
HyGenar: An LLM-Driven Hybrid Genetic Algorithm for Few-Shot
Grammar Generation

Anonymous ACL submission

Abstract

Grammar plays a critical role in natural lan-001
guage processing and text/code generation by002
enabling the definition of syntax, the creation003
of parsers, and guiding structured outputs. Al-004
though large language models (LLMs) demon-005
strate impressive capabilities across domains,006
their ability to infer and generate grammars has007
not yet been thoroughly explored. In this pa-008
per, we aim to study and improve the ability of009
LLMs for few-shot grammar generation, where010
grammars are inferred from sets of a small num-011
ber of positive and negative examples and gen-012
erated in Backus-Naur Form. To explore this,013
we introduced a novel dataset comprising 540014
structured grammar generation challenges, de-015
vised 6 metrics, and evaluated 8 various LLMs016
against it. Our findings reveal that existing017
LLMs perform sub-optimally in grammar gen-018
eration. To address this, we propose an LLM-019
driven hybrid genetic algorithm, namely HyGe-020
nar, to optimize grammar generation. HyGenar021
achieves substantial improvements in both the022
syntactic and semantic correctness of generated023
grammars across LLMs 1.024

1 Introduction025

Grammar inference, also known as grammar induc-026

tion, consists of inferring a grammar from a set027

of examples (Horning, 1969; De la Higuera, 2010;028

Stevenson and Cordy, 2014b; D’Ulizia et al., 2011).029

It has been studied and used in various fields, such030

as natural language processing, where it can re-031

duce the effort required to generate syntactic or032

semantic models automatically (Kai et al., 2024;033

D’ulizia et al., 2011), and software engineering,034

where inferred grammars can guide reverse engi-035

neering and automated parser generation (Steven-036

son and Cordy, 2014a). By relying on characteristic037

examples (De la Higuera, 2010), grammar infer-038

1The code is anonymous and available at https://
anonymous.4open.science/r/HyGenar.

Accept Reject

A Set of Positive Examples A Set of Negative Examples

add(1,2,3)
merge(x,y)
fibonacci(9)

add(1 2 3)
merge[x,y]
fibonacci 9

<stmt> ::= <func> "(" <args> ")"

<args> ::= <expr> | <expr> "," <args>

<expr> ::= <char> | <number>

<func> ::= <char> <func> | <char>
<char> ::= "a" | ... | "z"

<number> ::= "0" | ... | "9"

Generated BNF Grammar

Figure 1: Given a small set of positive and negative
examples, LLMs should infer and generate a grammar
that accepts all positives and rejects all negatives.

ence enables automated discovery of underlying 039

syntactic or structural patterns. 040

Backus-Naur Form (BNF) is used to define the 041

grammar of formal languages (Chomsky, 1956; 042

Backus, 1959; Backus et al., 1960), typically 043

Context-Free Grammars (CGFs) (Chomsky, 1956; 044

Aho, 2007). It has also been used in various ways 045

such as in parser generators like ANTLR4 (Parr, 046

2013) and Yacc (Johnson and Hill, 1978) or in 047

constraining output structure of Large Language 048

Models (LLMs) (Willard and Louf, 2023; Beurer- 049

Kellner et al., 2024). 050

Although LLMs have exhibited remarkable capa- 051

bilities across diverse domains (Gaur and Saunshi, 052

2023; Imani et al., 2023; Pan et al., 2023; Tang and 053

Belle, 2024; Li et al., 2024; Jiang et al., 2024a), 054

their capacity for grammar inference, and partic- 055

1

https://anonymous.4open.science/r/HyGenar
https://anonymous.4open.science/r/HyGenar

ularly for generating grammars in BNF, has not056

yet been well explored. This paper focuses on in-057

vestigating and improving the ability of LLMs to058

infer a CFG and generate it in BNF from a given059

set of positive and negative examples. A correctly060

generated grammar should accept all positives and061

reject all negatives. Typically, grammar inference062

requires a large set of characteristic examples that063

can uniquely identify a CFG (De la Higuera, 2010).064

However, we instead explore whether LLMs can065

infer a CFG from fewer examples without impos-066

ing any constraints on the examples, based on their067

experience and knowledge acquired through train-068

ing on large-scale corpus. We refer to this process069

as “few-shot grammar generation”, emphasizing070

both the grammar inference of CFGs with fewer071

examples and their generation in BNF, and we use072

“grammar” to denote a CFG represented in BNF.073

An example is shown in Figure 1.074

To explore the capacity of LLMs for few-shot075

grammar generation, we first construct a dedicated076

dataset of 540 challenges, each with only 3 pos-077

itive and 3 negative examples, and use it to eval-078

uate the performance of 8 LLMs, encompassing079

both open- and closed-source models of varying pa-080

rameter sizes, including those specialized for code081

generation. We then propose an LLM-driven hy-082

brid genetic algorithm, namely HyGenar, which083

adapts the principles of genetic algorithms with the084

integration of LLM-driven population initialization085

and mutation. We devised and adopted 6 metrics to086

comprehensively evaluate and analyze their perfor-087

mance from the perspectives of syntax and seman-088

tics correctness, over-fitting, over-generalization,089

and utility. The results show that, while most LLMs090

demonstrate unsatisfactory performance, our pro-091

posed algorithm significantly enhances the gram-092

mar generation ability across most of the evaluated093

LLMs.094

We summarize the main contributions of this095

paper as follows:096

1. We constructed a dedicated dataset of 540097

challenges for few-shot grammar generation098

and comprehensively evaluated 8 LLMs;099

2. We designed 6 metrics for measuring the abil-100

ity of LLMs in this task and performed an101

extensive analysis based on them;102

3. We proposed a novel method, HyGenar, to103

improve the grammar generation performance104

of LLMs and show that it achieves significant 105

improvements across LLMs. 106

2 Background 107

2.1 Context-Free Grammar 108

A context-free grammar (CFG) consists of termi- 109

nals, non-terminals, a start symbol, and production 110

rules (Hopcroft et al., 2001; Aho, 2007). It can be 111

formally defined as a quadruple G = (V,Σ,Π, S), 112

where V is a finite set of non-terminal symbols, Σ 113

is the set of terminals, Σ ∩ V = ∅, Π is a finite set 114

of production rules, Π ⊆ V ×(V ∪Σ)∗, and S ∈ V 115

is the start symbol of the grammar. Elements of 116

(V ∪ Σ)∗ are known as sentential forms. 117

The language generated by G, denoted L(G), 118

comprises all strings derivable from S using the 119

rules in Π: L(G) = {σ ∈ Σ∗ | S ∗→ σ}. For 120

α, β ∈ (V ∪Σ)∗, we say α directly derives β in one 121

step as α→β, and define α ∗→ β as α deriving β in 122

zero or more steps if there exists a finite sequence 123

of γ0, . . . , γn ∈ (V ∪ Σ)∗ where n ≥ 0, such that 124

α = γ0 → γ1 → · · · → γn = β. 125

2.2 Backus-Naur Form 126

Backus–Naur Form (BNF) is a notation used to 127

define the grammar of formal languages, typically 128

CFG (Chomsky, 1956; Backus, 1959; Backus et al., 129

1960). In this paper, LLM generates grammars in 130

BNF. 131

A context-free grammar G = (V,Σ,Π, S) is 132

given in BNF notation as a list of grouped produc- 133

tion rules, where each rule group is written: 134

<vi> ::= α1|α2| . . .

where vi enclosed between the pair “< >" is 135

a nonterminal symbol in V , and α1, α2 . . . ∈ 136

(Σ ∪ V)∗ is the list of sentential forms that can 137

be derived in one step from vi. This represents the 138

set of all production rules with vi on the left-hand 139

side, i.e., vi → α1, vi → α2, 140

We extend the definition of a CFG to define a 141

grammar in BNF to be G = (V,Σ,Π, S,R), where 142

V,Σ,Π, and S are defined as before. R is a set 143

of sets of production rules, denoted {r1, . . . rn}. 144

Each ri ∈ R is a set of production rules where the 145

left-hand side of all rules is the ith non-terminal 146

symbol vi, i.e., ri is (vi × (Σ ∪ V)∗) ∩ Π. Since 147

each non-terminal symbol has a corresponding rule 148

set, n = |V | = |R|. The language of the BNF 149

grammar G is denoted by L(G) and is equal to the 150

language of the original CFG, L(G). 151

2

We say that a grammar G is a valid grammar,152

and that valid(G) evaluates to true, if it is correct153

BNF syntax, and if R is as defined above, and if all154

nonterminal symbols have at least one rule in their155

corresponding rule set.156

2.3 Grammar Inference157

Grammar inference aims to learn grammar auto-158

matically from a set of examples (Horning, 1969;159

De la Higuera, 2010; Stevenson and Cordy, 2014b;160

D’Ulizia et al., 2011). In this paper, we focus on161

inferring a CFG, in BNF notation, from a small set162

of positive and negative examples.163

Given a set of positive examples P and negative164

examples N , consisting of strings that must be,165

respectively, accepted and rejected, the objective166

is to infer a BNF grammar G. The generated G167

should satisfy P ⊆ L(G) and N ∩ L(G) = ∅,168

which ensures G accepts all positive examples and169

rejects all negative examples.170

3 Related Work171

3.1 Grammar Generation172

Grammar inference has been widely studied and173

applied across various fields, such as natural lan-174

guage processing (Kai et al., 2024; D’Ulizia et al.,175

2011), bio-informatics (De la Higuera, 2010), pat-176

tern recognition (Pedro et al., 2013; Richetin and177

Vernadat, 1984; De la Higuera, 2010), and soft-178

ware engineering (Schröder and Cito, 2022; Steven-179

son and Cordy, 2014b). Previous works have also180

proposed various approaches for grammar infer-181

ence (Rodrigues and Lopes, 2007; Cohen et al.,182

2017; Li et al., 2023; D’ulizia et al., 2011; Chen,183

1995). However, few works are directly related to184

exploring the ability of LLMs for few-shot gram-185

mar generation, which, to reiterate, is to infer gram-186

mars from a small set of positives and negatives187

while generating them in BNF.188

3.2 Code Generation189

LLMs demonstrate the ability of code genera-190

tion (Jiang et al., 2024b; Huang et al., 2023; De-191

haerne et al., 2022), with various approaches pro-192

posed to improve it (Shinn et al., 2023; Madaan193

et al., 2023; Huang et al., 2023; Jiang et al., 2023b;194

Chen et al., 2023). We consider grammar genera-195

tion to share notable similarities with code gener-196

ation, since in grammar generation it is not only197

required to infer grammars but also to generate198

grammars in BNF. Thus, following a similar ap-199

proach to Reflexion (Shinn et al., 2023) and Self- 200

Refine (Madaan et al., 2023) to enhance code gener- 201

ation, we propose a method as one of the baselines 202

for evaluation. 203

4 Grammar Generation Ability of LLMs 204

In this section, we describe the dedicated dataset 205

constructed to evaluate the ability of LLMs in gram- 206

mar generation, introduce 6 metrics we use in eval- 207

uation, explain experiments, and analyze results in 208

detail. We detail each in the following subsections. 209

4.1 Dataset 210

To evaluate the capacity of LLMs for grammar 211

generation, we present a dedicated dataset. 212

During dataset construction, for each k ∈ 213

{1, 2, . . . , 9}, we prompted GPT-4o (OpenAI et al., 214

2024) to generate 10 distinct reference grammars, 215

where each reference grammar Gref has k nonter- 216

minal symbols and thus |R| = k. This gives a total 217

of 90 reference grammars. We used Gref to prompt 218

GPT-4o to produce 6 different challenges with each 219

challenge consisting of a set of positives P and neg- 220

ativesN where |P| = 3 and |N | = 3, in a way that 221

P ⊆ L(Gref) and N ∩ L(Gref) = ∅. However, 222

GPT-4o often failed to produce challenges with 223

valid reference grammars, positives, and negatives 224

as k increased. We manually corrected erroneous 225

reference grammars, positives, and negatives by 226

using a BNF parser which takes a grammar and 227

outputs whether a grammar is in valid BNF, and 228

whether positives are accepted, and negatives are 229

rejected2. 230

Following this process, we obtained a dataset of 231

540 challenges, each consisting of 3 positives and 232

3 negatives. Figure 1 shows an example challenge 233

and a corresponding solution. 234

4.2 Metrics 235

Let C be a set of N challenges where each is a 236

tuple (Gref ,P,N , G∗) consisting of a reference 237

grammar, and a set of positive examples and nega- 238

tive examples, respectively, and the corresponding 239

candidate grammar G∗ generated by an LLM. We 240

evaluate the quality of generated grammars using 6 241

key metrics: 242

Syntax Correctness (SX) The syntax correct- 243

ness metric SX quantifies the proportion of guesses 244

2Refer to Appendix A for the details of dataset construc-
tion.

3

that conform to the valid BNF syntax defined in245

Section 2.2. We define an indicator function as:246

ISX(G∗) =

{
1 if valid(G∗),
0 otherwise.

