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Abstract001

Retrieval-augmented generation (RAG) sys-002
tems empower large language models (LLMs)003
to access external knowledge during infer-004
ence. Recent advances have enabled LLMs005
to act as search agents via reinforcement learn-006
ing (RL), improving information acquisition007
through multi-turn interactions with retrieval008
engines. However, existing approaches either009
optimize retrieval using search-only metrics010
(e.g., NDCG) that ignore downstream utility or011
fine-tune the entire LLM to jointly reason and012
retrieve—entangling retrieval with generation013
and limiting the real search utility and compat-014
ibility with frozen or proprietary models. In015
this work, we propose s3, a lightweight, model-016
agnostic framework that decouples the searcher017
from the generator and trains the searcher using018
a Gain Beyond RAG reward: the improvement019
in generation accuracy over naïve RAG. s3 re-020
quires only 2.4k training samples to outperform021
baselines trained on over 70× more data, con-022
sistently delivering stronger downstream perfor-023
mance across six general QA and five medical024
QA benchmarks.1025

1 Introduction026

Retrieval-Augmented Generation (RAG) enables027

large language models (LLMs) to access and rea-028

son over external knowledge by retrieving rele-029

vant documents and conditioning generation on030

them (Lewis et al., 2020). As shown in Figure 2,031

we categorize the evolution of RAG systems into032

three phases.033

Classic RAG. Early approaches relied on static034

retrieval methods, where queries were fixed and035

retrieval quality was decoupled from downstream036

generation performance. Despite their simplicity,037

these systems often underperformed on queries that038

need contextual or multi-hop reasoning.039

1Our code is available at https://anonymous.4open.
science/r/s3-94BF.
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Figure 1: Training Data vs Averaged Performance
across six general and five medical QA Datasets
(tested with Claude-3-Haiku as the generator LLM).

Pre-RL-Zero. To improve retrieval quality, sub- 040

sequent methods enabled more active participa- 041

tion of the LLM during inference. Active RAG 042

techniques (Yao et al., 2022; Jiang et al., 2023; 043

Trivedi et al., 2023a) interleaved query generation, 044

retrieval, and reasoning in a multi-turn loop. These 045

systems introduced iterative retrieval but typically 046

relied on zero-shot prompting and lacked trainable 047

components. Self-RAG (Asai et al., 2023) distilled 048

such behaviors from larger models into smaller 049

ones via supervised fine-tuning, teaching smaller 050

models to reason and retrieve effectively without 051

external rewards. While these methods improved 052

flexibility and reduced supervision cost, they still 053

did not optimize retrieval using outcome signals. 054

RL-Zero. The recent emergence of reinforcement 055
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Figure 2: RAG has progressed from fixed or supervised retrieval to RL-based agentic methods. While prior work trains retrieval
or generation jointly, s3 focuses solely on the searcher, improving generation without tuning the generator LLM.
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Figure 3: Decomposition of Agentic RAG. End-to-end ap-
proaches fine-tune the entire model using the entire generation
accuracy, making it difficult to isolate the contribution of
search. In contrast, s3 freezes the generator and trains only
the searcher with Gain Beyond RAG (GBR), a novel reward
that quantifies the added value of retrieved context over naïve
RAG, enabling modular, efficient optimization.

learning for retrieval marks a new phase—what056

we refer to as the RL-Zero era. DeepSeek-R1-057

Zero (Guo et al., 2025) showed that even rule-058

based, outcome-driven rewards (e.g., answer cor-059

rectness) can train strong reasoning agents. Build-060

ing on this idea, DeepRetrieval (Jiang et al., 2025)061

applied RL to train query generators using search-062

oriented metrics like recall and NDCG. However,063

these metrics are disconnected from downstream064

answer quality. Search-R1 (Jin et al., 2025) trained065

a single model to jointly retrieve and generate via066

reinforcement learning, using exact match (EM) as067

the reward. While this approach improves answer068

accuracy, the tight entanglement between search069

and generation makes it difficult to isolate genuine070

retrieval improvements (see Figure 3). Moreover,071

EM is a brittle reward signal—failing to reward072

semantically correct answers phrased differently. 073

This motivates a shift toward a modular frame- 074

work where search and generation are cleanly sep- 075

arated, and optimization focuses purely on search 076

quality with respect to downstream utility (Dai 077

et al., 2025). We propose s3, a simple yet powerful 078

framework that trains a search-only agent using 079

a novel reward signal: Gain Beyond RAG (GBR). 080

GBR measures how much better the generator per- 081

forms when conditioned on retrieved documents 082

from s3, compared to naive top-k retrieval. This 083

setup keeps the generator LLM frozen, sidesteps 084

answer token overfitting, and directly optimizes the 085

retrieval component to serve any black-box LLM. 086

Remarkably, s3 achieves strong gains with only 087

2.4k training examples, outperforming DeepRe- 088

trieval (focused on retrieval metrics) and Search-R1 089

(entangled optimization) both in terms of context 090

quality and final answer performance. 091

Our main contributions are: 092

• We introduce s3, a modular, RL-based search 093

framework that optimizes for generation quality 094

without touching the generator. 095

• We define Gain Beyond RAG (GBR), a princi- 096

pled, model-agnostic reward signal that quanti- 097

fies improvements over standard retrieval. 098

• We show that s3 outperforms state-of-the-art 099

agentic RAG methods on six general and five 100

medical QA benchmarks, using 70× less train- 101

ing data (see Figure 1). 102

2 Related Work 103

2.1 Retrieval-Augmented Generation 104

Large language models (LLMs) have shown im- 105

pressive generative capabilities (Touvron et al., 106

2023; OpenAI, 2023), but their factuality re- 107

mains bounded (Peng et al., 2023) by their train- 108

ing corpora. Retrieval-Augmented Generation 109
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Figure 4: Overview of the s3 framework. The searcher iteratively generates queries, retrieves documents, and selects useful
documents until completion. The final context Ds3 is then passed to a frozen generator LLM. The searcher is trained using Gain
Beyond RAG (GBR), which quantifies improvement over naïve top-k retrieval from the original question.

(RAG) (Lewis et al., 2020; Gao et al., 2023) aug-110

ments LLMs by prepending retrieved documents111

to their input, enabling access to up-to-date or112

domain-specific information. The effectiveness113

of this setup, however, depends heavily on the114

retrieval quality. Early efforts improve retrieval115

through supervised query rewriting (Nogueira and116

Cho, 2019; Lin et al., 2023a), where LLMs are117

fine-tuned to generate better search queries from118

manually labeled or distilled training data. These119

methods require significant annotation effort and120

often optimize for imitation rather than end-task121

performance. Recent works have introduced Ac-122

tive RAG methods (Yao et al., 2022; Trivedi et al.,123

2023a; Asai et al., 2023; Lyu et al., 2024), which124

prompt LLMs to iteratively retrieve and reason in a125

zero-shot or few-shot manner. While flexible, these126

methods typically rely on handcrafted prompting127

patterns and lack direct optimization by interacting128

with environment.129

2.2 RL for Agentic Retrieval and130

Searcher-Centric Optimization131

The emergence of reinforcement learning (RL) for132

large language models has given rise to agentic133

retrieval, where models interact with search en-134

gines and improve by receiving outcome-based135

feedback—such as whether the final answer is cor-136

rect. We refer to this shift as the RL-Zero period,137

sparked by the insight that even simple rewards138

like answer correctness can elicit strong reasoning139

and search behavior (Guo et al., 2025). Within this 140

paradigm, retrieval-centric methods like DeepRe- 141

trieval (Jiang et al., 2025) optimize query genera- 142

tion for search metrics (e.g., recall, NDCG), which 143

often fail to reflect answer utility—i.e., whether the 144

retrieved context helps generate a correct answer. 145

Conversely, end-to-end approaches like Search- 146

R1 (Jin et al., 2025) train LLMs to retrieve and 147

generate jointly using exact match rewards, but re- 148

quire full model access and entangle search with 149

answer token alignment. 150

In contrast, s3 takes a searcher-centric approach 151

that avoids generator fine-tuning. It directly opti- 152

mizes retrieval quality using a generation-aware 153

reward, enabling lightweight and modular training 154

that is compatible with black-box LLMs. 155

3 s3: Optimized Search-Select-Serve 156

Flow with Reinforcement Learning 157

We introduce s3, a lightweight, model-agnostic 158

framework that equips a tunable search agent with 159

structured, multi-turn access to external knowledge. 160

As illustrated in Figure 4, the searcher LLM inter- 161

acts with a search engine iteratively: it generates 162

queries, retrieves documents, selects a subset of 163

useful evidence, and decides whether to continue 164

searching. A frozen generator LLM then consumes 165

the accumulated evidence to produce a final an- 166

swer. To ensure a fair reward baseline, s3 begins 167

by retrieving top-k (k = 3 in our experiments) doc- 168

uments from the original question, just like naïve 169
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RAG. The searcher is trained using the Gain Be-170

