
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON DIFFUSION-BASED MULTIPLEX DYNAMIC AT-
TRIBUTED NETWORK GENERATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

Multiplex dynamic attributed networks are essential for modeling complex sys-
tems, such as social platforms and telecommunication networks, where each layer
represents distinct interaction types and attribute dynamics. However, existing
generative models fall short in capturing their structural-semantic coupling, tem-
poral evolution, and inter-layer dependencies, failing to reproduce network-level
emergent behaviors like explosive synchronization and hysteresis. We introduce
MulDyDiff, a diffusion-based generative framework that incorporates attribute-
aware dynamic transition-based denoising, cross-layer correlation-aware denoising,
and behavior-aware guidance. These components are unified through a novel
Behavioral-guided Attributed Cross-layer Temporal (BACT) loss. Evaluations of
three real-world datasets demonstrate that MulDyDiff consistently outperforms
state-of-the-art dynamic graph generators, achieving 6%-9% improvement in terms
of temporal metrics, offering a comprehensive solution for realistic multiplex
dynamic attributed network synthesis.

1 INTRODUCTION

Modeling multiplex dynamic attributed networks (Liu et al., 2020) has gained increasing attention for
applications ranging from influence analysis in social platforms (Li et al., 2021; Wu et al., 2022a) to
telecommunication and transportation systems (Wan et al., 2020; Tudisco et al., 2018). Unlike single-
layer views that collapse heterogeneous interactions, multiplex dynamic attributed networks preserve
semantic distinctions across layers and time, revealing phenomena such as explosive synchronization
(a sudden collective behavior after small perturbations (De Domenico, 2023), exemplified by the
2021 GameStop short squeeze (Bursztynsky, 2021)) and hysteresis (where systems resist reverting
to prior states (Danziger et al., 2019), as seen in the persistence of remote work post-COVID-19
(Brynjolfsson et al., 2020)). These dynamics arise only in multiplex settings, since the evolution of
one layer depends not only on itself but also on other layers across timestamps (see Figure 1 for an
example; details in Appendix A).

Despite their importance, multiplex dynamic attributed networks are difficult to model due to data
scarcity, privacy constraints (Li et al., 2023; He et al., 2025), and limited public benchmarks (Yang
& Leskovec, 2012). Consequently, synthesizing realistic multiplex dynamics has become essential.
However, existing generative models (Samanta et al., 2020; Chenthamarakshan et al., 2020; Martinkus
et al., 2022; Huang et al., 2022; Vignac et al., 2023; Li et al., 2025) remain inadequate: they fail to
jointly capture structural and attributive information, overlook temporal and cross-layer dependencies,
and cannot reproduce emergent behaviors such as explosive synchronization and hysteresis. The key
challenges are as follows. 1) Node and edge attributes are essential for capturing semantics (e.g., user
interests) in profiling and classification (Chen et al., 2019; Jin et al., 2021), yet most models focus
only on static structures (Jo et al., 2022; Tseng et al., 2023) or intra-layer structural evolution (Zhang
et al., 2021a;b; Luo et al., 2021; Hosseini et al., 2025; Zheng et al., 2024), neglecting attribute
modeling and even attribute dynamics where a node’s state may depend on the structure and attributes
of neighbors in the same layer or other layers. 2) Dependencies across time and layers are often
ignored or oversimplified, even though real-world interactions frequently propagate across platforms
and time (Starnini et al., 2017; Fan & Huang, 2020; Zhang et al., 2020b; Wu et al., 2022b; He et al.,
2025); existing methods either focus on single-layer graphs (Fan & Huang, 2020) or treat them as
static input (Zhang et al., 2020b), failing to jointly capture long-term structural evolution and attribute
dynamics. 3) Emergent behaviors unique to multiplex dynamics, such as explosive synchronization

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

τ = 0 τ = t−1 τ = t

· · ·
v1

v1 v1v2v3

v5

v1v2v3

v5

Figure 1: An illustrative example of a multiplex dynamic attributed network. Each layer represents a
social media platform (e.g., Instagram, Threads). Nodes denote users with color-coded attributes,
intra-layer edges (black solid lines) capture platform-specific interactions, and inter-layer edges (gray
dashed lines) represent cross-platform links. The network evolves over time, reflecting both structural
and attribute dynamics.

and hysteresis (De Domenico, 2023; Danziger et al., 2019), remain unmodeled in current generative
frameworks, leaving a gap in reproducing realistic system-level phenomena.

To address these challenges, we propose MulDyDiff (Multiplex Dynamic Diffusion Generator), a
framework to synthesize multiplex dynamic attributed networks with realistic structural, temporal, and
semantic characteristics, while preserving emergent behaviors.1 MulDyDiff consists of: (i) Attribute-
aware dynamic transition-based denoising, which couples structure and attributes over time; (ii) Cross-
layer correlation-aware denoising, which reconstructs intra- and inter-layer links in order to capture
the evolution between distinct layers; and (iii) Behavior-aware guidance, which aligns generated
graphs with descriptors of explosive synchronization or hysteresis derived from the Kuramoto
model (De Domenico, 2023; Danziger et al., 2019). These components are unified in the Behavior-
guided Attributed Cross-layer Temporal (BACT) loss, ensuring semantic, temporal, and behavioral
fidelity. Our contributions are:

• We propose the first generative framework, MulDyDiff, for synthesizing multiplex dynamic
attributed networks while preserving network-level behaviors.

• We design a unified denoising framework with attribute-aware, cross-layer correlation-
aware, and behavior-aware components, jointly optimized via the BACT loss.

• Extensive experiments show that MulDyDiff significantly outperforms dynamic graph
generative models by 6%-9% improvement in the KS test of temporal metrics (Longa et al.,
2024; Zeno et al., 2021).

2 RELATED WORKS

In this section, we compare our study with the related studies, with summarization tables in Ap-
pendix B.1 and more related works on static graph generation introduced in Appendix B.2.

Dynamic Graph Generation. The existing dynamic graph generators include statistical models and
deep generative models. The statistical models mainly consider transitions of structural information
between different timestamps (Liu & Sariyüce, 2023; Zeno et al., 2021), but do not consider multiplex
structures and changes of node/edge attribute information. The deep generative models consist
of auto-regressive approaches (Clarkson et al., 2022; Gupta et al., 2022; Fan & Huang, 2020),
variational autoencoder-based approaches (Samanta et al., 2020; Zhang et al., 2021b), GAN-based
approaches (He et al., 2025), and streaming-based models (Wang et al., 2022). DBGDGM (Campbell
et al., 2024) works on multi-aspect dynamic brain graphs, considering the evolution of embeddings of
nodes and clusters, as well as edge generation in each aspect independently at different timestamps,
with a hierarchical deep generative model. However, these generators capture structural evolution
without explicitly modeling attribute changes, leading to weakened long-term consistency and loss of
historical information. They also overlook the joint modeling of temporal dynamics and intra-/inter-
layer correlations. While DBGDGM captures embedding evolution, it lacks mechanisms for edge

1Diffusion models are well-suited for this task: their denoising process supports likelihood-based training to
enhance attribute fidelity (Challenge 1), flexible conditioning for temporal and cross-layer dynamics (Challenge
2), and behavior-aware guidance for emergent phenomena (Challenge 3). Moreover, they naturally support
permutation-invariant architectures, making them robust for graph generation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

dependencies across time and subjects, and its design is limited to brain graphs, without addressing
emergent network-level behaviors in multiplex dynamic attribute networks.

Diffusion Models. Compared to statistical and deep generative models, diffusion models directly
optimize likelihood and avoid common issues such as mode collapse in GANs or blurry outputs in
VAEs, thus preserving structural fidelity. They also flexibly incorporate conditions to model desired
structures and capture network-level emergent behaviors. Recently, diffusion models have also been
applied to generate multimedia content (Adiya et al., 2024; Zhang et al., 2024; Bar-Tal et al., 2024;
Guo et al., 2025), spatial-temporal data(Hu et al., 2024; Liu & Zhang, 2024), or graph data (Niu et al.,
2020; Huang et al., 2022; Vignac et al., 2023; Chen et al., 2023; Xu et al., 2024; Bian et al., 2024; Li
et al., 2025; Minello et al., 2025). In particular, DiGress (Vignac et al., 2023) synthesizes molecular
graphs, exploiting regression guidance to lead the denoising process to generate graphs to meet the
structural property. EDGE (Chen et al., 2023) is a discrete diffusion model that exploits graph sparsity
to generate graphs while accounting for the change in node degree as a condition. (Xu et al., 2024)
proposes a generative diffusion model based on a discrete-state continuous-time setting. Recently,
(Bergmeister et al., 2024) develops a scalable graph generative model with progressive expansion
techniques. However, the above studies mainly target denoising with the structural information of
static graphs, and their denoising networks consider neither correlations between different layers nor
emergent network dynamics. Furthermore, most existing diffusion models primarily focus on static
graphs or multimedia content with moving objects, without modeling the evolution of structural and
attributive information.

3 PROBLEM DEFINITION

In this section, we begin by introducing the definition of multiplex dynamic attribute graphs and
formulating the problem of multiplex dynamic attribute graph generation accordingly. The table of
notions mentioned in this section is presented in Appendix C.