247

SX(C) is defined as: 1
N

∑N
i=1 ISX(G∗

i).248

Semantic Correctness (SE) SE captures the249

proportion of guesses that are semantically correct.250

We define an indicator function as follows, noting251

that if G∗ is not in valid BNF, then L(G∗) = ∅:252

ISE(G∗,P,N) =


1 if P ⊆ L(G∗)∧
N ∩ L(G∗) = ∅

0 otherwise.

253

SE(C) is given by: 1
N

∑N
i=1 ISE(G∗

i ,Pi,Ni).254

Estimating Grammar Quality Given a set of255

positive and negative examples, there are many256

possible valid and semantically correct solutions257

that are undesirable. For instance, the following258

grammar would be an undesirable solution for Fig-259

ure 1. Here the L(G∗) = |P |, and is overfitted to260

the examples:261

<stmt> ::= "add(1,2,3)" | "merge(x,y)" |
"fibonacci(9)"

262

Equally undesirable is a grammar that over-263

generalizes from the examples, and defines a sig-264

nificantly larger language than the reference gram-265

mar, because this is highly likely to contain invalid266

strings. There are no standard metrics to measure267

over-fitting or over-generalization in grammar gen-268

eration, so we devise 4 metrics based around the269

number of production rules used in parsing the pos-270

itive examples.271

First, let ΠP ⊆ Π be the set of production272

rules that are used in the left-most derivations of273

all positive examples in P . That is, the set of274

rules in Π which occur in a sequence of rules275

S → α1 → . . . → αn → p where p ∈ P ,276

and all rules expand the left-most non-terminal in277

α1, . . . , αn.278

We report metrics across only solved challenges,279

i.e., a challenge where G∗ is syntactically and se-280

mantically correct. Our four metrics are defined as281

follows3:282

• Diff (C), calculates the difference between283

the number of production rules in G∗ used in284

3Refer to Appendix B for the details of formal definitions.

parsing the positive examples and the number 285

of production rules used by Gref for a given 286

challenge, i.e., |Πref
P | − |Π∗

P |. A grammar 287

that uses substantially fewer production rules 288

has probably overfitted to the examples, and 289

a grammar that uses substantially more pro- 290

duction rules may have over-generalized. We 291

report the average of Diff across all solved 292

challenges as Diff ⋄. 293

• OF estimates over-fitting by counting the per- 294

centage of solved challenges on which G∗ 295

uses fewer than half the number of production 296

rules used by Gref , i.e., the number of times 297

|Πref
P | − |Π∗

P | >
|Πref

P |
2 . 298

• OG estimates over-generalization by count- 299

ing the percentage of solved challenges on 300

which G∗ uses more than half the number of 301

production rules used by Gref , i.e., |Πref
P | − 302

|Π∗
P | < −

|Πref
P |
2 . 303

• TU calculates the proportion of production 304

rules that are used in parsing the positive ex- 305

amples for a given challenge, i.e., |Π∗
P |

Π∗ , indi- 306

cating the utility. We report the average of 307

TU across all solved challenges as TU⋄. 308

4.3 Baselines 309

To establish baselines, we adopted two approaches, 310

Direct Prompting (DP) and Optimization of the 311

BNF Parser for LLM-Friendly Feedback (OPF). 312

In DP, we directly prompted LLMs with positive 313

and negative examples, asking them to produce 314

grammars that accept all positives and reject all 315

negatives4. 316

In OPF, inspired by Reflexion (Shinn et al., 2023) 317

and Self-Refine (Madaan et al., 2023), we further 318

optimized the BNF parser by enabling it to provide 319

more LLM-friendly error messages as feedback, 320

aiming to improve the performance of grammar 321

generation for LLMs5. 322

4.4 Experiment Settings 323

For a comprehensive evaluation, we selected a total 324

of 8 LLMs, ensuring a diverse selection of both 325

open- and closed-source LLMs, along with LLMs 326

with varying parameter sizes and LLMs specifically 327

designed for code generation. 328

Specifically, we selected two closed-source 329

LLMs, GPT-4o (OpenAI et al., 2024) and GPT- 330

3.5-Turbo (Brown et al., 2020a). For the other 6 331

4Refer to Appendix C for the details of DP.
5Refer to Appendix D for the details of OPF.

4

open-source LLMs, we note them in the notation:332

{model_name}:{parameter_size}-{model_type}.333

We selected the following LLMs: Llama3:70b-334

Instruct (Grattafiori et al., 2024), Qwen:72b-335

Chat (Bai et al., 2023), Gemma2:27b-336

Instruct (Team et al., 2024), Mistral:7b-337

Instruct (Jiang et al., 2023a), Code-338

stral:22b (MistralAI, 2024), and Starcoder2:15b-339

Instruct (Lozhkov et al., 2024). Among the340

selected LLMs, Starcoder2:15b-Instruct and341

Codestral:22b are LLMs for code generation.342

For the DP baseline, we set the temperature to 0343

and the maximum token to 2000.344

For the OPF baseline6, we set the temperature to345

0.3, the maximum token to 2000, and the maximum346

number of turns, max_turns, to 5.347

4.5 Results & Analysis348

The results of SX and SE for the 8 LLMs are349

presented in Table 1. We observed that GPT-4o,350

GPT-3.5-Turbo, and Gemma2:27b-Instruct achieve351

relatively high SX , while the other LLMs generally352

fare worse in DP baseline. Compared to the DP353

baseline, applying OPF leads to a significant en-354

hancement in SX for both Mistral:7b-Instruct and355

Codestral:22b, yielding an 18% improvement for356

each of them, suggesting that parser feedback can357

help increase SX . Nevertheless, for most LLMs,358

OPF yields only slight gains in SX . Furthermore,359

it is worth noting that for Starcoder2:15b-Instruct,360

SX decreases by 16% after applying OPF. This361

indicates that feedback from the parser can some-362

times lead to performance degradation if LLMs fail363

to interpret the feedback correctly.364

Although several LLMs attain high SX , their365

SE remains low in DP, with an average of 39%.366

For example, GPT-3.5-Turbo has 94% SX but only367

37% SE . With OPF, LLMs like Mistral:7b-Instruct368

and Codestral:22b achieve notable SE improve-369

ment with enhanced SX , illustrating that improved370

SX can positively influence SE . However, for371

most LLMs, OPF yields only marginal SE gains,372

particularly in the case that their SX is already373

high and OPF fails to contribute significant SX374

improvement.375

Noticeably, although OPF helps improve SX , a376

significant gap still persists between SX and SE377

for most LLMs. For example, even after OPF, GPT-378

3.5-Turbo maintains a 57% gap between SX and379

SE , and Starcoder2:15b-Instruct has a 40% gap.380

6Refer to Appendix D for the reason of setting the temper-
ature greater than 0 for OPF.

Since the ultimate objective is to improve SE , a 381

more advanced approach is needed to address this 382

limitation. 383

Furthermore, as other four metrics shown in Ta- 384

ble 2, on average, for most of LLMs, the lower 385

Diff ⋄, OF , and OG indicate negligible over-fitting 386

or over-generalization issues, and the higher TU ⋄ 387

means LLMs are not predisposed to generate irrel- 388

evant production rules. Nevertheless, as the num- 389

ber of production rules increases, Diff ⋄ and OF 390

exhibit slight increases, indicating a tendency to- 391

ward mild over-fitting, while no significant over- 392

generalization issues are observed 7. 393

In addition to the quantitative metrics, we also 394

conducted a qualitative analysis by examining the 395

generated grammars. We compared the grammars 396

containing syntactic errors generated in the DP but 397

corrected after the OPF. We primarily found four 398

significant issues causing lower SX: unsupported 399

symbols such as injecting quantifiers like “*” and 400

“?” or character classes like “[a-z]”, erroneously 401

introduced and misplaced brackets such as wrap- 402

ping two terminals with round and square brackets, 403

failing to wrap non-terminal with angle brackets, 404

and omission the separators “|” between sentential 405

forms. While the the first two issues are rampant 406

across most LLMs, the third issue is mainly found 407

in Mistral:7b-Instruct and the last one is sporadic. 408

For most LLMs, OPF can occasionally mitigate 409

these issues, but insignificantly. Furthermore, no- 410

tably, we also observed LLMs show an ability to 411

recognize keywords in the examples, treating them 412

as complete terminals rather than decomposing 413

them into multiple terminals as individual char- 414

acters. For example, they treat “if” and “SELECT” 415

as complete terminals rather than splitting them 416

into multiple characters. This may be benefited 417

from the common sense acquired by LLMs from 418

the corpus (Brown et al., 2020b). 419

5 LLM-Driven Hybrid Genetic Algorithm 420

The results of the baselines demonstrate the unsat- 421

isfactory performance of LLMs in grammar gener- 422

ation. To address this, we propose an LLM-driven 423

hybrid genetic algorithm, namely HyGenar, a novel 424

algorithm inspired by the concept of genetic algo- 425

rithms. The following sections detail HyGenar and 426

elaborate on our experiment settings, results, and 427

analysis. 428

7Refer to Appendix F.3 and F.4 for more details.

5

Models Syntax Correctness (SX) Semantics Correctness(SE)

DP OPF HyGenar DP OPF HyGenar

GPT-4o 93 97 ↑4 96 ↑3 ↓1 84 85 ↑1 93 ↑9 ↑8

GPT-3.5-Turbo 94 95 ↑1 99 ↑5 ↑4 37 38 ↑1 61 ↑24 ↑23

Llama3:70b-Instruct 57 61 ↑4 75 ↑18 ↑14 41 42 ↑1 61 ↑20 ↑19

Qwen:72b-Chat 47 49 ↑2 76 ↑29 ↑27 20 21 ↑1 38 ↑18 ↑17

Mistral:7b-Instruct 1 19 ↑18 1 − ↓18 0 8 ↑8 1 ↑1 ↓7

Gemma2:27b-Instruct 91 92 ↑1 98 ↑7 ↑6 56 57 ↑1 79 ↑23 ↑22

Starcoder2:15b-Instruct 76 60 ↓16 98 ↑22 ↑38 30 20 ↓10 44 ↑14 ↑24

Codestral:22b 53 71 ↑18 80 ↑27 ↑9 44 52 ↑8 67 ↑23 ↑15

Table 1: The results of syntax and semantic correctness for LLMs grammar generation are presented as percentages
(%). For each LLM, the best syntax and semantic correctness are highlighted with bold font. Blue arrows ↑↓
represent performance differences relative to the DP baseline, while red arrows ↑↓ indicate differences relative to
the OPF baseline.

5.1 Methodology429

HyGenar consists of four main components: Fit-430

ness, Selection, Crossover, and Mutation. It begins431

by prompting an LLM to generate an initial pop-432

ulation of candidate grammars from positive and433

negative examples. In each generation, the Fitness434

function scores each candidate and the Select func-435

tion chooses a subset of the population. To form436

a new population, the Cross function operates on437

two randomly selected candidates from this subset438

to generate a new candidate, which is then mod-439

ified by the Mut function and added to the new440

population, until the maximum population size is441

reached. The new population then advances to the442

next generation. We provide pseudocode in Algo-443

rithm 1 in Appendix E. We detail each component444

as follows:445

Fitness Given a generated grammar G∗, if it is446

syntactically incorrect, it is assigned a score of447

−1. For a valid grammar, we define two indicator448

functions:449

IA(G∗, p) =

{
1 if p ∈ L(G∗),

0 otherwise.
450

IR(G∗, n) =

{
1 if n /∈ L(G∗),

0 otherwise.
451

The Fitness function Fitness(G∗,P,N) is then452

defined as:453 ∑
pi∈P

IA(G∗, pi) +
∑
ni∈N

IR(G∗, ni).454

Selection Let G = {G∗
1, G

∗
2, . . . , G

∗
k} be a pop-

ulation of candidate grammars. Each G∗
i ∈ G is

assigned a fitness score si ∈ S by the Fitness func-
tion, where S = [s1, s2, . . . , sk] is a sequence of
their corresponding scores. We define the Select
function as:

Select(G, S) = {G∗
σ(1), G

∗
σ(2), . . . , G

∗
σ(k

2
)
},

where σ : {1, 2, . . . , k} → {1, 2, . . . , k} is a per- 455

mutation of the indices such that: sσ(1) ≥ sσ(2) ≥ 456

· · · ≥ sσ(k). Hence, half of the candidates from the 457

population are selected in decreasing order of their 458

fitness scores. 459

Crossover The crossover function splices the pro- 460

duction rules from two grammars together, at a 461

randomly chosen splicing point. Let G∗
a and G∗

b 462

be two candidate grammars, with rules R∗
a and R∗

b 463

respectively. If both R are empty, we return one 464

grammar at random. If one grammar has a non- 465

empty R, we return that grammar. Otherwise, we 466

apply the crossover function with probability ρ (the 467

crossover rate). 468

The crossover operation works in the following 469

way. Let ℓ = min(|R∗
a|, |R∗

b |). First sample a 470

crossover point w ∼ Uniform({1, 2, . . . , ℓ}). Let 471

R∗
a = ra1 , r

a
2 . . . be the rules from G∗

a and R∗
b be 472

the rules from G∗
b . We take the first w− 1 rule sets 473

from R∗
a and then prefix these to the last n−w rule 474

sets from R∗
b , where n = |R∗

b |. This generates a 475

new rule set R′ = {r1a, . . . , rw−1
a , rwb , . . . r

n
b }. 476

Crossover returns a new grammar G′ = 477

(V ′,Σ′,Π′, Sa, R
′), where V ′ and Σ′ are all non- 478

terminal and terminal symbols in R′, Π′ is all rules 479

in R′, and Sa is the start symbol from G∗
a. 480

Mutation We use two mutation methods: mu- 481

tation by LLM, and local mutation. We chose 482

6

whether to mutate a grammar at all, with proba-483

bility µ (the mutation rate). If the grammar has no484

production rules, we apply the LLM mutation. Oth-485

erwise, we apply local mutation with a probability486

0.5 and LLM mutation otherwise.487

LLM-Driven Mutation The LLM-driven muta-488

tion uses G∗, P , and N to prompt8 an LLM to489

produce a new grammar. In this approach, we490

expect that, with the knowledge and experience491

obtained by training on vast corpora, LLMs can492

heuristically provide more novel and dramatic mod-493

ifications such as introducing new terminals or non-494

terminals, adding or removing production rules, or495

reshaping the structure of grammars, which is hard496

to approach with local mutation.497

Local Mutation The local mutation is designed498

to produce incremental, targeted alterations to the499

grammar while preserving the majority of its origi-500

nal form. It is less flexible than LLM-driven muta-501

tion and it is unable to introduce new non-terminals502

or to drastically restructure grammars. However, it503

can not only potentially find a grammar candidate504

but also provide insights for LLM-driven muta-505

tion. Given a grammar G∗, with a set of sets of506

production rules R∗, local mutation comprises the507

following steps:508

• Rule set selection We sample an integer i ∼509

Uniform({1, . . . , |R|}). This index i chooses510

the rule set ri ∈ R∗ that will be mutated.511

• Shuffle The Shuffle mutation shuffles the512

order of symbols on the right-hand side of513

a production rule. That is, each rule is514

a mapping from a non-terminal v to a se-515

quence of non-terminal and terminal sym-516

bols (V ∪ Σ)∗, and we shuffle this se-517

quence randomly. For example, the rule set:518

<e> ::= <e> "*" <e> | <e> "/" <e>519

with infix operators, may be shuffled to520

<e> ::= "*" <e> <e> | "/" <e> <e>,521

switching to prefix operators.522

Shuffle is applied to all production rules in ri.523

• Space Insertion The SpaceInsert mutation524

inserts a randomly chosen number of whites-525

pace terminal symbols "␣" into the right-526

hand side of a production rule. Given a527

rule v − i → α, Shuffle chooses the num-528

ber of whitespace terminals to be inserted by529

8Refer to Prompt Template 2 in Appendix E for the prompt
we designed for LLM-driven mutation.

sampling I ∼ Uniform(0, |α|), where |α| is 530

the number of symbols in α. Each space is 531

inserted before or after a randomly chosen 532

symbol in α. As an example, the rule set: 533

<s> ::= <noun> <verb> may be changed to 534

<s> ::= <noun> "␣" <verb>. 535

For each production rule in ri, we randomly 536

decide whether SpaceInsert should be ap- 537

plied to that rule with a low probability9. 538

The Shuffle alteration heuristic is motivated by two 539

key insights. First, shuffling the right-hand side of 540

production rules may yield a grammar that accepts 541

more positive examples and rejects more negative 542

ones. Second, although Shuffle may rarely yield a 543

better candidate for a complex target grammar, the 544

new variant of the grammar produced from Shuffle 545

is expected to provide alternative perspectives and 546

new insights for LLMs to help generate subsequent 547

grammars in future generations. 548

The SpaceInsert alteration was introduced be- 549

cause some LLMs tended to omit explicit space 550

symbols between symbols in an alternative, result- 551

ing in degraded grammar generation, even if they 552

were prompted to pay attention to space inclusion10. 553

We expect that incorporating SpaceInsert will of- 554

fer insights for LLMs of the explicit inclusion of 555

spaces to thereby enhance performance. 556

5.2 Experiment Settings 557

In addition to a set of positive and negative exam- 558

ples and an LLM, HyGenar takes four parameters: 559

population size (grammars per generation), gener- 560

ations (number of evolution iterations), crossover 561

rate (probability of crossover), mutation rate (prob- 562

ability of mutation). In our experiments, we set 563

these to 10, 5, 0.7, and 0.3, respectively. 564

We selected the same 8 LLMs as the DP and 565

OPF baselines, setting maximum tokens to 2000 566

and temperature to 0.7. In HyGenar, a nonzero 567

temperature is necessary for diversity. To ensure 568

it does not significantly impact results and show 569

its robustness, we further repeat the experiments 5 570

times with GPT-3.5-Turbo and GPT-4o. 571

5.3 Results & Analysis 572

As shown in Table 1, HyGenar substantially boosts 573

SX for most LLMs. For example, Qwen:72b- 574

Instruct gains 29% over DP and 27% over OPF. 575

Even for LLMs already improved by OPF, such 576

9We fix it to 0.1.
10Refer to Prompt Template 1 in Appendix C for details.

7

Methods Diff ⋄ OF OG TU ⋄

DP 1.12 3.83 0.63 88.74
OPF 1.10 4.72 1.31 90.76
HyGenar 1.19 4.44 0.92 91.27

Table 2: The averages of Diff ⋄, OF (%), OG(%), and
TU ⋄(%) across all LLMs.

as Codestral:22b with an 18% improvement,577

HyGenar adds an additional 9%. Meanwhile,578

Starcoder2:15b-Instruct, which experiences a 16%579

drop under OPF, achieves a 22% improvement com-580

pared to DP and a 38% improvement over OPF,581

with HyGenar. On average, it improves SX 13.88%582

compared to DP and 9.88% over OPF.583

While enhancing SX is essential, the ultimate584

objective is to improve SE . As shown in Table 1,585

our method significantly boosts SE for all LLMs586

except Mistral:7b-Instruct. For example, with Hy-587

Genar, GPT-4o rises from 84% with DP and 85%588

with OPF to 93%, and GPT-3.5-Turbo, noted for589

low semantic accuracy, increases by 24% over DP590

and 23% over OPF. Notably, although the contri-591

bution from the enhancement of SX is essential to592

SE , HyGenar does not rely solely on enhancing593

SX to achieve significant improvement of SE , as594

five LLMs demonstrated higher SE increases than595

their SX . Across the selected LLMs, the average596

SE improvement is 16.5% compared to DP and597

15.13% compared to OPF.598

We further analyzed the performance as the num-599

ber of non-terminals and production rules increases.600

For non-terminals, we partition the dataset into601

3 groups: C1 (1–3 non-terminals), C2 (4-6 non-602

terminals), and C3 (7-9 non-terminals). For pro-603

duction rules, we split the dataset into another 3604

groups: P1 (1–6 production rules), P2 (6-15 pro-605

duction rules), and P3 (greater than 16 production606

rules). We observed that the performance of LLMs607

decreases as the number of non-terminals and pro-608

duction rules increases. Nevertheless, HyGenar609

still substantially improves both SX and SE 11.610

Furthermore, as shown in Table 2, OF does not611

significantly increase in HyGenar, indicating that612

the substantial improvements observed in both the613

SX and SE for HyGenar are not attributed to over-614

fitting12.615

Moreover, we also conducted a qualitative anal-616

ysis of how HyGenar improves SX and SE. For617

11Refer to Tables 4 and 5 in Appendix F.1 and F.2 for details.
12Refer to Tables 6, 7, and 8 in Appendix F.3 for the more

details.

SX , HyGenar significantly reduces the issues 618

of unsupported symbols injection and misplaced 619

brackets. However, it fails to address the issue of 620

unwrapped non-terminals, which is also the issue 621

mainly happened in Mistral:7b-Instruct. Unlike 622

OPF, which benefits from more explicit syntax er- 623

ror feedback, our approach lacks such direct syntax 624

corrective guidance, meaning that if an LLM in- 625

herently struggles to generate syntactically correct 626

grammar, our method may fail to produce valid 627

candidates and process evolution, thereby lowering 628

both SX and SE. Nevertheless, as long as at least 629

a few candidates are generated in correct syntax, 630

HyGenar can optimize their generations during the 631

evolutionary process to mitigate aforementioned 632

issues and improve SX . For SE , attributing the 633

significant improvement is complex. However, we 634

still observed two findings. First, after applying 635

HyGenar, terminals that were not previously con- 636

sidered in the grammars generated by DP or OPF 637

have been introduced. Second, the semantic errors 638

that were caused by the absence of space terminals 639

in DP or OPF have been alleviated. 640

Due to the relatively high temperature of 0.7 641

used for HyGenar, we repeated the experiments 642

5 times with GPT-4o and GPT-3.5-Turbo13 to en- 643

sure robustness. The averages of SX for GPT-4o 644

and GPT-3.5-Turbo are 95.8% and 98.6%, with 645

standard deviations 0.4% and 0.49% respectively, 646

while the averages of SE are 93.2% and 61.6% 647

with standard deviations 0.4% and 0.49% respec- 648

tively. These results indicate that setting the temper- 649

ature to 0.7 has a negligible impact on performance 650

and show the robustness of HyGenar. 651

6 Conclusion 652

To explore the few-shot grammar generation abil- 653

ity of LLMs, we constructed a dedicated dataset 654

consisting of 540 challenges, devised and adopted 655

6 metrics, and evaluated 8 various LLMs. Due to 656

their unsatisfactory performance, we introduced 657

HyGenar, an LLM-driven hybrid genetic algorithm 658

for grammar generation. Our results indicate that 659

HyGenar significantly enhances both syntax and se- 660

mantic correctness compared to the two baselines. 661

We believe this work provides valuable insights into 662

LLM-based grammar generation and highlights the 663

potential of LLM-driven hybrid genetic algorithms 664

in this domain. 665

13Refer to Table 3 in Appendix F.5 for details.

8

7 Limitations666

We discuss several limitations and concerns in this667

work, revealing potential challenges, constraints,668

and confusion.669

First, although the results indicate that GPT-4o670

exhibits remarkable SX and SE, it is important to671

note that these results may be attributable to the use672

of GPT-4o during dataset construction. Nonethe-673

less, even though GPT-4o already demonstrates674

excellent performance, HyGenar can still enhance675

it significantly.676

Second, as demonstrated, our method does not677

outperform OPF for Mistral:7b-Instruct in SX and678

SE due to its inherent failure to generate syntac-679

tically correct grammars. Nevertheless, our ap-680

proach yields significant SX and SE improve-681

ments for all other LLMs. We also propose to682

combine syntactical feedback and HyGenar to mit-683

igate this limitation and further improve the perfor-684

mance.685

Third, one may argue that given any finite set686

of positive and negative examples, it could always687

be possible to construct a regular grammar rather688

than a CFG that can accept all positives and re-689

ject all negatives. However, such an approach may690

function more like a classifier rather than a gram-691

mar and may lack applicability in subsequent tasks,692

such as constructing an abstract syntax tree.693

Finally, in this work, we primarily focus on694

LLM-based few-shot grammar generation without695

comparing algorithms that are not LLM-based. The696

reasons behind this are that most algorithms require697

a large set of characteristic examples to uniquely de-698

termine the target grammar (De la Higuera, 2010).699

Instead, we do not impose such constraints on700

our example set and hypothesize that the expe-701

rience and knowledge acquired from corpus can702

enable LLMs to handle few-shot grammar genera-703

tion tasks. Consequently, those algorithms may not704

be directly applicable. In addition, since we focus705

on the exploration and improvement of the abil-706

ity of LLMs in few-shot grammar generation, we707

construct two LLM-based baselines for fair com-708

parison.709

References710

2007. Compilers: principles, techniques, tools, 2nd ed711
edition. Pearson/Addison Wesley, Boston.712

John W Backus. 1959. The syntax and the semantics of713
the proposed international algebraic language of the714

zurich acm-gamm conference. In ICIP Proceedings, 715
pages 125–132. 716

John W Backus, Friedrich L Bauer, Julien Green, 717
Charles Katz, John McCarthy, Alan J Perlis, Heinz 718
Rutishauser, Klaus Samelson, Bernard Vauquois, 719
Joseph Henry Wegstein, et al. 1960. Report on the 720
algorithmic language algol 60. Communications of 721
the ACM, 3(5):299–311. 722

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, 723
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei 724
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, 725
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu, 726
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, 727
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong 728
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang 729
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian 730
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi 731
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, 732
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin- 733
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023. 734
Qwen technical report. Preprint, arXiv:2309.16609. 735

Luca Beurer-Kellner, Marc Fischer, and Martin T. 736
Vechev. 2024. Guiding llms the right way: 737
Fast, non-invasive constrained generation. ArXiv, 738
abs/2403.06988. 739

