Under review as a conference paper at ICLR 2022

REPRESENTATIONS OF COMPUTER PROGRAMS IN THE
HUMAN BRAIN

Anonymous authors
Paper under double-blind review

ABSTRACT

We present the first study relating representations of computer programs generated
by unsupervised machine learning (ML) models and representations of computer
programs in the human brain. We analyze recordings—brain representations—
from functional magnetic resonance imaging (fMRI) studies of people compre-
hending Python code. We discover brain representations, in different and specific
regions of the brain, that encode static and dynamic properties of code such as
abstract syntax tree (AST)-related information and runtime information. We also
map brain representations to representations of a suite of ML models that vary in
their complexity. We find that the Multiple Demand system, a system of brain
regions previously shown to respond to code, contains information about multiple
specific code properties, as well as machine learned representations of code. We
make all the corresponding code, data, and analysis publicly availableﬂ

1 INTRODUCTION

A question of interest, as yet uninvestigated, is what aspects of computer programs, i.e. code, are
encoded by the human brain when comprehending them. Is it possible that common code properties
and the semantics of programs are encoded in brain activity patterns when code is comprehended?
A few prior works have investigated the neural bases of programming (Siegmund et al., 2017} [Floyd
etal.l [Peitek et al.} 2018}, |Castelhano et al.}2019; [Huang et al.|[2019; |[Krueger et al.;[2020; [Prat
et al., [2020; [Ivanova et al., [2020; |[Liu et al., 2020; [Ikutani et al.l 2021} [Peitek et al., 2021). These
works use analysis techniques like functional magnetic resonance imaging (fMRI) and electroen-
cephalography (EEG) to investigate brain regions involved in coding tasks like code comprehension,
code writing, and data structure manipulation. The primary quest of these works though has been to
locate physical regions in the brain involved in these activities, with the goal of determining whether
code-related activity joins other activities supported by those brain regions. It remains unclear what
specific code-related information these regions encode. Do these regions encode specific syntactic
or semantic code properties? Further, are different regions involved in encoding different such prop-
erties? To date, no systematic method exists to generate the evidence from which to draw answers.
These questions form the focus of this work.

One way to learn what information is encoded in the brain is by recording brain signals when read-
ing code (through fMRI or EEG), and then decoding from the recorded signals a code property of
interest. Being able to decode the property accurately from a specific region of the brain establishes
that information related to that code property is faithfully represented in that brain region. A ques-
tion central to such a decoding analysis would be the choice of the target code property—what code
properties should be investigated? We can hand-select a set of fundamental properties of code and
test if they can be decoded. While helpful, such a set will not preclude other, more complex aspects
of code being encoded.

To address the limitation of hand-selected properties, we look to recent advances in unsupervised
machine learning (ML) models trained on code. Dubbed code models, they process large corpora
of code to learn ML model representations of computer programs. These models are increasingly
being used in software engineering workflows (Allamanis et al., [2018a), and have been shown to
perform well on tasks like code summarization (Alon et al.l|2019), detecting variable misuse
[2016), and more recently, code auto-completion (Chen et al., [2021)). These continuous
representations likely encode syntax and semantics of programs (Bichsel et all, 2016} [Allamanis
et al,[2018b} [Srikant et all 2021)). Beyond the fundamental, hand-selected properties, they may en-
code and describe more complex code properties. Decoding these continuous representations from
brain activity data then promises to inform us whether such additional properties are also encoded

"Project URL - https://github.com/anonmyous—-author/anonymous—code

https://github.com/anonmyous-author/anonymous-code

Under review as a conference paper at ICLR 2022

in the brain. Further, comparing representations from code models to the code-related information
encoded in the brain also informs us whether code models resemble humans in the knowledge they
learn and encode. [Yamins et al.| (2013) first showed how information encoded in our visual system
resembles what convolutional neural networks learn when trained to recognize images. A similar
correspondence can possibly be established between code models and the human brain.

In this work, we study code comprehension, and utilize the fMRI recordings dataset from [Ivanova
et al| (2020) to investigate human brain representations of code. We present two means of
proceeding—probing of brain region representations for specific code properties, and analyzing
the mapping of these representations onto various code models with differing model complexity.
We learn affine maps from brain representations to predict hand-selected code properties which
summarize the syntactic and semantic behavior of programs, and similarly predict code repre-
sentations of different code models. We investigate the effects that brain regions, the nature of
code properties, and the complexity of the code models have on the accuracies with which we
decode brain representations. We find that we can decode code-related information from brain
representations, and can map representations of code models from brain representations. We find
the Multiple Demand system, followed by the Language system, to consistently encode specific
code properties and map with machine learned representations of code. We provide an open-source
framework to replicate our experiments, and we release our data and analysis publicly. Link -
https://github.com/anonmyous—author/anonymous—code. The framework allows both
brain data and program metrics to be easily added to extend the current set of experiments. This
should enable authors from other neuroimaging studies or code model developers to collaborate and
analyze data across these works, which will also help amortize the high costs of carrying out such
experiments.

2 RELATED WORK

Of the prior works that have investigated the neural bases of programming through fMRI and EEG
techniques (Siegmund et al., 2017} [Floyd et al., 2017} [Peitek et al.| 2018} |Castelhano et al., 2019;
Huang et al., [2019; Krueger et al., 2020; Ivanova et al., 2020; |Liu et al., [2020; Ikutani et al., 2021}
Peitek et al., [2021)) and through behavioral studies (Prat et al., 2020; |Casalnuovo et al.,2020; (Crich-
ton et al.,2021)), the following probe brain recordings for program properties encoded in them.

Floyd et al.| (2017) learn a linear model to successfully classify whether an observed brain activity
corresponds to reading code or reading text. [Ikutani et al.| (2021) study expert programmers and
show that it is possible to classify code into the four problem categories—math, search, sort, and
string from the brain activations corresponding to the code. Similarly, [Liu et al.| (2020) classify
whether a brain signal corresponds to code implementing an if condition or not. |Peitek et al.
(2021)) analyze correlations between brain recordings of participants reading code and a set of code
complexity metrics.

In testing for code properties, our work uses a similar methodology (a linear model trained on fMRI
data), but we evaluate a larger set of static and dynamic code properties. We also systematically
test whether key programming constructs like control flow and data operations are encoded by these
brain representations. A systematic analysis of multiple such properties has not been performed in
any of these works. Further, we perform these tests in those brain regions identified by |Liu et al.
(2020) and |Ivanova et al.|(2020) as being responsive specifically to code comprehension. This gives
us a finer insight into how different regions encode these properties. In addition to these tests,
we study representations generated by a suite of ML models with varying model complexity and
compare those representations to brain representations.

Brain representations have also been studied in domains like natural language, vision, and motor
control. Among related works in natural language, a domain that resembles programming languages,
Mitchell et al.| (2008)); [Pallier et al.[(2011)); |Brennan & Pylkkénen| (2017); Jain & Huth| (2018));
Gauthier & Levy|(2019);|Schwartz et al.[{(2019);|Wang et al.|(2020); Schrimpf et al.[(2020); |Cao et al.
(2021) have studied brain representations of words and sentences by relating them to representations
produced by language models. While the broader tools we use to investigate these representations,
like multi-voxel pattern analysis (MVPA), are similar to some of these prior works, our focus is on
properties specific to code and not natural language.

3 BACKGROUND

We provide a brief background on fMRI signals as a proxy for brain representations and describe
the brain systems that we probe in this work.

https://github.com/anonmyous-author/anonymous-code

Under review as a conference paper at ICLR 2022

Measuring brain activity with fMRI. Functional magnetic resonance imaging (fMRI) is a brain
imaging technique used to measure brain activity in specific brain regions. When a brain region is
active, blood flows into the region to aid its processing. An MRI machine measures this change
in blood flow, and reports BOLD (blood oxygen level dependent) values sampled at the machine’s
frequency (Glover, 2011, usually 2 seconds). The smallest unit of brain tissue for which BOLD
signal is recorded is called a voxel (an equivalent of a 3D pixel); it comprises several cubic mil-
limeters of brain tissue. For our analyses, we select subsets of voxels belonging to specific brain
systems. Following common practice, the parameters of a general linear model, fit to time-varying
BOLD values, are used as a measure of the overall activation in each voxel in response to a given
input. It is the values of these parameters that, according the neuroscience community, are brain
representations.

Brain systems. A system of brain regions can span

different areas of the brain but behaves as a holistic ; Right hemisphere Left hemisphere
unit, showing similar patterns of engagement across ”
a given cognitive task. We probe the following sys-
tems of regions in our work. See Appendix [A]for a
detailed description of these systems along with rel-
evant references. Multiple Demand (MD) System Language System
* Multiple Demand (MD) system. This system
of regions is known to engage in cognitively de-
manding, domain agnostic tasks like general prob-
lem solving, logic, and spatial memory tasks. |[Liu
et al.| (2020) and Ivanova et al.| (2020) reported that
this system is active during code comprehension.

* Language system (LS). This system responds dur-
ing language production and comprehension across
modalities (speech, text) and languages (across 10 language families, including American sign lan-
guage). [Siegmund et al.| (2014; |2017) reported activity in regions resembling the LS during code
comprehension, whereas [Floyd et al.[(2017); Liu et al.| (2020); [Krueger et al.| (2020) concluded that
brain regions processing language and code are distinct. |[vanova et al.| (2020) reported moderate
levels of activity within the LS in response to Python, but not to code in a visual programming lan-
guage, Scratchlr.

We also probe brain representations in two brain systems responsible for perception.

* Visual system (VS). These regions respond primarily to visual inputs. We expect activity in this
system to reflect low-level visual properties of the code (e.g. code length and indentation).

* Auditory system. These regions respond primarily to auditory inputs. We do not expect activity
in this system to reflect code-related properties.

Figure 1: The approximate locations of MD
and the Language systems in the human
brain. The regions depicted are used as a
starting point to functionally localize these
systems in individual participants.

4 BRAIN AND MODEL REPRESENTATIONS

We describe in this section the method we follow to gather representations of code in the brain
(Sectiond.T)), evaluate the different code properties they encode (Section[d.2)), and how we compare
brain representations to those generated by ML models (Section 4.3)).

4.1 BRAIN REPRESENTATIONS AND DECODING

We provide a summary of how we process activation signals in the brain elicited by code comprehen-
sion, to probe whether they encode any specific code properties. We provide details in Appendix

Dataset. We use the publicly available brain recordings released as part of the study by |[vanova
et al. (2020). It contains brain recordings of 24 participants reading 72 programs from a set of 108
unique Python programs. The 72 programs were presented in 12 blocks of 6 programs each. These
programs were 3-10 lines in length and contained simple Python constructs, such as lists, for loops
and if statements. A whole program was presented at once, and the task required participants to
read the code and mentally compute the expected output, press a button when done, and select one
of four choices presented to them which matched their calculated output.

From dataset to brain representations. The original dataset contains 3D images of the brain of
each participant. Each voxel value in these images is an estimate of the response strength in this
voxel when a particular code (or sentence) problem is presented. To determine which brain systems
contain information about particular code properties, we focus our analyses to four systems — MD,
Language, Visual, and Auditory (Section . A vector of voxels’ activation values in each brain
system is then taken to constitute that system’s representation of a computer program and serves as
an input to all our analyses. See Appendix [B|for details on data processing and voxel selection.

Under review as a conference paper at ICLR 2022

{ What code properties do brain
representations encode?
Static, dynamic _, g i

analysis of code Code properties

def adds (x)
retum x+:

NNy Experiment 1

Time 1 second

0

* -
Human brain Neural representation - .
P How similar are machine

of code . g .
- representations and brain
representations?
= -
Code language Machine representation |
model of code Experiment 2

Figure 2: Overview. The goal of this work is to relate brain representations of code to (1) specific
code properties and (2) representations of code produced by language models trained on code. In
Experiment 1, we predict the different static and dynamic analysis metrics from the brain MRI
recordings (each of dimension Dp) of 24 human subjects reading 72 unique Python programs (V)
by training separate linear models for each subject and metric. In Experiment 2, we learn affine
maps from brain representations to the corresponding representations generated by code language
models (each of dimension D) on these 72 programs.