yond RAG (GBR) reward, which measures the im-171

provement in generation accuracy when using its172

retrieved context versus this baseline. This modu-173

lar design enables targeted optimization of retrieval174

quality, decoupled from answer generation.175

3.1 Multi-Turn Search-Select Loop176

Given a question Q, the system consists of (1) a177

searcher LLM (policy) πs3, (2) a search engine R,178

(3) a frozen generator LLM G.179

s3 first retrieves top-k documents using q0 = Q,180

yielding D0 = R(Q). A subset Dsel
0 ⊆ D0 is se-181

lected to form the initial context. It then performs182

a sequence of search rounds t = 1, 2, . . . , T , struc-183

tured as follows:184

s3 Loop

1. Query Generation: The searcher emits a query
qt in <query>...</query>.

2. Search: Documents Dt = R(qt) are retrieved in
<information>...</information>

3. Select: Useful documents are selected between
<important_info>...</important_info>, cor-
responding to subset Dsel

t ⊆ Dt.

4. Stop decision: The model declares
<search_complete>[1/0]</search_complete>.

185

The loop continues until search_complete is True186

(1) or the turn limit is reached. The final context is187

Ds3 =
⋃T

t=0Dsel
t , which is passed (served) to the188

generator to produce the final output:189

Â = G(Q,Ds3)190

Initialization (Begin with Search). Initializing191

with q0 = Q ensures the loop begins with the same192

context as naïve RAG, making the Gain Beyond193

RAG reward reflect true search improvements.194

3.2 Training via Gain Beyond RAG (GBR)195

To train πs3, we frame search as a reinforcement196

learning problem. The reward signal, Gain Beyond197

RAG (GBR), quantifies the improvement in genera-198

tion accuracy over a fixed top-k baseline:199

GBR(Q) = Acc(G(Q,Ds3), A)200

− Acc(G(Q,DRAG), A) (1)201

where A is the gold-standard answer, and DRAG =202

R(Q) is the top-k retrieval from the original ques-203

tion. Acc(·) is a task-specific metric, which we204

instantiate as Generation Accuracy (see §4.1) for 205

RAG performance. 206

This reward ensures the searcher is incentivized 207

to retrieve documents that meaningfully enhance 208

the generator’s output quality, independent of 209

surface-form answer similarity. To improve train- 210

ing efficiency, we precompute the baseline accu- 211

racy term Acc(G(Q,DRAG), A) and restrict train- 212

ing to examples where it equals 0. This effectively 213

filters out questions already solvable by naïve RAG, 214

allowing s3 to focus on harder queries where im- 215

proved retrieval is essential for generation success. 216

3.3 Search Policy Optimization 217

We optimize the search policy πs3 via reinforce- 218

ment learning using the Gain Beyond RAG (GBR) 219

reward. Each rollout consists of a complete search 220

trajectory: emitted queries, document selections, 221

and a stop decision. Once the final context Ds3 is 222

constructed, the generator G produces an answer, 223

and the GBR reward is computed. The generator 224

remains frozen; gradients are backpropagated only 225

through the search policy. Our method is agnostic 226

to the specific advantage estimation algorithm. In 227

this work, we use Proximal Policy Optimization 228

(PPO) (Schulman et al., 2017) due to its strong em- 229

pirical stability (Jiang et al., 2025; Jin et al., 2025). 230

The PPO objective is: 231

LPPO(θ) = Eτ∼πθ

[ T∑
t=1

min
(
rt(θ) Ât, 232

clip(rt(θ), 1−ϵ, 1+ϵ) Ât

)]
(2) 233

where rt(θ) =
πθ(at|st)
πold(at|st) is the probability ratio be- 234

tween the current and reference policies, Ât is the 235

estimated advantage, and ϵ is clipping threshold. 236

4 Experiments 237

4.1 Experimental Setups 238

Evaluation Metric. We measure performance us- 239

ing Generation Accuracy, which combines a fast 240

span-matching test (Ma et al., 2021; Lin et al., 241

2021) with a lightweight LLM-based correctness 242

check (Figure 13). Given a model prediction p and 243

a set of gold answers A, we compute: 244

GenAcc = span_check ∨ judge_check (3) 245

which can be either 1 or 0, determined by the fol- 246

lowing evaluation flow: 247
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Single-Hop Multi-Hop

Methods Searcher #Train NQ† TriviaQA PopQA HotpotQA† 2wiki Musique Avg.

#Test Data 3,610 11,313 14,267 7,405 12,576 2,417

End-to-End Fine-Tuning
SFTQwen2.5-3B-Inst - 170k 23.7(17.5) 41.6(34.3) 18.1(14.0) 18.0(13.7) 22.1(20.8) 5.1(2.9) 21.4(17.2)
R1Qwen2.5-7B-Inst - 170k 35.6(28.8) 60.2(53.4) 22.4(20.5) 29.4(24.0) 30.0(29.1) 10.7(7.8) 31.4(27.3)
Search-R1-3B (self) 3B 170k 47.0(27.9) 65.6(46.2) 46.4(34.9) 33.5(22.1) 28.5(24.4) 6.0(2.8) 37.8(26.4)
Search-R1-7B (self) 7B 170k 56.9(48.2) 73.8(64.0) 50.6(46.8) 54.6(43.5) 51.6(38.4) 28.5(20.6) 52.7(43.6)

Generator (Qwen2.5-7b-Instruct) Frozen
Direct Inference - 0 37.3(4.4) 55.1(32.9) 19.9(8.3) 28.1(7.6) 36.9(9.1) 10.6(1.2) 31.3(10.6)
CoT - 0 37.7(10.3) 60.6(35.4) 22.2(11.3) 31.1(13.4) 31.6(18.9) 10.6(4.2) 32.3(15.6)

RAGBM25 - 0 43.6(3.8) 69.8(29.7) 34.6(12.4) 45.3(15.1) 38.5(10.3) 11.5(1.5) 40.6(12.1)
RAGE5 - 0 62.1(5.8) 74.5(33.8) 54.5(20.3) 46.6(13.6) 40.1(7.8) 13.0(2.0) 48.5(13.9)
IRCoT (self) 7B 0 63.2(6.2) 75.6(34.3) 54.5(19.3) 50.9(15.4) 48.7(9.6) 16.4(2.5) 51.6(14.5)
IRCoT 14B 0 63.9(6.3) 75.5(34.9) 55.5(20.3) 52.5(16.0) 47.4(9.3) 17.2(2.7) 52.0(14.9)
Search-R1-3B (Ret) 3B 170k 56.6(6.6) 68.6(32.5) 49.4(18.8) 41.5(13.6) 33.2(7.8) 12.1(1.9) 43.6(13.5)
Search-R1-7B (Ret) 7B 170k 61.3(8.1) 73.7(35.9) 51.9(20.7) 58.6(20.0) 50.8(12.2) 27.6(7.1) 54.0(17.3)

s3 7B 2.4k 66.1(7.2) 78.5(36.8) 57.4(21.9) 59.0(21.8) 51.6(12.4) 23.9(6.1) 56.1(17.7)

Generator (Qwen2.5-14b-Instruct) Frozen
Direct Inference - 0 38.8(8.2) 62.7(39.0) 24.5(10.8) 30.2(9.5) 38.6(7.2) 12.5(1.8) 34.5(12.8)
CoT - 0 40.5(10.2) 66.2(41.6) 24.6(13.6) 32.9(12.3) 33.2(13.8) 12.6(5.2) 35.0(16.1)