Definition 3.1 (Multiplex Dynamic Attributed Network). Given a multiplex dynamic attribute
network sequence Γ = {G0,G1, . . . ,GT } of T L-layer graphs, each L-layer snapshot Gt =

(G
(I)
t , G

(B)
t) consists of L intra-layer graphs G(I)

t = ({(Xl,t,El,t)}Ll=1), and inter-layer bipar-
tite graphs G(B)

t = ({Xl,t,Xm,t}, {B(l,m),t}l ̸=m), where Xl,t ∈ Ra×N is the node representation
(in which there are N nodes with a attributes) of layer l at timestamp t; El,t ∈ Rb×N×N is the edge
representation (in which there are N ×N possible edges with b attributes) of layer l at timestamp t;
B(l,m),t ∈ R2×N×N is the edge representation representing the existence of inter-layer connections
between distinct layers l and m.

Note that Definition 3.1 provides a general definition, where dynamic graphs (L = 1, T ≥ 2) and
multiplex graphs (T = 1, L ≥ 2) are both special cases.
Example 3.2. Figure 1 illustrates a toy example of a two-layer dynamic graph capturing user
interactions across Instagram and Threads from timestamps τ ∈ {0, t − 1, t}, comprising intra-
layer graphs (framed in parallelograms), G(I)

τ = {GInsta
τ , GThreads

τ } (with GInsta
t and GThreads

t

illustrated in the upper and lower parts, respectively), and inter-layer bipartite graphs, G(B)
τ , with

bipartite edges represented by gray dashed lines. The intra-layer graphs represent intra-platform
interactions, such as commenting on posts in Instagram or Threads, while the inter-layer bipartite
graphs capture cross-layer relationships, such as shared accounts associated with the same user across
different platforms or forwarding their posts on one platform to their friends on another platform.

Definition 3.3 (Multiplex Dynamic Attributed Network Generation). Given an observed historical
sequence Γpast = {G0,G1, . . . ,Gt−1} of L-layer graphs in t timestamps, the aim of this problem is
to generate a L-layer future graph sequence Γfuture = {Gt,Gt+1, . . . ,GT } with a parameterized
model pθ such that pθ(Γfuture|Γpast) is approximated to the true conditional data distribution
pdata(Γfuture|Γpast) by minimizing the discrepancy (e.g., KL divergence) between the learned
distribution pθ and pdata, which is equivalent to minimizing the following negative log-likelihood.2

minθ −EΓ∼pdata log pθ(Γfuture|Γpast).

2The objective of graph generation and forecasting are intrinsically different. The former aims to reproducing
data distribution; the latter aims to predict future values (more details are discussed in Appendix ??).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

G(0)
t:T

· · · G(s−1)
t:T G(s)

t:T
· · · G(S)

t:T

Attributed Evolution-aware Forward ProcessAttributed Evolution-aware Forward Process

G(S)
t:T

Noisy
network

G(S)
t:T

· · · Ĝ(s)
t:T Ĝ(s−1)

t:T
· · · Ĝ(0)

t:T

Cross-layer Dynamic-aware Reverse ProcessCross-layer Dynamic-aware Reverse Process

Ĝ(0)
t:T

Generated
networks

from
t to T

G(0)
t:T

Attribute
encoding G(0)

0:t−1

G(0)
0:T

Mixture D(G(0)
0:t−1)

Dynamic transition-
aware mixture

G
(C)
t:T

Coupling graph

Cross-layer
correlation predictor

Behavior-aware
guidance Var(l)m

Temporal votality
of sync change

Lbehavior

Lprior

Ldiffusion
Lreconstruction

0 t− 1 t T

· · · · · ·

Past snapshots

Current and
future snapshots

Whole network

Input: Multiplex dynamic attributed network

Figure 2: Workflow of MulDyDiff. The red arrows represent the forward diffusion, while the blue
arrows denote the reverse denoising (including attribute-aware dynamic transition-based denoising
and cross-layer correlation-aware denoising). The regions enclosed in brown rounded boxes are
involved in the computation of the BACT loss.
To enable multiplex dynamic attributed network generation, a naı̈ve approach is to independently
generate each layer at each timestamp according to existing approaches (Hosseini et al., 2025; Zheng
et al., 2024; Luo et al., 2021; Zhang et al., 2021b;a) and fuse them based on predefined cross-layer
correlations. However, this approach fails to capture i) the coupling between structure and attributes,
ii) the intertwined temporal and cross-layer dependencies, and iii) emergent behaviors such as
explosive synchronization. Thus, we propose the framework MulDyDiff for multiplex dynamic graph
synthesis based on diffusion models in Sec. 4.

4 MULTIPLEX DYNAMIC ATTRIBUTED NETWORK GENERATION

Built upon a discrete denoising diffusion probabilistic model (DDPM), MulDyDiff consists of (1)
attribute-aware dynamic transition-based denoising , (2) cross-layer correlation-aware denoising
to jointly capture structural-semantic coupling, temporal, and inter-layer dependencies, and (3)
behavior-aware guidance to capture emergent behaviors. The workflow is shown in Figure 2, with
more details, such as notations, in Appendix C, the background of DDPM in Appendix D, and
detailed derivations (including proofs of theorems) in Appendices E and F. For brevity, we show only
the node representations Xl,t; edge-level formulations El,t and B(l,m),t are defined analogously.

First, attribute-aware dynamic transition-based denoising models node/edge attributes and their
temporal evolution by embedding both semantics and structure directly into the generative process. A
temporal-transition mixture progressively blends past snapshots into each diffusion step, allowing
attributes to evolve with neighboring contexts. In contrast, prior models (Clarkson et al., 2022; Gupta
et al., 2022; Fan & Huang, 2020; Zhang et al., 2021a;b) either ignore attributes or only add them post
hoc, making them unable to capture structure–semantics co-evolution in multiplex settings.

Second, cross-layer correlation-aware denoising embeds inter-layer interactions into denoising and
leverages observed structural correlations for joint refinement across layers. This enables coherent
temporal continuity and realistic intra- and inter-layer dynamics. Existing approaches (Zhang et al.,
2021b; 2020a; Shiao et al., 2023; Hosseini et al., 2025; Zheng et al., 2024; Luo et al., 2021) instead
treat history as static inputs and process layers in isolation, thus failing to capture coupled temporal
and cross-layer evolution.

Third, we introduce behavior-aware guidance, incorporating global descriptors (derived from the
Kuramoto model) into the denoising objective to encourage phenomena such as explosive synchro-
nization and hysteresis. Unlike prior works (Campbell et al., 2024; Liu & Sariyüce, 2023; Clarkson
et al., 2022; Gupta et al., 2022; Zeno et al., 2021; Zhang et al., 2021a;b) that optimize only for
structural fidelity, our approach enforces the reproduction of higher-order dynamics.

Finally, we define the Behavior-guided Attributed Cross-layer Temporal (BACT) loss, which combines
the three aforementioned notions. By jointly aligning structural, semantic, and behavioral properties,
BACT ensures that the generated networks are both statistically faithful and behaviorally plausible.

Figure 2 provides an intuitive view of what the diffusion process captures. The forward process
derived in Eqs. (4) to (7) in Sec. 4.2.1 (red arrows) gradually adds noise while continually mixing in
clean historical snapshots through the dynamic transition-aware mixture. As a result, each timestamp
reflects the accumulated temporal context rather than depending only on t− 1, enabling the reverse
process derived in Eq. (10) in Sec. 4.2.1 (blue arrows) to denoise with a history-aware prior and
recover long-range temporal patterns that simple one-step models miss. In addition, the cross-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

layer correlation predictor (pθ(G
(C)
t |X(0)

(1:L),(0:t−1)) in Eq. (14) in Sec. 4.2.2) provides time-varying
weights indicating how strongly different layers should influence one another during denoising,
allowing the model to exploit implicit cross-layer co-evolution even when no explicit inter-layer
edges exist. Moreover, the behavior guidance (Eq. (20) in Sec. 4.2.3) examines the graph-level
behavior of the generated graph with Kuramoto model-based synchronization degree to regularize
graph-level behavior of generated graphs to be similar to input graphs.

4.1 ATTRIBUTED EVOLUTION-AWARE FORWARD PROCESS

Existing approaches that rely solely on historical conditioning often fail to capture multiplex temporal
structures (Cachay et al., 2023). We introduce an attribute-aware dynamic transition mixture by
incorporating the historical snapshots into the diffusion process to jointly diffuse intra- and inter-layer
sequences, preserving temporal continuity.

To encode temporal dependency for each layer l, we define a recursive mixture D, which encodes the
dependency between a snapshot at timestamp t and those during previous timestamps 0 to t− 1:

D(X
(0)

l,(0:t), γs) =

{
γsX

(0)
l,t + (1− γs)D(X

(0)

l,(0:t−1), γs), t ≥ 1,

X
(0)
l,0 , t = 0.

(1)

Starting from the standard categorical distribution-based forward process Y(s)
l,t = αsX

(0)
l,t + (1 −

αs)
1a

a , we define the s-th step in the dynamic transition-aware forward process of Xl,t by combining
the diffused information at the previous timestamp t−1 with the standard categorical forward process
at the current timestamp t:

X
(s)
l,t = γs(αsX

(0)
l,t + (1− αs)

1a
a
) + (1− γs)X

(s)
l,t−1, ∀s, t ≥ 1, (2)

with αs controlling noise strength and γs controlling the dependence on previous snapshots. Since
t = 0 is the starting point, we initialize its forward diffusion to be the same as the traditional diffusion
process in Eq. (3).