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 740
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 741
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 742
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 743
Gretchen Krueger, Tom Henighan, Rewon Child, 744
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 745
Clemens Winter, Christopher Hesse, Mark Chen, 746
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin 747
Chess, Jack Clark, Christopher Berner, Sam Mc- 748
Candlish, Alec Radford, Ilya Sutskever, and Dario 749
Amodei. 2020a. Language models are few-shot learn- 750
ers. Preprint, arXiv:2005.14165. 751

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie 752
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind 753
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 754
Askell, Sandhini Agarwal, Ariel Herbert-Voss, 755
Gretchen Krueger, Tom Henighan, Rewon Child, 756
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, 757
Clemens Winter, Christopher Hesse, Mark Chen, Eric 758
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 759
Jack Clark, Christopher Berner, Sam McCandlish, 760
Alec Radford, Ilya Sutskever, and Dario Amodei. 761
2020b. Language models are few-shot learners. In 762
Proceedings of the 34th International Conference on 763
Neural Information Processing Systems, NIPS ’20, 764
Red Hook, NY, USA. Curran Associates Inc. 765

Stanley F Chen. 1995. Bayesian grammar induction for 766
language modeling. arXiv preprint cmp-lg/9504034. 767

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and 768
Denny Zhou. 2023. Teaching large language models 769
to self-debug. ArXiv, abs/2304.05128. 770

9

https://arxiv.org/abs/2309.16609
https://api.semanticscholar.org/CorpusID:268363645
https://api.semanticscholar.org/CorpusID:268363645
https://api.semanticscholar.org/CorpusID:268363645
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128

N. Chomsky. 1956. Three models for the description of771
language. IRE Transactions on Information Theory,772
2(3):113–124.773

Mor Cohen, Avi Caciularu, Idan Rejwan, and Jonathan774
Berant. 2017. Inducing regular grammars using re-775
current neural networks. ArXiv, abs/1710.10453.776

Colin De la Higuera. 2010. Grammatical inference:777
learning automata and grammars. Cambridge Uni-778
versity Press.779

Enrique Dehaerne, Bappaditya Dey, Sandip Halder, Ste-780
fan De Gendt, and Wannes Meert. 2022. Code gener-781
ation using machine learning: A systematic review.782
IEEE Access, 10:82434–82455.783

Arianna D’ulizia, F. Ferri, and P. Grifoni. 2011. A784
survey of grammatical inference methods for natu-785
ral language learning. Artificial Intelligence Review,786
36:1–27.787

Arianna D’Ulizia, Fernando Ferri, and Patrizia Grifoni.788
2011. A survey of grammatical inference methods789
for natural language learning. Artificial Intelligence790
Review, 36(1):1–27.791

Vedant Gaur and Nikunj Saunshi. 2023. Reasoning in792
large language models through symbolic math word793
problems. In Findings of the Association for Com-794
putational Linguistics: ACL 2023, pages 5889–5903,795
Toronto, Canada. Association for Computational Lin-796
guistics.797

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,798
Abhinav Pandey, Abhishek Kadian, Ahmad Al-799
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-800
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh801
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-802
tra, Archie Sravankumar, Artem Korenev, Arthur803
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-804
driguez, Austen Gregerson, Ava Spataru, Baptiste805
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,806
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,807
Chris Marra, Chris McConnell, Christian Keller,808
Christophe Touret, Chunyang Wu, Corinne Wong,809
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-810
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,811
Danny Wyatt, David Esiobu, Dhruv Choudhary,812
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,813
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,814
Elina Lobanova, Emily Dinan, Eric Michael Smith,815
Filip Radenovic, Francisco Guzmán, Frank Zhang,816
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-817
derson, Govind Thattai, Graeme Nail, Gregoire Mi-818
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,819
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan820
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-821
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,822
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,823
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,824
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,825
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,826
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,827
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-828
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,829

Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth 830
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, 831
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal 832
Lakhotia, Lauren Rantala-Yeary, Laurens van der 833
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, 834
Louis Martin, Lovish Madaan, Lubo Malo, Lukas 835
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline 836
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar 837
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew 838
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam- 839
badur, Mike Lewis, Min Si, Mitesh Kumar Singh, 840
Mona Hassan, Naman Goyal, Narjes Torabi, Niko- 841
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, 842
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick 843
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va- 844
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, 845
Praveen Krishnan, Punit Singh Koura, Puxin Xu, 846
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj 847
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, 848
Robert Stojnic, Roberta Raileanu, Rohan Maheswari, 849
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron- 850
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan 851
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa- 852
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo- 853
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha- 854
ran Narang, Sharath Raparthy, Sheng Shen, Shengye 855
Wan, Shruti Bhosale, Shun Zhang, Simon Van- 856
denhende, Soumya Batra, Spencer Whitman, Sten 857
Sootla, Stephane Collot, Suchin Gururangan, Syd- 858
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek 859
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias 860
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal 861
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh 862
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir- 863
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro- 864
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit- 865
ney Meers, Xavier Martinet, Xiaodong Wang, Xi- 866
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin- 867
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold- 868
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, 869
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, 870
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing 871
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri- 872
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, 873
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, 874
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei 875
Baevski, Allie Feinstein, Amanda Kallet, Amit San- 876
gani, Amos Teo, Anam Yunus, Andrei Lupu, An- 877
dres Alvarado, Andrew Caples, Andrew Gu, Andrew 878
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan- 879
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara- 880
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, 881
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz- 882
dan, Beau James, Ben Maurer, Benjamin Leonhardi, 883
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi 884
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han- 885
cock, Bram Wasti, Brandon Spence, Brani Stojkovic, 886
Brian Gamido, Britt Montalvo, Carl Parker, Carly 887
Burton, Catalina Mejia, Ce Liu, Changhan Wang, 888
Changkyu Kim, Chao Zhou, Chester Hu, Ching- 889
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe- 890
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, 891
Daniel Kreymer, Daniel Li, David Adkins, David 892
Xu, Davide Testuggine, Delia David, Devi Parikh, 893

10

https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1109/TIT.1956.1056813
https://api.semanticscholar.org/CorpusID:8704099
https://api.semanticscholar.org/CorpusID:8704099
https://api.semanticscholar.org/CorpusID:8704099
https://doi.org/10.1109/ACCESS.2022.3196347
https://doi.org/10.1109/ACCESS.2022.3196347
https://doi.org/10.1109/ACCESS.2022.3196347
https://doi.org/10.1007/s10462-010-9199-1
https://doi.org/10.1007/s10462-010-9199-1
https://doi.org/10.1007/s10462-010-9199-1
https://doi.org/10.1007/s10462-010-9199-1
https://doi.org/10.1007/s10462-010-9199-1
https://doi.org/10.1007/s10462-010-9199-1
https://doi.org/10.1007/s10462-010-9199-1
https://doi.org/10.1007/s10462-010-9199-1
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364
https://doi.org/10.18653/v1/2023.findings-acl.364

Diana Liskovich, Didem Foss, Dingkang Wang, Duc894
Le, Dustin Holland, Edward Dowling, Eissa Jamil,895
Elaine Montgomery, Eleonora Presani, Emily Hahn,896
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-897
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,898
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat899
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank900
Seide, Gabriela Medina Florez, Gabriella Schwarz,901
Gada Badeer, Georgia Swee, Gil Halpern, Grant902
Herman, Grigory Sizov, Guangyi, Zhang, Guna903
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-904
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun905
Habeeb, Harrison Rudolph, Helen Suk, Henry As-906
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim907
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,908
Irina-Elena Veliche, Itai Gat, Jake Weissman, James909
Geboski, James Kohli, Janice Lam, Japhet Asher,910
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-911
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy912
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe913
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-914
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,915
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-916
delwal, Katayoun Zand, Kathy Matosich, Kaushik917
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-918
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle919
Huang, Lailin Chen, Lakshya Garg, Lavender A,920
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng921
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-922
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,923
Martynas Mankus, Matan Hasson, Matthew Lennie,924
Matthias Reso, Maxim Groshev, Maxim Naumov,925
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.926
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-927
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,928
Mike Macey, Mike Wang, Miquel Jubert Hermoso,929
Mo Metanat, Mohammad Rastegari, Munish Bansal,930
Nandhini Santhanam, Natascha Parks, Natasha931
White, Navyata Bawa, Nayan Singhal, Nick Egebo,932
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich933
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,934
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin935
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-936
dro Rittner, Philip Bontrager, Pierre Roux, Piotr937
Dollar, Polina Zvyagina, Prashant Ratanchandani,938
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel939
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu940
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,941
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky942
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,943
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara944
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,945
Satadru Pan, Saurabh Mahajan, Saurabh Verma,946
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-947
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,948
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,949
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,950
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,951
Stephanie Max, Stephen Chen, Steve Kehoe, Steve952
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,953
Summer Deng, Sungmin Cho, Sunny Virk, Suraj954
Subramanian, Sy Choudhury, Sydney Goldman, Tal955
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,956
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim957

Matthews, Timothy Chou, Tzook Shaked, Varun 958
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai 959
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad 960
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, 961
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen- 962
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng 963
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo 964
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, 965
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, 966
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, 967
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary 968
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, 969
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd 970
of models. Preprint, arXiv:2407.21783. 971

John E Hopcroft, Rajeev Motwani, and Jeffrey D 972
Ullman. 2001. Introduction to automata theory, 973
languages, and computation. Acm Sigact News, 974
32(1):60–65. 975

James Jay Horning. 1969. A study of grammatical infer- 976
ence. Stanford University. 977

Dong Huang, Qingwen Bu, Jie M. Zhang, Michael Luck, 978
and Heming Cui. 2023. Agentcoder: Multi-agent- 979
based code generation with iterative testing and opti- 980
misation. ArXiv, abs/2312.13010. 981

Shima Imani, Liang Du, and Harsh Shrivastava. 2023. 982
MathPrompter: Mathematical reasoning using large 983
language models. In Proceedings of the 61st An- 984
nual Meeting of the Association for Computational 985
Linguistics (Volume 5: Industry Track), pages 37– 986
42, Toronto, Canada. Association for Computational 987
Linguistics. 988

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 989
sch, Chris Bamford, Devendra Singh Chaplot, Diego 990
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 991
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 992
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 993
Thibaut Lavril, Thomas Wang, Timothée Lacroix, 994
and William El Sayed. 2023a. Mistral 7b. Preprint, 995
arXiv:2310.06825. 996

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, 997
and Sunghun Kim. 2024a. A survey on large 998
language models for code generation. Preprint, 999
arXiv:2406.00515. 1000

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and 1001
Sunghun Kim. 2024b. A survey on large language 1002
models for code generation. ArXiv, abs/2406.00515. 1003

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, 1004
and Ge Li. 2023b. Self-planning code generation 1005
with large language models. ACM Transactions on 1006
Software Engineering and Methodology. 1007

S. C. Johnson and Murray Hill. 1978. Yacc: Yet another 1008
compiler-compiler. 1009

Jushi Kai, Shengyuan Hou, Yusheng Huang, and 1010
Zhouhan Lin. 2024. Leveraging grammar induction 1011
for language understanding and generation. Preprint, 1012
arXiv:2410.04878. 1013

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.48550/arXiv.2312.13010
https://doi.org/10.48550/arXiv.2312.13010
https://doi.org/10.48550/arXiv.2312.13010
https://doi.org/10.48550/arXiv.2312.13010
https://doi.org/10.48550/arXiv.2312.13010
https://doi.org/10.18653/v1/2023.acl-industry.4
https://doi.org/10.18653/v1/2023.acl-industry.4
https://doi.org/10.18653/v1/2023.acl-industry.4
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2406.00515
https://doi.org/10.48550/arXiv.2406.00515
https://doi.org/10.48550/arXiv.2406.00515
https://doi.org/10.48550/arXiv.2406.00515
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3672456
https://doi.org/10.1145/3672456
https://api.semanticscholar.org/CorpusID:62540186
https://api.semanticscholar.org/CorpusID:62540186
https://api.semanticscholar.org/CorpusID:62540186
https://arxiv.org/abs/2410.04878
https://arxiv.org/abs/2410.04878
https://arxiv.org/abs/2410.04878

Yixuan Li, Federico Mora, Elizabeth Polgreen, and San-1014
jit A Seshia. 2023. Genetic algorithms for search-1015
ing a matrix of metagrammars for synthesis. arXiv1016
preprint arXiv:2306.00521.1017

Yixuan Li, Julian Parsert, and Elizabeth Polgreen. 2024.1018
Guiding enumerative program synthesis with large1019
language models. In Computer Aided Verification,1020
CAV 2024, pages 280–301, Cham. Springer Nature1021
Switzerland.1022