RAGBM25 - 0 54.8(16.4) 76.7(44.8) 41.5(22.7) 50.4(18.3) 49.9(6.4) 17.7(3.1) 48.5(18.6)
RAGE5 - 0 62.4(18.7) 77.4(50.7) 55.1(34.0) 47.4(20.9) 44.9(10.1) 16.1(3.3) 50.6(23.0)
IRCoT 7B 0 63.0(18.8) 77.7(50.1) 56.3(33.5) 50.7(22.7) 53.2(12.4) 17.5(4.1) 53.1(23.6)
IRCoT (self) 14B 0 63.9(19.2) 78.2(51.7) 56.1(33.8) 51.6(23.7) 54.0(12.0) 19.1(5.2) 53.8(24.3)
Search-R1-3B (Ret) 3B 170k 59.2(16.5) 75.6(47.4) 52.3(30.3) 45.5(18.3) 44.0(8.3) 16.0(2.9) 48.8(20.6)
Search-R1-7B (Ret) 7B 170k 63.8(18.0) 76.3(49.5) 54.6(33.3) 56.7(25.3) 56.7(11.0) 30.2(9.1) 56.4(24.4)

s3 7B 2.4k 67.2(18.3) 79.5(48.9) 57.8(35.7) 57.1(23.3) 57.1(11.6) 26.7(7.8) 57.6(24.3)

Generator (Claude-3-Haiku) Frozen
Direct Inference - 0 48.1(25.7) 76.5(64.8) 35.7(30.9) 35.5(24.2) 28.9(24.0) 8.8(4.3) 38.9(29.0)
CoT - 0 61.5(2.9) 81.0(30.0) 43.2(9.1) 48.8(8.8) 46.2(6.8) 21.2(2.3) 50.3(10.0)

RAGBM25 - 0 50.5(3.8) 75.5(28.4) 35.9(8.0) 50.2(11.4) 40.7(8.1) 11.8(0.8) 44.1(10.1)
DeepRetrievalBM25 3B 70k 64.4(3.7) 80.2(23.2) 45.5(8.2) 54.5(10.2) 47.1(8.0) 22.2(1.7) 52.3(8.1)
RAGE5 - 0 66.5(4.3) 80.7(28.9) 55.7(8.9) 50.7(11.5) 39.2(7.8) 14.0(1.2) 51.1(10.4)
IRCoT 7B 0 68.0(4.2) 81.7(29.3) 55.5(8.9) 54.8(11.7) 46.5(8.1) 17.4(1.6) 54.0(10.6)
IRCoT 14B 0 68.3(4.2) 81.6(29.5) 56.1(8.6) 55.5(11.9) 47.7(8.4) 18.9(1.7) 54.7(10.7)
Search-o1 14B 0 67.3(4.7) 81.2(29.8) 50.2(9.3) 58.1(12.6) 48.8(8.4) 14.2(1.2) 53.3(11.0)
Search-R1-3B (Ret) 3B 170k 60.7(3.3) 74.5(24.8) 50.1(6.9) 45.7(10.0) 33.1(7.0) 12.7(1.3) 46.1(8.9)
Search-R1-7B (Ret) 7B 170k 68.1(4.1) 80.9(25.9) 55.7(7.0) 62.0(11.2) 51.0(7.2) 29.3(3.2) 57.8(9.8)

s3 7B 2.4k 70.5(3.2) 84.0(24.6) 57.7(5.9) 62.4(11.1) 52.4(8.3) 26.2(7.9) 58.9(10.2)

Table 1: Performance comparison on general-domain QA datasets. Datasets marked with † are the source of training data
used by Search-R1 and s3. We show generation accuracy (§4.1) as the main results, and exact match scores in brackets. We
use E5-base-v2 as the retriever and Wikipedia-2018 as the corpus. “Searcher” shows the number of parameters of the searcher
model. “#Train” shows the amount of training data used to train the searcher. DeepRetrievalBM25 is trained on NQ, Search-R1
and s3 are trained on NQ+HotpotQA with different training size (170k vs 2.4k). Results are averaged by three runs.

Evaluation Flow of Generation Accuracy

Input: Prediction p, Gold Answers A
Step 1: Normalize p and A (lowercase, remove punc-
tuation and articles).
Step 2: span_check→ If any a ∈ A is a token span
in p, return GenAcc = 1.
Step 3: judge_check→ Prompt LLM: “Does p con-
tain any of A?”
Step 4: Return GenAcc = 1 if LLM says yes; else 0.

248

Why Exact Match Falls Short - An Example

Golden answer: "Barack Obama"
LLM response: "The 44th President of the
United States was Barack Obama."
Exact match: 0 (response ̸= golden)
Generation Accuracy: 1 (span_check succeeds)

249

We choose this metric because it better captures250

semantic correctness and aligns more closely with 251

human judgment than traditional exact match (see 252

Appendix B for supporting evidence). 253

Datasets. Following prior study (Jin et al., 2025), 254

we construct the training set by combining sam- 255

ples from Natural Questions (NQ) and HotpotQA. 256

Since span_check may incorrectly accept answers 257

for questions with semantic negation (e.g., treat- 258

ing “not true” as matching “true”), we remove all 259

yes/no and true/false questions from the training set 260

to ensure reliable reward signals. To focus training 261

on harder examples, we filter out samples where the 262

generator LLM (Qwen2.5-14B-Instruct) already 263

produces a correct answer using naïve RAG re- 264

trieval. This reduces the dataset size from 169,615 265

to 70,286. As later shown in Figure 5, s3 rapidly 266

converges within ∼15 training steps with random 267
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Medical RAG-QA Datasets (MIRAGE)

Methods Searcher #Train MedQA-US MedMCQA PubMedQA BioASQ-Y/N MMLU-Med Avg.

#Test Data 1,273 4,183 500 618 1,089

w/o retrieval - 0 61.7(45.8) 55.8(29.3) 55.6(0.0) 76.9(0.0) 76.4(35.8) 65.3(22.2)

Corpus: Wikipedia 2018 (Karpukhin et al., 2020)
RAGBM25 - 0 61.6(48.2) 57.5(45.2) 52.8(4.6) 73.6(6.3) 77.6(61.9) 64.6(33.2)
DeepRetrievalBM25 3B 70k 62.5(45.4) 61.3(44.8) 56.2(8.2) 77.3(9.2) 79.2(57.9) 67.3(33.1)
RAGE5 - 0 61.5(46.7) 58.0(44.7) 54.6(3.8) 73.3(5.3) 77.9(62.2) 65.1(32.5)
IRCoT 7B 0 62.8(45.1) 60.5(45.4) 54.2(8.6) 73.0(13.8) 78.7(58.2) 65.8(34.2)
IRCoT 14B 0 61.7(48.9) 60.3(46.7) 53.0(7.6) 75.2(11.8) 77.2(61.9) 65.5(35.4)
Search-o1 14B 0 64.5(55.4) 59.6(47.7) 52.2(1.8) 74.9(0.2) 77.7(63.9) 65.8(33.8)
Search-R1-3B (Ret) 3B 170k 58.8(47.2) 53.7(41.4) 53.8(4.4) 63.6(4.4) 68.4(55.4) 59.7(30.6)
Search-R1-7B (Ret) 7B 170k 62.6(45.7) 59.2(42.8) 55.4(5.2) 71.2(6.5) 69.3(53.3) 63.5(30.7)

s3 7B 2.4k 65.7(47.1) 61.5(44.3) 56.6(5.2) 77.3(7.1) 76.0(56.3) 68.3(32.0)

Corpus: Wikipedia+PubMed+Textbook (Xiong et al., 2024)
RAGBM25 - 0 65.4(43.1) 59.9(44.4) 79.4(10.8) 88.4(6.5) 79.6(57.1) 74.5(32.4)
DeepRetrievalBM25 3B 70k 65.0(35.1) 65.1(44.2) 78.6(16.2) 89.5(7.4) 79.3(49.1) 75.8(30.4)
RAGE5 - 0 64.1(43.4) 60.1(45.0) 79.4(10.8) 89.8(5.0) 78.8(58.8) 74.6(32.6)
IRCoT 7B 0 63.9(38.6) 62.7(45.3) 75.4(13.0) 87.2(5.8) 79.7(54.9) 73.8(31.5)
IRCoT 14B 0 62.7(43.8) 62.3(46.6) 74.0(10.8) 87.9(5.3) 79.6(59.0) 73.3(33.1)
Search-o1 14B 0 65.0(50.1) 61.1(47.6) 74.2(12.0) 89.3(5.3) 78.1(59.5) 73.5(34.1)
Search-R1-3B (Ret) 3B 170k 57.5(45.5) 54.8(40.7) 71.4(7.8) 73.3(3.6) 62.0(47.6) 63.8(29.0)
Search-R1-7B (Ret) 7B 170k 62.1(43.2) 61.9(44.2) 78.6(8.0) 86.3(5.3) 69.9(48.9) 71.8(29.9)

s3 7B 2.4k 65.7(45.7) 65.3(45.4) 81.5(13.6) 92.1(6.5) 78.3(56.2) 76.6(33.5)

