skglm: Improving scikit-learn for Regularized Generalized Linear Models

Mathurin Massias! Badr Moufad' Quentin Bertrand >

Abstract

We introduce skglm, an open-source Python pack-
age for regularized Generalized Linear Models
(GLMs). It solves many limitations of scikit-learn,
that have impaired the use of GLMs by practition-
ers. Thanks to its composable nature, skglm sup-
ports combining datafits, penalties, and solvers to
fit a wide range of models, many of them not in-
cluded in scikit-learn (e.g. Group Lasso and vari-
ants). It uses state-of-the-art algorithms to solve
problems involving high-dimensional datasets,
providing large speed-ups compared to existing
implementations, and unlocking new applications.
It is fully compliant with the scikit-learn API and
acts as a drop-in replacement for its estimators.
Finally, it abides by the standards of open source
development and is integrated in the scikit-learn-
contrib GitHub organization.

1. Introduction

Generalized Linear Models (GLMs) are simple yet powerful
models. They are highly interpretable as they assume the
output is a function of a linear combination of features. They
are often coupled with a regularization term endowing their
coefficients with additional properties such as sparsity or
group structure. From an optimization perspective, learning
these coefficients requires solving an optimization problem
with a composite objective, the sum of a datafit and a penalty:
the datafit embodies the model specifications whereas the
penalty enforces a given prior on the solution.

There exists a wealth of datafits and penalties covering a
broad range of applications such as inverse problems in
neuroscience (Strohmeier et al., 2016) or survival analysis
(Efron, 1977) and having tailored properties, for instance

'Inria, ENS de Lyon, CNRS, Université Claude Bernard Lyon
1, LIP, UMR 5668, 69342, Lyon cedex 07, France “Université Jean
Monnet Saint-Etienne, CNRS, Institut d’Optique Graduate School,
Inria, Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-
ETIENNE, France. Correspondence to: mathurin massias, badr
moufad, quentin bertrand <firstname.lastname @inria.fr>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

robustness to outliers (Barron, 2019) or bias reduction (Fan
and Li, 2001). Hence, a variety of complex GLMs are
routinely used in applied fields, as an essential modelling
step of the data analysis pipeline. Currently, many existing
packages offer implementations of regularized GLMs. For
the Python machine learning community, scikit-learn (F.
Pedregosa et al., 2011) is the de facto standard as it exposes
an efficient implementation of these models through a user-
friendly API easy to use and adopt even by non-experts.

However, several challenges impede the prevalence of off-
the-shelf regularized GLMs and prevent the community
from leveraging them. First, existing packages support a
limited number of GLMs, as they have a non-modular de-
sign that makes handling new datafits and penalties time-
consuming!. Second, some reference packages may fall
behind in terms of speed and efficiency, as the high imple-
mentation cost of a new method prevents them from leverag-
ing the most recent research advances”. Large scale datasets,
which have become very common in the past years, are often
out of reach for analysis by the existing implementations.

We introduce skglm, a Python package specifically designed
to solve regularized GLMs. It supports many models, in-
cluding those missing from standard libraries, and most im-
portantly, can be easily extended to support new penalties,
datafits or solvers. It implements state-of-the-art algorithms
that enable it to efficiently tackle high-dimensional datasets,
making it the fastest in the current ecosystem when the
number of features is large. Finally, it complies with soft-
ware development standards (Buitinck et al., 2013) hence
promoting its persistence and encouraging its collaborative
development.