Analyzing brain representations of code. We probe brain representations from each participant
separately. We do not average data across participants since the regions which respond to any task
(comprehending code in our case) need not align anatomically. For each of two experiments—
decoding different code properties, and mapping to code model representations—we train ridge
regression/classification models which take as input normalized brain representations per partici-
pant. We hence learn 24 different regression models, for each code property or code model (one
per participant), and then report the mean performance of these models across participants. This
procedure is also referred to as multi-voxel pattern analysis (MVPA) (Norman et al., 2006). Lin-
ear models are conventionally preferred for probes into brain representations since there has been
evidence supporting the idea that other brain areas linearly map information from such brain rep-
resentations (Kamitani & Tong, 2005} Kriegeskorte, 2011). We choose a linear model primarily to
control for over-fitting in light of the relatively small dataset.

A remark on data scarcity. We train a linear regression/classification model with L2-regularization
for every participant on unique cross-validated leave-one-run-out folds of the 72 programs they
attempted (or 48 programs when sentences are removed). On the order of 1000 voxels were selected
from each brain region responding to any given program per participant. As a baseline for the model
predictions, we use the accuracy of a null permutation distribution generated from sampling 1000
random assignments of the labels.

4.2 CODE PROPERTIES

We attempt to decode the following code properties from brain representations.

* Code vs. sentences. The dataset provides a control condition where code problems are described
in English sentences (referred to as sentences). See Figure [B] Appendix [B] for an example. We
classify these two stimuli categories from brain data.

* Variable language. We classify programs containing meaningful variables names from brain
representations. The dataset has half its programs with variables in English, and the other half in
Japanese (written in English characters), which do not convey any contextual meaning.

* Control flow. We predict whether a program contains a loop (for loop), a branch (i £ condition),
or has sequential instructions without any control branching. The dataset contains an equal number
of programs with each of the three conditions.

* Data type. We predict whether a program contains string operations or numeric operations in
them. Half the programs in the dataset exclusively have string operations within them, while the
other half are exclusively numeric.

* Static analysis. We decode static properties of a program. Specifically, we predict token count
(number of tokens in the program) and node count (number of AST nodes). We also consider cyclo-
matic complexity, and Halstead difficulty (details in Appendix[B), which have been used by software
engineering practitioners to quantify the complexity of code, and to quantify the difficulty a human

Under review as a conference paper at ICLR 2022

would experience when comprehending code respectively. We defer predicting other advanced static
analysis metrics such as tracking abstract interpretation joins, data flow analysis-related metrics, efc.
to future work.

* Dynamic analysis. We decode information about a code’s execution behavior. We evaluate two
properties—runtime steps (number of instructions executed in the program) and bytecode ops (num-
ber of bytecode operations executed in running the program). We expect these properties to be
correlated with the number of mental instructions needed to arrive at the output.

Program length as a potential confound. Program length is a potential confound in our experi-
ments because the properties we examine can also potentially be differentiated using program length
and other low-level code features. We measured the inter-correlations of these properties, and their
correlation to the number of tokens in the program (program length) (see Appendix [G). We expect-
edly found the four static analysis properties to be highly correlated to each other and to bytecode
ops. We hence use one representative metric each from the two categories of properties for the
rest of our analysis—token count for static analysis, and runtime steps for dynamic analysis. Impor-
tantly, the other properties we examine cannot be explained by program length alone, and therefore
program length is not a confound in our experiments.

The brain representations (Section[d.T)) are mapped to each of the code properties by training a ridge
regression or classification model each for every participant-property pair. To evaluate model per-
formance, we use classification accuracy when the predicted values are categorical (e.g. string vs.
numeric data types), and the Pearson correlation coefficient when the predicted values are contin-
uous (e.g. number of runtime steps). We choose Pearson correlation over RMSE, the canonical
distance metric for continuous values, for its simplicity and interpretability. See Appendix [[] for
the RMSE results, which are similar to the correlation results. When testing for the significance of
these predictions, we perform false discovery rate (FDR) correction for the number of brain systems
tested and the number of properties tested. See Appendix [B] for a detailed description of model
hyper-parameters and cross-validation settings employed.

4.3 MODEL REPRESENTATIONS AND DECODING.

We evaluate a bench of unsupervised language models, spanning from count-based language models
to transformer neural networks (Vaswani et al.,2017). These models were all trained on large (~1M
programs) Python datasets (Husain et al.| |2019; Puri et al.l 2021). We use the output of the trained
encoders (raw logits) in each of the neural network models as representations of the code input to
the model. We vary the general complexity of these models to test whether that variation is mean-
ingful in establishing the quality of brain to model fits. Model complexity here is the number of a
model’s learnable parameters. We evaluate the following models, ordered by their increasing model
complexity: simple frequency-based language models—bag-of-words, TF-IDF; auto-encoder based
unsupervised models—seq2seq (Sutskever et al.l 2014), CodeTransformer (Ziigner et al., |2021)),
CodeBERTa (HuggingFace, 2020); auto-regressive model with a model complexity similar to that
of transformers and CodeBERTa—XLNet (Yang et al.,|[2019).

We compare the results of the above models against an aggressive baseline (relative to the null-
distribution labeling baseline), a token projection model provided by using unique Gaussian-
distributed random vectors for the token embeddings in a vocabulary, and returning the sum of these
token embeddings across a program. The resultant embedding is not transformed by any model or
any weights—it instead serves as a proxy for the tokens that appear in the program. The results of
this baseline model should be interpreted as the level of performance achievable from the presence
of tokens alone with no structural information.

The brain representations (Section [4.1)) are mapped to code representations by training another set
of ridge regression models to learn an affine map, and a ranked accuracy metric is used to compare
outputs. Ranked accuracy scores are commonly used in information retrieval where several elements
in a range are similar to the correct one. In our case, the top-ranked prediction by the linear model
indicates the closest fit (Euclidean distance) to the code model’s representation. When reporting
result significance, we perform false discovery rate (FDR) correction for the number of brain systems
and the number of models. See Appendix [B| for a detailed discussion of the implemented code
models and the corresponding metrics.

5 EXPERIMENTS & RESULTS

Our experiments address two research questions:

* Experiment 1. How well do the different brain systems encode specific code properties?

* Experiment 2. How do the brain representations of code correspond to the representations learned
by computational language models of code?

Under review as a conference paper at ICLR 2022

100 1 s MD
[Language 0.4
= Visual '
X 80 4 [Auditory -
~ L)
> ~ 0.3
(%) [
£ 8
3 60 1 =
E g 0.2 1
0 v
B 40 4 c
] 6 0.1
E 4
G 201 od -- _ 2
0 . ;
oo o0
& &
N N
w ks
o é»\\c
2 (,}-’b (\0
& N4 o

Code Properties

Figure 3: In Experiment 1, a linear model is trained on brain representations to predict each of the
code properties described in Section Error bars represent 95% confidence interval of individual
subject scores. Dotted lines signify the empirical baseline for a null permutation distribution on
shuffled labels. All results were compared to this permuted null distribution, and p-values for the
number of comparisons in this experiment were corrected for false discovery rates (FDR). Statisti-
cally significant results are denoted with a %, marked at the base of the bars.

5.1 EXPERIMENT 1 - HOW WELL DO THE DIFFERENT BRAIN SYSTEMS ENCODE SPECIFIC
CODE PROPERTIES?

Here, we analyze the classification models and regressions trained on brain representations to predict
each of the code properties described in Section The results of our analyses are summarized in
Figure[3] The classification and regression tests are marked on the x-axis of the left and right subplots
respectively; the classification accuracy or Pearson correlation for each of the tasks is marked on the
y-axes. We plot dynamic and static properties separately from the others because their baselines are
different due to a difference in the similarity metric (classification accuracy vs. Pearson correlation).
The baselines for the categorical code properties differ from each other due to variation in the number
of target classes.

Auditory and Visual systems. The Auditory system serves as a negative control for the other
systems. Given that the code comprehension task we use is visual, we do not expect to decode any
meaningful information from it. We find that, out of 6 tested properties, only code vs sentences
can be decoded from the Auditory system, and even then the decoding performance is much lower
than in other systems. The Visual system also serves as a control for low-level visual properties
of the code (as opposed to abstract semantic or syntactic features). Given the visual attributes of a
program such as the layout and indentation of the code, the length of the program, and the presence
of letters and alphabets in the programs (Park et al.,[2012; Roux et al., 2008}, Polk et al.}[2002)), this
system might reflect at least some of the properties we evaluate. This is indeed what we observe:
4 out of 6 tested properties can be decoded from the visual system above-chance. The MD and the
Language systems yield the following specific observations. In a follow-up analysis (Analysis 3), we
investigate the extent to which the MD and the Language systems represent decodable information
beyond that which is represented in the Visual system.

Analysis 1 - How accurately are different properties predicted by MD and LS? We analyze how
accurately each of MD and LS predict all the properties we evaluate.

* Code vs. sentences Code and sentence properties are decoded most accurately among all the
properties we test. The MD, LS, and VS decode with ~ 90% accuracy. The high accuracy from MD
validates claims from previous works suggesting the involvement of these regions in code compre-
hension.

* Variable language This requires distinguishing between sets of nearly identical programs, with
the only variation being in the language of the variable names (English vs. Japanese). We hence
expect the Language system will most accurately encode this information, since it is sensitive to the
presence of new words. However, no such effect is observed—no brain system shows any significant
decoding. This unexpected finding is however consistent with [I[vanova et al.| (2020), who show a
lack of any significant difference in the aggregate neural activity between the two variations. Both
suggest that these brain systems do not seem to rely on variable names as a meaningful feature.

* Control flow and data type Both control flow and data type tasks are most accurately predicted
by the MD, followed by the LS. In the case of control flow, the more accurate predictions by the MD

Under review as a conference paper at ICLR 2022

65 . Em MD
High Model Complexity Low [language
.. >

3 Visual
. [Auditory
2 60 1 Baseline
< Model
2 *~—e
[
-
=
g
g 551
H
X
c
<
501 -~ FT- i - = ot -
* * * * * *
45 - T
LG & 4 P Q((¥
bcé‘_\oq q;“?. & .\@ © &,(,\ 4\0&
S K0 Sl
R S S &)
O ed P)
2 ¢ <P
005 Code Model

Figure 4: In Experiment 2, an affine map is learned from brain representations to the representations
produced by machine learning models. Error bars represent 95% confidence interval of individual
subject scores. Dotted lines signify the empirical baseline from a null permutation distribution on
shuffled labels. Random embedding is an aggressive baseline of using random but unique embed-
dings for vocabulary tokens. Statistically significant results are denoted with a *, marked at the base
of the bars.

can possibly be explained by the larger number of mental operations needed for programs with loops
when compared to programs with one or no branches. The difference seen in data type prediction
is unclear. While programs with string operations contain more literals and words from the English
alphabet, we do not see any preference in the LS being able to decode this property more accurately.
» Static and Dynamic analysis 'We observe the LS predicts static analysis properties with the high-
est accuracy. This is expected, since activity in the LS is known to be sensitive to the length of any
text being read (independent of any specific program instructions in our case).

For the dynamic analysis property runtime steps, we see the MD system has the highest accuracy.
This again is reflective of the workings of the MD system, which is sensitive to working memory
tasks, and the number of steps executed by a program matches the number of mental calculations
performed by a person tracing through the program to calculate its output.

Analysis 2 - How accurately do MD and LS encode different properties? We use t-tests to
examine whether for a given property, any one brain system decodes it significantly more than
another. We find no differences between the MD system and the Language system for any properties
(Table [8] Appendix [E). We additionally test if any brain system has a preference for a specific
code property over another. For instance, is the evidence seen in Figure Efof MD more accurately
decoding dynamic analysis properties than static analysis properties, statistically significant? We do
not find any significant differences (Table [} Appendix [E)). While neither MD nor LS preferentially
encode any of the code properties we explore in this work, we do find that the two brain systems
individually encode these properties, which is a new result.