X
(s)
l,0 = Y

(s)
l,0 = αsX

(0)
l,0 + (1− αs)

1a
a
, (3)

where 1a ∈ Ra×N denotes an all-one matrix. The weight αs determines how much of the original
structure is retained.

With Eqs. (1) and (2), the closed-form of the forward process is derived as follows (see Appendix E
for details).

q(X
(s)
l,t |X

(0)

l,(0:t)) = Cat(αsD(X
(0)

l,(0:t), γs) + (1− αs)
1a
a
), (4)

which can be rewritten using the Markov transition matrix Q
(s)

Xl,(0:t−1)
= αsγsI + αs(1 −

γs)1aD(X(0)
l,(0:t−1), γs)

⊤ + (1− αs)1a
1
⊤
a

a (see Appendix E for details):

q(X
(s)
l,t |X

(0)

l,(0:t)) = Cat(X
(s)
l,t ;Q

(s)

Xl,(0:t−1)

⊤
X

(0)
l,t) = X

(s)
l,t

⊤
Q

(s)

Xl,(0:t−1)

⊤
X

(0)
l,t . (5)

By subtracting αsγsX
(s−1)
l,t from X

(s)
l,t (using Eq. (4) to cancel out X(0)

l,t), we derive the single-step
time-aware stepwise transition process as follows (see Appendix E for details).

q(X
(s)
l,t |X

(s−1)
l,t ,X

(0)

l,(0:t)) = Cat(αsγsX
(s−1)
l,t + αs[(1− γs)D(X

(0)

l,(0:t−1), γs)

− (γs − γs)D(X
(0)

l,(0:t−1), γs−1)] + [1− αsγs − αs(1− γs)]
1a
a
), (6)

which can be rewritten using Q
(s)
Xl,(0:t−1)

= αsγsI+αs(1−γs)1aD(X(0)
l,(0:t−1), γs)

⊤+(1−αs)1a
1
⊤
a

a :

q(X
(s)
l,t |X

(s−1)
l,t ,X

(0)

l,(0:t)) = Cat(X
(s)
l,t ;Q

(s)
Xl,(0:t−1)

⊤
X

(s−1)
l,t) = X

(s)
l,t

⊤
Q

(s)
Xl,(0:t−1)

⊤
X

(s−1)
l,t , (7)

and the following theorem shows that Eq. (4) is the marginal distribution of Eq. (6) (see Appendix E
for details).

Theorem 4.1. Eq. (4) gives the marginal distribution of Eq. (6), i.e.,

q(X
(s)
l,t |X

(0)

l,(0:t)) =
∑

X
(s−1)
l,t

q(X
(s)
l,t |X

(s−1)
l,t ,X

(0)

l,(0:t))q(X
(s−1)
l,t |X(0)

l,(0:t)), ∀s = 1, . . . , S.

Proof. See Appendix E for details.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

From Eq. (4), we derive the prior loss as follows.

Lprior = DKL[q(G(S)
0 |G(0)

0)∥pθ(G(S)
0)] +

∑T

t=1
DKL[q(G(S)

t |G(0)
0:t)∥pθ(G

(S)
t)], (8)

where DKL represents the Kullback–Leibler (KL) divergence between the prior pθ(G(S)
t) and the

diffusion process q(G(S)
t |G(0)

0:t) for t ≥ 0.

Remark. Unlike prior temporal graph generators (Campbell et al., 2024; Liu & Sariyüce, 2023; Wang
et al., 2022; Gupta et al., 2022; Zeno et al., 2021), our forward process explicitly encodes temporal
dependencies between the current and previous timestamps, enabling history-guided denoising and
naturally supporting forecasting via conditional generation. The differences between MulDyDiff and
prior temporal graph generators are presented in Appendix B.3.

4.2 CROSS-LAYER DYNAMIC-AWARE REVERSE PROCESS

In the cross-layer dynamic-aware reverse process, we extend the forward process in Sec. 4.1 to an
attribute-aware transition-based denoising process, further incorporating cross-layer correlations into
a correlation-aware denoising process to model critical cross-layer transitions. Finally, we introduce
behavior-aware guidance to steer generation such that explosive synchronization of node attributes
emerges at specific timestamps.

4.2.1 ATTRIBUTE-AWARE DYNAMIC TRANSITION-BASED DENOISING

To reverse the diffusion, we use Bayes’ theorem to compute the posterior distribution over the
previous noisy state given the current noisy state and the clean history. From Eqs. (5) and (7), we
derive the posterior of the forward process q as stated in the following theorem:

Theorem 4.2.

q(X
(s−1)
l,t |X(s)

l,t ,X
(0)

l,(0:t)) = X
(s−1)
l,t

⊤ Q
(s)
Xl,(0:t−1)

X
(s)
l,t

⊙Q
(s−1)
Xl,(0:t−1)

⊤
X

(0)
l,t

X
(s)
l,t

⊤
Q

(s)
Xl,(0:t−1)

⊤
X

(0)
l,t

. (9)

Proof. See Appendix E for details.

With Eq. (9), we approximate the denoising process by conditioning on past snapshots G0:t−1

to generate the current snapshot Ĝt via a dynamic transition-aware denoising network (Eq. (10)).
Specifically, at each timestamp t, we denoise from a noisy graph G(S)

t to a denoised graph Ĝt while
incorporating historical context G0:t−1.

The reverse denoising process for node attributes is formulated as follows:

pθ(X
(s−1)
l,t |X(s)

l,t ,X
(0)

l,(0:t−1)) =
∑

X
(0)
l,t

q(X
(s−1)
l,t |X(s)

l,t ,X
(0)

l,(0:t−1),X
(0)
l,t)p̂

(X)
l,t (X

(0)
l,t |X

(s)
l,t ,X

(0)

l,(0:t−1)),

(10)

where the first term in the summation is the posterior of the forward process, and the second term
in the summation is the probability distribution learned via a dynamic transition-aware denoising
network.

4.2.2 CROSS-LAYER CORRELATION-AWARE DENOISING

To facilitate denoising with cross-layer states for accurate multiplex dynamic attributed network
generation, we further extend the denoising process in Sec. 4.2.1 by incorporating cross-layer
correlations. To accurately capture cross-layer correlations, we first define the cross-layer coupling
graph, which serves as a structural guide, identifying the relevant layers to incorporate during
denoising.

Definition 4.3 (Cross-layer Coupling Graph). A cross-layer coupling graph G(C)
t = (V

(C)
t , E

(C)
t)

is defined at timestamp t to represent the structural dependencies between layers in a multiplex
dynamic attributed network. The node set V (C)

t = {1, . . . , L} corresponds to the L layers in the
graph. The edge set E(C)

t encodes the existence of inter-layer connections, i.e., E(C)
t = {(l,m) |

l,m ∈ V
(C)
t ,B(l,m),t ̸= 0}, where B(l,m),t represents the edges between the nodes in the l-th and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

m-th layers. An edge (l,m) ∈ E
(C)
t indicates at least one cross-layer connection between the nodes

in the l-th and m-th layers.

We first assume that the forward noising processes in layers l = 1, . . . , L are independent. Then
the forward process of node representations in layers l = 1, . . . , L of a multi-layer temporal graph
sequence is extended from Eqs. (5) and (7) as follows:

q(X
(s)

(1:L),t|X
(0)

(1:L),(0:t)) =

L∏
l=1

q(X
(s)
l,t |X

(0)

l,(0:t));

q(X
(s−1)

(1:L),t|X
(s)

(1:L),t,X
(0)

(1:L),(0:t)) =

L∏
l=1

q(X
(s)
l,t |X

(s−1)
l,t ,X

(0)

l,(0:t)). (11)

Thus, the posterior of the forward process of a multi-layer temporal graph sequence is extended from
Eq. (9) as follows (see Appendix F for details):

q(X
(s−1)

(1:L),t|X
(s)

(1:L),t,X
(0)

(1:L),(0:t)) =

L∏
l=1

q(X
(s−1)
l,t |X(s)

l,t ,X
(0)

l,(0:t)). (12)

Formally, layers in a multi-layer temporal graph sequence exhibit interdependencies and implicit
co-evolution, which can be modeled by the denoising distribution expressed as the product of the
distributions of all layers conditioned on X

(0)
(1:L),(0:t−1) as follows (see Appendix F for details):

pθ(X
(0)

(1:L),t|X
(s)

(1:L),t,X
(0)

(1:L),(0:t−1)) =

L∏
l=1

pθ(X
(0)
l,t |X

(s)
l,t ,X

(0)

(1:L),(0:t−1)), (13)

where pθ(X
(0)
l,t |X

(s)
l,t ,X

(0)
(1:L),(0:t−1)) is learned by a denoising network with a cross-layer attention

mechanism, with weights determined by the cross-layer coupling graph G(C)
t predicted by a learnable

prior over cross-layer dependencies pθ(G
(C)
t |X(0)

(1:L),(0:t−1)) (see Appendix F for details).

pθ(X
(0)
l,t |X

(s)
l,t ,X

(0)

(1:L),(0:t−1)) =
∑
G

(C)
t

pθ(X
(0)
l,t |X

(s)
l,t ,X

(0)

(1:L),(0:t−1), G
(C)
t)pθ(G

(C)
t |X(0)

(1:L),(0:t−1)). (14)

The reverse process of a multi-layer graph sequence conditioning on the clean snapshots X(0)
(1:L),(0:t−1)

is the product of the reverse processes of all layers l as follows:

pθ(X
(s−1)

(1:L),t|X
(s)

(1:L),t,X
(0)

(1:L),(0:t−1)) =

L∏
l=1

pθ(X
(s−1)
l,t |X(s)

l,t ,X
(0)

(1:L),(0:t−1)), (15)

where the reverse process of each layer l can be derived by approximation using the posterior
(Eq. (12)) and denoiser (Eq. (14)) of each layer l (see Appendix F for details),

pθ(X
(s−1)
l,t |X(s)

l,t ,X
(0)

(1:L),(0:t−1)) =
∑
X

(0)
l,t

q(X
(s−1)
l,t |X(s)

l,t ,X
(0)

l,(0:t))pθ(X
(0)
l,t |X

(s)
l,t ,X

(0)

(1:L),(0:t−1)). (16)

The architectures of the denoising network with a cross-layer correlation predictor are presented in
Appendix G.