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-1023
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,1024
Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,1025
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur1026
Zucker, Younes Belkada, Zijian Wang, Qian Liu,1027
Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-1028
Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue1029
Zhuo, Evgenii Zheltonozhskii, Nii Osae Osae Dade,1030
Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su,1031
Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai,1032
Niklas Muennighoff, Xiangru Tang, Muhtasham1033
Oblokulov, Christopher Akiki, Marc Marone, Cheng-1034
hao Mou, Mayank Mishra, Alex Gu, Binyuan Hui,1035
Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas1036
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten1037
Scholak, Sebastien Paquet, Jennifer Robinson, Car-1038
olyn Jane Anderson, Nicolas Chapados, Mostofa Pat-1039
wary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz1040
Ferrandis, Lingming Zhang, Sean Hughes, Thomas1041
Wolf, Arjun Guha, Leandro von Werra, and Harm1042
de Vries. 2024. Starcoder 2 and the stack v2: The1043
next generation. Preprint, arXiv:2402.19173.1044

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler1045
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,1046
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,1047
Shashank Gupta, Bodhisattwa Prasad Majumder,1048
Katherine Hermann, Sean Welleck, Amir Yazdan-1049
bakhsh, and Peter Clark. 2023. Self-refine: Itera-1050
tive refinement with self-feedback. In Thirty-seventh1051
Conference on Neural Information Processing Sys-1052
tems.1053

MistralAI. 2024. Codestral. https://mistral.ai/1054
news/codestral/.1055

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,1056
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-1057
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-1058
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,1059
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-1060
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-1061
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,1062
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,1063
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-1064
man, Tim Brooks, Miles Brundage, Kevin Button,1065
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany1066
Carey, Chelsea Carlson, Rory Carmichael, Brooke1067
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully1068
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben1069
Chess, Chester Cho, Casey Chu, Hyung Won Chung,1070
Dave Cummings, Jeremiah Currier, Yunxing Dai,1071
Cory Decareaux, Thomas Degry, Noah Deutsch,1072
Damien Deville, Arka Dhar, David Dohan, Steve1073

Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, 1074
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, 1075
Simón Posada Fishman, Juston Forte, Isabella Ful- 1076
ford, Leo Gao, Elie Georges, Christian Gibson, Vik 1077
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo- 1078
Lopes, Jonathan Gordon, Morgan Grafstein, Scott 1079
Gray, Ryan Greene, Joshua Gross, Shixiang Shane 1080
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, 1081
Yuchen He, Mike Heaton, Johannes Heidecke, Chris 1082
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, 1083
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin 1084
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, 1085
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun 1086
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee- 1087
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka- 1088
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, 1089
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, 1090
Christina Kim, Yongjik Kim, Jan Hendrik Kirch- 1091
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, 1092
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon- 1093
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal 1094
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan 1095
Leike, Jade Leung, Daniel Levy, Chak Ming Li, 1096
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz 1097
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, 1098
Anna Makanju, Kim Malfacini, Sam Manning, Todor 1099
Markov, Yaniv Markovski, Bianca Martin, Katie 1100
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer 1101
McKinney, Christine McLeavey, Paul McMillan, 1102
Jake McNeil, David Medina, Aalok Mehta, Jacob 1103
Menick, Luke Metz, Andrey Mishchenko, Pamela 1104
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel 1105
Mossing, Tong Mu, Mira Murati, Oleg Murk, David 1106
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, 1107
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, 1108
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex 1109
Paino, Joe Palermo, Ashley Pantuliano, Giambat- 1110
tista Parascandolo, Joel Parish, Emy Parparita, Alex 1111
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel- 1112
man, Filipe de Avila Belbute Peres, Michael Petrov, 1113
Henrique Ponde de Oliveira Pinto, Michael, Poko- 1114
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow- 1115
ell, Alethea Power, Boris Power, Elizabeth Proehl, 1116
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, 1117
Cameron Raymond, Francis Real, Kendra Rimbach, 1118
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry- 1119
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar, 1120
Girish Sastry, Heather Schmidt, David Schnurr, John 1121
Schulman, Daniel Selsam, Kyla Sheppard, Toki 1122
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav 1123
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, 1124
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin 1125
Sokolowsky, Yang Song, Natalie Staudacher, Fe- 1126
lipe Petroski Such, Natalie Summers, Ilya Sutskever, 1127
Jie Tang, Nikolas Tezak, Madeleine B. Thompson, 1128
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, 1129
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe- 1130
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, 1131
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, 1132
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, 1133
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji- 1134
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, 1135
Clemens Winter, Samuel Wolrich, Hannah Wong, 1136
Lauren Workman, Sherwin Wu, Jeff Wu, Michael 1137

12

https://doi.org/10.1007/978-3-031-65630-9_15
https://doi.org/10.1007/978-3-031-65630-9_15
https://doi.org/10.1007/978-3-031-65630-9_15
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=S37hOerQLB
https://mistral.ai/news/codestral/
https://mistral.ai/news/codestral/
https://mistral.ai/news/codestral/

Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-1138
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong1139
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao1140
Zheng, Juntang Zhuang, William Zhuk, and Bar-1141
ret Zoph. 2024. Gpt-4 technical report. Preprint,1142
arXiv:2303.08774.1143

Liangming Pan, Alon Albalak, Xinyi Wang, and1144
William Yang Wang. 2023. Logic-lm: Empower-1145
ing large language models with symbolic solvers1146
for faithful logical reasoning. (arXiv:2305.12295).1147
ArXiv:2305.12295 [cs].1148

Terence Parr. 2013. The Definitive ANTLR 4 Reference,1149
2nd edition. Pragmatic Bookshelf.1150

Ricardo Wandré Dias Pedro, Fátima L. S. Nunes, and1151
Ariane Machado-Lima. 2013. Using grammars for1152
pattern recognition in images. ACM Computing Sur-1153
veys (CSUR), 46:1 – 34.1154

M. Richetin and F. Vernadat. 1984. Efficient regular1155
grammatical inference for pattern recognition. Pat-1156
tern Recognit., 17:245–250.1157

Ernesto Rodrigues and Heitor Silvério Lopes. 2007.1158
Genetic programming for induction of context-free1159
grammars. Seventh International Conference on1160
Intelligent Systems Design and Applications (ISDA1161
2007), pages 297–302.1162

Michael Schröder and Jürgen Cito. 2022. Grammars for1163
free: toward grammar inference for ad hoc parsers.1164
In Proceedings of the ACM/IEEE 44th International1165
Conference on Software Engineering: New Ideas and1166
Emerging Results, page 41–45, Pittsburgh Pennsylva-1167
nia. ACM.1168

Noah Shinn, Federico Cassano, Ashwin Gopinath,1169
Karthik R Narasimhan, and Shunyu Yao. 2023. Re-1170
flexion: language agents with verbal reinforcement1171
learning. In Thirty-seventh Conference on Neural1172
Information Processing Systems.1173

Andrew Stevenson and J. Cordy. 2014a. A survey of1174
grammatical inference in software engineering. Sci.1175
Comput. Program., 96:444–459.1176

Andrew Stevenson and James R. Cordy. 2014b. A sur-1177
vey of grammatical inference in software engineering.1178
Science of Computer Programming, 96:444–459.1179

Weizhi Tang and Vaishak Belle. 2024. Tom-lm: Dele-1180
gating theory of mind reasoning to external symbolic1181
executors in large language models. arXiv preprint1182
arXiv:2404.15515.1183

Gemma Team, Morgane Riviere, Shreya Pathak,1184
Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupati-1185
raju, Léonard Hussenot, Thomas Mesnard, Bobak1186
Shahriari, Alexandre Ramé, Johan Ferret, Peter1187
Liu, Pouya Tafti, Abe Friesen, Michelle Casbon,1188
Sabela Ramos, Ravin Kumar, Charline Le Lan,1189
Sammy Jerome, Anton Tsitsulin, Nino Vieillard,1190
Piotr Stanczyk, Sertan Girgin, Nikola Momchev,1191
Matt Hoffman, Shantanu Thakoor, Jean-Bastien Grill,1192

Behnam Neyshabur, Olivier Bachem, Alanna Wal- 1193
ton, Aliaksei Severyn, Alicia Parrish, Aliya Ah- 1194
mad, Allen Hutchison, Alvin Abdagic, Amanda 1195
Carl, Amy Shen, Andy Brock, Andy Coenen, An- 1196
thony Laforge, Antonia Paterson, Ben Bastian, Bilal 1197
Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu 1198
Kumar, Chris Perry, Chris Welty, Christopher A. 1199
Choquette-Choo, Danila Sinopalnikov, David Wein- 1200
berger, Dimple Vijaykumar, Dominika Rogozińska, 1201
Dustin Herbison, Elisa Bandy, Emma Wang, Eric 1202
Noland, Erica Moreira, Evan Senter, Evgenii Elty- 1203
shev, Francesco Visin, Gabriel Rasskin, Gary Wei, 1204
Glenn Cameron, Gus Martins, Hadi Hashemi, Hanna 1205
Klimczak-Plucińska, Harleen Batra, Harsh Dhand, 1206
Ivan Nardini, Jacinda Mein, Jack Zhou, James Svens- 1207
son, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana 1208
Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fer- 1209
nandez, Joost van Amersfoort, Josh Gordon, Josh 1210
Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mo- 1211
hamed, Kartikeya Badola, Kat Black, Katie Mil- 1212
lican, Keelin McDonell, Kelvin Nguyen, Kiranbir 1213
Sodhia, Kish Greene, Lars Lowe Sjoesund, Lau- 1214
ren Usui, Laurent Sifre, Lena Heuermann, Leti- 1215
cia Lago, Lilly McNealus, Livio Baldini Soares, 1216
Logan Kilpatrick, Lucas Dixon, Luciano Martins, 1217
Machel Reid, Manvinder Singh, Mark Iverson, Mar- 1218
tin Görner, Mat Velloso, Mateo Wirth, Matt Davi- 1219
dow, Matt Miller, Matthew Rahtz, Matthew Watson, 1220
Meg Risdal, Mehran Kazemi, Michael Moynihan, 1221
Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi 1222
Rahman, Mohit Khatwani, Natalie Dao, Nenshad 1223
Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay 1224
Chauhan, Oscar Wahltinez, Pankil Botarda, Parker 1225
Barnes, Paul Barham, Paul Michel, Pengchong 1226
Jin, Petko Georgiev, Phil Culliton, Pradeep Kup- 1227
pala, Ramona Comanescu, Ramona Merhej, Reena 1228
Jana, Reza Ardeshir Rokni, Rishabh Agarwal, Ryan 1229
Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah 1230
Cogan, Sarah Perrin, Sébastien M. R. Arnold, Se- 1231
bastian Krause, Shengyang Dai, Shruti Garg, Shruti 1232
Sheth, Sue Ronstrom, Susan Chan, Timothy Jor- 1233
dan, Ting Yu, Tom Eccles, Tom Hennigan, Tomas 1234
Kocisky, Tulsee Doshi, Vihan Jain, Vikas Yadav, 1235
Vilobh Meshram, Vishal Dharmadhikari, Warren 1236
Barkley, Wei Wei, Wenming Ye, Woohyun Han, 1237
Woosuk Kwon, Xiang Xu, Zhe Shen, Zhitao Gong, 1238
Zichuan Wei, Victor Cotruta, Phoebe Kirk, Anand 1239
Rao, Minh Giang, Ludovic Peran, Tris Warkentin, 1240
Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia 1241
Hadsell, D. Sculley, Jeanine Banks, Anca Dragan, 1242
Slav Petrov, Oriol Vinyals, Jeff Dean, Demis Hass- 1243
abis, Koray Kavukcuoglu, Clement Farabet, Elena 1244
Buchatskaya, Sebastian Borgeaud, Noah Fiedel, Ar- 1245
mand Joulin, Kathleen Kenealy, Robert Dadashi, 1246
and Alek Andreev. 2024. Gemma 2: Improving 1247
open language models at a practical size. Preprint, 1248
arXiv:2408.00118. 1249

Brandon T. Willard and Rémi Louf. 2023. Effi- 1250
cient guided generation for large language models. 1251
Preprint, arXiv:2307.09702. 1252

13

https://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2305.12295
http://arxiv.org/abs/2305.12295
http://arxiv.org/abs/2305.12295
http://arxiv.org/abs/2305.12295
http://arxiv.org/abs/2305.12295
https://doi.org/10.1145/2543581.2543593
https://doi.org/10.1145/2543581.2543593
https://doi.org/10.1145/2543581.2543593
https://doi.org/10.1016/0031-3203(84)90063-3
https://doi.org/10.1016/0031-3203(84)90063-3
https://doi.org/10.1016/0031-3203(84)90063-3
https://api.semanticscholar.org/CorpusID:255763
https://api.semanticscholar.org/CorpusID:255763
https://api.semanticscholar.org/CorpusID:255763
https://doi.org/10.1145/3510455.3512787
https://doi.org/10.1145/3510455.3512787
https://doi.org/10.1145/3510455.3512787
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6
https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1016/j.scico.2014.05.008
https://doi.org/10.1016/j.scico.2014.05.008
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2307.09702
https://arxiv.org/abs/2307.09702