Table 2: Performance on medical-domain QA datasets (Xiong et al., 2024), using Claude-3-Haiku as the generator. We
report judge_check as the primary metric (see §4.1), with exact match in brackets. Retrieval is performed with E5-base-v2 under
two corpus settings: Wikipedia-2018 and Wikipedia+PubMed+Textbook. s3 achieves the highest overall accuracy among all
retrieval-augmented methods in both settings. None of the methods is trained on medical data: DeepRetrievalBM25 is trained on
70k NQ, Search-R1 on 170k NQ+HotpotQA, and s3 on 2.4k NQ+HotpotQA. Results are averaged by three runs.

seed 42 (for data shuffling). For evaluation, we use268

the checkpoints at step 20. Given a batch size of269

120, this corresponds to approximately 2.4k train-270

ing examples, highlighting the data efficiency of271

our method. We evaluate on six general-domain272

QA benchmarks: NQ (Kwiatkowski et al., 2019),273

TriviaQA (Joshi et al., 2017), PopQA (Mallen et al.,274

2022), HotpotQA (Yang et al., 2018), 2WikiMul-275

tihopQA (Ho et al., 2020), and Musique (Trivedi276

et al., 2022), as well as MIRAGE (Xiong et al.,277

2024), a suite of five medical-domain QA datasets.278

Baselines. We compare s3 against a diverse set of279

RAG systems: (1) End-to-End Fine-tuning. Fully280

fine-tuned models that jointly retrieve and generate281

using outcome-based RL or supervision: Search-282

R1 (3B/7B), SFT (3B), and R1 (7B) where 3B/7B283

for SFT and R1 are based on Qwen2.5-3B/7B-284

Instruct. (2) Static Retrieval+Frozen Generator.285

Methods that retrieve documents using a fixed or286

scripted strategy, then pass them to a frozen gen-287

erator: RAG-BM25, RAG-E5: retrieval via BM25288

or E5-base (Wang et al., 2022). DeepRetrieval-289

BM25 (3B): RL-trained searcher optimizing recall,290

paired with BM25. (3) Active Retrieval+Frozen291

Generator. A diagnostic setting where we extract292

the documents retrieved during a model’s reason-293

ing trajectory and feed them to a frozen genera-294

tor: Search-R1-3B/7B (Ret), IRCoT (7B/14B), and295

Search-o1 (14B) all fall under this category, differ-296

ing only in whether retrieval is learned (Search-R1) 297

or prompted (IRCoT (Trivedi et al., 2023b), Search- 298

o1 (Li et al., 2025)). (4) s3. Our s3 trains only the 299

searcher using GBR and forwards selected docu- 300

ments to a frozen generator, with no fine-tuning. 301

We place more details in Appendix A.1. 302

Models for Training and Evaluation. Through- 303

out all the training processes, we use Qwen2.5-7B- 304

Instruct (Yang et al., 2024) as the base searcher 305

LLM to train, and use Qwen2.5-14B-Instruct1 as 306

the frozen generator for both answer generation 307

and judge_check for reward computation. For 308

evaluation, we use Claude-3-Haiku as the LLM 309

for judge_check to ensure high evaluation quality. 310

We test three frozen generators: Qwen2.5-7b/14b- 311

Instruct and Claude-3-Haiku. Both training and 312

evaluation are conducted on five NVIDIA A100 313

80GB PCIe GPUs. RAGEN (Wang et al., 2025) 314

and VERL (Sheng et al., 2024) are used as the base 315

architecture for multi-turn RL training. We place 316

more details in Appendix A.2. 317

5 Results 318

We evaluate s3 across six general-domain and five 319

medical-domain QA benchmarks, with frozen gen- 320

erators ranging from Qwen2.5-7B/14B to Claude- 321

1In this paper, we use “GPTQ-Int4” version of “Qwen2.5-
14B-Instruct” for its high efficiency. We deploy frozen LLMs
using vLLM (Kwon et al., 2023) for fast inference.
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Single-Hop Multi-Hop

#Retrieval → #Select #Turns #MaxContexts NQ† TriviaQA PopQA HotpotQA† 2wiki Musique Avg.

8 → 3 3 9 70.5(3.2) 84.0(24.6) 57.7(5.9) 62.4(11.1) 52.4(8.3) 26.2(7.9) 58.9(10.2)
5 → 3 3 9 69.6(3.5) 83.4(24.3) 57.4(5.8) 62.0(11.9) 53.8(7.8) 24.5(2.3) 58.5(9.3)
5 → 3 4 12 70.0(3.5) 83.8(24.8) 57.7(5.8) 62.5(12.3) 54.7(8.0) 25.7(3.2) 59.1(9.6)
3 → 3 4 12 68.9(3.7) 82.0(24.9) 56.4(6.1) 62.0(11.9) 51.7(7.7) 24.7(2.8) 57.7(9.5)
3 → 3 3 9 69.4(3.5) 82.3(24.4) 57.0(5.7) 61.8(11.7) 51.5(8.2) 25.1(2.3) 57.9(9.3)

Table 3: Study of the numbers of retrieved documents (#Retrieval) and turns (#Turns). Maximum selection is set to
3 across all settings. We use the frozen Claude-3-Haiku as the generator LLM for this study.

3-Haiku. We report generation accuracy as the322

primary metric and provide detailed comparisons323

across baselines, reward functions, and training324

efficiency.325

General Domain RAG Performance. Table 1326

summarizes results across general QA datasets. s3327

achieves the highest average accuracy of 58.9%,328

outperforming all static, zero-shot, and end-to-end329

tuned baselines. This is particularly notable given330

its extreme data efficiency—trained on just 2.4k331

examples, compared to 70k for DeepRetrieval and332

170k for Search-R1.333

Takeaway #1: Searcher-Only is better
than End-to-End Optimization for RAG

s3 consistently outperforms Search-R1 on
search quality, revealing that most of the per-
formance gain in RAG stems from improv-
ing the search capability instead of aligning
generation outputs.

334

Compared to IRCoT-14B, which conducts zero-335

shot retrieval with 2× the parameter count, s3 gains336

+4.6 points on average. Relative to Search-R1-7B337

(Ret), which uses the same backbone, s3 improves338

by +1.5 points while avoiding any generator tun-339

ing. These gains are consistent across both single-340

hop datasets (e.g., 70.0% on NQ) and multi-hop341

datasets (e.g., 62.4% on HotpotQA), showing that342

learned search behavior transfers across reasoning343

complexity.344

Medical Domain QA Performance. Table 2 re-345

ports performance on the MIRAGE suite (Xiong346

et al., 2024) under both corpus settings. s3 achieves347

the highest average accuracy (76.6%) when using348

the combined Wikipedia+PubMed+Textbook cor-349

pus, surpassing all retrieval-augmented baselines.350

Interestingly, while Search-R1 shows competi-351

tive scores on Wikipedia-only corpora, its perfor-352

mance deteriorates on richer corpora, indicating353

overfitting to shallow heuristics or memorized for-354

mats. In contrast, s3 and DeepRetrieval remain355

robust, with s3 achieving 81.5% on PubMedQA356
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Figure 5: Reward Curves for top k = {3, 5, 8} and
#turns = {3, 4}. The maximum selection is kept as 3.

and outperforming IRCoT across four of five tasks. 357

Takeaway #2: Searcher-Only Training
enables Domain Transfer

s3’s zero-shot success on medical QA, de-
spite training only on general QA, suggests
that reinforcement-learned search skills gen-
eralize more reliably than generation-tuned
approaches.