Analysis 3 - Multi-system regression analysis. The decoding performance of the Visual system
is comparable to that of the MD and the Language systems (Figure [3). It is then possible that all
three systems - MD, LS, and VS encode the same properties (all potentially related to program
length and other low level program features). We employ a multi-system regression analysis to test
this possibility. For each brain system, MD and LS (.5;), we train two models—one which decodes
from S;, and another which decodes from S;+VS. If the difference in the prediction accuracies
between the two models is significant, we conclude that .S; encodes at least some information which
is orthogonal to the information encoded by the Visual system. For control flow, data type, and code
vs sentences, we find the MD to encode some information orthogonal to the VS. For control flow
and code vs sentences, the LS also encodes some information orthogonal to what the VS does. This
suggests that low-level code properties are insufficient to explain the key results from Experiment 1.
Other combinations in the regression model show that the MD encodes information orthogonal to
the LS when predicting code vs sentences. Detailed results are tabulated in Table[T3] Appendix [F

5.2 EXPERIMENT 2 - HOW DO THE BRAIN REPRESENTATIONS OF CODE CORRESPOND TO
THE REPRESENTATIONS LEARNED BY COMPUTATIONAL LANGUAGE MODELS OF CODE?

Here, we train ridge regression models with brain representations of programs from a specific brain
system to predict code model representations of the same programs. The full set of results from this
experiment are summarized in Figure 4]

Auditory and Visual systems. Similar to Experiment 1, the Auditory system performs as expected,
exhibiting the lowest decoding performance across all code models. The VS exhibits the second

Under review as a conference paper at ICLR 2022

lowest performance across code models with the exception of CodeBERTa to which it maps more
accurately to than LS, but not MD. However, this result is not statistically significant (Table [T0]
Appendix [E).

Analysis 1 - How well do brain representations in MD and LS map to code model repre-
sentations? To ease our analysis of the MD and LS systems, we re-plot in Figure [3] the de-
coding accuracies of just these two brain systems from Figure] We find that the MD system
and Language system map to all the models in our suite significantly more accurately than the
null permutation baseline (baseline accuracy of 50% in Figures 4] and . Further, from Figure [5}
we see the MD maps more accurately than the LS across all code models. We test the signifi-
cance of the differences between the two systems and find that the MD ranked accuracy is higher
than LS for CodeBERTa, seq2seq, and TF-IDF, while the differences are not significant for the
other models (Table [T0} Appendix [E). We discuss the implication of these results in Section [6]

Analysis 2 - The effect of model complexity on
decoding to code models. We investigate the im-
pact model complexity has on the performance of the
mapping between brain and code representations.
Model complexity here is the number of a model’s
learnable parameters. In analysis 1 above, we saw
that the MD system mapped to the representations
of CodeBERTa, seq2seq, and TF-IDF significantly
more accurately than the Language system. These

=&~ MD
=&~ Language

MD Random
p (Embedding

Lang Random
Embedding

w
o

Ranked Accuracy (%)
w
w

Code CT XLNet S2S TF-IDF BOW

BERTa
Figure 5: Mapping MD and LS to code

three models vary substantially in their complexity, model representations.

thus suggesting the lack of any relationship between

model complexity and brain systems.

We also compare each of these code models against the Random embedding model. This baseline
model assigns a random vector of numbers to every unique token that appears in the training vo-
cabulary, and sums the vectors of all the tokens that appear in a program. By its design, this model
encodes only the presence of specific tokens in programs. The mapping accuracies of random em-
beddings in the MD and the Language systems are marked in blue and green horizontal lines in
Figure[5| We find that the Multiple Demand system maps to all the models more accurately than the
Random embedding. This is not seen in the LS, which confirms the lack of variabilility of ranked
accuracies observed in the LS.

In a set of pairwise significance tests, we find that the MD maps to CodeBERTa significantly more
accurately than Random embedding while other systems are more accurate numerically, but not
significantly (Table[IT} Appendix[E). We discuss its implications in the following section.

6 DISCUSSION

Through this study, we learn what computer program-related information can be decoded from the
brain, and which brain systems primarily encode that information. In Experiment 1, we investigate
whether a set of manually-selected code properties are encoded in different brain systems. In Ex-
periment 2, by comparing brain representations to code model representations, we investigate if the
brain encodes more than just the properties investigated in Experiment 1. Because the code models
are trained on a much more expressive set of programs than the ones used in our Experiment 1, we
also can learn what additional information these models learn about code.

Key among our contributions is demonstrating that it is possible to predict a range of code properties
from brain system activity (representations). Experiment 1 shows that control flow and data type
information, two fundamental program properties, as well as dynamic analysis and static analysis
properties of code, can be decoded with high performance from the MD and the Language systems.
In several cases, this decoding performance reflects decoding from information beyond what can be
predicted from low-level features of the programs encoded in the Visual system alone. This is a new
finding which indicates that the MD and the Language systems encode higher-level program-related
information. Future work should additionally experiment with a larger set of programs that have
more complex properties across multiple programming languages.

Another key contribution of our work, from Experiment 2, is demonstrating that it is possible to
map brain representations to representations learned by code models. Unlike many prior decoding
works in cognitive neuroscience, which record multiple responses to each of their experimental
stimuli (done generally to control for the noise present in fMRI data), our decoders are trained on
individual trials. This demonstrates the feasibility of probing aspects of code comprehension in the
brain without the need to present the same program multiple times to a participant.

Under review as a conference paper at ICLR 2022

The performance of mappings between brain and code model representations does not appear to be
correlated to the complexity of the models. However, we do observe a preferential encoding of the
properties represented by code models in the MD over LS for the models CodeBERTa, seq2seq, and
TF-IDF. Such a preferential encoding of properties in MD over LS was not seen for the properties
we evaluated in Experiment 1, which provides evidence that the brain activation data encodes more
than just the code properties we evaluated.

The MD and LS map to complex models like seq2seq and CodeTransformer almost as well as to
a combination of random token embeddings. One plausible explanation for this surprising result is
that the MD and LS signals we have access to mostly encode token-level information, and not richer
structural information from the programs. The program stimuli are simple enough to allow the
different properties evaluated in our work (control flow, data type, etc.) to be discerned from token
level information alone (as validated in Experiment 1), which is likely why the random embeddings
model is also able to predict these properties very well (see Table[d}, Appendix @)

Taken together, this suggests that the information being decoded from brain activations in these two
regions is driven at least by the information conveyed by tokens in the programs. We cannot come
to this conclusion from the code properties investigated in Experiment 1 alone.

CodeBERTa alone, for which the response is significantly greater than random embeddings, and
which maps more accurately to the MD system than any other brain system, provides initial evidence
for the MD system encoding more than just token information. This will need more investigation.
Given the current data and the number of observations we have, we can only conclude that tokens do
get encoded well in both - brain activations and code models. This is a new finding on what aspects
of code comprehension get encoded by our brains which can be successfully read out using a linear
model.

Limitations. The average program in any software project exhibits non-trivial control and data de-
pendencies, object manipulation, function calls, types, and state changes, which our dataset does
not possess. However, the programming tasks in Ivanova et al|(2020) are short snippets of proce-
dural code with limited program properties. Responses to longer, more realistic programs should
be studied on a larger number of participants in the future, building on the understanding of simpler
snippets provided by our work. Further, while there are equally important aspects to programming
like designing solutions, selecting appropriate data structures, and writing programs, we have cho-
sen to study a very specific activity related to programming—comprehending programs.

One aspect that cannot be inferred from these results, is whether the MD and LS are driven by the
same underlying features of code that are used to discriminate between code properties, and to map
to different code models. Future work should consider an encoding analysis, where we predict the
activity of voxels in different brain systems from code properties, in order to establish the relative
contributions of those properties to the activations of individual voxels in these systems.

Broader impact. Our findings have the potential to improve our understanding of the organization
of the human brain, which can in turn lead to the design of better code models. In computer vision,
recent results by Tschopp et al.| (2018) show how deep network architectures that mimic the visual
system in fruit flies exhibit superior image classification rates on image recognition tasks. One im-
mediate outcome is reconsidering the current design of ML models of code. Extant code model
architectures do not explicitly model the Multiple Demand system in any way—they only model syn-
tactic information and infer dependency information from program ASTs. Taking inspiration from
the role of the Multiple Demand system we identified in this work, modeling both static and dynamic
information should be explored.

This work could perhaps also enhance code prosthetics—artificial interfaces in the body that can help
the physically challenged engage with programming environments. Such systems generally rely on
brain decoders—models that convert brain activity data to electrical impulses modulating external
devices. An open challenge is to improve them. See the discussion in Nuyujukian et al.[(2018)) and
Andersen et al.| (2019) for details.

Finally, our aspiration is that the framework we release in this work will bring together the neuro-
science and machine learning communities to better understand the cognitive and neural bases of
programming.

Under review as a conference paper at ICLR 2022

7 REPRODUCABILITY STATEMENT

All the results, and corresponding tables, plots, and intermediate results we introduce in this
paper are fully reproducible. We have made the source code to our work publicly available
through this anonymized code repository - https://github.com/anonmyous—author/
anonymous—code/

The repository contains detailed instructions for setting up the source code and running the two
main experiments we introduce in this work. Further, a copy of the dataset released by Ivanova et
al. Ivanova et al.|(2020) is also available for in the repository, along with the source code.

All the intermediate results which we use to arrive at our conclusions are available in Appendix [A]
through Appendix [I}

10

https://github.com/anonmyous-author/anonymous-code/
https://github.com/anonmyous-author/anonymous-code/

Under review as a conference paper at ICLR 2022

REFERENCES

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. A survey of machine
learning for big code and naturalness. ACM Computing Surveys (CSUR), 51(4):1-37, 2018a.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. In International Conference on Learning Representations, 2018b. URL https:
//openreview.net/forum?id=BJOFETxR—.

Uri Alon, Omer Levy, and Eran Yahav. code2seq: Generating sequences from structured rep-
resentations of code. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=H1gKYo09tX.

Marie Amalric and Stanislas Dehaene. A distinct cortical network for mathematical knowledge in
the human brain. Neurolmage, 189:19-31, 2019.

Richard A Andersen, Tyson Aflalo, and Spencer Kellis. From thought to action: The brain—-machine
interface in posterior parietal cortex. Proceedings of the National Academy of Sciences, 116(52):
26274-26279, 2019.

John Ashburner, Jesper L.R. Andersson, and Karl J. Friston. High-dimensional image registration
using symmetric priors. Neurolmage, 9(6):619-628, 1999.

Dima Ayyash, Saima Malik-Moraleda, Jeanne Gallée, Josef Affourtit, Malte Hoffman, Zachary
Mineroff, Olessia Jouravlev, and Evelina Fedorenko. The universal language network: A cross-
linguistic investigation spanning 45 languages and 11 language families. bioRxiv, 2021.

Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. Statistical deobfuscation
of android applications. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 343-355, 2016.

Idan A Blank and Evelina Fedorenko. Domain-general brain regions do not track linguistic input as
closely as language-selective regions. Journal of Neuroscience, 37(41):9999-10011, 2017.

Jonathan R Brennan and Liina Pylkkéinen. Meg evidence for incremental sentence composition in
the anterior temporal lobe. Cognitive science, 41:1515-1531, 2017.

Lu Cao, Dandan Huang, Yue Zhang, Xiaowei Jiang, and Yanan Chen. Brain decoding using fnirs.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(14):12602-12611, May 2021.

Casey Casalnuovo, Kevin Lee, Hulin Wang, Prem Devanbu, and Emily Morgan. Do programmers
prefer predictable expressions in code? Cognitive Science, 44(12):€12921, 2020.

Joao Castelhano, Isabel C Duarte, Carlos Ferreira, Joao Duraes, Henrique Madeira, and Miguel
Castelo-Branco. The role of the insula in intuitive expert bug detection in computer code: an fmri
study. Brain imaging and behavior, 13(3):623-637, 2019.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

David Glenn Clark and Jeffrey L Cummings. Aphasia. In Neurological Disorders, pp. 265-275.
Elsevier, 2003.

Will Crichton, Maneesh Agrawala, and Pat Hanrahan. The role of working memory in program
tracing. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems,
pp. 1-13,2021.

John Duncan. The multiple-demand (md) system of the primate brain: mental programs for intelli-
gent behaviour. Trends in cognitive sciences, 14(4):172-179, 2010.

