, and introduce a predictive function denoted as f . For each object k within a set of objects
represented as [K], the function fk(s<i, x) signifies the predicted score associated with the k-th
object. Here, K is defined as the total number of objects under consideration, and we use yk = 1 to
denote the presence of the k-th object in an image and yk = −1 otherwise. Furthermore, we make an
assumption that fk(s<i, x) can be expressed as ⟨ϕk(s<i, x), βk⟩, ϕk(s<i, x) | yk ∼ N(yk · µ∗

k, Id) and
Pr(yk = 1) = Pr(yk = −1) = 1/2. For a training set D, the optimizer for the k-th class parameter βk

trained on D is defined as: β̂k = 1
|D|

∑
(s<i,x,yi,k)∈D yi,k ·ϕk(s<i, x), where yi,k ∈ {−1, 1} represents

whether object k will occur at position i. Such a model and optimizer are commonly used in the
theoretical analysis of deep learning models [42, 43].

Co-occurrence. Based on this definition, we first consider co-occurrence. Without loss of generality,
we assume that K = 2, and the first and second classes are frequently observed together, i.e., we
observe (ϕ1(s<i, x), ϕ2(s<i, x)) among a fraction ρ0 ∈ (0, 1) of samples when both y1 and y2 are
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equal to 1. Here, to simplify the autoregressive process while maintaining sequential prediction
manner, we consider using f̂1 = ⟨ϕ1(s<i, x), β̂1⟩ for the prediction of the first object, and in the second
prediction, we model the information passed from the first information by ⟨ϕ1(s<i, x), β̂1⟩, and
consider f̂2 = ⟨ϕ1(s<i, x), β̂1⟩+ ⟨ϕ2(s<i, x), β̂2⟩. The model outputs the second object if f̂2(s<i, x) >
0.

Under this setting, we consider two sampling schemes: (1) Each class is sampled according to the
original training distribution; (2) Each class is sampled by setting ρ < ρ0. These two sampling
schemes result in two subset of samples D(1), D(2) with the same size. Denote the classifiers trained
on D(1) and D(2) by {f̂ (1)

k }k∈{1,2} and {f̂ (2)
k }k∈{1,2} respectively. Theorem D.1 reflect reducing

co-occurrence issue can lead to smaller test misclassification error Err(·).

Theorem D.1 Suppose ∥µ∗
k∥2 ≪ d, d/|D(k)| → κ for k ∈ {1, 2} and universal constants κ > 0.

We have

Err(f̂
(2)
2 ) ≤ Err(f̂

(1)
2 ).

Uncertainty. We then turn our attention to object uncertainty. Here, we consider the two following
sampling schemes: (1) Each class is sampled with equal probability 1/K; (2) Each class is sampled if
the uncertainty score, defined as − log(p̂k), is above a certain threshold γ > 0. Here, p̂k is calculated
as follows: p̂k = 1

|Dtr|
∑

(s<i,x,1)
σ(⟨ϕk(s<i, x), β̂k⟩), where Dtr represents the training set. These

two schemes result in two subsets of samples D(1) and D(2) with the same size. Given x and s<i,
we make a prediction about whether the k-th object is present in the image using f̂k. Theorem D.2
illustrates that sampling more certain objects can lead to a reduction in test error.

Theorem D.2 Suppose ∥µ∗
k∥2 ≪ p, d/|D(k)| → κ for κ > 0 and k ∈ [K]. We will have with

probability at least 1− o(1),

1

K

K∑
k=1

Err(f̂
(2)
k ) ≤ 1

K

K∑
k=1

Err(f̂
(1)
k ).

Object Position. The effect of object position on object hallucination is closely tied to error or
prediction uncertainty accumulation in autoregressive models. This topic has been extensively studied
in time series analysis, and several theoretical models have been established to investigate it [44–46].

D.5 Proof of Theorem D.1

Let us denote N = |D(1)| = |D(2)|. For the detection rule of the first object, we have

β̂
(1)
k =

1

|D(1)|
∑

(s<i,x,yi,k)∈D(1)

yi,k · ϕk(s<i, x).

As ϕk(s<i, x) | yi,k ∼ N(yi,k · µ∗
k, I), we write

yi,k · ϕk(s<i, x) = µ∗
k + ϵi,k.