358

Retrieval Behavior and Search Dynamics We an- 359

alyze the effect of retrieval parameters (#retrieved 360

documents and #turns) in Table 3 and reward pro- 361

gression in Figure 5. s3 reaches peak performance 362

with (k=8, turns=3), and adding more turns or 363

broader retrieval brings limited improvement. This 364

indicates that the policy rapidly learns to emit fo- 365

cused and early queries, capturing most useful con- 366

tent without unnecessary expansion. 367

Training Efficiency Table 4 shows that it takes 368

20 PPO steps (2.4k examples) to train s3, while 369

Search-R1 requires 2,100 steps (170k examples). 370

Even accounting for the higher per-step cost due 371

to LLM-based reward computation, the total wall- 372

clock time is reduced by ∼33×. Moreover, s3 373

avoids retriever pretraining and operates with a 374

smaller 7B policy model, making it a practical 375

method for low-resource RL training. s3 achieves 376
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s3

Figure 6: Ablation study on s3 components. Each row corresponds to a different configuration of Retrieval:Selection:Turns =
8:3:3, 5:3:3, and 3:3:3. The first six columns report generation accuracy. “Begin with Search” refers to initializing the first
query with the original question. “Document Selection” refers to the selection step within the s3 loop (Step 3). We observe that
removing Begin with Search leads to a significant drop in performance. While removing Document Selection sometimes yields
better performance, the full s3 system still performs competitively—and most importantly, drastically reduces input token usage
(2.6× ∼ 4.2× less tokens), improving overall efficiency.

Time/Step Training Steps Total

Search-R1 1.8m ∼2,100 3,780m
DeepRetrievalBM25 1.3m ∼1,600 2,080m
s3 5.7m ∼20 114m

Table 4: Comparison of Training Efficiency (tested with batch
size=120 on five NVIDIA A100 GPUs). Note: s3 is slower
stepwise since we need to conduct generation and evaluation
by a frozen LLM for reward computation during training.

state-of-the-art performance with orders of mag-377

nitude less data and compute, suggesting a more378

sustainable path for RAG optimization.379

Reward Function Comparison Table 5 compares380

different reward signals used for computing GBR.381

LLMJudge provides slightly higher final scores,382

but is too costly for scalable training. In contrast,383

GenAcc offers strong performance while remaining384

efficient and aligning better with human evaluation385

than EM or span-based heuristics. Appendix B386

shows that GenAcc matches human judgment on387

96.4% of samples, while Exact Match used by388

Search-R1 captures only 15.8%.389

Takeaway #3: Reward Choice directly
shapes Search Quality

Using semantically or human preference
aligned metrics like our GenAcc (§4.1) en-
courages the search policy to retrieve sub-
stantively helpful documents, rather than
optimizing for brittle string overlap.

390

Effects of Selection and “Begin with Search”.391

We investigate the role of two components in the s3392

loop: document selection and initialization with the393

original question (Begin with Search”). As shown394

in Figure 6, removing the selection step degrades395

GenAcc LLMJudge Span EM

General QA 58.9 59.6 57.1 50.5
Medical QA 76.6 77.3 74.3 70.3

Table 5: Comparison of RAG performance under different
reward functions. LLMJudge (judge_check) yields the highest
scores but is computationally expensive. GenAcc offers a good
balance of accuracy and efficiency, while Span (span_check)
and EM underperform due to limited semantic coverage.

performance on four out of six datasets. This is 396

expected, as passing all retrieved documents to the 397

generator increases token length, up to 4× with 398

k = 8, and introduces more noise. Still, perfor- 399

mance improves slightly on NQ and 2Wiki, likely 400

because broader context benefits multi-hop reason- 401

ing or compensates for overly aggressive pruning. 402

Disabling “Begin with Search” consistently causes 403

a significant drop, underscoring the importance 404

of seeding the search process with a strong ini- 405

tial query. Interestingly, when both selection and 406

initialization are removed, performance recovers 407

slightly compared to removing only initialization. 408

This suggests that selection and initialization in- 409

teract conditionally—selection may amplify the 410

downsides of poor initialization by prematurely 411

filtering out useful context. 412

6 Conclusion 413

We present s3, a framework that trains a search- 414

only agent using the Gain Beyond RAG reward. By 415

decoupling search from generation and optimizing 416

only the retriever, s3 outperforms strong baselines 417

with just 2.4k examples. Our results show that 418

targeted search policy learning yields substantial 419

gains in both efficiency and generalization, offering 420

a scalable path for improving RAG systems. 421
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7 Limitations422

While s3 demonstrates strong empirical perfor-423

mance with remarkable data efficiency, several lim-424

itations warrant discussion.425

Dependency on Frozen Generators. Our frame-426

work assumes the availability of a capable frozen427

generator LLM. Although this enables model-428

agnostic training, it implicitly relies on the gen-429

erator’s ability to make use of improved context.430

For lower-capacity or instruction-weak generators,431

the gains from better retrieval may not fully trans-432

late into better outputs.433

Reward Estimation Bottleneck. The use of434

generation-based rewards such as GenAcc neces-435

sitates LLM inference during training to compute436

reward signals. This introduces computational over-437

head compared to token-level or retrieval-only ob-438

jectives, limiting scalability. Although we show439

that s3 achieves high performance with minimal440

steps, online reward computation remains more441

costly than offline retrieval optimization.442

Broader Impacts. On the positive side, s3 re-443

duces the data and compute burden for training444

effective retrieval agents, making RAG systems445

more accessible to low-resource communities. It446

may also benefit domains such as healthcare or sci-447

entific QA where labeled data is scarce. However,448

like all retrieval-augmented systems, s3 inherits449

the biases of both its searcher and generator. If450

deployed without careful curation of source cor-451

pora, it may propagate misinformation or reflect452

existing societal biases. We encourage practition-453

ers to audit both retrieval sources and downstream454

outputs when applying this framework in sensitive455

domains.456

Overall, while s3 advances the state of search-457

agent training, further work is needed to address458

these limitations and ensure safe, robust deploy-459

ment in real-world settings.460
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A Implementation Details728

For static retrieval baselines running on MI-729

RAGE, we use the question itself instead of ques-730

tion+options to retrieve.731

A.1 Baselines Details732

IRCoT (7B and 14B). IRCoT2 (Trivedi et al.,733

2023b) is a prompting-based method that alternates734

between chain-of-thought reasoning and retrieval.735

It requires no fine-tuning: the model is instructed736

via prompt to iteratively reason about a question737

and issue retrieval queries, integrating newly re-738

trieved evidence into its reasoning process. We739

apply IRCoT using both Qwen2.5-7B-Instruct and740

Qwen2.5-14B-Instruct.741

DeepRetrieval-BM25-3B (Jiang et al., 2025).742

This baseline employs a 3B-parameter language743

model trained with reinforcement learning on re-744

trieval metrics such as recall and NDCG. It learns to745

generate search queries that maximize the retrieval746

of relevant documents using a BM25 search engine.747

Training is conducted on 70k QA examples in NQ748

dataset with answer span reward (evidence-seeking749

task in (Jiang et al., 2025)), focusing exclusively750

on improving retrieval performance, not generation.751

We use its publicly released checkpoint3.752

Search-R1-3B and Search-R1-7B (Jin et al.,753

2025). These baselines4 use 3B and 7B parameter754

models, respectively, and are trained end-to-end to755

jointly retrieve and generate answers. Reinforce-756

ment learning is applied on 170k training examples,757

using an exact match (EM) reward to guide both758

retrieval query formulation and answer generation.759

2https://github.com/StonyBrookNLP/ircot
3https://huggingface.co/DeepRetrieval/

DeepRetrieval-NQ-BM25-3B
4https://huggingface.co/PeterJinGo/

SearchR1-nq_hotpotqa_train-qwen2.5-3b-em-ppo,
https://huggingface.co/PeterJinGo/SearchR1-nq_
hotpotqa_train-qwen2.5-7b-em-ppo