From the above denoising process, we derive the reconstruction loss and diffusion loss as follows.

Lreconstruction = − log pθ(G(0)
0 |G(1)

0)−
∑T

t=1
− log pθ(G(0)

t |G(1)
t ,G(0)

0:t−1), (17)

Ldiffusion =
∑S−1

s=2

[
DKL[q(G(s−1)

0 |G(s)
0 ,G(0)

0)∥pθ(G(s−1)
0 |G(s)

0)]

+
∑T

t=1
DKL[q(G(s−1)

t |G(s)
t ,G(0)

0:t)∥pθ(G
(s−1)
t |G(s)

t ,G(0)
0:t−1)]

]
, (18)

which calculates the KL divergence between the true posterior q(G(s−1)
t |G(s)

t ,G(0)
0:t) in Eq. (18) and

the reverse denoising process pθ(G(s−1)
t |G(s)

t ,G(0)
0:t−1) in Eq. (18). The former is the product of

the dynamic transition-aware posterior of nodes (derived in Eq. (12); similarly for intra-/inter-layer

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

edges); the latter is the product of the denoising processes of nodes and intra-/inter-layer edges
(derived in Eq. (15)).

4.2.3 BEHAVIOR-AWARE GUIDANCE

To softly steer the generative process toward realistic global dynamics, we introduce behavior-aware
guidance based on external descriptors. Specifically, for explosive synchronization, we compute
layer-wise synchronization via the Kuramoto order parameter (De Domenico, 2023; Danziger et al.,
2019) and track its temporal volatility to detect abrupt alignment shifts, forming a descriptor that
guides generation toward emergent behaviors. The motivation for behavior-aware guidance (with an
illustrative example), as well as the description of hysteresis, is presented in Appendix H.

Temporal Vitality of synchronization. To characterize emergent dynamics, we use the Kuramoto-
based synchronization measure R(l)

m (t), which quantifies the degree of phase coherence (detailed
in Appendix H) to compute the variance of synchronization change as a descriptor, quantifying
the volatility of temporal alignment across nodes. For the m-th attribute in layer l, we define the
first-order difference by ∆R

(l)
m (t) = R

(l)
m (t + 1) − R

(l)
m (t) for t = 1, . . . , T − 1 and calculate its

variance as

Var(l)m = 1
T−1

∑T−1

t=1

(
∆R(l)

m (t)−∆R
(l)
m

)2
, (19)

where ∆R
(l)

m = 1
T−1

∑T−1
t=1 ∆R

(l)
m (t). Larger variance values indicate abrupt synchronization

changes, which are key markers of explosive dynamics.

To encourage the emergence of realistic dynamic phenomena, we incorporate a behavioral loss based
on the Kuramoto-based descriptor Var(l)m . To ensure training stability and gradient flow, we adopt a
smooth surrogate using softmax aggregation:

Lbehavior = − log

(
M∑

m=1

L∑
l=1

exp(λ · Var(l)m)

)
, (20)

where λ > 0 controls the sharpness of aggregation.3

Remark. 1) Eq. (10) denoises X(s)
l,t based on past snapshots using p̂(X)

l,t learned from the denoising
network, overcoming the limits of temporal graph generative models (Starnini et al., 2017; Fan &
Huang, 2020; Zhang et al., 2020b; Wu et al., 2022b; He et al., 2025). 2) The cross-layer correlation-
aware network learns the conditional distribution of clean intra- and inter-layer graphs from the
given past snapshots with the assistance of G(C)

t , addressing the limitations of prior multiplex and
diffusion-based generators (Zhang et al., 2020a; Shiao et al., 2023; Niu et al., 2020; Huang et al.,
2022; Vignac et al., 2023; Chen et al., 2023; Xu et al., 2024). 3) The variance Var(l)m serves as a
proxy for detecting sudden shifts or persistent irregularities in synchronization, which are indicative
of higher-order network behaviors. By simply adding Eq. (20) as the behavior loss, this steers the
generative process toward reproducing the global behaviors observed in multiplex systems.

Building on the preceding designs, we propose the Behavior-guided Attributed Cross-layer Temporal
(BACT) loss, which jointly accounts for attribute consistency in reconstruction loss (Eq.(17)), cross-
layer correlation-aware temporal dependencies in prior and diffusion loss (Eq. (8) and Eq. (18)), and
emergent behavioral signals (Eq. (20)) in multiplex dynamic attributed networks.

LBACT = Lreconstruction + Lprior + Ldiffusion + Lbehavior.

5 EXPERIMENTS

Datasets. The experiments are conducted on three real-world multiplex temporal networks: 1)
Wiki-vote (Leskovec et al., 2010), 2) Twitter (De Domenico et al., 2013), and 3) Superuser (Paranjape
et al., 2017). The statistics and descriptions of the datasets are presented in Appendix J.

Baselines. We compare the proposed models with the following baseline temporal graph generators:
(1) AGE Fan & Huang (2020): an attention-based graph evolution model that considers the transfor-
mation between graphs in different states; (2) DAMNETS Clarkson et al. (2022): a deep generative

3We can add losses of all behaviors if the guidance of multiple behaviors is needed.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Comparative study results on KS metrics.
Data/Model node behavior (↓) RW (↓) degree centrality (↓) betweenness centrality (↓)

W
ik

i-
vo

te

AGE 0.8052 0.0766 0.9991 0.8592
DAMNETS 0.6853 0.1805 0.7152 0.7318

TagGen 0.9500 0.1400 0.8750 0.8500
DYMOND 0.8256 0.2111 0.8398 0.8941

MoDiff 1.0000 0.4000 0.9474 0.8500
MulDyDiff 0.5430 0.2219 0.8281 0.6563

Tw
itt

er

AGE 0.7122 0.2086 0.9257 0.8943
DAMNETS 0.6325 0.0851 0.8133 0.8002

TagGen 0.9000 0.2600 0.6750 0.9000
DYMOND 0.6791 0.0602 0.6631 0.7484

MoDiff 1.0000 0.3000 1.0000 0.7288
MulDyDiff 0.5957 0.1172 0.6489 0.6895

Su
pe

ru
se

r

AGE 0.8988 0.2286 0.9870 0.6513
DAMNETS 0.6000 0.1544 0.8156 0.7325

TagGen 0.7000 0.1800 0.5250 0.5500
DYMOND 0.6937 0.0470 0.6326 0.6815

MoDiff 1.0000 0.0500 1.0000 0.1069
MulDyDiff 0.5484 0.1684 0.6411 0.6119

model that generates temporal graph sequences in an autoregressive manner with a GAT-based
encoder-decoder architecture; (3) TagGen (Zhou et al., 2020): a generative model based on temporal
random walks; (4) DYMOND (Zeno et al., 2021): a generative model that captures dynamic changes
with temporal motif activities; (5) MoDiff (Xu & Ma, 2025): a diffusion model that considers the
spectral properties of motifs. The comparison between the time complexities of MulDyDiff and the
baselines is presented in Appendix I.

Metrics. The performance metrics include: 1) Kolmogorov-Smirnov (KS) distance (Zeno et al., 2021;
Longa et al., 2024), which evaluates temporal fidelity by comparing the distributions of structural
metrics (node behavior, random walk (RW), degree centrality, and betweenness centrality) between
real and generated graphs at each timestamp using the KS statistic; 2) explosive synchronization
degree R(t); 3) Maximum Mean Discrepancy (MMD) of degree distributions and spectral values,
etc. Clarkson et al. (2022); Martinkus et al. (2022); Chen et al. (2023); Vignac et al. (2023); and 4)
training and sampling time. Due to space constraints, we present the results of the KS distance and
explosive synchronization degree in this section, with more details of the experimental setup and
more results are reported in Appendices J and K, respectively.4.

5.1 KS EVALUATION

Table 1 presents the evaluation results in KS metrics of MulDyDiff compared with baselines on
Wiki-vote, Twitter, and Superuser, as KS metrics are more suitable than MMD metrics for (multi-
layer) temporal graphs (Longa et al., 2024; Zeno et al., 2021) (with a detailed explanation in
Appendix J and MMD results in Appendix K). On the Wiki-vote dataset, MulDyDiff outperforms the
baselines in almost all metrics listed in the table, as it captures structural and attributive evolution
simultaneously. Some baselines perform slightly better in the KS of random walk on the Wiki-vote
dataset. Nevertheless, MulDyDiff overall outperforms these baselines since they only perform well in
one or two KS metrics. This is insufficient to demonstrate the effectiveness of the baselines in multi-
layer temporal graph generation, as the effectiveness needs to be assessed comprehensively by various
metrics. On the Twitter and Superuser datasets, MulDyDiff outperforms almost all other methods
in terms of the KS of node behaviors, with a 6%-9% improvement (compared with the second-best
competitor, DAMNETS) because the metric can effectively examine whether a generative model
captures both intra- and inter-layer relationships during generation. MulDyDiff also shows stable
performance on other metrics. In contrast, TagGen performs better in the KS of degree centrality
on the Superuser dataset, but it performs worse in terms of the KS of node behavior and random
walk. DAMNETS performs second-best in terms of the KS of node behavior and random walk on
the Twitter dataset, but it performs worse regarding other metrics. Although DYMOND takes motif
sampling into consideration, it achieves performance comparable to that of MulDyDiff on the Twitter
dataset. However, since it is unable to deal with the multi-layer structure, it performs 9% worse than
MulDyDiff in terms of the KS of node behavior.