11

https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=BJOFETxR-
https://openreview.net/forum?id=H1gKYo09tX

Under review as a conference paper at ICLR 2022

Russell A. Epstein and Nancy Kanwisher. A cortical representation of the local visual environment.
Nature, 392:598-601, 1998.

Evelina Fedorenko, Po-Jang Hsieh, Alfonso Nieto-Castafién, Susan Whitfield-Gabrieli, and Nancy
Kanwisher. New method for fmri investigations of language: defining rois functionally in indi-
vidual subjects. Journal of neurophysiology, 104(2):1177-1194, 2010.

Evelina Fedorenko, John Duncan, and Nancy Kanwisher. Broad domain generality in focal regions
of frontal and parietal cortex. Proceedings of the National Academy of Sciences, 110(41):16616—
16621, 2013.

Benjamin Floyd, Tyler Santander, and Westley Weimer. Decoding the representation of code in
the brain: An fmri study of code review and expertise. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE), pp. 175-186. IEEE, 2017.

Jon Gauthier and Roger Levy. Linking artificial and human neural representations of language.
arXiv preprint arXiv:1910.01244, 2019.

Gary H Glover. Overview of functional magnetic resonance imaging. Neurosurgery Clinics, 22(2):
133-139, 2011.

Maurice H Halstead. Elements of Software Science (Operating and programming systems series).
Elsevier Science Inc., 1977.

Yu Huang, Xinyu Liu, Ryan Krueger, Tyler Santander, Xiaosu Hu, Kevin Leach, and Westley
Weimer. Distilling neural representations of data structure manipulation using fmri and fnirs. In
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 396-407.
IEEE, 2019.

David H. Hubel and Torsten N. Wiesel. Receptive fields of single neurones in the cat’s striate cortex.
The Journal of Physiology, 148, 1959.

HuggingFace. Codeberta - a roberta-like model trained on the codesearchnet dataset from
github. HuggingFace, 2020. URL https://huggingface.co/huggingface/
CodeBERTa-small-vll

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt. Code-
searchnet challenge: Evaluating the state of semantic code search. CoRR, abs/1909.09436, 2019.
URLhttp://arxiv.org/abs/1909.09436.

Yoshiharu Ikutani, Takatomi Kubo, Satoshi Nishida, Hideaki Hata, Kenichi Matsumoto, Kazushi
Ikeda, and Shinji Nishimoto. Expert programmers have fine-tuned cortical representations of
source code. Eneuro, 8(1), 2021.

Anna A Ivanova, Shashank Srikant, Yotaro Sueoka, Hope H Kean, Riva Dhamala, Una-May
O’Reilly, Marina U Bers, and Evelina Fedorenko. Comprehension of computer code relies pri-
marily on domain-general executive brain regions. Elife, 9:e58906, 2020.

Shailee Jain and Alexander Huth. Incorporating context into language encoding models for fmri.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

Yukiyasu Kamitani and Frank Tong. Decoding the visual and subjective contents of the human
brain. Nature neuroscience, 8(5):679—685, 2005.

Nancy Kanwisher, Josh McDermott, and Marvin M. Chun. The fusiform face area: A module in
human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17:4302
—4311, 1997.

Nikolaus Kriegeskorte. Pattern-information analysis: from stimulus decoding to computational-
model testing. Neuroimage, 56(2):411-421, 2011.

Ryan Krueger, Yu Huang, Xinyu Liu, Tyler Santander, Westley Weimer, and Kevin Leach. Neuro-
logical divide: an fmri study of prose and code writing. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), pp. 678-690. IEEE, 2020.

Yun-Fei Liu, Judy Kim, Colin Wilson, and Marina Bedny. Computer code comprehension shares
neural resources with formal logical inference in the fronto-parietal network. Elife, 9:e59340,
2020.

12

https://huggingface.co/huggingface/CodeBERTa-small-v1
https://huggingface.co/huggingface/CodeBERTa-small-v1
http://arxiv.org/abs/1909.09436

Under review as a conference paper at ICLR 2022

Thomas J McCabe. A complexity measure. IEEE Transactions on software Engineering, pp. 308—
320, 1976.

Tom M Mitchell, Svetlana V Shinkareva, Andrew Carlson, Kai-Min Chang, Vicente L Malave,
Robert A Mason, and Marcel Adam Just. Predicting human brain activity associated with the
meanings of nouns. science, 320(5880):1191-1195, 2008.

Kenneth A Norman, Sean M Polyn, Greg J Detre, and James V Haxby. Beyond mind-reading:
multi-voxel pattern analysis of fmri data. Trends in cognitive sciences, 10(9):424-430, 2006.

Sam Norman-Haignere, Nancy G Kanwisher, and Josh H McDermott. Distinct cortical pathways for
music and speech revealed by hypothesis-free voxel decomposition. Neuron, 88(6):1281-1296,
2015.

Sam V Norman-Haignere, Nancy Kanwisher, Josh H McDermott, and Bevil R Conway. Divergence
in the functional organization of human and macaque auditory cortex revealed by fmri responses
to harmonic tones. Nature neuroscience, 22(7):1057-1060, 2019.

Paul Nuyujukian, Jose Albites Sanabria, Jad Saab, Chethan Pandarinath, Beata Jarosiewicz, Chris-
tine H Blabe, Brian Franco, Stephen T Mernoff, Emad N Eskandar, John D Simeral, et al. Cortical
control of a tablet computer by people with paralysis. PloS one, 13(11):e0204566, 2018.

Christophe Pallier, Anne-Dominique Devauchelle, and Stanislas Dehaene. Cortical representation
of the constituent structure of sentences. Proceedings of the National Academy of Sciences, 108
(6):2522-2527, 2011.

Joonkoo Park, Andrew Hebrank, Thad A. Polk, and Denise C. Park. Neural Dissociation of Num-
ber from Letter Recognition and Its Relationship to Parietal Numerical Processing. Journal of
Cognitive Neuroscience, 24(1):39-50, 2012.

Norman Peitek, Janet Siegmund, Chris Parnin, Sven Apel, Johannes C Hofmeister, and André
Brechmann. Simultaneous measurement of program comprehension with fmri and eye track-
ing: A case study. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, pp. 1-10, 2018.

Norman Peitek, Sven Apel, Chris Parnin, André Brechmann, and Janet Siegmund. Program com-
prehension and code complexity metrics: An fmri study. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pp. 524-536. IEEE, 2021.

Thad A. Polk, Matthew Stallcup, Geoffrey K. Aguirre, David C. Alsop, Mark D’Esposito, John A.
Detre, and Martha J. Farah. Neural Specialization for Letter Recognition. Journal of Cognitive
Neuroscience, 14(2):145-159, 2002.

Chantel S Prat, Tara M Madhyastha, Malayka J Mottarella, and Chu-Hsuan Kuo. Relating natural
language aptitude to individual differences in learning programming languages. Scientific reports,
10(1):1-10, 2020.

Ruchir Puri, David Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladmir Zolotov, Julian
Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost, Luca Buratti, Saurabh Pujar,
Shyam Ramyji, Ulrich Finkler, Susan Malaika, and Frederick Reiss. Codenet: A large-scale ai for
code dataset for learning a diversity of coding tasks, 2021.

Edmund T. Rolls, Chu-Chung Huang, Ching-Po Lin, Jianfeng Feng, and Marc Joliot. Automated
anatomical labelling atlas 3. Neurolmage, 206:116189, 2020.

Franck-Emmanuel Roux, Vincent Lubrano, Valerie Lauwers-Cances, Carlo Giussani, and Jean-
Francois Démonet. Cortical areas involved in arabic number reading. Neurology, 70:210-217,
2008.

Martin Schrimpf, Idan Blank, Greta Tuckute, Carina Kauf, Eghbal A. Hosseini, Nancy Kanwisher,
Joshua Tenenbaum, and Evelina Fedorenko. Artificial neural networks accurately predict lan-
guage processing in the brain. bioRxiv, 2020.

Dan Schwartz, Mariya Toneva, and Leila Wehbe. Inducing brain-relevant bias in natural language
processing models. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019.

13

Under review as a conference paper at ICLR 2022

Martin Shepperd. A critique of cyclomatic complexity as a software metric. Software Engineering
Journal, 3(2):30-36, 1988.

Janet Siegmund, Christian Késtner, Sven Apel, Chris Parnin, Anja Bethmann, Thomas Leich, Gunter
Saake, and André Brechmann. Understanding understanding source code with functional mag-
netic resonance imaging. In Proceedings of the 36th International Conference on Software Engi-
neering, pp- 378-389, 2014.

Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister, Christian Kistner,
Andrew Begel, Anja Bethmann, and André Brechmann. Measuring neural efficiency of program
comprehension. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software En-
gineering, pp. 140-150, 2017.

Shashank Srikant, Sijia Liu, Tamara Mitrovska, Shiyu Chang, Quanfu Fan, Gaoyuan Zhang, and
Una-May O’Reilly. Generating adversarial computer programs using optimized obfuscations. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=PH5PH9Z0_4.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neu-
ral networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 27. Curran Asso-
ciates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
aldacbb5adf27472c5d894eclc3c743d2—-Paper.pdfl

Fabian David Tschopp, Michael B. Reiser, and Srinivas C. Turaga. A connectome based hexagonal
lattice convolutional network model of the drosophila visual system, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053clcd4al845aa-Paper.pdf.

Shaonan Wang, Jiajun Zhang, Nan Lin, and Chengqing Zong. Probing brain activation patterns by
dissociating semantics and syntax in sentences. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):9201-9208, Apr. 2020. doi: 10.1609/aaai.v34i05.6457.

Daniel L Yamins, Ha Hong, Charles Cadieu, and James J DiCarlo. Hierarchical modular opti-
mization of convolutional networks achieves representations similar to macaque it and human
ventral stream. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 26. Curran Asso-
ciates, Inc., 2013. URL https://proceedings.neurips.cc/paper/2013/file/
9al1756fd0c741126d7bbd4b692ccbd91l-Paper.pdf.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
dcba7e655d7e5840e66733e9eeb6/cco9-Paper.pdfl

Daniel Ziigner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Giinnemann.
Language-agnostic representation learning of source code from structure and context. In Interna-
tional Conference on Learning Representations (ICLR), 2021.

14

https://openreview.net/forum?id=PH5PH9ZO_4
https://openreview.net/forum?id=PH5PH9ZO_4
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9a1756fd0c741126d7bbd4b692ccbd91-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/9a1756fd0c741126d7bbd4b692ccbd91-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

Under review as a conference paper at ICLR 2022

A BRAIN REGIONS

Regions of Interest (ROIs). We investigate the representations of code in well-studied systems of
brain regions—the MD system, Language system, Visual system, and the Auditory system (details
below). A region (also referred to as parcel) here denotes a contiguous chunk of brain mass involved
in a cognitive task. A system of regions (also referred to as a network) can comprise multiple
disjoint regions that exhibit shared activity patterns across a range of tasks. For many cognitive
tasks, a region marks only the approximate location of voxel populations involved in a cognitive
task. Functional ROIs (fROIs) are voxels within these broad regions that respond most strongly to
a given task (language, working memory, efc.). The use of fROIs enables accounting for the exact
anatomical locations of these task-sensitive voxels, which vary across individuals.

Multiple Demand (MD) system. Located in the prefrontal and parietal areas of the brain, this
system of regions is active in a host of tasks requiring working memory and general problem solving
skills, including math and logic (Duncan, 2010; Fedorenko et al., 2013} |Amalric & Dehaenel [2019).

Language system. These regions have been identified to respond to both comprehension and pro-
duction of language across modalities (written, speech, sign language), respond to typologically di-
verse languages (>50 languages, from across 10 language families), form a functionally integrated
system, reliably and robustly track linguistic stimuli, and have been shown to be causally important
for language (Clark & Cummings|, 2003} |[Fedorenko et al.,|2010; |Blank & Fedorenko| [2017;|Ayyash
et al.l [2021).

Visual system. These regions in the occipital lobe of the brain respond to visual input, ranging
from low-level features like lines and edges, through intermediate categories like shapes, letters, and
numbers, through higher order structures like faces and scenes. (Hubel & Wiesel, |1959; Polk et al.,
2002; |[Epstein & Kanwisher, |1998; Kanwisher et al., [1997)).