Now, suppose among all samples, a fraction ρ0 ∈ (0, 1) of samples have both y1 and y2 are equal to
1. We can then write

(β̂
(1)
1 , β̂

(1)
2 ) = (ρ0µ

∗
1 +

1

N

ρ0·N∑
i=1

ϵi,1, ρ0µ
∗
2 +

1

N

ρ0·N∑
i=1

ϵi,2).
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Use Φ(·) to denote the cumulative distribution function of a standard normal distribution. Then for
the prediction function f̂2 = ⟨ϕ1(s<i, x), β̂

(1)
1 ⟩+ ⟨ϕ2(s<i, x), β̂

(1)
2 ⟩, we have

Err(f̂
(1)
2 ) =

1

2
P(⟨ϕ1(s<i, x), β̂

(1)
1 ⟩+ ⟨ϕ2(s<i, x), β̂

(1)
2 ⟩ < 0 | y = 1)

+
1

2
P(⟨ϕ1(s<i, x), β̂

(1)
1 ⟩+ ⟨ϕ2(s<i, x), β̂

(1)
2 ⟩ > 0 | y = −1)

= Φ(−⟨µ∗
1, β̂1⟩+ ⟨β2, µ̂

∗
2⟩√

∥β̂1∥2 + ∥β̂2∥2
)

= Φ(− ρ0∥µ∗
1∥2 + ρ0∥µ∗

2∥2√
ρ20∥µ∗

1∥2 + ρ20∥µ∗
2∥2 +

ρ0·d
N + ρ0·d

N

) + o(1).

Similarly, we have

Err(f̂
(2)
2 ) = Φ(− ρ∥µ∗

1∥2 + ρ∥µ∗
2∥2√

ρ2∥µ∗
1∥2 + ρ2∥µ∗

2∥2 +
ρ·d
N + ρ·d

N

) + o(1).

As Φ(− ρ∥µ∗
1∥

2+ρ∥µ∗
2∥

2

√
ρ2∥µ∗

1∥2+ρ2∥µ∗
2∥2+ ρ·d

N + ρ·d
N

) is monotonically increasing with ρ, we complete the proof.

D.6 Proof of Theorem D.2

We first analyze the uncertainty score. In fact, we have

p̂k =
1

|Dtr|
∑

(s<i,x,1)

σ(⟨ϕk(s<i, x), β̂k⟩)

=[σ(⟨ϕk(s<i, x), β̂k⟩)] + oP (1)

=[
1

1 + exp(∥µ∗
k∥2 + ∥µ∗

k∥ · Z)
] + oP (1),

where Z ∼ N(0, 1) is the standard normal random variable.

Therefore, p̂k decreases when ∥βk∥ increases. Choosing samples with small p̂k (i.e., large − log(p̂k))
correspond to larger sample sizes for the classes with larger ∥µ∗

k∥.

Then we analyze the misclassification error. For f̂k = sgn(⟨ϕ(s<i, x), β̂k⟩), we have

Err(f̂k) = P(sgn(⟨ϕ(s<i, x), β̂k⟩) ̸= y) =
1

2
P(⟨ϕ(s<i, x), β̂k⟩ < 0 | y = 1)

+
1

2
P(⟨ϕ(s<i, x), β̂k⟩ > 0 | y = −1)

As ϕk(s<i, x) | y ∼ N(yk · µ∗
k, Id), we have

P(⟨ϕk(s<i, x), β̂k⟩ < 0 | y = 1) = P(⟨ϕ(s<i, x), β̂k⟩ > 0 | y = −1) = Φ(−⟨µ∗
k, β̂k⟩
∥β̂k∥

).

As β̂k = µ∗
k + 1

nk

∑nk

i=1 ϵi := µ∗
k + 1√

nk
Z, we have

⟨µ∗
k, β̂k⟩
∥β̂k∥

=
∥βk∥2 + 1√

nk
⟨µ∗

k, Z⟩√
∥µ∗

k∥2 +
2√
nk

⟨µ∗
k, Z⟩+ 1

nk
∥Z∥2

.

As we assume ∥µ∗
k∥2 ≪ d, we have

⟨µ∗
k, β̂k⟩
∥β̂k∥

=
∥µ∗

k∥2√
∥µ∗

k∥2 +
d
nk

+ o(1).