2. Package implementation

Design choices Despite the diversity of regularized GLMs,
from an optimization point of view, they all reduce to solv-

ISee for example this 6 year old pull request to make
scikit-learn solvers more extensible: https://github.com/
scikit-learn/scikit-learn/pull/10745

2An issue that highlights a lack of performance in
lifelines, which is a reference package for survival
analysis: https://github.com/CamDavidsonPilon/
lifelines/issues/1531

https://github.com/scikit-learn/scikit-learn/pull/10745
https://github.com/scikit-learn/scikit-learn/pull/10745
https://github.com/CamDavidsonPilon/lifelines/issues/1531
https://github.com/CamDavidsonPilon/lifelines/issues/1531

ing a composite problem:

ngn datafit(w) 4 penalty(w)

where w are the coefficients of the model. The main design
principle of skglm is to view these models as a combination
of three objects: a solver that minimizes the sum of a datafit
and a penalty. With that, skglm treats solvers, datafits and
penalties as three separate components and combines them
to solve regularized GLMs. Hence, it achieves high flexi-
bility and extensibility by leveraging reusable independent
components, contrary to the current design of scikit-learn.

In terms of code, a solver is an object implementing a
solve method and that has two fields to specify the datafit
and the penalty required attributes (e.g., it allows to specify
if the solver needs to access the Lipschitz constant of the
datafit, or the proximal operator of the penalty). Once a
datafit implements these attributes, it can be used by the
solver and mixed with any other penalty that implements
the required penalty attributes. So far (v0.4), skglm supports
14 datafits, 16 penalties, and 8 solvers. With these compo-
nents, it can solve hundreds of different problems, listed in
Table 1.

High modularity and extensiblity As illustrated in Fig-
ure 1 on the bottom snippet, a problem can be solved by
initializing a solver then calling its so1ve method with the
desired datafit and penalty, of, more similar to the spirit of
sklearn, by wrapping datafit, penalty and solver inside a
GeneralizedLienarEstimator that behaves like a
classical sklearn estimator. This implies that adding support
for new problems is synonym to implementing a new datafit,
penalty or solver and mixing it with existing components.

Fast algorithms skglm uses state-of-the-art algorithm to
solve regularized GLMs. It is built around a well-founded
theory that takes advantage of the properties of problems.

In particular, for sparse GLMs, skglm leverages the small
support of the solution wherein few of the coefficients are
non-zero. skglm builds a working set that progressively ap-
proaches the support hence reducing considerably the opti-
mization variables (Bertrand et al., 2022). For non quadratic
datafit, taking into account the curvature through the Hes-
sian is critical, and skglm implements a fast Prox-Newton
solver. skglm also includes a GramCD solver, specifically
optimized for problems with a Quadratic datafit where the
number of samples exceeds the number of features.

Examples of other solvers include a wrapper for Scipy’s
LBFGS solver, and a Primal-Dual solver for non-smooth
datafits used with non-smooth penalties (e.g. ¢1-penalized
quantile regression with the pinball loss). When possible,
skglm uses Anderson Acceleration (Scieur, d’ Aspremont,
and Bach, 2016) to accelerate the iterates of some GLMs

Table 1. skglm supported datafits and penalties, as of version v0 . 4
released on April 2025. The datafits and penalties can be subdi-
vided into three categories. Any combination of a datafit and a
penalty within the subtables is valid.

Single task
Datafit Penalty
Quadratic L1
Logistic L1 _plus_ L2
QuadraticSVC WeightedL 1
Huber MCPenalty
Poisson WeightedMCPenalty
Gamma SCAD
Cox IndicatorBox
Pinball LO0.5
SqrtQuadratic L23
WeightedQuadratic LogSumPenalty
QuadraticHessian PositiveConstraint
SLOPE
Group
Datafit Penalty
QuadraticGroup WeightedGroupL2
LogisticGroup
Multitask
Datafit Penalty
QuadraticMultiTask L2.05
BlockMCPenalty
BlockSCAD

with a vector auto-regressive behavior. Since Anderson
Acceleration does not interfere with the used algorithm, it
provides a cheap acceleration procedure applicable for many
solvers, in particular coordinate-descent based ones.

Finally, thanks to the flexibility of the design, it is possible to
add new solvers to account for problems specificities while
leveraging previously implemented datafits and penalties.