Auditory system. The auditory system is located in the superior temporal region of the brain. This
region uniquely encodes pitch, speech, and music, but is not involved in high-level language com-
prehension and production (Norman-Haignere et al., 2015} [2019). In our experiments pertaining to
programming language comprehension, we use the activity seen in the auditory system as a negative
control.

15

Under review as a conference paper at ICLR 2022

B METHOD - DETAILS

Selecting brain representations. For each trial in the fMRI experiment, stimulus responses in
each voxel were extracted from the parameters of a General Linear Model (GLM) fit to the time-
varying BOLD signal in which each experimental condition was modeled with a boxcar function
convolved with the canonical hemodynamic response function (HRF). For the localizer experiments,
conditions were modeled as the entire block. For the Python program comprehension experiment,
individual programs were modeled using the period from the onset of the code/sentence problem
until the button press. The predictors for the GLM included trial ID (equivalent to problem ID),
run number, and motion regressors. The voxels were then filtered using gray-matter masking and
(for MD and the Language systems) network localization. Although fMRI measurements return
whole brain responses, only a thin layer of cortex dubbed gray matter contains BOLD signal of
interest to these analyses. Gray matter voxels were selected using a Bayesian segmentation of the
anatomical brain image into standard tissue types, and then returning the set of indices where the
posterior gray matter probability exceeds 0.70 (Ashburner et al.,|1999). Next, these sets of voxels
were filtered separately for each of the brain regions outlined in Appendix [A] For the visual and
auditory networks, primary sensory areas were identified using an anatomical atlas (Rolls et al.
2020). For the MD and the Language systems, voxels were functionally localized as those containing
the top 10% of responses to their respective functional localizer tasks, as described in|Ivanova et al.
(2020). See [Fedorenko et al.| (2010) for a discussion of the functional localization approach as it
pertains to the language network. GLM modeling and gray matter segmentation was performed
using SPM12; functional localization was performed using the toolbox released by [Ivanova et al.
(2020). Once voxel responses within each brain region were extracted for each trial of each run,
some additional preprocessing was required before finalizing the brain representations, and passing
them to downstream models. Due to differences in MRI sensitivity across runs, each of the 12
runs of 6 programs for a given subject appeared with nonuniform mean and variance. In order to
normalize these signals, so as to leverage data across a participant’s entire scanning session, brain
representations were z-transformed within each run to achieve a common scale. In order to avoid
data-leakage from this preprocessing step, all downstream analyses were cross-validated via a leave-
one-run-out approach, such that no intra-run rescaling could be used for prediction.

MVPA cross-validation and hyperparameters. For each brain system and each code property or
code model, we run a separate MVPA analysis. For each subject, we train a separate ridge regres-
sion model on each cross-validated leave-one-run-out fold, and then predict the remaining targets
using the brain representations from the left-out run. We use L2 regularization to control for model
complexity, and employ a leave-one-out cross validation scheme to select \. We score resulting pre-
dictions using a series of different metrics to maximize interpretability. For the categorical code
properties, we report classification accuracy of model estimates.

For the continuously scaled code properties, we report Pearson correlation between the model es-
timates and true targets. For the model representations, we report rank accuracy between model
representation predictions and the true model representations of left-out samples. We calculate
rank accuracy as the percentile of a predicted and true target pairing within the full set of pos-
sible pairings sorted by a Euclidean distance metric. Rank accuracy was chosen for this experi-
ment as it returns a more interpretable 50% baseline through which to evaluate the brain to model
mappings. Following metric calculation on each cross-validation fold, we take the mean of those
estimates to report an out-of-sample score over the entire dataset for each subject. We then take
the mean of those scores across subjects to derive an overall performance measure. As a baseline,
we repeat the above process in its entirety 1000 times for each MVPA analysis, to provide a null
permutation distribution against which to compare scores. These null distributions are fit with a
univariate Gaussian and used to calculate z-statistics and p-values for MVPA scores. All statistical
tests were corrected for false discovery rate. The code to run our MVPA analysis is available in
https://github.com/anonmyous—author/anonymous-code.

Code properties. The code properties we consider are the following —

* Token count. The total number of tokens that appear in the program. This is a sanity check to
measure brain activity against, since it is natural to expect the activity in the brain to be correlated
to the length of a program, and in general, the amount of content being comprehended. By their
design, the dataset had program lengths with a small standard deviation.

* Node count. The total number of AST nodes that appear in a program. Similar to the number of
tokens, we verify if brain activity correlates to a proxy for the amount of syntactic content in it.

* Runtime steps. We execute the programs and measure the number of instructions the program
steps through. While two programs can have the same program length, the number of instructions
executed can differ (e.g.for 1:10 vs. for 1:50). We measure if any brain regions capture the
number of mental operations needed to compute the output of a program.

16

https://github.com/anonmyous-author/anonymous-code

Under review as a conference paper at ICLR 2022

Bytecode ops. We execute the programs and count the number of bytecode operations performed.
This metric should mimic the number of mental operations performed needed to compute the
output of a program.

Cyclomatic complexity. This metric (McCabel |1976) is used to measure the general complexity
of software systems. It is defined as a function of the number of nodes, edges, and the connected
components in a program’s control flow graph. While its efficacy as a metric to measure software
complexity has been contested (Shepperd, |1988)), we include it to see if brain activity is correlated
to any explicit syntactic constructs of a program.

Halstead difficulty. This metric (Halstead, [1977)) was defined to measure how difficult any piece
of software would be for a programmer to comprehend or write. It is defined as a function of the
number of tokens, operations, vocabulary that appears in a program.

code sentence
height = 5 Your height is 5 feet and your
weight = 100 weight is 100 pounds. The BMI is
bmi = weight / (height*height) defined as the ratio between the
print(bmi) weight and the square of the height
of a person. What is your BMI?

Figure 6: An example of a code problem and its sentence equivalent from Ivanova et al.| (2020)

The inter-correlations between these metrics have been tabulated in Table[T8] Appendix [G]

Code models - Model details. We evaluate the following models in this work—

bag-of-words, TF-IDF . These are count-based language models. They predict the likelihood of
a token appearing in a program based on vocabulary statistics and frequencies.

seq2seq (Sutskever et al., 2014), CodeTransformer (Ziigner et al., [2021), CodeBERTa (Hug-
gingFace, [2020)). We evaluate these three autoencoder (AE) models with increasing model com-
plexity. AE based pretraining reconstructs the original program from corrupted input.

XL Net (Yang et al., 2019). We evaluate an auto-regressive (AR) model with a model complexity
similar to that of transformers and CodeBERTa. AR language modeling estimates the probabil-
ity distribution of a text corpus in one direction—either forward or backward, while AE models
capture dependencies in both directions. We use an AR model to mimic a top-down, single pass
comprehension style by humans.

Random embedding. We compare the results of the above models against an aggressive baseline
provided by using unique Gaussian-distributed random vectors for the token embeddings in a
vocabulary, and returning the sum of these token embeddings across a program. The resultant
embedding is not transformed by any model or any weights—it instead serves as a proxy for the
tokens that appear in the program. This sets a higher bar than the null-distribution labeling baseline

(Section[5.2).

Code models - Configuration details. In setting up our code model bench, we aimed to select a
collection of models ranging in their complexity, namely bag-of-words, TF-IDF (Term frequency-
Inverse document frequency), seq2seq, XLNet, CodeTransformer, and CodeBERTa, as well as a
Random embedding embedding model.

The bag-of-words, TF-IDF, seq2seq, and Random embedding models all use the same custom
tokenizer defined by the current authors, whereas XL Net, CodeTransformer, and CodeBERTa use
tokenizers defined by the original training authors (Ziigner et al.l 2021 HuggingFacel 2020).

The tokenizer set up for the models trained by the current authors establishes a unique token in
the vocabulary for each Python keyword, each Python builtin function, one token for all numeric
types, one token for all string types, and IV tokens for each of the /V variables in a given program.
In the case of the Random embedding baseline, this tokenizer was used to map each token in a
piece of source code to an index in the vocabulary, which in turn was used to index a Gaussian
distributed random matrix (D = 128). The sum of these random token projections was calculated
to return a unique embedding for each program.

For bag-of-words and TF-IDF, the validation split of the code-search-net Python dataset (Husain
et al., 2019) was used to enumerate vocabulary and token occurrence statistics. These data were
then used to transform each program to a vector where each dimension represented the raw (bag-
of-words) or document-weighted (TF-IDF) count of the unique items in the vocabulary.

If a given set of programs viewed by a subject never included a specific token, leading that column
to equal the zero vector, then those dimensions would be filtered out.

17

Under review as a conference paper at ICLR 2022

* We used the dataset released by Project Codenet (Purt et al., [2021) to pretrain a seq2seq model
(Sutskever et al 2014). The dataset contains Python programs that are solutions to olympiad-
style programming problems in data structures and algorithms. We trained a seq2seq model with
a GRU unit for 15 epochs, with a dropout probability of 0.2, dot product attention, and a maximum
sentence length of 500.

* For XLNet, CodeTransformer, and CodeBERTa, each program was passed through that model’s
tokenizer and model pipeline as defined by the original authors. The representations of each pro-
gram were extracted from the pretrained encoders. XLNet and CodeTransformer were originally
trained on the Python subset of the code-search-net dataset, whereas CodeBERTa was originally
trained on the full code-search-net dataset, which also incorporates go, java, javascript, php, and
ruby.

18

Under review as a conference paper at ICLR 2022

C ADDITIONAL RESULTS

C.1 EXPERIMENT 1

Using representations from localized brain regions, we attempt to decode static and dynamic prop-
erties of comprehended code, and learn maps to code model representations of that same code. We
report decoding performance of each brain region to the original [I[vanova et al.| (2020) code prop-
erties in Table[I] the complexity-related code properties in Table [2] and the code model mappings
in Table 3] We find that the MD system and the Language system decode all code properties and
code models except variable language significantly above baseline, as established through a null
permutation test. The Visual system decodes 4 of the 6 code properties and 6 of the 7 code models,
whereas the Auditory system only decodes the code vs sentences property.

Brain Representation MD Language Visual Auditory
Code Properties Empirical Baseline

Code vs. Sentence 0.55 0.88 (+0.33) 0.87 (+0.32) 0.88 (+0.33) 0.64 (+0.09)
Control Flow 0.33 0.49 (+0.16) 0.45 (+0.12) 0.39 (+0.06) 0.36 (+0.03)
Data Type 0.49 0.63 (+0.14) 0.58 (+0.09) 0.61 (+0.12) 0.53 (+0.04)
Variable Language 0.50 0.53 (+0.03) 0.51 (+0.01) 0.53 (+0.03) 0.50 (-0.00)

Table 1: Brain region decoding performance on original|[Ivanova et al.|(2020) code properties. Scores
represent classification accuracy and are contrasted with an empirical baseline from the null permu-
tation analysis. Values in parentheses are units above baseline.

Brain Representation
Code Properties

Static Analysis 0.17 0.24 0.09 0.00
Dynamic Analysis 0.33 0.20 0.17 0.12

‘MD Language Visual Auditory

Table 2: Brain region decoding performance on static analysis and dynamic analysis code properties.
Scores represent Pearson correlation between predicted and true code properties.

19

Under review as a conference paper at ICLR 2022

C.2 EXPERIMENT 2

Brain Representation MD Language Visual Auditory
Code Models Empirical Baseline

Random Embedding || 0.50 0.56 (+0.06) 0.55 (+0.05) 0.54 (+0.04) 0.53 (+0.03)
Bag Of Words 0.50 0.58 (+0.08) 0.56 (+0.06) 0.54 (+0.04) 0.52 (+0.02)
TF-IDF 0.50 0.57 (+0.07) 0.54 (+0.04) 0.53 (+0.03) 0.52 (+0.02)
Seq2Seq 0.50 0.57 (+0.07) 0.54 (+0.04) 0.51 (+0.01) 0.51 (+0.01)
XLNet 0.50 0.57 (+0.07) 0.55 (+0.05) 0.54 (+0.04) 0.52 (+0.02)
CodeTransformer 0.50 0.59 (+0.09) 0.56 (+0.06) 0.55 (+0.05) 0.52 (+0.02)
CodeBERTa 0.50 0.60 (+0.10) 0.57 (+0.07) 0.58 (+0.08) 0.53 (+0.03)

Table 3: Brain region decoding performance on code model mappings. Scores represent rank ac-
curacy and are contrasted with an empirical baseline from the null permutation analysis. Values in
parentheses are units above baseline.