As a result, if the total sample size is fixed, choosing large nk for small ∥µ∗
k∥ will make the average

misclassification error small.
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E Additional Analysis of LURE

E.1 Model Performance Analysis with Additional Metrics

In this section, we conduct additional analysis using commonly used metrics from vision-language
models on the same dataset, and discuss the applicability of these methods to hallucination evaluation.

E.1.1 Descriptions of Additional Metrics

BLEU BLEU (Bilingual Evaluation Understudy [47]) is a metric used to evaluate the quality of
machine-generated translations by comparing them to one or more reference translations. The BLEU
score is based on the idea of precision in n-grams, which are contiguous sequences of n words. It
measures how well the generated translation matches the reference translations in terms of n-gram
overlap.

BertScore BERTScore [48] is a method for evaluating the quality of natural language generation or
summarization systems. BERTScore measures the similarity between a reference text and a generated
text by computing contextualized embeddings using BERT.

ROUGE-L ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation - Longest Common
Subsequence [49]) is an evaluation metric commonly used in natural language processing and text
summarization tasks. It is designed to measure the quality of a machine-generated summary by
comparing it to one or more reference summaries.

CLIP CLIP (Contrastive Language-Image Pretraining [50]) score is a metric used to evaluate the
performance of the vision-language model, which measures how well the model can correctly
associate images with their corresponding captions or textual descriptions.

E.1.2 Results

In Table 10, we present the performance of different models and baselines on these metrics. Based
on the experimental results, it is evident that LURE outperforms the other baselines in both text
translation metrics and image-text matching metrics, with a notable improvement in the CLIP Score
metric. This could be attributed to the higher sensitivity of the CLIP Score, as compared to text
translation metrics like BLEU, in capturing object-level differences. These findings are consistent
with the overall experimental results presented in Table 1, further confirming the effectiveness of
LURE. However, we have also identified certain issues related to the BLEU metric for text translation.
The differences between baselines were not very pronounced, possibly because such metrics tend to
emphasize the evaluation of text style rather than object-level distinctions. These metrics may not be
well-suited for assessing hallucinations and long-form descriptions when compared to CHAIR.

Table 9: The prompt for ChatGPT3.5 evaluation.

Instruction:
Suppose you are a hallucination annotator who judges the degree of hallucination based on objects, and
you have the following image information. Reference captions:{five captions from COCO}
Bounding box:{bounding boxes}
Please just provide the ranks for the below descriptions without any explanation, where the caption ranks
first with the most hallucinations. The output format: [caption_x,...]
Descriptions:
caption_1: {description_1}
caption_2: {description_2}
caption_3: {description_3}
caption_4: {description_4}
caption_5: {description_5}
Output:
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Table 10: Performance of different models and baselines on general metrics.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 BERTS ROUGE-L CLIPS

mPLUG-Owl

Original 30.37 14.59 5.618 2.505 86.87 30.21 0.168
CoT 25.04 11.48 4.229 1.954 86.61 29.86 0.189
Teacher 29.91 14.22 5.519 2.431 86.76 31.15 0.192
Greedy-Decoding 30.29 14.30 5.509 2.502 86.59 30.35 0.208
GPT-Ensemble 29.74 13.91 5.121 2.367 85.94 28.90 0.159
GPT-Teacher 28.19 14.13 6.181 3.128 86.65 30.87 0.215
LURE (ours) 30.44 15.47 6.640 3.576 86.65 30.31 0.267

LLaVa

Original 30.88 15.46 6.984 3.586 86.96 31.53 0.242
CoT 29.94 15.01 7.042 3.718 86.99 31.82 0.211
Teacher 30.52 15.54 7.334 3.906 87.11 31.76 0.256
Greedy-Decoding 31.76 17.21 8.491 4.223 87.01 32.50 0.249
GPT-Ensemble 25.68 16.24 7.047 2.893 84.10 30.84 0.201
GPT-Teacher 22.06 19.54 3.393 1.493 85.94 27.62 0.251
LURE (ours) 35.94 21.81 11.33 6.804 87.39 32.59 0.238

LLaMA-Adapter

Original 29.95 15.36 7.324 3.875 86.83 31.77 0.179
CoT 25.45 11.41 4.233 1.687 86.48 39.98 0.201
Teacher 26.71 12.88 5.388 2.636 86.65 30.50 0.142
Greedy-Decoding 30.66 14.63 6.920 2.309 86.90 31.69 0.211
GPT-Ensemble 24.92 11.21 4.678 1.890 84.92 27.12 0.140
GPT-Teacher 25.13 10.25 3.929 1.684 85.85 28.68 0.186
LURE (ours) 30.94 15.81 7.334 3.804 86.96 31.60 0.223