4The source code is published in the anonymous repository: https://anonymous.4open.science/
r/MulDyDiff-8815

9

https://anonymous.4open.science/r/MulDyDiff-8815
https://anonymous.4open.science/r/MulDyDiff-8815

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) Wiki-vote (b) Twitter (c) Superuser
Figure 3: R(t) curves of MulDyDiff and baseline generator.

(a) Wiki-vote (b) Twitter (c) Superuser
Figure 4: R(t) curves with and without Lbehavior.

5.2 BEHAVIOR GUIDANCE EVALUATION

Comparisons with baselines. We conduct the evaluations using the synchronization degree R(t) to
assess explosive synchronization in graph sequences generated by MulDyDiff and the baselines in
Figs. 3a to 3c. Across the three datasets, MulDyDiff (red) exhibits clear and sharp peaks corresponding
to explosive increases of R(t), indicating that MulDyDiff can generate node attributes that faithfully
reflect emergent synchronization when trained with Lbehavior. In contrast, methods with node
attributes that do not change over time, such as AGE (orange) and DAMNETS (purple), produce
flat curves with constant values of R(t), showing that static attributes cannot trigger emergent
synchronization. Methods with time-varying node attributes, such as MoDiff (blue), yield strongly
oscillatory R(t) curves but without clear explosive peaks, suggesting that simply perturbing node
attributes over time is insufficient to capture emergent behaviors. Finally, TagGen (green) and
DYMOND (black), which do not model node attributes and instead assign them randomly in post-
processing, only display random fluctuations in R(t) without any pronounced bursts.

Ablation study with and without Lbehavior. Figs. 4a to 4c present the results of R(t) curves on
the Wiki-vote, Twitter, and Superuser datasets with Lbehavior (red) and without Lbehavior (green).
On the Wiki-vote dataset, MulDyDiff is able to capture the abrupt increase in R(t) at t = 13 of
the attribute ”receive” in the layer ”support” on Wiki-vote dataset. In contrast, the curve of R(t)
obtained without Lbehavior indicates unstable and over-reactive updates of R(t). This manifests the
contribution of Lbehavior to capturing emergent behaviors. On the Superuser and Twitter datasets,
the red curves exhibit sharper peaks coinciding with the timestamps where emergent behaviors occur.
In contrast, the green curves remain relatively bounded and fail to reflect these sudden changes.

6 CONCLUSION

To address the structural-semantic complexity, temporal dynamics, inter-layer dependencies, and
emergent behavioral phenomena inherent in real-world systems, this paper presents MulDyDiff, the
first diffusion-based framework for synthesizing multiplex dynamic attributed networks. MulDyDiff
introduces a unified denoising architecture that consists of attribute-aware dynamic transition-based
denoising, cross-layer correlation-aware denoising, and behavior-aware guidance. These components
capture not only local structural and attribute fidelity but also network-level phenomena such as
explosive synchronization and hysteresis, jointly optimized through the proposed BACT loss. Exper-
imental results demonstrate that MulDyDiff consistently surpasses state-of-the-art dynamic graph
generators, achieving a 6%-9% improvement over the second-best competitor in terms of dynamic
evaluation metrics.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Tserendorj Adiya, Jae Shin Yoon, JUNGEUN LEE, Sanghun Kim, and Hwasup Lim. Bidirectional
temporal diffusion model for temporally consistent human animation. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
yQDFsuG9HP.

Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
Junhwa Hur, Guanghui Liu, Amit Raj, Yuanzhen Li, Michael Rubinstein, Tomer Michaeli, Oliver
Wang, Deqing Sun, Tali Dekel, and Inbar Mosseri. Lumiere: A space-time diffusion model for
video generation. In SIGGRAPH Asia 2024 Conference Papers, SA ’24, New York, NY, USA,
2024. Association for Computing Machinery. ISBN 9798400711312. doi: 10.1145/3680528.3687614.
URL https://doi.org/10.1145/3680528.3687614.

Andreas Bergmeister, Karolis Martinkus, Nathanaël Perraudin, and Roger Wattenhofer. Efficient
and scalable graph generation through iterative local expansion. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
2XkTz7gdpc.

Rico Berner, Volker Mehrmann, Eckehard Schöll, and Serhiy Yanchuk. The multiplex decomposition:
An analytic framework for multilayer dynamical networks. SIAM Journal on Applied Dynamical
Systems, 20(4):1752–1772, 2021. doi: 10.1137/21M1406180. URL https://doi.org/10.1137/
21M1406180.

Tian Bian, Yifan Niu, Heng Chang, Divin Yan, Junzhou Huang, Yu Rong, Tingyang Xu, Jia
Li, and Hong Cheng. Hierarchical graph latent diffusion model for conditional molecule
generation. In Proceedings of the 33rd ACM International Conference on Information and
Knowledge Management, CIKM ’24, pp. 130–140, New York, NY, USA, 2024. Association
for Computing Machinery. ISBN 9798400704369. doi: 10.1145/3627673.3679547. URL
https://doi.org/10.1145/3627673.3679547.

Erik Brynjolfsson, John J Horton, Adam Ozimek, Daniel Rock, Garima Sharma, and Hong-Yi
TuYe. Covid-19 and remote work: An early look at us data. Technical report, National Bureau of
Economic Research, 2020.

Jessica Bursztynsky. Tech GameStop jumps after hours as Elon Musk tweets
out Reddit board that’s hyping stock. https://www.cnbc.com/2021/01/26/
gamestop-jumps-as-elon-musk-tweets-out-reddit-board-thats-hyping-stock.
html, 2021.

Salva Rühling Cachay, Bo Zhao, Hailey James, and Rose Yu. DYffusion: A dynamics-informed dif-
fusion model for spatiotemporal forecasting. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=WRGldGm5Hz.

Alexander Campbell, Simeon Emilov Spasov, Nicola Toschi, and Pietro Lio. Dbgdgm: Dynamic brain
graph deep generative model. In Ipek Oguz, Jack Noble, Xiaoxiao Li, Martin Styner, Christian
Baumgartner, Mirabela Rusu, Tobias Heinmann, Despina Kontos, Bennett Landman, and Benoit
Dawant (eds.), Medical Imaging with Deep Learning, volume 227 of Proceedings of Machine
Learning Research, pp. 1346–1371. PMLR, 10–12 Jul 2024. URL https://proceedings.mlr.
press/v227/campbell24b.html.

Weijian Chen, Yulong Gu, Zhaochun Ren, Xiangnan He, Hongtao Xie, Tong Guo, Dawei Yin, and
Yongdong Zhang. Semi-supervised user profiling with heterogeneous graph attention networks. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI’19, pp.
2116–2122. AAAI Press, 2019. ISBN 9780999241141.

Xiaohui Chen, Jiaxing He, Xu Han, and Li-Ping Liu. Efficient and degree-guided graph generation
via discrete diffusion modeling. In International Conference on Machine Learning, 2023.

Vijil Chenthamarakshan, Payel Das, Samuel Hoffman, Hendrik Strobelt, Inkit Padhi, Kar Wai
Lim, Benjamin Hoover, Matteo Manica, Jannis Born, Teodoro Laino, and Aleksandra Mo-
jsilovic. Cogmol: Target-specific and selective drug design for covid-19 using deep genera-
tive models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 4320–4332. Curran Associates,

11

https://openreview.net/forum?id=yQDFsuG9HP
https://openreview.net/forum?id=yQDFsuG9HP
https://doi.org/10.1145/3680528.3687614
https://openreview.net/forum?id=2XkTz7gdpc
https://openreview.net/forum?id=2XkTz7gdpc
https://doi.org/10.1137/21M1406180
https://doi.org/10.1137/21M1406180
https://doi.org/10.1145/3627673.3679547
https://www.cnbc.com/2021/01/26/gamestop-jumps-as-elon-musk-tweets-out-reddit-board-thats-hyping-stock.html
https://www.cnbc.com/2021/01/26/gamestop-jumps-as-elon-musk-tweets-out-reddit-board-thats-hyping-stock.html
https://www.cnbc.com/2021/01/26/gamestop-jumps-as-elon-musk-tweets-out-reddit-board-thats-hyping-stock.html
https://openreview.net/forum?id=WRGldGm5Hz
https://proceedings.mlr.press/v227/campbell24b.html
https://proceedings.mlr.press/v227/campbell24b.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
2d16ad1968844a4300e9a490588ff9f8-Paper.pdf.

Jase Clarkson, Mihai Cucuringu, Andrew Elliott, and Gesine Reinert. Damnets: A deep autoregressive
model for generating markovian network time series. In Bastian Rieck and Razvan Pascanu (eds.),
Proceedings of the First Learning on Graphs Conference, volume 198 of Proceedings of Machine
Learning Research, pp. 23:1–23:19. PMLR, 09–12 Dec 2022. URL https://proceedings.
mlr.press/v198/clarkson22a.html.