We additionally evaluate whether code models contain linearly decodable information about the
code properties we explore in this work (Section [£.2). The models decode with near perfect accu-
racy on most classification tasks (avg. accuracy= 0.96 £ 0.01), and with high correlations on the
regression tasks (avg. r = 0.89 £ 0.02). This is expected for the classification tasks, since the
dataset contains tokens which help with perfectly separable decision boundaries. For example, for
the control flow code property, the dataset contains programs with if, for, or neither, but never
both. These results suggest that the code models we evaluate faithfully encode the set of properties

we evaluate them on.

Code Properties Control Flow Data Type Dynamic Analysis Static Analysis
Empirical Baseline 0.31 0.48 .00 0.00

Model Representation

Random Embedding 1.00 0.94 0.88 1.00

Bag Of Words 1.00 0.92 0.93 0.98

TF-IDF 1.00 0.94 0.94 0.89

Seq2Seq 0.95 0.97 0.87 0.91

XLNet 0.92 0.92 0.76 0.88
CodeTransformer 1.00 0.95 0.90 0.91
CodeBERTa 0.96 0.98 0.81 0.79

Table 4: Decoding performance of all models on all tasks. Scores represent classification accuracy
for control flow and data type, and Pearson correlation for the remaining benchmarks. These can be
contrasted with an empirical baseline from the null permutation analysis.

20

Under review as a conference paper at ICLR 2022

D ANALYSIS OF VARIANCE

We run a series of one-way ANOVA statistical tests to assess whether decoding performance varies
across brain regions for each code property and code model, and whether decoding performance
varies across code models for each brain region. We report these results in Tables[5][6] and[7] We find
that decoding performance varies across brain region for all code properties and code models, except
the variable language property and the Random embedding model, and decoding performance varies
across code models for the MD system and the Visual system.

F P p (corrected) Is Significant?
Code Property
Code vs. Sentence || 53.57 4.03e-20 2.42e-19 1
Control Flow 12.52 6.13e-07 1.84e-06 1
Static Analysis 6.71 3.82e-04 7.65e-04 1
Data Type 446 5.66e-03 8.50e-03 1
Dynamic Analysis || 4.15 8.38¢-03 1.0le-02 1
Variable Language || 0.82 4.84e-01 4.84e-01 0

Table 5: Results from statistical testing of variance across brain regions for each code property.

F p p (corrected) Is Significant?
Code Model
CodeTransformer 11.85 1.25e-06 7.95e-06 1
CodeBERTa 11.28 2.27e-06 7.95e-06 1
TF-IDF 8.46 5.08e-05 9.48e-05 1
Seq2Seq 8.40 5.42e-05 9.48e-05 1
Bag Of Words 5.66 1.33e-03 1.86e-03 1
XLNet 3.48 1.90e-02 2.22¢-02 1
Random Embedding || 2.32 8.04e-02 8.04e-02 0

Table 6: Results from statistical testing of variance across brain regions for each code model.

F P p (corrected) Is Significant?

Brain Region
Vlsual 4.00 9.17e-04 3.67e-03

272 1.54e-02 3.08e-02
2.18 4.70e-02 6.27e-02
043 8.57e-01 8.57e-01

Language
Auditory

OO ==

Table 7: Results from statistical testing of variance across code models for each brain region.

21

Under review as a conference paper at ICLR 2022

E PAIRWISE ANALYSIS

To extend the findings from the ANOVA analyses towards specific pairwise comparisons between
brain regions and code models, we compare scores between brain regions for each code property
or code model, and compare scores between code models and a subset of code properties for each
brain region, using two-sample two-tail t-tests with unequal variance. We report all pairwise brain
region comparisons in Tables [§] and [I0] and report all pairwise code property and model compar-
isons in Tables[9)and [T1] To highlight a few key results from code properties, we find that the MD
system decodes runtime steps and control flow significantly better than the Visual system (Table §).
Additionally, the Language system decodes static analysis and control flow significantly better than
the Visual system. Moving onto code models, we find that the MD system decodes CodeBERTa,
seq2seq, and TF-IDF significantly more accurately than the Language system, and additionally de-
codes CodeTransformer, seq2seq, TF-IDF, and bag-of-words significantly more accurately than the
Visual system (Table [I0). Finally, an investigation into model complexity reveals that CodeBERTa
is significantly more accurately decoded from the MD system than the Random embedding model.

Brain Region A Brain Region B | t p p (corrected) Is Significant?
Code Property ‘ ‘
Code vs. Sentence || Language Auditory 8.82 5.33e-11 6.40e-10 1
Code vs. Sentence || MD Auditory 9.79 1.28e-11 4.62e-10 1
Code vs. Sentence || Visual Auditory 9.06 2.65e-11 4.78e-10 1
Control Flow Language Auditory 428 1.02¢-04 6.10e-04 1
Control Flow Language Visual 2.60 1.26e-02 3.30e-02 1
Control Flow MD Auditory 5.59 1.65e-06 1.49e-05 1
Control Flow MD Visual 392 295e-04 1.52e-03 1
Data Type MD Auditory 3.16 2.98e-03 1.21e-02 1
Data Type Visual Auditory 293 533e-03 1.88e-02 1
Dynamic Analysis || MD Auditory 3.13 3.03¢-03 1.21e-02 1
Dynamic Analysis || MD Visual 259 1.28e-02 3.30e-02 1
Static Analysis Language Auditory 470 2.97e-05 2.14e-04 1
Static Analysis Language Visual 292 5.75e-03 1.88e-02 1
Static Analysis MD Auditory 2.79 7.68e-03 2.30e-02 1
Code vs. Sentence || Language Visual -0.28 7.83e-01 8.30e-01 0
Code vs. Sentence || MD Language 049 6.27e-01 6.84e-01 0
Code vs. Sentence || MD Visual 0.18 8.55e-01 8.55e-01 0
Control Flow MD Language 1.44 1.58e-01 2.84e-01 0
Control Flow Visual Auditory 1.50 1.40e-01 2.81e-01 0
Data Type Language Auditory 230 2.62e-02 6.30e-02 0
Data Type Language Visual -0.94 3.55e-01 4.91e-01 0
Data Type MD Language 148 1.47e-01 2.8le-01 0
Data Type MD Visual 0.64 5.24e-01 6.18e-01 0
Dynamic Analysis || Language Auditory 1.29 2.03e-01 3.04e-01 0
Dynamic Analysis || Language Visual 0.57 5.73e-01 6.45e-01 0
Dynamic Analysis || MD Language 2.11 4.0le-02 9.03e-02 0
Dynamic Analysis || Visual Auditory 0.75 4.55e-01 5.85e-01 0
Static Analysis MD Language -1.34 1.89%-01 3.04e-01 0
Static Analysis MD Visual 1.32 1.94e-01 3.04e-01 0
Static Analysis Visual Auditory 147 1.48e-01 2.81e-01 0
Variable Language || Language Auditory 0.66 5.15e-01 6.18e-01 0
Variable Language || Language Visual -0.63 5.32e-01 6.18e-01 0
Variable Language || MD Auditory 140 1.68e-01 2.88e-01 0
Variable Language | MD Language 0.84 4.06e-01 5.41e-01 0
Variable Language | MD Visual 0.23 8.20e-01 8.44e-01 0
Variable Language || Visual Auditory 1.23 2.26e-01 3.25e-01 0

Table 8: Results from pairwise t-tests of brain regions for each code property. +t reflects A > B,
whereas —t reflects A < B.

22

Under review as a conference paper at ICLR 2022

Code Property A Code Property B t p p (corrected) Is Significant?
Brain Region
Auditory Static Analysis Dynamic Analysis | -1.93 6.00e-02 1.20e-01 0
Language Static Analysis Dynamic Analysis | 0.85 4.00e-01 4.00e-01 0
Static Analysis Dynamic Analysis | -2.45 1.80e-02 7.18e-02 0
Vlsual Static Analysis Dynamic Analysis | -1.34 1.88e-01 2.51e-01 0

Table 9: Results from pairwise t-tests of continuous code metrics across brain regions. Only this
subset of properties was selected so as to evaluate scores with a consistent metric and baseline. +t
reflects A > B, whereas —t reflects A < B.

Brain Region A Brain Region B | t p p (corrected) Is Significant?
Code Model
Bag Of Words Language Auditory 270 9.69e-03 2.60e-02 1
Bag Of Words MD Auditory 442 6.03e-05 6.33e-04 1
Bag Of Words MD Visual 261 1.26e-02 2.93e-02 1
CodeBERTa Language Auditory 329 1.94e-03 7.41e-03 1
CodeBERTa MD Auditory 580 5.85e-07 2.46e-05 1
CodeBERTa MD Language 2.67 1.05e-02 2.60e-02 1
CodeBERTa Visual Auditory 3.80 4.28e-04 2.25e-03 1
CodeTransformer Language Auditory 412 1.55e-04 1.09e-03 1
CodeTransformer Auditory 561 1.42e-06 2.99e-05 1
CodeTransformer MD Visual 2.67 1.05e-02 2.60e-02 1
CodeTransformer Visual Auditory 3.09 3.40e-03 1.19e-02 1
Random Embedding || MD Auditory 2.69 9.95e-03 2.60e-02 1
Seq2Seq MD Auditory 394 2.72e-04 1.63e-03 1
Seq2Seq MD Language 248 1.71e-02 3.78e-02 1
Seq2Seq MD Visual 425 1.16e-04 9.71e-04 1
TF-IDF MD Auditory 495 1.06e-05 1.48e-04 1
TF-IDF MD Language 2.86 6.39e-03 2.06e-02 1
TF-IDF MD Visual 342 1.33e-03 6.20e-03 1
XLNet MD Auditory 339 1.53e-03 6.45¢-03 1
Bag Of Words Language Visual 1.29 2.03e-01 2.80e-01 0
Bag Of Words MD Language 1.50 1.40e-01 2.03e-01 0
Bag Of Words Visual Auditory 0.98 3.33e-01 3.88e-01 0
CodeBERTa Language Visual -0.81 4.20e-01 4.65e-01 0
CodeBERTa MD Visual 1.66 1.04e-01 1.62e-01 0
CodeTransformer Language Visual 0.69 4.92e-01 5.30e-01 0
CodeTransformer Language 221 3.23e-02 6.46e-02 0
Random Embedding || Language Auditory 1.70 9.56e-02 1.54e-01 0
Random Embedding || Language Visual 0.32 7.52e-01 7.81e-01 0
Random Embedding || MD Language 1.13 2.63e-01 3.18e-01 0
Random Embedding || MD Visual 1.28 2.07e-01 2.80e-01 0
Random Embedding || Visual Auditory 1.16 2.53e-01 3.18e-01 0
Seq2Seq Language Auditory 1.87 6.85e-02 1.20e-01 0
Seq2Seq Language Visual 1.98 5.36e-02 1.02e-01 0
Seq2Seq Visual Auditory 0.14 8.87e-01 8.87e-01 0
TF-IDF Language Auditory 228 2.71e-02 5.69e-02 0
TF-IDF Language Visual 0.92 3.64e-01 4.13e-01 0
TF-IDF Visual Auditory 1.13 2.65e-01 3.18e-01 0
XLNet Language Auditory 1.58 1.22e-01 1.83e-01 0
XLNet Language Visual 0.30 7.62e-01 7.81e-01 0
XLNet MD Language 1.71 9.49e-02 1.54e-01 0
XLNet MD Visual 191 6.25¢-02 1.14e-01 0
XLNet Visual Auditory 1.13 2.64e-01 3.18e-01 0

Table 10: Results from pairwise t-tests of brain regions for each code model. +t¢ reflects A > B,
whereas —t reflects A < B.