MiniGPT-4

Original 31.22 16.57 9.270 5.190 86.96 31.75 0.157
CoT 33.68 20.57 10.72 6.430 86.09 32.39 0.177
Teacher 32.69 19.87 9.870 5.350 86.06 30.72 0.142
Greedy-Decoding 35.12 22.89 12.38 6.770 87.22 33.93 0.198
GPT-Ensemble 29.65 19.22 9.878 5.330 85.77 29.83 0.140
GPT-Teacher 33.37 20.28 11.52 5.770 87.01 31.89 0.182
LURE (ours) 41.20 23.17 13.18 7.580 87.88 35.34 0.210

MMGPT

Original 27.27 12.66 5.680 2.290 79.79 29.03 0.177
CoT 26.11 12.30 5.580 2.250 76.90 28.77 0.192
Teacher 26.56 12.38 5.600 2.260 80.16 22.09 0.162
Greedy-Decoding 30.15 15.11 6.320 3.573 86.62 31.77 0.188
GPT-Ensemble 24.59 13.77 5.673 2.882 84.22 25.78 0.156
GPT-Teacher 23.60 10.92 4.610 2.010 83.11 23.43 0.178
LURE (ours) 32.71 16.24 7.407 3.830 87.01 32.31 0.201

InstructBLIP

Original 29.46 14.52 5.670 2.421 86.71 31.64 0.218
CoT 24.04 12.61 4.086 1.837 85.50 28.07 0.229
Teacher 25.61 12.22 4.321 1.963 85.93 29.89 0.294
Greedy-Decoding 29.22 13.98 5.605 2.344 86.11 32.57 0.276
GPT-Ensemble 26.32 13.11 5.101 2.396 85.04 30.77 0.198
GPT-Teacher 24.91 11.92 4.652 2.097 85.81 29.49 0.205
LURE (ours) 29.77 15.23 5.708 2.634 87.94 32.95 0.307

E.2 Additional Analysis about the Hullucination Factors

E.2.1 Comparative Studies on Changes in Hallucination Factors

To validate that our method reduces co-occurrence, uncertainty, and object positional bias that affect
object hallucination, we further verify by evaluating the proportion of hallucinatory objects in high
uncertainty, high co-occurrence, and sentence-ending positions. We compared the changes in various
proportions of descriptions using MiniGPT-4 and LURE on the COCO 2014 test dataset. Here, we
first describe how we calculate the object ratio under different factors:

Ratio of Co-occurrence-Based Hallucinatory Objects. Similiar to uncertainty hallucination ratio,
we obtain the Cratio by calculating ratio of the number of hallucination objects with high co-occurence
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Table 11: Uncertainty-based hallucination object ratio, co-occurrence-based hallucination object
ratio, and sentence-ending hallucination object ratio analysis on several models.

Models Co-occurrence CRatio Uncertainty URatio Position SRatio

MiniGPT-4 Original 0.106 0.221 0.227
LURE (ours) 0.071 0.145 0.139

LLaVa Original 0.243 0.103 0.331
LURE (ours) 0.142 0.086 0.139

LLaMA-Adapter Original 0.295 0.178 0.442
LURE (ours) 0.176 0.102 0.272

mPLUG-Owl Original 0.128 0.229 0.259
LURE (ours) 0.106 0.127 0.151

MMGPT Original 0.110 0.157 0.418
LURE (ours) 0.089 0.114 0.154

InstructBLIP Original 0.213 0.147 0.389
LURE (ours) 0.123 0.090 0.156

score and the total number of objects with high co-occurence score:

Cratio =

∑Mh

s=1 1[CoScores ≥ CoScoremean]∑M
m=1 1[CoScorem ≥ CoScoremean]

, (4)

where Mh is the number of hallucinatory descriptions, M represents the number of total descriptions,
and CoScoremean = 1

M

∑M
m=1 CoScorem.

Ratio of Uncertainty-Based Hallucinatory Objects. We obtain the Uratio by calculating ratio of
the number of hallucination objects with high uncertainty and the total number of objects with high
uncertainty:

Uratio =

∑M
s=1

∑nh

i=1 1[UnScores,i ≥ UnScoremean]∑M
m=1

∑nh+nr

j=1 1[UnScorem,j ≥ UnScoremean]
, (5)

where UnScoremean = 1
M(nh+nr)

∑M
m=1

∑nh+nr

j=1 UnScorem,j .