A Dataset Construction1253

To evaluate the capacity of LLMs in few-shot gram-1254

mar generation, we present a dedicated dataset. We1255

explain the details of the construction process in1256

this section.1257

For clear explanation, let Gref =
⋃K

k=1G
ref
k1258

be a set of reference grammars, where Gref
k is a1259

set of reference grammars in which each reference1260

grammar Gref
k having exactly k non-terminals and1261

thus its |R| = k. Each set of reference grammars1262

Gref
k = {Gref

k,1 , G
ref
k,2 , . . . , G

ref
k,n} contains n refer-1263

ence grammar with k non-terminals.1264

Initially, we constructed Gref =
⋃9

k=1G
ref
k .1265

For each number k, we prompted GPT-4o to1266

produce n = 10 reference grammars to yield1267

Gref
k = {Gref

k,1 , G
ref
k,2 , . . . , G

ref
k,10}, with the prompt1268

template demonstrated in Prompt Template 3. In1269

Prompt Template 3, k means the placeholder of the1270

number of non-terminals, and n means the num-1271

ber of reference grammars needed to be produced.1272

However, GPT-4o failed to consistently generate1273

reference grammars in the correct syntax or with1274

the correct number of non-terminals, especially as1275

the number of non-terminals increased. To ensure1276

that the generated reference grammars are syntacti-1277

cally correct and have the correct number of non-1278

terminals, we used a BNF parser to do verification.1279

It takes a Gref and checks whether valid(Gref)1280

is true and whether it has the required number of1281

non-terminals. Any reference grammar that is not1282

valid or has a wrong number of non-terminals were1283

manually corrected. For duplicated reference gram-1284

mars, we prompted GPT-4o to generate an alter-1285

native. This resulted in 90 reference grammars1286

(i.e., |Gref | = |
⋃9

k=1G
ref
k | = 90), which are the1287

reference grammars used to generate positive and1288

negative examples subsequently.1289

For each reference grammar Gref ∈ Gref , we1290

prompted GPT-4o to generate 6 various challenges.1291

For each challenge, GPT-4o is prompted by Prompt1292

Template 6 and Prompt Template 4 to produce a set1293

of 3 positive examples (P ⊆ L(Gref)), and a set1294

of three negative examples (N ∩L(Gref) = ∅), re-1295

spectively. In both Prompt Template 6 and Prompt1296

Template 4, m means the number of examples1297

needed to be generated, and reference_grammar1298

means the given reference grammar by which1299

the generated examples should be accepted or re-1300

jected. However, we observed that GPT-4o fre-1301

quently failed to produce valid positive and nega-1302

tive examples, leading to either P ̸⊆ L(Gref) or1303

N ∩L(Gref) ̸= ∅, or both. The number of failures 1304

tends to increase as the number of non-terminals 1305

of Gref increases. To ensure the correctness of 1306

the generated challenges, we used a BNF parser 1307

to verify whether all given positive examples and 1308

negative examples can be accepted and rejected, re- 1309

spectively, by their corresponding Gref . Erroneous 1310

positive and negative examples were manually cor- 1311

rected. Ultimately, we obtained a dataset consisting 1312

of a total of 540 challenges. 1313

We visually summarize the dataset construction 1314

procedure in Figure 2. 1315

B Grammar Quality Metrics 1316

This section covers the formal definitions of the 1317

grammar quality metrics. 1318

First define ΠP ⊆ Π to be the set of production 1319

rules that are used in the left-most derivations of all 1320

positive examples in P . That is, the set of rules in 1321

Π which occur in a sequence of rules S → α1 → 1322

. . .→ αn → p where p ∈ P , and all rules expand 1323

the left-most non-terminal in α1, . . . , αn. 1324

Let Π∗ be the production rules in G∗ and Πref

be the production rules in Gref . Let us define
Diff (Gref , G∗) = |Πref

P | − |Π∗
P |. The average dif-

ference in production rules used over the whole set
of k solved challenges, C ′, is given by:

Diff ⋄ =
1

k

k∑
i=1

Diff (Gref
i , G∗

i).

We define two indicator functions, which indicate 1325

when a grammar uses substantially fewer rules 1326

than the reference grammar, and substantially more 1327

rules than the reference grammar: 1328

IOF (G
ref , G∗,P) =


1 if |Πref

P | − |Π∗
P |

>
|Πref

P |
2

0 otherwise.

1329

1330

IOG(G
ref , G∗,P) =


1 if |Πref

P | − |Π∗
P |

< − |Πref
P |
2

0 otherwise.

1331

The metric to estimate whether the generated
grammars overfit the examples, is then given by

OF (C ′) =
1

k

k∑
i=1

IOF (G
ref
i , G∗

i ,Pi).

14

(1) Prompt LLMs for Reference Grammar Generation

Grammars with Non-Terminals...

Grammars with 1 Non-Terminal

1. <digit> ::= "0" | "1" | ... | "9"
2. <word> ::= "yes" | "no"
3. <symbol> ::= "!" | "@" | "#"
4. <letter> ::= "a" | "b" | ... | "z"
5. <greeting> ::= "hello" | "hi"
6. ...

(4) Report Erroneous Grammars

(3) Verify

(5) Refine & Correct

(6) Prompt LLMs for Challenge Generation

Grammars with Non-Terminals...

Grammars with 1 Non-Terminal

<digit> ::= "0" | "1" | ... | "9"

1. "1"
2. "0"
3. "8"

1. "a"
2. "@"
3. "?"

1. "2"
2. "9"
3. "3"

1. "!"
2. "#"
3. "&"

...

(7) Generate Challenges

(9) Report Erroneous Examples

(8) Verify
(10) Correct & Refine

(11) Obtain the Full Dataset

(2) Generate Grammars

Figure 2: The Dataset Construction Process: (1) GPT-4o is prompted with Prompt Template 3 to generate a set
of reference grammars; (2) A set of reference grammars Gref =

⋃9
k=1 G

ref
k are generated by LLMs; (3) A BNF

parser is used to check the correctness of each generated reference grammar; (4) Erroneous reference grammars are
reported to humans; (5) Reported reference grammars are modified and corrected manually; (6) GPT-4o is prompted
with Prompt Template 6 and Prompt Template 4 to generate challenges for each reference grammars; (7) Challenges
are generated by LLMs, in which each challenge consists of 3 positive and 3 negative examples; (8) A BNF parser
is used to verify whether positive and negative examples are accepted and rejected by their corresponding reference
grammar respectively; (9) Erroneous challenges are reported to humans; (10) Reported challenges are corrected
manually; (11) The final dataset consisting of 540 challenges are obtained.

The metric to estimate whether the generated1332

grammars overgeneralize the examples, OG , is1333

given as:1334

OG(C ′) =
1

k

k∑
i=1

IOG(G
ref
i , G∗

i ,Pi).1335

In addition, the TU metric, for a given challenge,
to measure the percentage of |Π∗| taken up by |Π∗

P |,
indicating the utility of G∗, is given as:

TU (G∗,P) =
|Π∗

P |
|Π∗|

for which lower TU indicates a bunch of irrelevant
or nonsensical production rules of G∗ while higher
TU indicates the opposite. The average utility over
C ′ is given by:

TU ⋄ =
1

k

k∑
i=1

TU (G∗
i ,P)

C Direct Prompting1336

For the DP approach, Prompt Template 1 is used to1337

prompt LLMs to directly generate a grammar with1338

a given set of positive and negative examples. In1339

Prompt Template 1, positive_examples and nega-1340

tive_examples are placeholders for a set of positive1341

and negative examples. In addition, it also specifies1342

a list of requirements LLMs should take care of1343

and obey when generating grammars.1344

D Optimization of BNF Parser for 1345

Providing LLM-Friendly Feedback 1346

For the OPF approach, we use the same prompt 1347

template used in DP, as shown in Prompt Tem- 1348

plate 1, to prompt LLMs to generate an initial 1349

grammar. Then, Prompt Template 5 is used in the 1350

iterations of the feedback loop to construct prompts 1351

from feedback offered by the BNF parser to LLMs. 1352

In Prompt Template 5, positive_examples and nega- 1353

tive_examples are the placeholders for a set of pos- 1354

itive and negative examples, bnf_grammar means 1355

the previously generated erroneous grammar, and 1356

parser_feedback is the placeholder for feedback 1357

provided from the BNF parser. 1358

Furthermore, for each feedback given by the 1359

BNF parser, in addition to giving essential feedback 1360

such as notifying the line number for the place the 1361

error occurs, we optimize the BNF parser to also 1362

provide LLM-friendly feedback to LLMs, such as 1363

the possible reasons for the error or ways to fix it. 1364

We have shown some of them in Parser Feedback 1 1365

and Parser Feedback 2. 1366

In addition, OPF includes a parameter called 1367

max_turns, which specifies the maximum number 1368

of feedback iterations. If an LLM can generate 1369

a valid grammar based on earlier feedback, the 1370

algorithm stops early; otherwise, it continues until 1371

reaching the specified maximum. 1372

Moreover, it is worth noting that this approach 1373

does not aim to follow every component of Reflex- 1374

ion or Self-Refine strictly. For instance, it does not 1375

15

maintain a long-term context or external memory.1376

Instead, it uses only the most recent feedback in1377

each turn to guide self-refinement. Concretely, in1378

each feedback iteration, an LLM is provided with1379

the previously generated erroneous grammar, cor-1380

responding positive and negative examples, and1381

the latest feedback, to produce revised grammars.1382

Therefore, since, in each iteration, an LLM may1383

produce similar and even the same grammar as the1384

previous ones, especially when they fail to fix the1385

previous errors leading to the same feedback pro-1386

vided by the parser, we set the temperature to 0.31387

to expect to enable LLMs to generate more diverse1388

grammars even for encountering the same feed-1389

back, to optimize the performance. This approach1390

highlights the optimization from the perspective of1391

the parser to provide more LLM-friendly feedback.1392

However, due to limited space and the trivial-yet-1393

complex optimization process, for the details of the1394

optimization of the BNF parser, please refer to our1395

source code and the comments.1396

E LLM-Driven Hybrid Genetic1397

Algorithm1398

The pseudocode of HyGenar is presented in Algo-1399

rithm 1, with detailed descriptions of its primary1400

functions including Fitness, Select, Cross, and1401

Mut provided in Section 5. In Algorithm 1, we1402

note Fitness function as FITNESS, Select function1403

as SELECT, Cross function as CROSS, and Mut1404

function as MUTATE.1405

As shown in Algorithm 1, it takes seven parame-1406

ters: P and N means a set of positive and negative1407

examples respectively, k indicates population size,1408

g represents generations which means the number1409

of iterations of evolution, ρ means the crossover1410

rate, µ means the mutation rate, and LLM means1411

an LLM which takes a prompt and returns a re-1412

sponse. In addition, PROMPTGENERATOR means1413

to generate a prompt from the prompt template1414

shown in Prompt Template 1. MAXFITNESSS-1415

CORE is a constant indicating the highest fitness1416

score any candidate grammar can achieve and due1417

to each challenge in the constructed dataset only1418

having 3 positive and 3 negative examples, the1419

highest fitness score is 6. We thus set MAXFIT-1420

NESSSCORE to 6.1421

In addition, for LLMMut, we have shown the1422

prompt template used to prompt LLMs to mutate1423

a given grammar in Prompt Template 2, in which1424

bnf_grammar means the placeholder for a candi-1425

date grammar while positive_examples and nega- 1426

tive_examples means a set of positive and negative 1427

examples respectively. 1428

F Additional Results 1429

In addition to the results shown in Table 1, we have 1430

shown 7 more results and discussed them respec- 1431

tively in subsections F.1, F.2, F.3, F.4, and F.5. 1432

F.1 Results for C1, C2, and C3 1433

Table 4 presents the results categorized into three 1434

subsets: C1, C2, and C3. The subset C1 includes 1435

challenges where the reference grammars have 1436

1 ∼ 3 non-terminals, C2 are those with 4 ∼ 6 1437

non-terminals, and C3 consists of challenges with 1438

7 ∼ 9 non-terminals. Therefore, it aims to demon- 1439

strate and analyze the performance of LLMs as the 1440

number of non-terminals increases. 1441

As the results are shown in Table 4, as the num- 1442

ber of non-terminals increases, both SX and SE 1443

decrease across all LLMs. While DP and OPF ex- 1444

hibit suboptimal and unsatisfactory performance, 1445

HyGenar consistently demonstrates and contributes 1446

substantial improvements across most LLMs, even 1447

as the number of non-terminals increases. For ex- 1448

ample, in the case of GPT-4o, HyGenar increases 1449

the SE by 21% compared to DP and OPF on C3. 1450

Similarly, with GPT-3.5-Turbo, compared to DP 1451

and OPF, HyGenar improves the SE by 30% and 1452

28% on C2 and 20% and 19% on C3, respectively. 1453

F.2 Results for P1, P2, and P3 1454

Table 5 demonstrates the results grouped into three 1455

subsets: P1, P2, and P3. The subset P1 consists 1456

of challenges where the reference grammars have 1457

1 ∼ 6 production rules, P2 includes those with 7 ∼ 1458

15 production rules, and P3 consists of challenges 1459

with the number of production rules greater than 1460

16. Therefore, it aims to show and analyze the 1461

performance of LLMs as the number of production 1462

rules increases. 1463

Similar to the results of C1, C2, and C3, as the 1464

number of production rules increases, both SX and 1465

SE decrease across all LLMs. Nevertheless, Hy- 1466

Genar can still steadily improve both SE and SX , 1467

even as the number of production rules increases. 1468

F.3 Results for Diff , OF , and OG Metrics 1469

To investigate whether LLMs generate grammars 1470

in an overfitted manner and whether HyGenar im- 1471

proves performance through overfitting, as well as 1472

16

Algorithm 1 HyGenar

1: procedure GENERATEGRAMMAR(P,N , k, g, ρ, µ, LLM)
2: population← [] ▷ Initialize population as an empty list
3: G∗.best← null ▷ Keep track of overall best grammar
4: fitness.best← −1 ▷ Track highest fitness found so far
5: for i← 1 to k do
6: prompt← PROMPTGENERATOR ▷ Use prompt template from Prompt Template 1
7: G∗ ← LLM(prompt) ▷ Use LLM to get an initial candidate
8: score← FITNESS(G∗,P,N) ▷ Compute fitness
9: if score = MAXFITNESSSCORE then