Michael M Danziger, Ivan Bonamassa, Stefano Boccaletti, and Shlomo Havlin. Dynamic interdepen-
dence and competition in multilayer networks. Nature Physics, 2019.

Manlio De Domenico. More is different in real-world multilayer networks. Nature Physics, 2023.

Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi. The anatomy of a scientific
rumor. Scientific reports, 3(1):2980, 2013.

Sergey Edunov, Dionysios Logothetis, Cheng Wang, Avery Ching, and Maja Kabiljo. Generating
synthetic social graphs with darwini. In 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pp. 567–577, 2018. doi: 10.1109/ICDCS.2018.00062.

Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau Prat, Minh-
Duc Pham, and Peter Boncz. The ldbc social network benchmark: Interactive workload. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15, pp. 619–630, New York, NY, USA, 2015. Association for Computing Machinery.
doi: 10.1145/2723372.2742786.

Shuangfei Fan and Bert Huang. Attention-based graph evolution. In Advances in Knowledge
Discovery and Data Mining: 24th Pacific-Asia Conference, PAKDD 2020, Singapore, May 11–14,
2020, Proceedings, Part I, pp. 436–447, Berlin, Heidelberg, 2020. Springer-Verlag. ISBN 978-
3-030-47425-6. doi: 10.1007/978-3-030-47426-3 34. URL https://doi.org/10.1007/
978-3-030-47426-3_34.

Xiaojie Guo, Yuanqi Du, and Liang Zhao. Deep generative models for spatial networks. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
KDD ’21, pp. 505–515, New York, NY, USA, 2021. Association for Computing Machinery. ISBN
9781450383325. doi: 10.1145/3447548.3467394. URL https://doi.org/10.1145/3447548.
3467394.

Xingzhuo Guo, Yu Zhang, Baixu Chen, Haoran Xu, Jianmin Wang, and Mingsheng Long. Dynamical
diffusion: Learning temporal dynamics with diffusion models. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?id=
c5JZEPyFUE.

Shubham Gupta, Sahil Manchanda, Sayan Ranu, and Srikanta Bedathur. Tigger: Scalable generative
modelling for temporal interaction graphs. In Proc. of the 36th AAAI Conference on Artificial
Intelligence (AAAI), 2022.

Xinyu He, Dongqi Fu, Hanghang Tong, Ross Maciejewski, and Jingrui He. Temporal heterogeneous
graph generation with privacy, utility, and efficiency. In The Thirteenth International Conference
on Learning Representations, 2025.

Ryien Hosseini, Filippo Simini, Venkatram Vishwanath, and Henry Hoffmann. A deep probabilistic
framework for continuous time dynamic graph generation. Proceedings of the AAAI Conference
on Artificial Intelligence, 39(16):17249–17257, Apr. 2025. doi: 10.1609/aaai.v39i16.33896. URL
https://ojs.aaai.org/index.php/AAAI/article/view/33896.

Junfeng Hu, Xu Liu, Zhencheng Fan, Yuxuan Liang, and Roger Zimmermann. Towards unifying
diffusion models for probabilistic spatio-temporal graph learning. In Proceedings of the 32nd
ACM International Conference on Advances in Geographic Information Systems, SIGSPATIAL
’24, pp. 135–146, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400711077. doi: 10.1145/3678717.3691235. URL https://doi.org/10.1145/3678717.
3691235.

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/2d16ad1968844a4300e9a490588ff9f8-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/2d16ad1968844a4300e9a490588ff9f8-Paper.pdf
https://proceedings.mlr.press/v198/clarkson22a.html
https://proceedings.mlr.press/v198/clarkson22a.html
https://doi.org/10.1007/978-3-030-47426-3_34
https://doi.org/10.1007/978-3-030-47426-3_34
https://doi.org/10.1145/3447548.3467394
https://doi.org/10.1145/3447548.3467394
https://openreview.net/forum?id=c5JZEPyFUE
https://openreview.net/forum?id=c5JZEPyFUE
https://ojs.aaai.org/index.php/AAAI/article/view/33896
https://doi.org/10.1145/3678717.3691235
https://doi.org/10.1145/3678717.3691235

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Han Huang, Leilei Sun, Bowen Du, and Weifeng Lv. Conditional diffusion based on discrete graph
structures for molecular graph generation. In NeurIPS 2022 Workshop on Score-Based Methods,
2022.

Di Jin, Cuiying Huo, Chundong Liang, and Liang Yang. Heterogeneous graph neural network via
attribute completion. In Proceedings of the Web Conference 2021, WWW ’21, pp. 391–400,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383127. doi:
10.1145/3442381.3449914. URL https://doi.org/10.1145/3442381.3449914.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via the
system of stochastic differential equations. arXiv:2202.02514, 2022. URL https://arxiv.
org/abs/2202.02514.

Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive and negative links in
online social networks. In Proceedings of the 19th International Conference on World Wide Web,
WWW ’10, pp. 641–650, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781605587998. doi: 10.1145/1772690.1772756. URL https://doi.org/10.1145/1772690.
1772756.

Cong Li, Yuan Zhang, and Xiang Li. Epidemic threshold in temporal multiplex networks with
individual layer preference. IEEE Transactions on Network Science and Engineering, 8(1):
814–824, 2021. doi: 10.1109/TNSE.2021.3055352.

Wenhao Li, Xiao-Yu Zhang, Huaifeng Bao, Binbin Yang, Zhaoxuan Li, Haichao Shi, and Qiang Wang.
Prism: Real-time privacy protection against temporal network traffic analyzers. IEEE Transactions
on Information Forensics and Security, 18:2524–2537, 2023. doi: 10.1109/TIFS.2023.3267885.

Zongwei Li, Lianghao Xia, Hua Hua, Shijie Zhang, Shuangyang Wang, and Chao Huang. Diffgraph:
Heterogeneous graph diffusion model. In Proceedings of the Eighteenth ACM International
Conference on Web Search and Data Mining, WSDM ’25, pp. 40–49, New York, NY, USA, 2025.
Association for Computing Machinery. ISBN 9798400713293. doi: 10.1145/3701551.3703590. URL
https://doi.org/10.1145/3701551.3703590.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Aoyu Liu and Yaying Zhang. Spatial–temporal dynamic graph convolutional network with interactive
learning for traffic forecasting. IEEE Transactions on Intelligent Transportation Systems, 25(7):
7645–7660, 2024. doi: 10.1109/TITS.2024.3362145.

Hui Liu, Jie Li, Junhao Zhao, Xiaoqun Wu, Zhigang Zeng, and Jinhu Lü. Pinning control of
multiplex dynamical networks using spectral graph theory. IEEE Transactions on Cybernetics, 54
(9):5309–5322, 2024. doi: 10.1109/TCYB.2024.3367783.

Penghang Liu and Ahmet Erdem Sariyüce. Using motif transitions for temporal graph generation. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD ’23, pp. 1501–1511, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400701030. doi: 10.1145/3580305.3599540. URL https://doi.org/10.1145/
3580305.3599540.

Zhijun Liu, Chao Huang, Yanwei Yu, Peng Song, Baode Fan, and Junyu Dong. Dynamic repre-
sentation learning for large-scale attributed networks. In Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management, CIKM ’20, pp. 1005–1014,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450368599. doi:
10.1145/3340531.3411945. URL https://doi.org/10.1145/3340531.3411945.

Antonio Longa, Giulia Cencetti, Sune Lehmann, Andrea Passerini, and Bruno Lepri. Generating
fine-grained surrogate temporal networks. Communications Physics, 7(1):22, 2024.

Shitong Luo, Chence Shi, Minkai Xu, and Jian Tang. Predicting molecular conformation via dynamic
graph score matching. Advances in neural information processing systems, 34:19784–19795, 2021.

13

https://doi.org/10.1145/3442381.3449914
https://arxiv.org/abs/2202.02514
https://arxiv.org/abs/2202.02514
https://doi.org/10.1145/1772690.1772756
https://doi.org/10.1145/1772690.1772756
https://doi.org/10.1145/3701551.3703590
https://doi.org/10.1145/3580305.3599540
https://doi.org/10.1145/3580305.3599540
https://doi.org/10.1145/3340531.3411945

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Wenjian Luo, Binyao Duan, Hao Jiang, and Li Ni. Time-evolving social network generator based on
modularity: Tesng-m. IEEE Transactions on Computational Social Systems, 7(3):610–620, 2020.
doi: 10.1109/TCSS.2020.2979806.

Karolis Martinkus, Andreas Loukas, Nathanaël Perraudin, and Roger Wattenhofer. SPECTRE:
Spectral conditioning helps to overcome the expressivity limits of one-shot graph generators. In
Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 15159–15179. PMLR, 17–23 Jul 2022.

Giorgia Minello, Alessandro Bicciato, Luca Rossi, Andrea Torsello, and Luca Cosmo. Graph genera-
tion via spectral diffusion. In The Thirteenth International Conference on Learning Representations,
2025.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and Stefano Ermon. Permu-
tation invariant graph generation via score-based generative modeling. In International Conference
on Artificial Intelligence and Statistics, pp. 4474–4484. PMLR, 2020.

Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. Motifs in temporal networks. WSDM
’17, pp. 601–610, New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450346757. doi: 10.1145/3018661.3018731. URL https://doi.org/10.1145/3018661.
3018731.