Ratio of Hallucinatory Objects in Later Part of the Sentence. For the ratio of hallucinatory
objects in later part of the sentence., we calculate the Sratio by calculating ratio of the number of
hallucination objects in later part of the sentence and the total number of objects in later part of the
sentence:

Sratio =

∑M
s=1

∑nh

i=1 1[PoScores,i ≥ η]∑M
m=1

∑nh+nr

i=1 1[PoScorem,i ≥ η]
, (6)

where η is the position threshold.

Results. Based on the data presented in Table 11, it is evident that all three categories of ratios
in the descriptions of LURE reduce when compared to the ratios of the original descriptions. This
observation indicates that the elements of uncertainty, co-occurrence, and object position have
contributed less to hallucinations in LURE.

E.3 Parameter Sensitivity Analysis on Uncertainty

To further illustrate the robustness of our model, we conducted a parameter sensitivity analysis on the
threshold of uncertainty. The uncertainty threshold θ determines the proportion of replacing “object"
with [IDK]. From the Figure 5, we can observe that our model is robust within a certain range of
uncertainty threshold.
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Figure 5: Sensitivity analysis of uncertainty threshold using MiniGPT-4 and LLaVA as revisor
backone.

This image depicts a group of people sitting around a table. The 
people are wearing different clothes. There is a window in the 
background, and the room appears to be well-lit. The walls of the 
room are painted white and there are two doorways that lead to other 
rooms.

The probability of the vocabulary within the red box

book: 0.17, window: 0.15, child: 0.13, wooden: 0.09, small: 0.07 ......

Figure 6: Case of uncertainty in the MiniGPT-4.

F Additional Case Studies

F.1 Cases of Uncertainty

We provide an example using MiniGPT-4 to illustrate the uncertainty present in LVLMs during
the decoding process. In the example, we display the word probabilities in the vocabulary at the
location of hallucinatory words (sorted in descending order of probability). As shown in Figure 6,
we have displayed the decoded tokens and their probabilities at the point where the hallucinatory
word “window" occurs. We can observe that the probability of the hallucinatory word “window" is
comparable to that of “book". The uncertainty in the model’s decoding path is highly influenced by
the text generated earlier, leading to the incorrect selection of the word “window" when generating
this token.

F.2 Cases of Our Training Dataset

Here, we present some cases of training data constructed using GPT-3.5, as shown in Table 12.
“Original caption" represents the original standard description, while the “Hallucination caption"
column represents the hallucinated description constructed by GPT-3.5. The red portions in the
hallucination captions indicate the hallucinations added by GPT-3.5 based on co-occurring object
lists and uncertain object lists.

F.3 Cases of Rewriting Captions

In this section, we present several examples of rectified descriptions to demonstrate the capabilities
of LURE in reducing hallucination. From 8 we can find that our model demonstrates a high level of
proficiency in removing or substituting hallucinatory objects.

F.4 Additional Case Comparison between LURE and Baselines

We carefully selected several baselines that demonstrated promising performance based on our
experimental results and conducted a thorough comparison with our proposed method. The detailed
results of this comparison can be found in Figure 9. Upon comparing the descriptions generated by
Revisior with those from the other methods, it becomes evident that Revisior surpasses the others in
terms of accuracy and level of detail in describing the image.
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The description produced by Revisior effectively captures the key elements of the image, such as the
presence of a man wearing a white shirt walking on the tennis court while holding a tennis racket, as
well as the presence of other individuals in the scene. On the contrary, the other methods fall short in
various aspects. The “Original" method’s description includes numerous hallucinated objects like
the “net" and “cap." Although the “CoT" method’s description has fewer hallucinated objects, it is
observed that errors in the step-by-step reasoning process, such as incorrectly stating the presence of
two tennis players, lead to corresponding errors in subsequent descriptions.