10: return G∗ ▷ Return early if perfect score is achieved
11: population← population ∥ [G∗] ▷ Add candidate to population
12: for i← 1 to g do
13: fitnessScores← []
14: for G∗ ∈ population do
15: score← FITNESS(G∗,P,N)
16: fitnessScores← fitnessScores ∥ [(score,G∗)] ▷ Add a tuple of score and grammar
17: if score > fitness.best then
18: fitness.best← score
19: G∗.best← G∗

20: if fitness.best = MAXFITNESSSCORE then
21: return G∗.best ▷ Return the best grammar found
22: G = [G∗ | (score,G∗) ∈ fitnessScores]
23: S = [score | (score,G∗) ∈ fitnessScores]
24: selected← SELECT(G, S)
25: population.new ← []
26: while |population.new| < k do
27: G∗

a, G
∗
b ← RANDOMCHOICE(selected)

28: G∗ ← CROSS(G∗
a, G

∗
b , ρ)

29: if UNIFORM(0, 1) < µ then
30: G∗ ← MUTATE(G∗,P,N , LLM)

31: population.new ← population.new ∥ [G∗]

32: population← population.new ▷ Proceed to the next generation
return G∗.best

to examine whether LLMs and our method pro-1473

duce overly generalized grammars, we employed1474

the three evaluation metrics: Diff , OF , OG . The1475

results are presented in Table 6, 7, and 8, respec-1476

tively. The notation “N/A” indicates inapplicability.1477

Since these three metrics are only applicable when1478

a grammar possesses correct semantics, “N/A” thus1479

signifies that no grammar in the evaluation set ex-1480

hibits correct semantics.1481

Through the Diff metric, as shown in Tabel 6,1482

we observe that the number of production rules1483

used in derivations of the generated grammars and1484

the reference grammars does not differ significantly1485

on average. However, as the number of production1486

rules in the reference grammar increases, the Diff ⋄1487

exhibits a slight upward trend. The Diff ⋄ is almost 1488

always positive across most LLMs and methods, 1489

which indicates that, in most cases, the number of 1490

production rules used by the generated grammars 1491

is lower than that of the reference grammars. 1492

Furthermore, Table 7 presents the OF metric. 1493

For some models, particularly GPT-3.5-Turbo, an 1494

increasing number of production rules corresponds 1495

to a certain degree of overfitting. Nevertheless, 1496

on average, most LLMs do not exhibit significant 1497

overfitting. Additionally, we observe that in HyGe- 1498

nar, the OF metric does not show a significant dif- 1499

ference compared to the baselines, indicating that 1500

HyGenar does not improve performance through 1501

overfitting. 1502

17

Additionally, we present the OG metric in Ta-1503

ble 8. We observed that, for some models, such1504

as Qwen:72b-Instruct, as the number of produc-1505

tion rules in the reference grammar increases, they1506

tend to generate overly generalized grammars. Nev-1507

ertheless, on average, most LLMs do not tend to1508

generate overgeneralized grammars.1509

F.4 Results for TU Metrics1510

To investigate whether LLMs generate irrelevant1511

production rules, we employ the TU metric. For1512

example, given the challenge shown in Figure 1, a1513

generated grammar might be:1514

<stmt> ::= <func> "(" <args> ")"
<args> ::= <expr> | <expr> "," <args>
<expr> ::= <char> | <number>
<func> ::= <char> <func> | <char>
<char> ::= "a" | ... | "z"
<number> ::= "0" | ... | "9"
<hello> ::= "hello"
<world> ::= "world"

1515

in which:1516

<hello> ::= "hello"
<world> ::= "world"1517

are two irrelevant production rules.1518

As shown in Table 9, on average, across both1519

baselines and in HyGenar, TU remains relatively1520

high, indicating that LLMs do not tend to produce1521

irrelevant production rules. However, as the num-1522

ber of production rules increases, TU shows a ten-1523

dency of declination. Nevertheless, this does not1524

imply that LLMs generate more irrelevant rules.1525

Considering the results from OG , we think this1526

decrease may more likely be attributable to the1527

generated grammar becoming more generalized.1528

F.5 Results for Robustness Evaluation1529

Since HyGenar requires setting the temperature1530

greater than 0 which we set to 0.7, we repeated1531

5 independent experiments for both GPT-4o and1532

GPT-3.5-Turbo to ensure the temperature does not1533

affect the results significantly.1534

The results are demonstrated in Table 3, in which1535

each row means the results of one experiment. The1536

averages of syntax correctness of GPT-4o and GPT-1537

3.5-Turbo are 95.8% and 98.6% and the standard1538

deviations are 0.4% and 0.49%, respectively. The1539

averages of semantic correctness of GPT-4o and1540

GPT-3.5-Turbo are 93.2% and 61.6% and the stan- 1541

dard deviations are 0.4% and 0.49%. Therefore, it 1542

indicates that although we set the temperature to 1543

0.7 in HyGenar, the fluctuation of both syntax cor- 1544

rectness and semantic correctness are very slight 1545

and the performance across multiple experiments 1546

stays steady. Thus, the results demonstrated the 1547

robustness of our proposed method, HyGenar. 1548

Prompt Template 1: Generate a Grammar
Directly with a Given Set Positive and Neg-
ative Examples

Given a set of positive and negative
examples, generate the Backus–Naur Form
(BNF) grammar that accepts all positive
examples and rejects all negative examples.
1. Only generate the standard BNF
grammar;
2. The generated BNF grammar MUST
accept all positive examples and reject all
negative examples;
3. Each terminal symbol MUST be quoted
with double quotes and MUST NOT escape
double quotes or pipeline in terminal
symbols;
4. Pay special attention to whether spaces,
line breaks, or other special symbols are
required between each symbol, and if so,
these need to be explicitly specified, e.g.
<term> ::= "1" "+" "2" can handle "1+2"
but not "1 + 2" while <term> ::= "1" " " "+"
" " "2" can handle "1 + 2" but not "1+2";
5. The entry point of the generated BNF
grammar MUST be the non-terminal
symbol in the first production rule;
6. Only the generated BNF should be
wrapped in a pair of triple backtick;
7. Do NOT output any additional texts,
comments, or explanations.

===Positive Examples===
{positive_examples}
===Negative Examples===
{negative_examples}

18

Experiment SX SE

GPT-4o

1st 95 93
2nd 96 93
3rd 96 94
4th 96 93
5th 96 93

GPT-3.5-Turbo

1st 98 62
2nd 98 62
3rd 99 62
4th 99 61
5th 99 61

Table 3: Results of Syntax and Semantic Correctness for
HyGenar with GPT-4o and GPT-3.5-Turbo on Grammar
Generation by Conducting 5 Independent Experiments
(%)

Parser Feedback 1: Invalid Production Rule

This error is likely due to not satisfying one
of the following requirements:
1. A rule MUST start with a non-terminal
definition;
2. A non-terminal symbol MUST be in
angle brackets, e.g. <non-terminal>;
3. A non-terminal definition must be
followed by ’::=’ to indicate the start of the
right-hand side;

Prompt Template 2: LLM-Driven Mutation

Modify the following BNF grammar
slightly to improve its acceptance of the
positive examples and rejection of the
negative examples.

===BNF Grammar===
{bnf_grammar}

===Positive Examples===
{positive_examples}
===Negative Examples===
{negative_examples}

Only output the modified BNF grammar
wrapped in triple backticks.

Prompt Template 3: Generate Grammars

Generate a list of random standard
Backus-Naur Form (BNF) grammar with
the following constraints:
1. Each generated BNF grammar MUST be
SELF-CONTAINED and VALID, which
means it should be able to recognize a valid
string;
2. Each generated BNF grammar MUST
have exactly {k} lines;
3. Each generated BNF grammar MUST be
unique;
4. Each generated BNF grammar MUST be
separated by a newline in addition to the
linebreak;
5. For each generated BNF grammar, the
entry point MUST be at the first line;
6. Only generate {n} BNF grammars;
7. Only output BNF grammars WITHOUT
any additional text or code block, like
"```".

Prompt Template 4: Generate Negative Ex-
amples with a Given Grammar

Generate a list of negative examples with
the following constraints:
1. Each example MUST be separated by a
newline in addition to the linebreak;
2. Only output examples WITHOUT any
additional text or code block, like "```";
3. Only output {m} examples;
4. Each example MUST be generated based
on the given BNF grammar;
5. Each example should be greatly related
to the given BNF grammar, but ensure it is
NOT a valid string for the given BNF
grammar.
For example, given the following BNF
grammar:
<term> ::= "0" | "1" | "2"
you should output negative examples like:
6

*

9

Then, the given BNF grammar is:
{reference_grammar}

19

Challenge Set SXDP SXOPF SXHyGenar SEDP SEOPF SEHyGenar

GPT-4o

C1 100 100 100 99 99 100 ↑1 ↑1

C2 100 100 100 93 95 ↑2 100 ↑7 ↑5

C3 79 92 ↑13 87 ↑8 ↓5 59 59 80 ↑21 ↑21

All 93 97 ↑4 96 ↑3 ↓1 84 85 ↑1 93 ↑9 ↑8

GPT-3.5-Turbo

C1 98 97 ↓1 100 ↑2 ↑3 72 71 ↓1 93 ↑21 ↑22

C2 98 99 ↑1 100 ↑2 ↑1 28 30 ↑2 58 ↑30 ↑28

C3 84 90 ↑6 96 ↑12 ↑6 11 12 ↑1 31 ↑20 ↑19

All 94 95 ↑1 99 ↑5 ↑4 37 38 ↑1 61 ↑24 ↑23

Qwen:72b-Chat

C1 73 76 ↑3 96 ↑23 ↑20 52 53 ↑1 76 ↑24 ↑23

C2 48 48 77 ↑29 ↑29 6 8 ↑2 26 ↑20 ↑18

C3 20 23 ↑3 56 ↑36 ↑33 1 2 ↑1 11 ↑10 ↑9

All 47 49 ↑2 76 ↑29 ↑27 20 21 ↑1 38 ↑18 ↑17

Llama3:70b-Instruct

C1 88 90 ↑2 97 ↑9 ↑7 78 77 ↓1 94 ↑16 ↑17

C2 54 60 ↑6 76 ↑22 ↑16 31 35 ↑4 61 ↑30 ↑26

C3 28 34 ↑6 52 ↑24 ↑18 15 14 ↓1 29 ↑14 ↑15

All 57 61 ↑4 75 ↑18 ↑14 41 42 ↑1 61 ↑20 ↑19

Gemma2:27b-Instruct

C1 99 100 ↑1 100 ↑1 91 92 ↑1 98 ↑7 ↑6

C2 97 97 99 ↑2 ↑2 49 49 84 ↑35 ↑35

C3 76 79 ↑3 93 ↑17 ↑14 26 29 ↑3 54 ↑28 ↑25

All 91 92 ↑1 98 ↑7 ↑6 56 57 ↑1 79 ↑23 ↑22

Mistral:7b-Instruct

C1 1 25 ↑24 3 ↑2 ↓22 0 17 ↑17 2 ↑2 ↓15

C2 1 20 ↑19 1 ↓19 1 6 ↑5 0 ↓1 ↓6

C3 1 11 ↑10 0 ↓1 ↓11 0 1 ↑1 0 ↓1

All 1 19 ↑18 1 ↓18 0 8 ↑8 1 ↑1 ↓7

Codestral:22b

C1 82 96 ↑14 99 ↑17 ↑3 82 92 ↑10 98 ↑16 ↑6

C2 53 77 ↑24 86 ↑33 ↑9 36 45 ↑9 69 ↑33 ↑24

C3 23 39 ↑16 57 ↑34 ↑18 15 19 ↑4 33 ↑18 ↑14

All 53 71 ↑18 80 ↑27 ↑9 44 52 ↑8 67 ↑23 ↑15

Starcoder2:15b-Instruct

C1 97 68 ↓29 100 ↑3 ↑32 67 42 ↓25 84 ↑17 ↑42

C2 73 65 ↓8 99 ↑26 ↑34 14 12 ↓2 31 ↑17 ↑19

C3 58 48 ↓10 94 ↑36 ↑46 11 7 ↓4 17 ↑6 ↑10

All 76 60 ↓16 98 ↑22 ↑38 30 20 ↓10 44 ↑14 ↑24

Table 4: Averages of Syntax and Semantic Correctness Grouped in C1, C2, and C3 (%)