The model directly integrates search results into its 760

reasoning steps within a single retrieval round. 761

Search-o1. Search-o1 (Li et al., 2025) is an 762

inference-time retrieval controller designed to en- 763

hance long-form reasoning in o1-style models such 764

as QwQ and OpenAI’s o1-preview. It is not trained 765

with reinforcement learning or fine-tuned at all. 766

Instead, Search-o1 leverages frozen LLMs and aug- 767

ments them with retrieval by prompting the model 768

to emit search queries mid-reasoning, enclosed in 769

special tokens (e.g., <|begin_search_query|>... 770

Retrieved documents are then post-processed us- 771

ing a Reason-in-Documents module before being 772

injected back into the reasoning flow. 773

RAG-BM25 and RAG-E5 (Lewis et al., 2020). 774

These are naive retrieval-augmented generation 775

baselines with no model training. RAG-BM25 uses 776

top-k documents retrieved from a BM25 index, 777

while RAG-E5 retrieves passages using dense re- 778

trieval based on E5 embeddings. In both settings, 779

the retrieved documents are prepended to the input 780

prompt and fed into a frozen generator LLM. We 781

set k = 3, following prior study (Lin et al., 2023b; 782

Jin et al., 2025). 783

SFT and R1. On general-domain RAG datasets, 784

we train an SFT model with Qwen2.5-3B-Instruct 785

using the same dataset as Search-R1’s 170k 786

NQ+HotpotQA with TRL (von Werra et al., 2020) 787

framework. R1 is the “no search” version of Search- 788

R1 (Jin et al., 2025), replicating Deepseek-R1- 789

Zero (Guo et al., 2025) with a small LLM. We 790

use its publicly released checkpoint5. 791

CoT (Wei et al., 2022) and Direct Inference. CoT 792

(Chain-of-Thought) prompting instructs the LLM 793

to generate intermediate reasoning steps before pro- 794

ducing an answer, without any external retrieval. 795

Direct Inference simply feeds the raw question into 796

the LLM. Neither baseline involves any form of 797

training or finetuning. 798

To ensure a fair comparison, we set the maxi- 799

mum number of turns to 4 and limit the context to 800

3 documents per turn for all multi-turn baselines 801

(IRCoT, Search-R1, and Search-o1) and s3, align- 802

ing with prior study (Jin et al., 2025). 803

A.2 Setup Details 804

Hardware. All training and evaluation processes 805

are run on five NVIDIA A100 80GB PCIe on a sys- 806

tem with an AMD EPYC 7513 32-Core Processor 807

and 1.0 TB of RAM. 808

5https://huggingface.co/PeterJinGo/R1-nq_
hotpotqa_train-qwen2.5-7b-em-ppo-v0.2
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Software. We built s3 using Python 3.9, leveraging809

the VERL framework (Sheng et al., 2024)6 (v0.1)810

as the backbone for reinforcement learning with811

language models, and RAGEN (Wang et al., 2025)7812

as the underlying multi-turn RL architecture. Our813

implementation uses vLLM (v0.8.5) (Kwon et al.,814

2023) for fast LLM inference and evaluation, Py-815

Torch (v2.4.0) with CUDA 12.1 for deep learning,816

and Ray (Moritz et al., 2018) for distributed train-817

ing and serving. To improve performance, we inte-818

grate Flash Attention 2 (Dao, 2023) for efficient at-819

tention computation, PySerini (v0.22.1) (Lin et al.,820

2021) for retrieval and evaluation, and FAISS-GPU821

(v1.7.2) (Douze et al., 2024) for high-speed dense822

retrieval.823

Model parameters. We fine-tune Qwen2.5-7B-824

Instruct using Proximal Policy Optimization (PPO)825

via VERL. Training is conducted with a total batch826

size of 120, using micro-batches of size 15 for the827

actor and 10 for the critic, and a rollout temper-828

ature of 0.6. The actor and critic learning rates829

are set to 1 × 10−6 and 1 × 10−5, respectively,830

with no warm-up for the actor and a 1% warm-831

up ratio for the critic. Both models use gradient832

checkpointing and parameter offloading to reduce833

memory overhead. Following prior work (Jin et al.,834

2025), we adopt XFORMERS (Lefaudeux et al.,835

2022) as the attention backend in vLLM and en-836

able state masking to prevent incorrect supervi-837

sion signals. KL regularization is applied with a838

coefficient of 0.001. For answer generation and839

LLM-based judge_check during training, we run840

Qwen2.5-14B-Instruct-GPTQ-Int48 on a dedicated841

A100 80GB GPU with vLLM. The retriever (E5-842

base) is deployed alongside PySerini on the same843

five GPUs used for PPO training. The context win-844

dow is set to 8,000 tokens, with a maximum of845

1,400 tokens allocated to the top-k retrieved docu-846

ments per turn.847

A.3 Datasets & Corpora848

Datasets. We evaluate on six general-domain QA849

datasets and five medical-domain QA datasets.850

General-domain datasets include Natural Ques-851

tions (NQ) (Kwiatkowski et al., 2019), Trivi-852

aQA (Joshi et al., 2017), PopQA (Mallen et al.,853

2022), HotpotQA (Yang et al., 2018), 2WikiMul-854

tihopQA (Ho et al., 2020), and Musique (Trivedi855

6https://github.com/volcengine/verl
7https://github.com/RAGEN-AI/RAGEN
8https://huggingface.co/Qwen/Qwen2.

5-14B-Instruct-GPTQ-Int4

et al., 2022). 9 856

For medical-domain, we adopt the MIRAGE 857

benchmark (Xiong et al., 2024), which in- 858

cludes five datasets: MedQA-US (Jin et al., 859

2021), MedMCQA (Pal et al., 2022), Pub- 860

MedQA* (Jin et al., 2019), BioASQ-Y/N (Tsat- 861

saronis et al., 2015; Krithara et al., 2023), and 862

MMLU-Med (Hendrycks et al., 2020).10 863

Corpora. For general-domain QA, we follow 864

prior work (Jin et al., 2025) and use the Wikipedia 865

2018 dump (Karpukhin et al., 2020) as the sole 866

knowledge source.11 For medical-domain QA, 867

we evaluate under two corpus settings: (1) the 868

Wikipedia 2018 dump (Karpukhin et al., 2020) 869

alone, and (2) a composite biomedical corpus in- 870

troduced by (Xiong et al., 2024), which combines 871

Wikipedia, PubMed, and textbook documents to 872

provide broader domain coverage.12 873

Use of Artifacts. All datasets and models are 874

used strictly within research contexts, consistent 875

with their intended use and licensing. Our derived 876

artifacts (e.g., retrieved documents, trained models) 877

are likewise restricted to non-commercial academic 878

use. 879

A.4 Generation Accuracy Computation 880

To evaluate the effectiveness of retrieval strate- 881

gies in improving answer generation, we adopt 882

a composite metric called Generation Accuracy 883

(GenAcc), which is designed to better reflect se- 884

mantic correctness than surface-form exact match. 885

Overview. Given a model prediction p and a set 886

of gold answers A, GenAcc is defined in Eq. 3. 887

This metric returns 1 if either a string-normalized 888

token span of any a ∈ A is found within p, or if a 889

frozen LLM judge deems the answer semantically 890

correct. It returns 0 otherwise. 891

1. Span-Based Matching. We first apply a deter- 892

ministic span check using normalized string com- 893

parison. Specifically, we: 894

9All the general-domain QA datasets are available
at https://huggingface.co/datasets/RUC-NLPIR/
FlashRAG_datasets.

10All the medical-domain QA datasets are available
at https://github.com/Teddy-XiongGZ/MIRAGE/blob/
main/benchmark.json.