While the “Teacher" method’s description is somewhat accurate, it still struggles to eliminate halluci-
nated objects effectively. Although GPT demonstrates strong textual comprehension abilities, it can
still make mistakes when rewriting descriptions due to the absence of visual patterns, resulting in the
omission of hallucinated objects and introducing errors.
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Original Caption: The image shows a man walk-
ing down a rainy sidewalk while holding a bright
red umbrella to stay dry. The man walks next to a
building as rain pours down, making the umbrella
a necessary accessory. In addition to the man with
the red umbrella, there are several other people in
the scene, some of which are carrying handbags
despite the wet conditions. Towards the edge of
the image, a person holding a small umbrella can
be seen, indicating that others are also trying to
shield themselves from the rain. The busy street
with multiple passersby creates an atmosphere of
a bustling city adapting to the rainy weather.

Hallucination Caption: The image shows a man
walking down a rainy sidewalk while holding a
bright red umbrella to stay dry. Cars driving by
with their headlights on contribute to the bustling
city atmosphere. The man walks next to a build-
ing as rain pours down, making the umbrella a
necessary accessory. In addition to the man with
the red umbrella, there are several other people in
the scene, some of which are carrying handbags
despite the wet conditions. Towards the edge of
the image, a person holding a small umbrella can
be seen, indicating that others are also trying to
shield themselves from the rain. The busy street
with multiple passersby creates an atmosphere of
a bustling city adapting to the rainy weather.

(a) Case 1.

Original Caption: The image depicts a woman
in a green shirt sitting at a dining table eating a
meal. She is using a fork to pick at the food on her
plate, which is positioned right in front of her. The
table is set with a variety of items like a sandwich,
a bowl, and multiple utensils such as knives and
spoons. There are also several cups placed on the
table. Although there are other chairs around the ta-
ble, the woman appears to be dining alone, adding
a sense of solitude to the scene. Other empty chairs
can be seen in various positions around the dining
table. Additionally, there are a few other individ-
uals in the background, but they don’t seem to be
engaging with the woman or her meal.

Hallucination Caption: The image depicts a
woman in a green shirt sitting at a dining table
eating a meal. She is using a fork to pick at the
food on her plate, which is positioned right in front
of her. The table is set with a variety of items like a
sandwich, fries, a bowl, and multiple utensils such
as knives and spoons. There are also several cups
placed on the table. A napkin and water glass are
neatly placed beside her plate. Although there are
other chairs around the table, the woman appears
to be dining alone, adding a sense of solitude to the
scene. Other empty chairs can be seen in various
positions around the dining table. Additionally,
there are a few other individuals in the background,
but they don’t seem to be engaging with the woman
or her meal. The salt and pepper shakers are placed
at the center of the table, within easy reach of the
woman.

(b) Case 2.

Table 12: Cases of generating hallucinatory descriptions.
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The image features a woman playing tennis on a 
clay court. She is in the middle of a swing, 
holding a tennis racket and preparing to hit the 
ball. The woman is wearing a pink dress and 
white shoes, which complement her athletic 
attire. There are several other people in the 
scene, likely spectators or fellow players, 
positioned around the court. Some of them are 
standing closer to the woman, while others are 
further away, observing the game. The main 
focus of the image remains the woman tennis 
player in action.

Describe this image

<Input image>

The image features a female tennis player 
standing on a clay tennis court. The player is 
wearing a red dress and is holding a tennis 
racket in her right hand, ready to play. Her left 
hand is raised above her head, possibly to catch 
the ball during the game. The player appears to 
be focused and determined, as she is getting 
ready to make a serve. 

Under revision!!!

LURE

The image captures a man skillfully riding a wave 
on a surfboard in the ocean. He is crouching down 
on his board, maintaining balance and control as 
he navigates the wave. The surfer is positioned 
towards the center of the image, with the wave 
surrounding him. In the background, there are 
several other people in the water, possibly 
observing or waiting for their turn to surf. Some of 
them are closer to the shore , while others are 
further out in the ocean. The scene conveys the 
excitement and challenge of surfing, as well as the 
camaraderie among those who share this passion.

Describe this image

<Input image>

The image shows a person standing on a 
surfboard in the ocean, riding a large wave. The 
person is wearing a black shirt and black pants 
and is positioned on top of the surfboard as he 
rides the wave. The wave is large and has a lot 
of water coming off of it. The person appears to 
be enjoying the ride.

Under revision!!!

LURE
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The image shows a man laying on his stomach in a 
grassy field, with water and a frisbee scattered 
around him. The man is wearing a pair of 
sunglasses and is smiling, as if he's having fun 
playing with the frisbee. The image is sunny, with 
green grass and trees in the background. There are 
also a few people visible in the distance, watching 
the man play.