Yiming Qin, Clement Vignac, and Pascal Frossard. Sparsediff: Sparse discrete diffusion for scalable
graph generation. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL
https://openreview.net/forum?id=kuJ3lpxnVC.

Bidisha Samanta, Abir De, Gourhari Jana, Vicenç Gomez, Pratim Kumar Chattaraj, Niloy Ganguly,
and Manuel Gomez-Rodriguez. Nevae: A deep generative model for molecular graphs. J. Mach.
Learn. Res., 21(1), jan 2020. ISSN 1532-4435.

Christoph Schweimer, Christine Gfrerer, Florian Lugstein, David Pape, Jan A. Velimsky, Robert
Elsässer, and Bernhard C. Geiger. Generating simple directed social network graphs for information
spreading. In Proceedings of the ACM Web Conference 2022, WWW ’22, pp. 1475–1485, New
York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450390965. doi:
10.1145/3485447.3512194. URL https://doi.org/10.1145/3485447.3512194.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. In International Conference on
Learning Representations, 2020.

William Shiao, Benjamin A. Miller, Kevin Chan, Paul Yu, Tina Eliassi-Rad, and Evangelos E.
Papalexakis. Tengan: adversarially generating multiplex tensor graphs. Data Min. Knowl. Discov.,
38(1):1–21, August 2023. ISSN 1384-5810. doi: 10.1007/s10618-023-00947-3. URL https:
//doi.org/10.1007/s10618-023-00947-3.

Hong-Han Shuai, De-Nian Yang, Philip S. Yu, Chih-Ya Shen, and Ming-Syan Chen. On pattern
preserving graph generation. In 2013 IEEE 13th International Conference on Data Mining, pp.
677–686, 2013. doi: 10.1109/ICDM.2013.14.

Hong-Han Shuai, De-Nian Yang, Chih-Ya Shen, Philip S. Yu, and Ming-Syan Chen. Qmsampler:
Joint sampling of multiple networks with quality guarantee. IEEE Transactions on Big Data, 4(1):
90–104, 2018. doi: 10.1109/TBDATA.2017.2715847.

Michele Starnini, Andrea Baronchelli, and Romualdo Pastor-Satorras. Effects of temporal correlations
in social multiplex networks. Scientific reports, 7(1):8597, 2017.

Alex M. Tseng, Nathaniel Diamant, Tommaso Biancalani, and Gabriele Scalia. Graphguide: inter-
pretable and controllable conditional graph generation with discrete bernoulli diffusion, 2023.

Francesco Tudisco, Francesca Arrigo, and Antoine Gautier. Node and layer eigenvector centralities
for multiplex networks. SIAM Journal on Applied Mathematics, 78(2):853–876, 2018. doi:
10.1137/17M1137668. URL https://doi.org/10.1137/17M1137668.

14

https://doi.org/10.1145/3018661.3018731
https://doi.org/10.1145/3018661.3018731
https://openreview.net/forum?id=kuJ3lpxnVC
https://doi.org/10.1145/3485447.3512194
https://doi.org/10.1007/s10618-023-00947-3
https://doi.org/10.1007/s10618-023-00947-3
https://doi.org/10.1137/17M1137668

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
Digress: Discrete denoising diffusion for graph generation. In The Eleventh International Confer-
ence on Learning Representations, 2023.

Yinxin Wan, Kuai Xu, Guoliang Xue, and Feng Wang. Iotargos: A multi-layer security monitoring
system for internet-of-things in smart homes. In IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications, pp. 874–883, 2020. doi: 10.1109/INFOCOM41043.2020.9155424.

Chaokun Wang, Binbin Wang, Bingyang Huang, Shaoxu Song, and Zai Li. Fastsgg: Efficient social
graph generation using a degree distribution generation model. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE), pp. 564–575, 2021. doi: 10.1109/ICDE51399.2021.00055.

Junshan Wang, Wenhao Zhu, Guojie Song, and Liang Wang. Streaming graph neural networks
with generative replay. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’22, pp. 1878–1888, New York, NY, USA, 2022. Association
for Computing Machinery. ISBN 9781450393850. doi: 10.1145/3534678.3539336. URL https:
//doi.org/10.1145/3534678.3539336.

Tong Wu, Xinwang Liu, Jindong Qin, and Francisco Herrera. Trust-consensus multiplex networks by
combining trust social network analysis and consensus evolution methods in group decision-making.
IEEE Transactions on Fuzzy Systems, 30(11):4741–4753, 2022a. doi: 10.1109/TFUZZ.2022.3158432.

Tong Wu, Xinwang Liu, Jindong Qin, and Francisco Herrera. Trust-consensus multiplex networks by
combining trust social network analysis and consensus evolution methods in group decision-making.
IEEE Transactions on Fuzzy Systems, 30(11):4741–4753, 2022b.

Yuwei Xu and Chenhao Ma. Modiff - graph generation with motif-aware diffusion model. In
Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining
V.2, KDD ’25, pp. 3437–3448, New York, NY, USA, 2025. Association for Computing Machinery.
ISBN 9798400714542. doi: 10.1145/3711896.3737053. URL https://doi.org/10.1145/
3711896.3737053.

Zhe Xu, Ruizhong Qiu, Yuzhong Chen, Huiyuan Chen, Xiran Fan, Menghai Pan, Zhichen Zeng, Ma-
hashweta Das, and Hanghang Tong. Discrete-state continuous-time diffusion for graph generation.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=YkSKZEhIYt.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-
truth. In 2012 IEEE 12th International Conference on Data Mining, pp. 745–754, 2012. doi:
10.1109/ICDM.2012.138.

Xiaowei Ying and Xintao Wu. Graph Generation with Prescribed Feature Constraints, pp. 966–977.
SIAM, 2009. doi: 10.1137/1.9781611972795.83. URL https://epubs.siam.org/doi/abs/10.
1137/1.9781611972795.83.

Giselle Zeno, Timothy La Fond, and Jennifer Neville. Dymond: Dynamic motif-nodes network
generative model. In Proceedings of the Web Conference 2021, WWW ’21, pp. 718–729, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383127. doi:
10.1145/3442381.3450102. URL https://doi.org/10.1145/3442381.3450102.

C. Zhang, Y. Tang, N. Zhang, R. Lin, M. Han, J. Xiao, and S. Wang. Bidirectional autoregressive
diffusion model for dance generation. In 2024 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 687–696, Los Alamitos, CA, USA, jun 2024. IEEE Computer
Society. doi: 10.1109/CVPR52733.2024.00072. URL https://doi.ieeecomputersociety.
org/10.1109/CVPR52733.2024.00072.

Liming Zhang, Liang Zhao, Shan Qin, Dieter Pfoser, and Chen Ling. Tg-gan: Continuous-time
temporal graph deep generative models with time-validity constraints. In Proceedings of the
Web Conference 2021, WWW ’21, pp. 2104–2116, New York, NY, USA, 2021a. Association
for Computing Machinery. ISBN 9781450383127. doi: 10.1145/3442381.3449818. URL https:
//doi.org/10.1145/3442381.3449818.

15

https://doi.org/10.1145/3534678.3539336
https://doi.org/10.1145/3534678.3539336
https://doi.org/10.1145/3711896.3737053
https://doi.org/10.1145/3711896.3737053
https://openreview.net/forum?id=YkSKZEhIYt
https://epubs.siam.org/doi/abs/10.1137/1.9781611972795.83
https://epubs.siam.org/doi/abs/10.1137/1.9781611972795.83
https://doi.org/10.1145/3442381.3450102
https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.00072
https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.00072
https://doi.org/10.1145/3442381.3449818
https://doi.org/10.1145/3442381.3449818

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Si Zhang, Hanghang Tong, Yinglong Xia, Liang Xiong, and Jiejun Xu. Nettrans: Neural cross-
network transformation. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’20, pp. 986–996, New York, NY, USA, 2020a.
Association for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3403141. URL
https://doi.org/10.1145/3394486.3403141.

Si Zhang, Hanghang Tong, Yinglong Xia, Liang Xiong, and Jiejun Xu. Nettrans: Neural cross-
network transformation. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 986–996, 2020b.

Wenbin Zhang, Liming Zhang, Dieter Pfoser, and Liang Zhao. Disentangled Dynamic Graph
Deep Generation, pp. 738–746. SIAM, 2021b. doi: 10.1137/1.9781611976700.83. URL https:
//epubs.siam.org/doi/abs/10.1137/1.9781611976700.83.

Haiteng Zhao, Shuming Ma, Dongdong Zhang, Zhi-Hong Deng, and Furu Wei. Are more lay-
ers beneficial to graph transformers? In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=uagC-X9XMi8.

Shuwen Zheng, Chaokun Wang, Cheng Wu, Yunkai Lou, Hao Feng, and Xuran Yang. Temporal
graph generation featuring time-bound communities. In 2024 IEEE 40th International Conference
on Data Engineering (ICDE), pp. 2365–2378. IEEE, 2024.

Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. A data-driven graph generative model for
temporal interaction networks. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’20, pp. 401–411, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3403082. URL
https://doi.org/10.1145/3394486.3403082.