Figure 2 showcases the speed of skglm on three bench-
marks®. For transparent and reproducible benchmarks, we
used benchopt (Moreau et al., 2022). Primarily interested in
sparse penalties, we focus on the case where the number of
features is much greater than the number of samples; in the

*Reproduce and extend the benchmarks here https:
//github.com/benchopt/benchmark_lasso for Lasso,
https://github.com/benchopt/benchmark_cox for
sparse Cox, and https://github.com/benchopt/
benchmark_group_lasso for Group Lasso

https://github.com/benchopt/benchmark_lasso
https://github.com/benchopt/benchmark_lasso
https://github.com/benchopt/benchmark_cox
https://github.com/benchopt/benchmark_group_lasso
https://github.com/benchopt/benchmark_group_lasso

using explicit skglm estimator
from skglm.estimators import MCPRegression

estimator = MCPRegression ()
estimator.fit (X, vy)

using composition

from skglm import GeneralizedLinearEstimator
from skglm.datafits import Quadratic

from skglm.penalties import MCPenalty

from skglm.solvers import AndersonCD

solver = AndersonCD ()
solver.solve (
X,
Y
Quadratic (),
MCPenalty (alpha=1, gamma=3),

)

via sklearn-like estimator

est = GeneralizedLinearEstimator (
datafit=Quadratic(),
penalty=MCPenalty (alpha=1,
solver=AndersonCD (),

) it (X, v)

gamma=3) ,

Figure 1. Code snippets for solving MCP regression on design ma-
trix X, and target vector y. Given its popularity, MCP regression is
implemented directly as an estimator (top snippet), but users can
also gain more freedom by directly handling the three components
(bottom snippet). For convenience, skglm implements General-
izedLinearEstimator which allows to wrap the three components
in a sklearn-like estimator. The used hyperparameters are arbitrary
and given for the sake of illustration.

reversed configuration the results may vary.

Underlining technologies skglm is entirely written in
Python. It is a design choice in order to make code ac-
cessible and avoid the often high development time costs
that result from relying on extensions, for instance written
in Cython (Behnel et al., 2010). Although written com-
pletely in Python, skglm does not sacrifice performance
and can achieve speed comparable to those achieved with
extensions. skglm relies on Numpy (Harris et al., 2020)
and Scipy (Virtanen et al., 2020) for dense and sparse
arrays operations. Algorithm specific parts that require
intensive computation are isolated and JIT-compiled by
Numba (Lam, Pitrou, and Seibert, 2015). Similarly, ob-
jects that perform intensive computations, namely datafits
and penalties, are decorated by Numba’s jitclass.
Finally, skglm estimators are fully-compliant with
scikit—-learn: they inherit from scikit-learn’s
base classes and pass the test function check_estimator

from sklearn.utils.estimators_checks.

3. Community

skglm is an open-source package licensed under BSD 3-
Clause and hosted on GitHub*. It is part of the scikit-learn-
contrib GitHub organization, an organization created and
managed by scikit-learn core developers that gathers high
quality scikit-learn compatible projects. Since the first re-
lease of skglm in May 2022, the package has gathered 172
starts, 37 forks, 19 contributors, and more than 5000 down-
loads per month’ (110k in total).

skglm provides three levels of abstraction to serve diverse
users:

1. efficient off-the-shelf estimators that are drop-in re-
placements for their scikit-learn counterparts, includ-
ing estimators with methods for computing solutions
over regularization paths using warm-start, such as
Lasso and MCPRegression.

2. building blocks for composing new scikit-learn com-
patible estimators via GeneralizedLinearEstimator; the
latter seamlessly integrates with scikit-learn’s Pipeline
and GridSearchCV.

3. Flexible API for optimization and statistical re-
searchers to implement new datafits, penalties, and
solvers.

skglm abides by the software development standards. It
features meticulous testing suits comprising around 300 unit
and integration tests. Besides, it has detailed and comprehen-
sive documentation® with a gallery of hands-on examples
and tutorials for new users. The documentation has two
version: stable for the released code and dev for the one
under development; both continuously built and deployed
throughout skglm development cycle. Finally, to ensure
the smooth onboarding of new contributors, the project has
contribution guidelines as well as PR and issues templates.