11Wikipedia 2018 dump is available at https:
//huggingface.co/datasets/RUC-NLPIR/FlashRAG_
datasets (retrieval-corpus folder)

12All the corpora for medical RAG are available at https:
//huggingface.co/MedRAG.
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• Convert both prediction and gold answers to895

lowercase.896

• Remove punctuation and articles (a, an, the).897

• Apply whitespace normalization.898

We then use a tokenizer to compare whether any to-899

ken span in the prediction matches any normalized900

gold answer. If a match is found, the score is 1.901

Examples:902

• Success Case:903

Prediction: "The 44th President of the904

United States was Barack Obama."905

Gold Answer: "Barack Obama"906

Result: Span match succeeds because the normal-907

ized gold answer is a token span in the prediction.908

• Failure Case (Negation):909

Prediction: "That statement is not true."910

Gold Answer: "true"911

Result: Span match incorrectly succeeds due912

to token overlap, despite the semantic meaning913

being opposite. We exclude such yes/no cases914

from training to avoid this issue.915

• Failure Case (Paraphrase):916

Prediction: "He led the civil rights917

movement in the 1960s."918

Gold Answer: "Martin Luther King Jr."919

Result: Span match fails because the gold answer920

does not appear verbatim in the response, even921

though the answer is implied.922

2. LLM-Based Semantic Judging. If the923

span check fails (0), we invoke a lightweight924

correctness check using a frozen LLM (e.g.,925

Qwen2.5-14B-Instruct-GPTQ-Int4 for training926

or Claude-3-Haiku for evaluation). We prompt927

the model with:928

Please check if any of the golden answers929
is contained in the following response:930
{p}931
Golden answers: {str(A)}932
Directly answer with ’yes’ or ’no’.933

If the LLM outputs yes, we consider the prediction934

correct and set the score to 1.935

Examples:936

• Success Case (Numerical Format):937

Prediction: "The answer is twenty-five."938

Gold Answer: "25"939

Result: Span match fails due to different formats,940

but the LLM outputs yes based on numerical941

equivalence.942

• Success Case (Units and Symbols): 943

Prediction: "It weighs 3 kilograms." 944

Gold Answer: "3 kg" 945

Result: Span match fails due to token mismatch, 946

but the LLM recognizes them as equivalent and 947

answers yes. 948

• Failure Case (Incorrect Entity): 949

Prediction: "The capital of France is 950

Marseille." 951

Gold Answer: "Paris" 952

Result: Span match fails, and the LLM also out- 953

puts no, indicating semantic disagreement. 954

Motivation. This design avoids brittle behavior 955

from exact match metrics and aligns more closely 956

with human judgments. For instance, if the gold 957

answer is "Einstein" and the model prediction is 958

"Albert Einstein was the scientist who developed 959

the theory of relativity", our metric returns 1, while 960

exact match fails due to surface mismatch. Em- 961

pirically, GenAcc matches human labels on 96.4% 962

of samples (see Appendix B), whereas EM only 963

achieves 15.8%. 964

Implementation. The full reward computing 965

pipeline is implemented through the following com- 966

ponents: 967

• span_check: This function (1) normalizes both 968

prediction and gold answers by applying case- 969

folding, punctuation and article removal, and 970

whitespace normalization; and (2) performs 971

token-level span matching using a tokenizer. This 972

step follows the evaluation strategy introduced 973

in prior work (Ma et al., 2021) and leverages the 974

has_answer utility from PySerini13. 975

• judge_check: If the span check fails, this fall- 976

back invokes a frozen LLM to assess whether the 977

prediction semantically entails any gold answer. 978

The LLM is prompted to respond with a binary 979

judgment ("yes" or "no"). 980

• check_answer_correct: This function coor- 981

dinates the evaluation process. It first ap- 982

plies span_check; if that fails, it falls back to 983

judge_check for semantic validation. Note: For 984

the medical RAG benchmark (MIRAGE (Xiong 985

et al., 2024)) evaluation, we exclusively use 986

judge_check, as most questions are multiple- 987

choice and span_check can incorrectly accept 988

wrong answers due to its strict matching criteria. 989

13https://github.com/castorini/pyserini/blob/
master/pyserini/eval/evaluate_dpr_retrieval.py
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This hybrid strategy combines the efficiency of990

lexical matching with the robustness of LLM-based991

semantic evaluation, ensuring reliable and scalable992

answer correctness assessment.993

A.5 Document Extraction Logic994

We extract document titles and texts from infor-995

mation blocks using a structured approach that996

prioritizes important documents. Our extraction997

algorithm processes text with the following format:998

<information>999

Doc 1 (Title: "Document Title 1") ...1000

Doc 2 (Title: "Document Title 2") ...1001

</information>1002

<important_info>1003

[1, 3]1004

</important_info>1005

The algorithm follows these key rules:1006

• <important_info> tags apply only to the most1007

recent <information> block1008

• If no <important_info> tag exists for a1009

<information> block, all documents from that1010

block are included1011

• Documents are deduplicated based on content1012

The implementation uses regular expressions to:1013

1. Identify all information blocks and important1014

document tags1015

2. Associate each important info tag with its corre-1016

sponding information block1017

3. Extract document IDs, titles, and text content1018

4. Filter documents based on importance markers1019

The document pattern is matched using a regex that1020

handles variations in spacing and optional quotes1021

around titles. Our implementation includes appro-1022

priate error handling to manage parsing failures1023

and maintains the original order of documents. The1024

algorithm has O(n) time complexity where n is1025

the input string length, with additional factors re-1026

lated to the number of documents and information1027

blocks.1028

B Human Alignment Study of Evaluation1029

Metrics (GenAcc and EM)1030

To assess the alignment of our primary evaluation1031

metric, Generation Accuracy, with human judg-1032

ment, we conducted a human annotation study. We1033

Human Evaluation Instruction

You are an evaluator for question-answering
systems. Your task is to determine whether
the system-generated answer aligns with the
provided gold (reference) answers.
Evaluation Criteria: An answer should be
marked as correct (1) if it:

• Contains the same key information as
the golden answers;

• Expresses the same meaning, even if
using different wording;

• Is factually consistent with the golden
answers.

Please input only:

• "1" if the system’s answer aligns with
the golden answers;

• "0" if it does not.

Figure 7: Instruction for human evaluation of LLM
generation.

randomly sampled 1,000 answer generations from 1034

the general-domain QA test set. Each sample was 1035

labeled as Correct (1) or Incorrect (0) by hu- 1036

man annotators, consisting of two Ph.D. students 1037

and one M.S. student majoring in computer science 1038

who evenly divided the annotation workload. Fig- 1039

ure 7 shows the instruction, and the anonymous 1040

sheet14 shows the raw results. 1041

We then compared these human labels against 1042

the binary decisions made by Generation Accu- 1043

racy and Exact Match. As shown in Figure 8, Gen- 1044

eration Accuracy demonstrates strong alignment 1045

with human evaluation, correctly identifying 96.4% 1046

of answers that were judged correct by humans. In 1047

contrast, Exact Match only captures 15.8% of such 1048

answers, largely due to its strict reliance on string 1049

matching. 1050

These results confirm that Generation Accuracy 1051

is a more reliable and human-aligned metric, es- 1052

pecially for evaluating free-form and abstractive 1053

answers where surface forms may differ despite 1054

14(Anonymous) raw results of human-metric alignment
study: https://docs.google.com/spreadsheets/d/e/
2PACX-1vQ-aAC6FNJYFJk1Ca8-EGN1zHa5z8WoF0Fm2VIHoWO_
CA0Gaa-f_uy8JGX-NiRO9l2yDaJTxU0nObjG/pubhtml
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Configuration NQ† TriviaQA PopQA HotpotQA† 2Wiki Musique

Retrieval: 8, Selection: 3, Turns: 3
Full Implementation 70.5(3.2) 84.0(24.6) 57.7(5.9) 62.4(11.1) 55.1(8.3) 26.2(7.9)
w/o Selection 70.7(2.7) 83.1(18.0) 57.2(8.1) 61.1(8.4) 58.9(3.3) 22.5(1.6)
w/o Begin with Search 68.6(3.6) 82.2(25.5) 55.0(7.7) 57.0(11.8) 46.8(7.9) 20.9(2.3)
w/o Both 70.8(2.5) 83.2(18.2) 56.5(7.8) 60.1(8.7) 57.4(3.5) 21.8(1.7)

Retrieval: 5, Selection: 3, Turns: 3
Full Implementation 69.6(3.5) 83.4(24.3) 57.4(5.8) 62.0(11.9) 53.8(7.8) 24.5(2.3)
w/o Selection 70.8(2.6) 81.8(19.6) 56.3(9.6) 60.8(9.4) 57.8(3.0) 22.4(2.0)
w/o Begin with Search 67.6(4.0) 81.2(26.6) 55.0(8.3) 57.4(12.0) 50.0(9.3) 21.1(2.2)
w/o Both 70.6(2.6) 81.9(19.4) 56.0(8.6) 60.0(9.1) 57.6(3.2) 22.3(1.7)