Describe this image

<Input image>

The image shows a man laying on his stomach 
in a park, with a frisbee scattered around him. 
The man is smiling, as if he's having fun the 
frisbee. The image is sunny, with green grass 
and trees in the background. There are also a 
few people in the park, watching the scene.

Under revision!!!

LURE

This image is of a man doing a trick on a 
snowboard in mid-air with his back facing the 
camera. The man is wearing a red jacket and black 
pants, and he is holding onto the snowboard with 
both hands. The background is a city street with 
buildings and cars in the distance. There are also 
banners hanging from the buildings.

Describe this image

<Input image>

The image features a man in mid-air, likely 
doing a trick on a snowboard. He is wearing a 
red jacket and black pants, and he is holding 
onto the snowboard with both hands. The man is 
the main focus of the scene, as he is the only 
person visible in the air.

Under revision!!!

LURE

Figure 8: Additional cases of rectified descriptions
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The image shows a man in a white shirt and 
black shorts walking on a tennis court, holding a
racket in his hand. He is wearing a green cap, 
and his shoes are white with green laces. The 
crowd in the background is watching the match. 
The court is made of green grass, and there are 
white lines on it. The man is standing on the 
right side of the image, and the net can be seen 
in the background. The image is clear and 
effectively captures the details of the man and 
the court.

Describe this image

<Input image>

Original

xx

The main objects in the picture are two tennis 
players, both dressed in white and standing on a 
tennis court. There are also tennis balls on the 
court and a racket visible in one of the players' 
hands.

Please list the main objects in the picture and 
strictly follow the following format:
{object1, object2, object3......}

The image shows two men dressed in white 
playing a game of tennis. One player is holding 
a tennis racket and preparing to swing it at the 
ball, while the other player stands close by, 
waiting to return the shot. They are positioned 
on a well-maintained tennis court, with tennis 
balls scattered around the surface. The setting 
seems like a typical tennis match with a 
professional atmosphere.

Describe this image

<Input image>

The image depicts a man standing on the tennis 
court, holding a tennis racket in one hand, and 
preparing to serve the ball. He is wearing a 
white shirt and appears to be focused on his 
game. The tennis ball can be seen in the 
foreground, slightly behind him. There are 
several other people visible in different positions 
around the court. Some of them are standing 
closer to the center of the image, while others 
are positioned near the edges of it. In the 
background, a few cars are parked on a street, 
adding a sense of urban setting to this outdoor 
sports event.

Reference caption:
{blip2 caption}
Please refer to reference caption and describe this 
picture

<Input image>
blip2 caption: a man holding a tennis racket

Teacher

CoT

CoT

The image depicts a man holding a tennis racket. 
He is wearing a white shirt and black shorts. The 
man is standing on a tennis court with green 
grass and white lines. In the background, a 
crowd is watching the match, and the net is 
visible.

Reference caption:
{blip2 caption}
Original description:
The image shows a man in a white shirt and black 
shorts walking on a tennis court, holding a racket in 
his hand. He is wearing a green cap, and his shoes 
are white with green laces. The crowd in the 
background is watching the match. The court is 
made of green grass, and there are white lines on it. 
The man is standing on the right side of the image, 
and the net can be seen in the background. The 
image is clear and effectively captures the details of 
the man and the court.
Rewrite the original description to align it with the 
reference caption, delete some objects that you 
think are hallucinations, and keep the original 
format. Answer:

<Input image>
blip2 caption: a man holding a tennis racket

The image shows a man in a white shirt and 
black shorts walking on a tennis court, holding a
racket in his hand. He is wearing a green cap, 
and his shoes are white with green laces. The 
crowd in the background is watching the match. 
The court is made of green grass, and there are 
white lines on it. The man is standing on the 
right side of the image, and the net can be seen 
in the background. The image is clear and 
effectively captures the details of the man and 
the court.

Describe this image

<Input image>

The image shows a man in a white shirt and 
black shorts walking on a tennis court, holding a 
tennis racket in his hand. He appears to be the 
main focus of the scene, as he is walking 
towards the right side of the image. The court is 
made of green grass, and there are white lines on 
it.

GPT-Teacher

Under revision!!!

LURE

Figure 9: Case study of several strong baselines, including detailed dialogue flow of the real inquiry
process for each baseline.
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