Real-world impact skglm has demonstrated significant
real-world impact through its integration into the energy
forecasting pipelines of E-REDES’, Portugal’s largest elec-
tricity distribution company. skglm was specifically chosen
for the superior speed and efficiency of its ElasticNet esti-
mator, particularly in computationally intensive tasks like

“Repository of skglm https://github.com/
scikit-learn-contrib/skglm

SDownload statistics https://www.pepy.tech/
projects/skglm

SDocumentation of skglm
scikit-learn.org/skglm/

7https ://www.e—-redes.pt

https://contrib.

https://github.com/scikit-learn-contrib/skglm
https://github.com/scikit-learn-contrib/skglm
https://www.pepy.tech/projects/skglm
https://www.pepy.tech/projects/skglm
https://contrib.scikit-learn.org/skglm/
https://contrib.scikit-learn.org/skglm/
https://www.e-redes.pt

Lasso Sparse Cox Group Lasso
£) - -
E S
5 1075 1 1
Q.
2 o6
S 1076 1 1 1
n
T T T T T T T T T
0 10 20 0.0 0.3 0.6 0 10 20

Time in seconds

—— skglm (our)

—— gcikit-survival

—e— gcikit-learn

lifelines

—— glum yngvem

—e— celer

Figure 2. Timing comparison on three problems: Lasso, Group Lasso and sparse Cox; on the datasets: MEG, Breast-Cancer, and Drug
Potency. The benchmark was performed using a laptop with specifications: CPU 12th Gen Intel® Core™ i7-12700H @ 2.7GHz, 20

cores, 32GB of RAM.

cross-validation. skglm’s versatility, notably through its
GramCD solver, enabled it to adapt effectively to the “’tall”
problem setup, characterized by many samples relative to
features.

4. Conclusion

skglm is a modular and scikit-learn compatible package that
exposes both a high-level and low-level API to solve sparse
GLMs. It is flexible and support a wide range of problems
and more importantly can be easily extended while being
efficient. skglm is an ongoing effort. It has proven its great
potential in terms of speed and extensibility. With every new
release, new scikit-learn compatible estimators are added,
new datafits and penalties are supported, and state-of-art
solvers are implemented.

References

[1] Jonathan T Barron. “A general and adaptive robust
loss function”. In: Proceedings of the IEEE CVF.
2019.

[2] Stefan Behnel et al. “Cython: The best of both
worlds”. In: CiSE (2010).

[3] Quentin Bertrand et al. “Beyond 11: Faster and better
sparse models with skglm”. In: NeurIPS (2022).

[4] Lars Buitinck et al. “API design for machine learning
software: experiences from the scikit-learn project”.
In: European Conference on Machine Learning and
Principles and Practices of Knowledge Discovery in
Databases (2013).

[5] Bradley Efron. “The efficiency of Cox’s likelihood
function for censored data”. In: JASA (1977).

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Jianging Fan and Runze Li. “Variable selection via
nonconcave penalized likelihood and its oracle prop-
erties”. In: JASA (2001).

Charles R. Harris et al. “Array programming with
NumPy”. In: Nature (2020).

Siu Kwan Lam, Antoine Pitrou, and Stanley Seib-
ert. “Numba: A llvm-based python jit compiler”. In:
Proceedings of LLVM-HPC. 2015.

Thomas Moreau et al. “Benchopt: Reproducible, ef-
ficient and collaborative optimization benchmarks”.
In: NeurlIPS. 2022.

F. Pedregosa et al. “Scikit-learn: Machine Learning
in Python”. In: JMLR (2011).

Damien Scieur, Alexandre d’ Aspremont, and Fran-
cis Bach. “Regularized nonlinear acceleration”. In:
NeurIPS (2016).

Daniel Strohmeier et al. “The iterative reweighted

mixed-norm estimate for spatio-temporal MEG/EEG
source reconstruction”. In: IEEE TMI (2016).

Pauli Virtanen et al. “SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python”. In:
Nature Methods (2020).