23

Under review as a conference paper at ICLR 2022

Code Model A Code Model B t p p (corrected) Is Significant?
Brain Region
MD Random Embedding CodeBERTa -3.53 9.65¢-04 2.70e-02 1
Visual CodeBERTa Seq2Seq 5.13 7.01e-06 5.89e-04 1
Visual CodeBERTa TF-IDF 3.60 7.93e-04 2.70e-02 1
Visual CodeTransformer Seq2Seq 335 1.68e-03 3.53e-02 1
Auditory Bag Of Words TF-IDF 047 6.39-01 8.14e-01 0
Auditory CodeBERTa Bag Of Words 0.23 8.23e-01 9.48e-01 0
Auditory CodeBERTa CodeTransformer | 0.94 3.51e-01 6.82e-01 0
Auditory CodeBERTa Seq2Seq 1.15 2.58e-01 6.37e-01 0
Auditory CodeBERTa TF-IDF 0.73 4.68e-01 7.40e-01 0
Auditory CodeBERTa XLNet 0.24 8.10e-01 9.48e-01 0
Auditory CodeTransformer Bag Of Words -0.69 4.93e-01 7.40e-01 0
Auditory CodeTransformer Seq2Seq 030 7.64e-01 9.44e-01 0
Auditory CodeTransformer TF-IDF -0.27 7.87e-01 9.45e-01 0
Auditory CodeTransformer XLNet -0.75 4.57e-01 7.40e-01 0
Auditory Random Embedding Bag Of Words 0.07 9.45e-01 1.00e+00 0
Auditory Random Embedding CodeBERTa -0.16 8.70e-01 9.75e-01 0
Auditory Random Embedding CodeTransformer | 0.80 4.29e-01 7.35e-01 0
Auditory Random Embedding Seq2Seq 1.02 3.14e-01 6.82e-01 0
Auditory Random Embedding ~ TF-IDF 0.58 5.68e-01 7.74e-01 0
Auditory Random Embedding XLNet 0.08 9.40e-01 1.00e+00 0
Auditory Seq2Seq Bag Of Words -091 3.65e-01 6.82¢-01 0
Auditory Seq2Seq TF-IDF -0.56 5.81e-01 7.74e-01 0
Auditory XLNet Bag Of Words 0.00 1.00e+00 1.00e+00 0
Auditory XLNet Seq2Seq 098 3.33e-01 6.82e-01 0
Auditory XLNet TF-IDF 052 6.07e-01 7.85e-01 0
Language Bag Of Words TF-IDF 1.64 1.10e-01 3.29¢-01 0
Language CodeBERTa Bag Of Words 0.63 535e-01 7.72e-01 0
Language CodeBERTa CodeTransformer | 0.54 5.90e-01 7.74e-01 0
Language CodeBERTa Seq2Seq 282 7.17e-03 1.15e-01 0
Language CodeBERTa TF-IDF 248 1.70e-02 1.33e-01 0
Language CodeBERTa XLNet 1.77 8.27e-02 2.89%e-01 0
Language CodeTransformer Bag Of Words 0.14 8.89e-01 9.83e-01 0
Language CodeTransformer Seq2Seq 240 2.06e-02 1.33e-01 0
Language CodeTransformer TF-IDF 2.02 491e-02 2.37e-01 0
Language CodeTransformer XLNet 135 1.83e-01 4.81e-01 0
Language Random Embedding Bag Of Words -1.28 2.09e-01 5.32¢-01 0
Language Random Embedding CodeBERTa -2.05 4.61e-02 2.37e-01 0
Language Random Embedding CodeTransformer | -1.59 1.20e-01 3.47e-01 0
Language Random Embedding Seq2Seq 0.85 4.02¢-01 7.03e-01 0
Language Random Embedding ~ TF-IDF 034 7.33e-01 9.19e-01 0
Language Random Embedding ~ XLNet 0.00 1.00e+00 1.00e+00 0
Language Seq2Seq Bag Of Words -2.01 5.08e-02 2.37e-01 0
Language Seq2Seq TF-IDF -0.56 5.77e-01 7.74e-01 0
Language XLNet Bag Of Words -1.12° 2.69e-01 6.46e-01 0
Language XLNet Seq2Seq 0.72 4.75e-01 7.40e-01 0
Language XLNet TF-IDF 0.29 7.76e-01 9.45e-01 0
MD Bag Of Words TF-IDF 0.88 3.8le-01 6.82e-01 0
MD CodeBERTa Bag Of Words 1.84 7.18¢-02 2.87¢-01 0
MD CodeBERTa CodeTransformer | 0.74 4.61e-01 7.40e-01 0
MD CodeBERTa Seq2Seq 2.60 1.27e-02 1.28e-01 0
MD CodeBERTa TF-IDF 277 821e-03 1.15e-01 0
MD CodeBERTa XLNet 225 295e-02 1.77e-01 0
MD CodeTransformer Bag Of Words 0.90 3.71e-01 6.82e-01 0
MD CodeTransformer Seq2Seq 1.68 1.00e-01 3.1le-01 0
MD CodeTransformer TF-IDF 1.69 9.84e-02 3.11e-01 0
MD CodeTransformer XLNet 1.40 1.67e-01 4.53e-01 0
MD Random Embedding Bag Of Words -1.81 7.67e-02 2.89e-01 0
MD Random Embedding ~ CodeTransformer | -2.46 1.81e-02 1.33e-01 0
MD Random Embedding Seq2Seq -0.70 4.86e-01 7.40e-01 0
MD Random Embedding ~ TF-IDF -1.05 2.99e-01 6.82e-01 0
MD Random Embedding XLNet -0.89 3.76e-01 6.82¢-01 0
MD Seq2Seq Bag Of Words -0.95 3.45e-01 6.82e-01 0
MD Seq2Seq TF-IDF -0.21 8.35e-01 9.48e-01 0
MD XLNet Bag Of Words -0.67 5.05e-01 7.44e-01 0
MD XLNet Seq2Seq 021 83le-01 9.48e-01 0
MD XLNet TF-IDF 0.04 9.65e-01 1.00e+00 0
Visual Bag Of Words TF-IDF 0.55 5.84e-01 7.74e-01 0
Visual CodeBERTa Bag Of Words 243 1.94e-02 1.33e-01 0
Visual CodeBERTa CodeTransformer | 1.86 6.97e-02 2.87¢-01 0
Visual CodeBERTa XLNet 256 1.38e-02 1.28e-01 0
Visual CodeTransformer Bag Of Words 0.89 3.80e-01 6.82e-01 0
Visual CodeTransformer TF-IDF 179 8.08e-02 2.89e-01 0
Visual CodeTransformer XLNet 093 3.57e-01 6.82e-01 0
Visual Random Embedding Bag Of Words 0.05 9.58e-01 1.00e+00 0
Visual Random Embedding CodeBERTa -2.67 1.04e-02 1.25e-01 0
Visual Random Embedding CodeTransformer | -0.95 3.48e-01 6.82e-01 0
Visual Random Embedding Seq2Seq 211 4.07e-02 2.28¢-01 0
Visual Random Embedding TF-IDF 0.70 4.87e-01 7.40e-01 0
Visual Random Embedding XLNet 0.04 9.70e-01 1.00e+00 0
Visual Seq2Seq Bag Of Words -1.76 8.74e-02 2.94e-01 0
Visual Seq2Seq TF-IDF -1.55 1.29e-01 3.60e-01 0
Visual XLNet Bag Of Words 0.02 9.86e-01 1.00e+00 0
Visual XLNet Seq2Seq 192 6.20e-02 2.74e-01 0
Visual XLNet TF-IDF 0.61 542e-01 7.72¢-01 0

Table 11: Results from pairwise t-tests of code models for each brain region. +t reflects A > B,
whereas —t reflects A < B.

24

Under review as a conference paper at ICLR 2022

F MULTI-SYSTEM REGRESSION ANALYSIS: SCORES AND SIGNIFICANCE

In order to investigate whether each of the brain systems included contribute unique information
towards the decoding tasks, we combine brain representations from different systems in paired com-
binations and evaluate effects on downstream decoding performance across all experiments. We find
that the addition of MD or LS to VS, relative to VS alone, improves downstream decoding of code
vs sentences. The same effect is observed for the combination of MD and LS compared to either
alone. These data suggest that the MD system and the Language system encode unique variance
relevant to the decoding of code vs sentences, and this is above and beyond the information encoded
in the Visual system or each other individually. Additionally, we observe that the addition of MD to
VS, relative to VS alone, improves downstream decoding of control flow and data type. This same
effect is observed for the addition of LS to Visual system for control flow. These data suggest that
the MD system and the Language system encode unique information above and beyond information
encoded in the Visual system for the control flow decoding task, and the MD system encodes unique
information above and beyond information encoded in the Visual system for the data type decoding
task (Table[T5). We repeat this process for Experiment 2, where we find that the addition of MD to
VS improves decoding for 5 models, the addition of MD to LS improves decoding for 4 models, and
the addition of LS to Visual system improves decoding for 2 models (Table [I6).

Brain Representation L+V MD+L MD+V
Code Properties Empirical Baseline

Code vs. Sentence 0.56 0.94 (+0.38) 0.94 (+0.38) 0.93 (+0.37)
Control Flow 0.33 0.45 (+0.12) 0.49 (+0.16) 0.49 (+0.16)
Data Type 0.50 0.62 (+0.12) 0.63 (+0.13) 0.68 (+0.18)
Variable Language 0.50 0.53(+0.03) 0.53 (+0.03) 0.53 (+0.03)

Table 12: Multi-system regression analysis on original Ivanova et al.|(2020) code properties. Scores
represent classification accuracy and are contrasted with an empirical baseline from the null permu-
tation analysis. Values in parentheses are units above baseline.

Brain Representation L+V MD+L MD+V

Code Properties

0.22
0.19

0.32
0.21

0.31
0.20

Dynamic Analysis
Static Analysis

Table 13: Multi-system regression analysis on static and dynamic code properties. Scores represent

Pearson correlation between predicted and true code properties.

Brain Representation L+V MD+L MD+V
Code Models Empirical Baseline

Random Embedding || 0.50 0.57 (+0.07) 0.56 (+0.06) 0.57 (+0.07)
Bag Of Words 0.50 0.57 (+0.07) 0.59 (+0.09) 0.59 (+0.09)
TF-IDF 0.50 0.56 (+0.06) 0.58 (+0.08) 0.57 (+0.07)
Seq2Seq 0.50 0.55 (+0.05) 0.57 (+0.07) 0.56 (+0.06)
XLNet 0.50 0.57 (+0.07) 0.58 (+0.08) 0.57 (+0.07)
CodeTransformer 0.50 0.58 (+0.08) 0.60 (+0.10) 0.60 (+0.10)
CodeBERTa 0.50 0.60 (+0.10) 0.62 (+0.12) 0.62 (+0.12)

Table 14: Multi-system regression analysis on code model mappings. Scores represent rank accu-
racy and are contrasted with an empirical baseline from the null permutation analysis. Values in

parentheses are units above baseline.