20

Challenge Set SXDP SXOPF SXHyGenar SEDP SEOPF SEHyGenar

GPT-4o

P1 100 100 100 99 99 100 ↑1 ↑1

P2 100 100 100 96 95 ↓1 100 ↑4 ↑5

P3 81 93 ↑12 89 ↑8 ↓4 62 64 ↑2 82 ↑20 ↑18

All 93 97 ↑4 96 ↑3 ↓1 84 85 ↑1 93 ↑9 ↑8

GPT-3.5-Turbo

P1 98 97 ↓1 100 ↑2 ↑3 69 67 ↓2 93 ↑24 ↑26

P2 99 100 ↑1 100 ↑1 18 22 ↑4 42 ↑24 ↑20

P3 86 90 ↑4 96 ↑10 ↑6 23 24 ↑1 46 ↑23 ↑22

All 94 95 ↑1 99 ↑5 ↑4 37 38 ↑1 61 ↑24 ↑23

Qwen:72b-Chat

P1 72 74 ↑2 96 ↑24 ↑22 42 43 ↑1 69 ↑27 ↑26

P2 51 51 76 ↑25 ↑25 12 13 ↑1 24 ↑12 ↑11

P3 21 25 ↑4 59 ↑38 ↑34 6 7 ↑1 21 ↑15 ↑14

All 47 49 ↑2 76 ↑29 ↑27 20 21 ↑1 38 ↑18 ↑17

Llama3:70b-Instruct

P1 86 90 ↑4 97 ↑11 ↑7 73 73 92 ↑19 ↑19

P2 63 69 ↑6 86 ↑23 ↑17 38 40 ↑2 67 ↑29 ↑27

P3 26 30 ↑4 47 ↑21 ↑17 15 15 29 ↑14 ↑14

All 57 61 ↑4 75 ↑18 ↑14 41 42 ↑1 61 ↑20 ↑19

Gemma2:27b-Instruct

P1 99 100 ↑1 100 ↑1 87 88 ↑1 98 ↑11 ↑10

P2 99 99 100 ↑1 ↑1 48 47 ↓1 84 ↑36 ↑37

P3 77 80 ↑3 94 ↑17 ↑14 33 37 ↑4 58 ↑25 ↑21

All 91 92 ↑1 98 ↑7 ↑6 56 57 ↑1 79 ↑23 ↑22

Mistral:7b-Instruct

P1 2 26 ↑24 3 ↑2 ↓23 1 15 ↑14 2 ↑1 ↓13

P2 0 19 ↑19 1 ↑1 ↓18 0 5 ↑5 0 ↓5

P3 0 13 ↑13 0 ↓13 0 3 ↑3 0 ↓3

All 1 19 ↑18 1 ↓18 0 8 ↑8 1 ↑1 ↓7

Codestral:22b

P1 82 97 ↑15 99 ↑17 ↑2 79 89 ↑10 97 ↑18 ↑8

P2 51 73 ↑22 80 ↑29 ↑7 35 38 ↑3 66 ↑31 ↑28

P3 29 47 ↑18 64 ↑35 ↑17 21 30 ↑9 41 ↑20 ↑11

All 53 71 ↑18 80 ↑27 ↑9 44 52 ↑8 67 ↑23 ↑15

Starcoder2:15b-Instruct

P1 96 68 ↓28 100 ↑4 ↑32 54 34 ↓20 74 ↑20 ↑40

P2 65 59 ↓6 99 ↑34 ↑40 16 10 ↓6 26 ↑10 ↑16

P3 67 55 ↓12 95 ↑28 ↑40 20 15 ↓5 31 ↑11 ↑16

All 76 60 ↓16 98 ↑22 ↑38 30 20 ↓10 44 ↑14 ↑24

Table 5: Averages of Syntax and Semantic Correctness Grouped in P1, P2, and P3 (%)

21

Challenge Set Diff ⋄
DP Diff ⋄

OPF Diff ⋄
HyGenar

GPT-4o

P1 0.22 0.22 0.21
P2 1.38 1.32 1.18
P3 4.37 3.95 3.36
All 1.76 1.63 1.65

GPT-3.5-Turbo

P1 0.42 0.37 0.27
P2 2.43 2.34 2.21
P3 3.38 3.42 4.30
All 1.40 1.43 1.81

Qwen:72b-Chat

P1 0.12 0.08 -0.02
P2 0.32 0.38 0.38
P3 2.33 3.00 3.02
All 0.04 0.50 0.68

Llama3:70b-Instruct

P1 0.39 0.38 0.44
P2 1.56 1.62 1.50
P3 2.52 2.42 2.85
All 1.00 1.00 1.21

Gemma2:27b-Instruct

P1 0.55 0.54 0.59
P2 1.77 1.74 1.50
P3 4.03 4.27 4.40
All 1.64 1.74 1.93

Mistral:7b-Instruct

P1 1.00 -0.59 0.00
P2 N/A 1.88 N/A
P3 N/A 3.17 N/A
All 1.00 0.44 0.00

Codestral:22b

P1 0.18 0.16 0.10
P2 1.26 1.17 0.75
P3 1.86 2.34 2.96
All 0.72 0.85 0.94

Starcoder2:15b-Instruct

P1 0.39 0.41 0.20
P2 0.40 0.62 0.71
P3 2.90 3.13 4.11
All 1.02 1.22 1.32

Table 6: Averages of Diff ⋄ Grouped in P1, P2, and P3

22

Challenge Set OFDP OFOPF OFHyGenar

GPT-4o

P1 0.00 0.00 0.00
P2 4.03 0.68 1.28
P3 13.49 11.54 11.31
All 5.08 3.50 4.17

GPT-3.5-Turbo

P1 0.00 0.00 0.00
P2 35.71 34.29 24.24
P3 17.02 16.67 24.47
All 9.05 9.85 11.89

Qwen:72b-Chat

P1 0.00 0.00 0.00
P2 0.00 0.00 0.00
P3 25.00 21.43 19.05
All 2.8 2.65 3.92

Llama3:70b-Instruct

P1 0.00 0.00 0.00
P2 1.67 4.76 0.95
P3 6.45 6.45 10.17
All 1.35 2.21 2.12

Gemma2:27b-Instruct

P1 0.00 0.00 0.00
P2 9.33 9.59 6.11
P3 16.18 16.00 14.41
All 6.00 6.19 5.88

Mistral:7b-Instruct

P1 0.00 0.00 0.00
P2 N/A 12.05 N/A
P3 N/A 33.33 N/A
All 0 7.32 0

Codestral:22b

P1 0.00 0.00 0.00
P2 0.00 0.00 0.00
P3 4.76 6.56 10.84
All 0.84 1.42 2.49

Starcoder2:15b-Instruct

P1 0.00 0.00 0.00
P2 16.00 6.25 4.88
P3 12.20 12.90 15.87
All 5.49 4.63 5.04

Table 7: Averages of OF Grouped in P1, P2, and P3 (%)

23

Challenge Set OGDP OGOPF OGHyGenar

GPT-4o

P1 0.00 0.00 1.11
P2 0.00 0.00 0.00
P3 0.00 0.00 0.60
All 0.00 0.00 0.60

GPT-3.5-Turbo

P1 0.00 0.00 1.19
P2 0.00 0.00 0.00
P3 2.13 0.00 1.06
All 0.50 0.00 0.91

Qwen:72b-Chat

P1 1.32 2.56 3.20
P2 0.00 0.00 2.70
P3 8.33 0.00 0.00
All 1.87 1.77 2.45

Llama3:70b-Instruct

P1 0.00 0.00 0.00
P2 0.00 0.00 0.00
P3 0.00 0.00 0.00
All 0.00 0.00 0.00

Gemma2:27b-Instruct

P1 0.00 0.00 0.00
P2 0.00 1.37 1.53
P3 0.00 0.00 0.00
All 0.00 0.33 0.47

Mistral:7b-Instruct

P1 0.00 11.11 0.00
P2 N/A 0.00 N/A
P3 N/A 0.00 N/A
All 0.00 7.32 0.00

Codestral:22b

P1 0.70 1.25 1.14
P2 1.85 1.67 0.97
P3 0.00 0.00 0.00
All 0.84 1.07 0.83

Starcoder2:15b-Instruct

P1 0.00 0.00 2.24
P2 12.00 0.00 4.88
P3 0.00 0.00 0.00
All 1.83 0.00 2.10

Table 8: Averages of OG Grouped in P1, P2, and P3 (%)

24

Challenge Set TU ⋄
DP TU ⋄

OPF OG⋄
HyGenar

GPT-4o

P1 100 100 99.81
P2 99.60 99.55 99.67
P3 93.04 92.80 91.39
All 97.93 97.81 96.96

GPT-3.5-Turbo

P1 99.64 99.33 97.93
P2 90.91 89.71 89.11
P3 78.56 79.74 77.57
All 93.43 93.04 90.32

Qwen:72b-Chat

P1 92.95 94.66 90.47
P2 76.56 74.29 81.31
P3 79.79 77.88 77.53
All 88.56 88.79 86.14

Llama3:70b-Instruct

P1 100 100 99.80
P2 88.48 89.06 93.03
P3 97.73 98.24 87.33
All 96.58 96.71 95.41

Gemma2:27b-Instruct

P1 99.82 99.82 99.25
P2 92.67 94.21 95.80
P3 93.06 94.02 90.61
All 96.50 97.07 95.78

Mistral:7b-Instruct

P1 50.00 68.34 83.33
P2 N/A 64.67 N/A
P3 N/A 64.17 N/A
All 50.00 67.01 83.33

Codestral:22b

P1 98.83 98.11 98.36
P2 88.76 90.31 89.58
P3 87.33 85.27 83.37
All 94.54 93.66 92.41

Starcoder2:15b-Instruct

P1 97.86 96.44 96.64
P2 83.29 87.57 81.92
P3 84.91 85.39 80.48
All 92.40 91.96 89.83

Table 9: Averages of TU⋄ Grouped in P1, P2, and P3 (%)

25

Parser Feedback 2: Lack of Alternatives

This error is likely due to the reason that the
right-hand side is not defined after ’::=’.

Prompt Template 5: Feedback Prompt in
OPF

Given a set of positive and negative
examples, generate the Backus–Naur Form
(BNF) grammar that accepts all positive
examples and rejects all negative examples.
1. Only generate the standard BNF
grammar;
2. The generated BNF grammar MUST
accept all positive examples and reject all
negative examples;
3. Each terminal symbol MUST be quoted
with double quotes and MUST NOT escape
double quotes or pipeline in terminal
symbols;
4. Pay special attention to whether spaces,
line breaks, or other special symbols are
required between each symbol, and if so,
these need to be explicitly specified, e.g.
<term> ::= "1" "+" "2" can handle "1+2"
but not "1 + 2" while <term> ::= "1" " " "+"
" " "2" can handle "1 + 2" but not "1+2";
5. The entry point of the generated BNF
grammar MUST be the non-terminal
symbol in the first production rule;
6. Only the generated BNF should be
wrapped in a pair of triple backtick;
7. Do NOT output any additional texts,
comments, or explanations.

===Positive Examples===
{positive_examples}
===Negative Examples===
{negative_examples}

===Generated BNF===
{bnf_grammar}

===Feedback===
The generated BNF grammar has incorrect
syntax and please consider fixing it by
referring to the feedback.
Here is the feedback from the BNF parser:
{parser_feedback}

Prompt Template 6: Generate Positive Ex-
amples with a Given Grammar

Generate a list of positive examples with
the following constraints:
1. Each example MUST be separated by a
newline in addition to the linebreak;
2. Only output examples WITHOUT any
additional text or code block, like "```";
3. Only output {m} examples;
4. Each example MUST be generated based
on the given BNF grammar;
5. Pay attention to whether the whitespaces
are allowed between symbols.
For example, given the following BNF
grammar:
<term> ::= "0" | "1" | "2"
you should output positive examples like:
0

1

2

Then, the given BNF grammar is:
{reference_grammar}

26

	Introduction
	Background
	Context-Free Grammar
	Backus-Naur Form
	Grammar Inference

	Related Work
	Grammar Generation
	Code Generation

	Grammar Generation Ability of LLMs
	Dataset
	Metrics
	Baselines
	Experiment Settings
	Results & Analysis

	LLM-Driven Hybrid Genetic Algorithm
	Methodology
	Experiment Settings
	Results & Analysis

	Conclusion
	Limitations
	Dataset Construction
	Grammar Quality Metrics
	Direct Prompting
	Optimization of BNF Parser for Providing LLM-Friendly Feedback
	LLM-Driven Hybrid Genetic Algorithm
	Additional Results
	Results for C1, C2, and C3
	Results for P1, P2, and P3
	Results for Diff, OF, and OG Metrics
	Results for TU Metrics
	Results for Robustness Evaluation