Retrieval: 3, Selection: 3, Turns: 3
Full Implementation 69.4(3.5) 82.3(24.4) 57.0(5.7) 61.8(11.7) 51.5(8.2) 25.1(2.3)
w/o Selection 69.7(5.0) 81.6(27.8) 56.1(12.5) 59.7(11.4) 56.2(4.3) 23.5(2.2)
w/o Begin with Search 67.7(3.8) 81.1(25.5) 54.2(6.7) 58.1(11.9) 50.2(7.4) 22.1(2.5)
w/o Both 69.2(3.4) 81.5(24.4) 55.2(8.9) 58.3(10.4) 54.6(3.3) 22.5(2.4)

Table 6: Ablation Studies of s3 on General Domain RAG. We show generation accuracy as the main results and
exact match scores in brackets.
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Figure 8: Confusion matrices comparing Generation
Accuracy (top) and Exact Match (bottom) against hu-
man judgment. Each cell indicates the proportion of
samples falling into the corresponding category.

semantic correctness, which also syncs with find- 1055

ings by prior studies applying similar evaluation 1056

methods (Song et al., 2025). 1057

C Prompts 1058

To train and evaluate the s3 framework effectively, 1059

we design three system prompts targeting distinct 1060

modules: the search policy (Searcher), answer gen- 1061

eration, and judge-based evaluation. Each prompt 1062

is carefully constructed to ensure modularity, inter- 1063

pretability, and compatibility with frozen LLMs. 1064

Searcher Prompt. The prompt for the Searcher 1065

(Figure 11) guides a trained policy to perform struc- 1066

tured multi-turn search. It defines a loop-based 1067

instruction set that mimics real-world decision- 1068

making: the model emits a search query, inspects 1069

results, selects key documents, and decides whether 1070

to continue searching. This design supports itera- 1071

tive refinement and selection via: 1072

• <query>: the generated search query in JSON 1073

format. 1074

• <information>: the retrieved documents re- 1075

turned by the search engine. 1076

• <important_info>: a subset of documents 1077

deemed most relevant (up to 3). 1078

• <search_complete>: a binary decision on 1079

whether to stop searching. 1080

Importantly, only selected documents in 1081

<important_info> are visible to the genera- 1082

tor, encouraging the policy to focus on high-quality 1083
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Figure 9: Scalability study: mean reward curve when
training s3 (5-3-4) for 300 steps.
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Figure 10: Performance comparison at Step 20 vs. Step
300 across datasets.

evidence rather than breadth. By isolating retrieval1084

behavior from generation, this prompt allows1085

reinforcement learning with a frozen black-box1086

LLM using downstream answer quality as a1087

reward.1088

Answer Generation Prompt. Figure 12 shows1089

the prompt used for final answer generation. It pro-1090

vides the accumulated context from selected docu-1091

ments along with the user’s original question. The1092

generator is instructed to produce a direct, succinct1093

answer without verbosity. This format simplifies1094

reward computation and ensures generation outputs1095

are consistent and easy to evaluate.1096

Judge_Check Prompt. To enable scalable, auto-1097

mated evaluation during training and inference, we1098

employ a lightweight correctness prompt shown1099

in Figure 13. This prompt asks an LLM to verify1100

whether any gold answer appears in the predicted1101

response. Unlike brittle exact-match metrics, this1102

approach captures semantically valid completions1103

even if they differ in surface form. During train-1104

ing, a quantized Qwen2.5-14B model is used for1105

cost-effective inference, while evaluation employs1106

Claude-3-Haiku for higher reliability.1107

Together, these prompts form a coherent pipeline1108

that supports modular training and evaluation of1109

retrieval-augmented generation systems. The clear1110

separation of roles allows s3 to focus learning1111

solely on the search agent, and our prompt designs1112

play a key role in realizing this clean decoupling.1113

D Scalability Study1114

While s3 demonstrates strong performance with1115

just 20 training steps (i.e., 2.4k examples), we in-1116

vestigate how performance evolves with additional1117

data and training. Specifically, we train the “5-3-4” 1118

configuration for up to 300 steps. 1119

Figure 9 shows the reward curve over training 1120

steps. We observe a consistent upward trend, indi- 1121

cating that the search policy continues to improve 1122

with more data and training iterations. 1123

To quantify this improvement, Figure 10 com- 1124

pares the model’s QA performance at step 20 and 1125

step 300 across six datasets. The results show that 1126

s3 scales gracefully: most datasets exhibit steady 1127

gains, with improvements particularly noticeable 1128

on PopQA, HotpotQA, and Musique. 1129

These findings suggest that s3 can also bene- 1130

fit from larger-scale training, making it a flexible 1131

framework that performs well both in low-resource 1132

and high-resource settings. 1133
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Prompt Instructions for Searcher

You are a search copilot for a generation model. Based on a user’s query and initial searched results, you will first
determine if the searched results are enough to produce an answer.
If the searched results are enough, you will use <search_complete>True</search_complete> to indicate that you
have gathered enough information for the generation model to produce an answer.
If the searched results are not enough, you will go through a loop of <query>→ <information>→ <important_info>
→ <search_complete>→ <query> (if not complete) ..., to help the generation model to generate a better answer with
more relevant information searched.
You should show the search query between <query> and </query> in JSON format.
Based on the search query, we will return the top searched results between <information> and </information>. You
need to put the doc ids of the important documents (up to 3 documents, within the current information window) between
<important_info> and </important_info> (e.g., <important_info>[1, 4]</important_info>).
A search query must be followed by a <search_complete> tag if the search is not complete.
After reviewing the information, you must decide whether to continue searching with a new query or indicate that the
search is complete. If you need more information, use <search_complete>False</search_complete>. Otherwise,
use <search_complete>True</search_complete> to terminate the search.
Note: Only the content between <important_info> will be used by the generation model to produce an answer.
[An abstractive example of s3 loop]
<question> {question} </question>

<information> {initial_search_result} </information>

Figure 11: The prompt used for search policy (searcher).

Prompt for Answer Generation

Use the following contexts (some might be irrelevant)
on demand:
Contexts: {context}
Question: {question}
Important: You MUST directly answer the question
without any other text.

Figure 12: The prompt used for answer generation by
frozen LLM.

Prompt for Judge_Check

Please check if any of the golden answers is contained
in the following response:
{response}
Golden answers: {golden_answers}
Please directly answer with ’yes’ or ’no’.

Figure 13: The prompt used for judge_check. Qwen2.5-
14B-Instruct-GPTQ-Int4 is used in training, and Claude-
3-Haiku is used in evaluation.
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Question <question> What year was the film made that was about the inventor of a type of passive
solar house that is made of both natural and upcycled materials such as earth-packed
tires? </question>

s3 Search Trajectory <question> What year was the film made that was about the inventor of a type
of passive solar house that is made of both natural and upcycled materials such as
earth-packed tires? </question>

<information>
Doc 1 (Earthship): An Earthship is a type of passive solar house... pioneered by
architect Michael Reynolds...
Doc 2 (Mike Reynolds): Known for Earthship houses using recycled materials like
tires...
Doc 3 (Don Stephens): Discusses earth-integrated designs and upcycled materials...
</information>

<search_complete> False </search_complete>

<query> What year was the film made about the inventor of Earthship?" </query>

<information>
Doc 1 (Garbage Warrior): Garbage Warrior is a 2007 film about architect Mike
Reynolds, inventor of the Earthship style of building...
Doc 2 (Garbage Warrior): A 2007 film following Reynolds and his Earthship
building...
Doc 3 (Earthship): Mentions the film Garbage Warrior and its focus on off-grid
housing...
</information>

<important_info>[1, 2]</important_info>

<search_complete> True </search_complete>

s3 Searched Docs Doc 1 (Earthship): An Earthship is a type of passive solar house... pioneered by
architect Michael Reynolds...
Doc 2 (Mike Reynolds): Known for Earthship houses using recycled materials like
tires...
Doc 3 (Don Stephens): Discusses earth-integrated designs and upcycled materials...
Doc 4 (Garbage Warrior): Garbage Warrior is a 2007 film about architect Mike
Reynolds, inventor of the Earthship style of building...
Doc 5 (Garbage Warrior): A 2007 film following Reynolds and his Earthship building...

Golden Answer 2007
RAG Answer There is no specific year mentioned for a film made about the inventor of the Earthship,

which is a type of passive solar house made of natural and upcycled materials like
earth-packed tires. The information provided does not include details about a particular
film or its release year.

s3 Answer 2007

Table 7: An example showing how s3 searches and selects correct evidence after issuing a focused search query. RAG fails to
answer correctly without temporal grounding.
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