25

Under review as a conference paper at ICLR 2022

Brain Region A Brain Region B | t p p (corrected) Is Significant?
Code Property H
Code vs. Sentence || L+V Language 3.88 3.94e-04 5.20e-03 1
Code vs. Sentence || L+V Visual 356 9.82e-04 7.07e-03 1
Code vs. Sentence || MD+L Language 377 5.96e-04 5.36e-03 1
Code vs. Sentence || MD+L MD 3.83 4.33e-04 5.20e-03 1
Code vs. Sentence || MD+V MD 325 2.29e-03 1.37e-02 1
Code vs. Sentence || MD+V Visual 296 536e-03 2.54e-02 1
Control Flow L+V Visual 291 5.63e-03 2.54e-02 1
Control Flow MD+V Visual 411 1.63e-04 5.20e-03 1
Data Type MD+V Visual 2.86 6.41e-03 2.56e-02 1
Control Flow L+V Language 0.15 8.80e-01 1.00e+00 0
Control Flow MD+L Language 146 1.50e-01 3.18e-01 0
Control Flow MD+L MD -0.11 9.16e-01 1.00e+00 0
Control Flow MD+V MD 0.03 9.73e-01 1.00e+00 0
Data Type L+V Language 1.50 1.39e-01 3.13e-01 0
Data Type L+V Visual 044 6.59e-01 9.49e-01 0
Data Type MD+L Language 1.93 6.00e-02 1.80e-01 0
Data Type MD+L MD 024 8.11e-01 9.94e-01 0
Data Type MD+V MD 1.76 8.67e-02 2.23e-01 0
Dynamic Analysis || L+V Language 0.39 7.01e-01 9.71e-01 0
Dynamic Analysis || L+V Visual 1.00 3.24e-01 6.48e-01 0
Dynamic Analysis || MD+L Language 1.97 551e-02 1.80e-01 0
Dynamic Analysis || MD+L MD -0.05 9.63e-01 1.00e+00 0
Dynamic Analysis || MD+V MD -0.28 7.84e-01 9.94e-01 0
Dynamic Analysis || MD+V Visual 2.51 1.56e-02 5.61e-02 0
Static Analysis L+V Language -0.94 3.54e-01 6.71e-01 0
Static Analysis L+V Visual 1.69 9.87e-02 2.37e-01 0
Static Analysis MD+L Language -0.70 4.89e-01 8.80e-01 0
Static Analysis MD+L MD 0.57 5.68e-01 9.25e-01 0
Static Analysis MD+V MD 0.50 6.17e-01 9.25e-01 0
Static Analysis MD+V Visual 1.76 8.50e-02 2.23e-01 0
Variable Language || L+V Language 0.62 536e-01 9.18e-01 0
Variable Language || L+V Visual -0.00 1.00e+00 1.00e+00 0
Variable Language || MD+L Language 0.53 5.98e-01 9.25e-01 0
Variable Language || MD+L MD -0.27 7.86e-01 9.94e-01 0
Variable Language || MD+V MD -0.22 8.28e-01 9.94e-01 0
Variable Language || MD+V Visual -0.00 1.00e+00 1.00e+00 0

Table 15: Results from pairwise t-tests of paired brain systems with their individual components for
each code property. +t reflects A > B, whereas —t reflects A < B.

26

Under review as a conference paper at ICLR 2022

Brain Region A Brain Region B | t p p (corrected) Is Significant?
Code Model
Bag Of Words MD+V Visual 3.01 4.41e-03 2.65e-02 1
CodeBERTa L+V Language 2.57 1.36e-02 4.76e-02 1
CodeBERTa MD+L Language 340 1.45e-03 1.52e-02 1
CodeBERTa MD+V Visual 262 1.17e-02 4.76e-02 1
CodeTransformer MD+L Language 2.84 6.80e-03 3.51e-02 1
CodeTransformer MD+V Visual 330 1.87e-03 1.57e-02 1
Seq2Seq L+V Visual 3.02 4.21e-03 2.65e-02 1
Seq2Seq MD+V Visual 3.89 3.54e-04 9.44e-03 1
TF-IDF L+V Visual 2.80 7.53e-03 3.51e-02 1
TF-IDF MD+L Language 3.66 6.74e-04 9.44e-03 1
TF-IDF MD+V Visual 372 5.49e-04 9.44e-03 1
XLNet MD+L Language 258 1.32e-02 4.76e-02 1
Bag Of Words L+V Language 0.64 5.24e-01 6.47e-01 0
Bag Of Words L+V Visual 1.77 8.35e-02 1.59e-01 0
Bag Of Words MD+L Language 225 2.92e-02 7.65e-02 0
Bag Of Words MD+L MD 0.82 4.15e-01 5.44e-01 0
Bag Of Words MD+V MD 0.60 5.49¢-01 6.59¢-01 0
CodeBERTa L+V Visual 146 1.52e-01 2.45e-01 0
CodeBERTa MD+L MD 0.88 3.84e-01 5.20e-01 0
CodeBERTa MD+V MD .11 2.74e-01 4.05e-01 0
CodeTransformer L+V Language 1.61 1.15e-01 1.94e-01 0
CodeTransformer L+V Visual 2.18 3.48e-02 8.47e-02 0
CodeTransformer MD+L MD 0.36 7.21e-01 7.97e-01 0
CodeTransformer MD+V MD 0.48 6.31e-01 7.16e-01 0
Random Embedding || L+V Language 1.72 9.15e-02 1.66e-01 0
Random Embedding || L+V Visual 1.80 7.91e-02 1.58e-01 0
Random Embedding || MD+L Language 1.71 9.46e-02 1.66e-01 0
Random Embedding || MD+L MD 0.51 6.11e-01 7.13e-01 0
Random Embedding || MD+V MD 1.09 2.80e-01 4.05e-01 0
Random Embedding || MD+V Visual 230 2.65e-02 7.56e-02 0
Seq2Seq L+V Language 1.10 2.78e-01 4.05e-01 0
Seq2Seq MD+L Language 243 1.99e-02 6.41e-02 0
Seq2Seq MD+L MD 0.20 8.39e-01 8.39¢-01 0
Seq2Seq MD+V MD -0.28 7.78e-01 8.17e-01 0
TF-IDF L+V Language 2.16 3.63e-02 8.47e-02 0
TF-IDF MD+L MD 1.00 3.22e-01 4.50e-01 0
TF-IDF MD+V MD 031 7.60e-01 8.17e-01 0
XLNet L+V Language 191 6.23e-02 1.31e-01 0
XLNet L+V Visual 2.11 4.07e-02 8.99e-02 0
XLNet MD+L MD 0.79 4.35e-01 5.53e-01 0
XLNet MD+V MD 0.24 8.10e-01 8.30e-01 0
XLNet MD+V Visual 229 2.70e-02 7.56e-02 0

Table 16: Results from pairwise t-tests of paired brain systems with their individual components for
each code model. +¢ reflects A > B, whereas —t reflects A < B.

27

Under review as a conference paper at ICLR 2022

G ALL CODE PROPERTIES: SCORES AND CORRELATIONS

We analyzed a series of code properties as part of the static and dynamic code analysis. As several of
these properties (token count, node count, Halstead difficulty, cyclomatic complexity, and bytecode
ops) were revealed to be highly correlated in a post-hoc analysis, we report only one measure for
this subset in Experiment 1, token count, but include all scores here for completeness (Table .
We also report the correlation matrix between all code properties that led us to select token count as
the representative property for this subset (Table[T8§).

Brain Representation MD Language Visual Auditory
Code Properties

Token Count 0.17 0.24 0.09 0.00
Node Count 0.12 0.20 0.03 0.01
Halstead Difficulty 0.11 0.17 0.10 -0.01
Cyclomatic Complexity || 0.18 0.24 0.10 0.01
Bytecode Operations 0.15 0.18 0.03 0.02
Runtime Steps 0.33 0.20 0.17 0.12

Table 17: Brain region decoding performance on all static analysis and dynamic analysis code
properties. Scores represent Pearson correlation between predicted and true code properties.

| Datatype Conditional ~Iteration Tokens Nodes Halstead Cyclomatic Runtime Bytecode
Datatype 1.00 0.00 0.00 0.41 0.33 0.39 0.18 0.13 0.28
Conditional | - 1.00 -0.50 0.44 0.46 0.50 0.61 -0.41 0.49
Iteration - 1.00 -0.10 -0.14 -0.35 -0.09 0.90 0.01
Tokens - 1.00 0.97 0.89 0.80 0.08 0.95
Nodes - - 1.00 0.86 0.79 0.00 0.96
Halstead - - - 1.00 0.74 -0.17 0.80
Cyclomatic - - - 1.00 0.02 0.84
Runtime - - - 1.00 0.13
Bytecode - - - 1.00

Table 18: Correlation matrix across all code properties. The control flow property was split into
two binary properties here, conditional and iteration. Of relevance is that token count presents with
r > 0.8 for all static analysis properties in the set and as such is used as the representative static
analysis code property in Experiment 1.

28

Under review as a conference paper at ICLR 2022

MD Language Visual Auditory

=&~ RandomEmbedding

=@~ BagOfWords
TF-IDF

=&~ seq2seq

=@~ XLNet

=@~ CodeTransformer

=@~ CodeBERTa

o o =] =] o
o G o o @
N & =) @ ©
4 4 4 4 4
o o o o @
N > - @ ©
N L L ! .
=] o o o o
o o o o @
N & = @ =]
o o o o o
o n o o @
b * o @ =]

Mapping Score (Rank Accuracy)

o
o
S
4
o
°©
!
=]
o
©
o
o
=

22 23 34 95 26 3T 28 9 olo 22 93 34 25 26 3T 28 9 310 22 93 24 95 26 1 28 39 510 22 23 24 25 26 1 28 9 210
Embedding Dimensionality Embedding Dimensionality Embedding Dimensionality Embedding Dimensionality

Figure 7: Sensitivity of brain representation mapping to model output dimensions. Each subplot
contains the decoding results from a given brain network, and each line reflects a unique code model
across a range of controlled embedding dimensions.

H SENSITIVITY OF BRAIN MAPPING TO MODEL OUTPUT DIMENSIONS

Of potential interest to the decoding framework is not just the complexity of code models, but their
intrinsic dimensionality as well. In order to investigate to what extent brain model mappings are
robust to changes in code model dimensionality, and to assess which model representations are most
sensitive to compression and expansion, we rerun our current decoding framework while controlling
for embedding size.

For each brain network to code model mapping task, prior to the MVPA analysis, we control for
the dimensionality of the code model embedding via projection through a Gaussian random matrix
R91%42 drawn from N (0, 1/dy) where d; is the original code model embedding dimensionality and
ds is the desired dimensionality.

We observe that models of lower complexity (e.g., bag-of-words, TF-IDF, seq2seq, XLNet) ap-
pear relatively robust to compression, whereas the most complex models (e.g., CodeTransformer,
CodeBERTa) gain considerable performance from higher dimensional expression, and suffer con-
siderably when constrained.

This indicates that higher dimensions of the encoder in complex models encode relevant neural
information. Additionally, these effects appear to be most pronounced when decoding from the
brain region whose representations yield the strongest mappings, the MD system.

We note here however that we could be observing an interaction effect between model complexity
and dimensionality output in these results. Since we cannot fully control for the complexity of
these models (by making them all ‘equally complex’), this experiment alone cannot drive definitive
conclusions.

These results instead constitute a preliminary exploration into the effects of code model dimension-
ality on brain to model representation mappings, and suggest an avenue for future investigation.

29

Under review as a conference paper at ICLR 2022

I ROBUSTNESS OF RESULTS TO REGRESSION METRIC

For the decoding analysis of the continuous valued dynamic analysis and static analysis properties,
it is reasonable to ask why the Pearson correlation metric was chosen as opposed to RM SFE, as is
typically customary for regression tasks. While we present the results using the Pearson correlation
metric in the core results for interpretability via the zero-baselne, here we confirm that the use of
an RM SFE metric leads to the same conclusions. As we see here, the MD, LS, and Visual system
decode the dynamic analysis property, and MD and LS decode the static analysis property with
significantly lower RM SE than the null permutation baseline. These results precisely confirm and
mirror the patterns observed in Figure 3]

Brain Network Code Property || RMSE Null RMSE Is Significant?
MD Dynamic Analysis || 3.49 4.03 +0.08 1
MD Static Analysis 7.68 827+0.15 1
Language Dynamic Analysis || 3.68 3.95+£0.08 1
Language Static Analysis 7.34 8.00+£0.15 1
Visual Dynamic Analysis || 3.79 4.05 +0.08 1
Visual Static Analysis 7.99 8.28 £0.16 0
Auditory Dynamic Analysis || 3.79 3.98 £ 0.07 0
Auditory Static Analysis 8.04 8.10+£0.15 0

Table 19: RMSE between observed and predicted continuous-valued code properties from the
MVPA regression task in Experiment 1, confirming the pattern of results observed in @

30

	Introduction
	Related Work
	Background
	Brain and Model Representations
	Brain representations and decoding
	Code properties
	Model representations and decoding.

	Experiments & Results
	Experiment 1 - How well do the different brain systems encode specific code properties?
	Experiment 2 - How do the brain representations of code correspond to the representations learned by computational language models of code?

	Discussion
	Reproducability statement
	Brain regions
	Method - Details
	Additional Results
	Experiment 1
	Experiment 2

	Analysis of Variance
	Pairwise Analysis
	Multi-system regression analysis: Scores and significance
	All code properties: Scores and Correlations
	Sensitivity of brain mapping to model output dimensions
	Robustness of Results to Regression Metric