A EXPLANATION OF THE ILLUSTRATIVE EXAMPLE

Figure 1 illustrates an example of a multiplex dynamic attributed network, where the two layers
represent Instagram and Threads, respectively. The network exhibits both structural and attribute
dynamics, with different node colors indicating user engagement levels (blue for low, red for high).
At τ = 0, v1 maintains moderate engagement on Instagram despite being surrounded by inactive
peers on the same platform. This deviation from traditional peer influence is attributed to cross-layer
influence from Threads, where both v1 and its neighbors are more active, offering additional social
reinforcement. At τ = t, a new link forms between v2 and v3 on Instagram, driven by shared
followees v1 and v5 at τ = t − 1, exemplifying temporal dependency. Furthermore, at τ = t − 1,
most users on Instagram exhibit low engagement. However, due to frequent interactions with highly
engaged users on Threads, these cross-layer influences collectively trigger a sudden shift (similar
to the behavioral transition from passive observation to aggressive buying exhibited by Robinhood
users during the GameStop short squeeze). At τ = t, Instagram users abruptly increase their
engagement, demonstrating a network-level phenomenon of explosive synchronization unique to
multiplex networks.

B MORE RELATED WORK COMPARISONS

B.1 RELATED WORK COMPARISON TABLE

In this section, we compare our study with the related studies to indicate their differences, which are
also summarized in Tables 2 and 3. The former summarizes their application scenarios; the latter
compares whether they consider the factors such as structural/attribute changes, temporal dependency
and cross-layer dependency or not (O: yes; X: no).

B.2 STATIC GRAPH GENERATION

Static graph generation methods are mainly statistical or deep generative. Statistical models rely
on network statistics (Schweimer et al., 2022), correlations (Erling et al., 2015), community struc-
tures (Luo et al., 2020), or degree distributions (Wang et al., 2021), and are often extended for
tasks such as frequent pattern mining (Shuai et al., 2013), cross-platform similarity (Shuai et al.,
2018), privacy preservation (Ying & Wu, 2009), and scalability (Edunov et al., 2018). Deep models

16

https://doi.org/10.1145/3394486.3403141
https://epubs.siam.org/doi/abs/10.1137/1.9781611976700.83
https://epubs.siam.org/doi/abs/10.1137/1.9781611976700.83
https://openreview.net/forum?id=uagC-X9XMi8
https://doi.org/10.1145/3394486.3403082

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 2: Related work comparison table (part 1).

Models Scenario Architecture

Ours Multi-layer temporal graph generation
(w/ cross-layer links)

Diffusion and
GraphTransformer

DAMNETS Temporal graph generation GAT
TIGGER Temporal graph generation GCN and GraphSAGE

SGNN-GR
(Wang et al., 2022) Temporal graph generation GAN and GraphSAGE

DYMOND Temporal graph generation Algorithm-based
AGE

(Fan & Huang, 2020) Temporal graph generation Self-attention

NetTrans
(Zhang et al., 2020a) Network alignment GCN and encoder-decoder

TenGAN
(Shiao et al., 2023) Multi-layer graph generation GAN and GCN

DBGDGM
(Campbell et al., 2024)

Multi-layer temporal graph generation
(w/o cross-layer links) Diffusion and GNN

Table 3: Related work comparison table (part 2).

Models Structural
change

Attribute
change

Temporal
dependency

Cross-layer
dependency

Ours O O O O
DAMNETS O X O X

TIGGER O X O X
SGNN-GR

(Wang et al., 2022) O X O X

DYMOND O X O X
AGE

(Fan & Huang, 2020) O X O X

NetTrans
(Zhang et al., 2020a) By generalization O O O

TenGAN
(Shiao et al., 2023) X X X O

DBGDGM
(Campbell et al., 2024) O X O O

adopt auto-regression (Liao et al., 2019; Shi et al., 2020), variational autoencoders (Guo et al., 2021;
Samanta et al., 2020), or GANs (Martinkus et al., 2022), e.g., SPECTRE (Martinkus et al., 2022),
which conditions on Laplacian eigenvectors. A few works also study static multiplex graphs (Zhang
et al., 2020a; Shiao et al., 2023). However, both statistical and deep models mainly focus on structural
information of static single-layer graphs or generate layers independently, neglecting cross-layer
correlations and dynamic behaviors such as structural evolution and emergent patterns.

B.3 MORE COMPARISONS WITH PRIOR TEMPORAL GRAPH GENERATORS

The gap between our work and prior temporal graph generators from the aspects of (1) temporal
dependency, (2) multi-layer structure, (3) inductivity, (4) graph-level behavior guidance, (5) global
and local evolution. The differences are summarized in Table 4.

1. Temporal dependency: While several existing models indeed condition on only a single snap-
shot (the immediately preceding snapshotGt−1 Campbell et al. (2024); Wang et al. (2022) or
Gt−∆t Gupta et al. (2022)) or merely local motif transition statistics Liu & Sariyüce (2023);
Zeno et al. (2021), our contribution is not the mere use of temporal conditioning but the
design of an explicitly history-mixing forward diffusion that recursively aggregates all past
snapshots G0:t−1 when defining the distribution at time t. This formulation provides long-
range temporal coupling and continuity that extend beyond the typical one-step conditioning
scheme. Specifically, Sec. 4.1 introduces an attribute-aware dynamic transition mixture D
(Eq. (1)). For t ≥ 1, the forward process combines the current snapshot with the recursively
accumulated context from all previous timestamps, so that the marginal q(X(s)

l,t | X(0)
l,0:t)

(Eq. (4)) depends on the entire trajectory up to t. This enables the generation of future

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

snapshots to exploit long-range temporal signals. In contrast, many existing temporal graph
generators specify their forward or conditional distributions using only Gt−1, and therefore
do not couple multiple past snapshots within the forward process.

2. Multi-layer structure: Among the compared methods, most of the compared studies only
consider single-layer structure; only DBGDGM in Campbell et al. (2024) handles multiple
aspects. In contrast, MulDyDiff models cross-layer correlation during generation, supported
by a learned cross-layer coupling graph. MulDyDiff not only captures temporal evolution in
a single layer but also co-evolution of each layer influenced by other layers.

3. Inductivity: Most previous works are transductive since they do not consider unseen nodes.
MulDyDiff (ours) and TIGGER-I in Gupta et al. (2022) are inductive since the former adopts
a permutation-invariant temporal graph transformer architecture, which does not rely on
node ID information; the latter builds a multi-mode decoder to learn distributions of node
embeddings; and the others are not inductive since they tend to use fixed nodes and cannot
generalize to unseen nodes.

4. Graph-level behavior guidance: None of the prior temporal or multiplex generators model
system-level phenomena such as explosive synchronization or hysteresis. In contrast,
MulDyDiff is the first to introduce behavior-aware guidance to reproduce these global
dynamics, enabling to regularize graph-level behavior of generated graphs to be similar to
input graphs.

5. Global and local evolution: In contrast to previous works focusing on generating the current
snapshot conditioning on only a single snapshot (or merely local motif transition statistics)
with only local evolution taken into account, our model enables future snapshot generation
considering both local and global evolution from given historical snapshots.

Table 4: Comparison table between MulDyDiff and prior temporal graph generators.

Models Temporal
dependency

Multi-layer
structure Inductive

Graph-level
behavior
guidance

Global
evolution

Local
evolution

MulDyDiff
(ours) p(Gt | G0:t−1)

O (with
cross-layer

dependency)
O O O O

DBGDGM
Campbell et al. (2024) p(Gt | Gt−1)

O (without
cross-layer

dependency)
X X X O

MTM
Liu & Sariyüce (2023)

local motif
transition
statistics

X X X X O

SGNN
Wang et al. (2022) p(Gt | Gt−1) X X X X O

TIGGER
Gupta et al. (2022) p(Gt | Gt−∆t) X O X X O

DYMOND
Zeno et al. (2021)

local motif
transition
statistics

X X X X O

C NOTATION TABLE

The notations in this paper are listed in Table 5.

D PRELIMINARY: DISCRETE DENOISING DIFFUSION PROBABILISTIC MODEL

We introduce the background of denoising diffusion probabilistic models (DDPM). Typically, a
DDPM consists of two components: the forward noising process and the reverse denoising process.
For the diffusion step s ≥ 1, the forward noising process of a DDPM for a graph G(0) is defined by
q(G(s)|G(s−1)) and q(G(S)|G(0)) =

∏S
s=1 q(G

(s)|G(s−1)), where S is the maximum diffusion step.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Notation table

Notation Description
s = 0, 1, . . . , S diffusion steps
t = 0, 1, . . . , T timestamps
l = 1, . . . , L layers

Γ Multi-layer graph sequence {G0, . . . ,GT }
Gt L-layer graph at timestamp t

G
(I)
t Intra-layer graph ({(Xl,t,El,t)}Ll=1)

G0:t
L-layer graph sequence
from timestamp 0 to t

X
(s)
l,t ∈ Ra×N , El,t ∈ Rb×N×N Diffused node/edge representation of N nodes at step s

with a node types and b edge types of layer l in Gt

Gl,(0:T)
intra-layer graph sequence

{Gl,t = (Xl,t,El,t)}Tt=0 for layer l

G
(B)
t

inter-layer bipartite graph
({Xl,t,Xt,m}, {B(l,m),t}l̸=m)

B(l,m),t
inter-layer edge representation
between layers l and m in Gt

G(l,m),(0:T)

intra-layer graph sequence
({Xl,t,Xm,t}Tt=0, {B(l,m),t}Tt=0)

for layers l and m

Q
(s)

Xl,(0:t−1)
multi-step Markov transition matrix that transits X(0)

l,t to X
(s)
l,t

Q
(s)
Xl,(0:t−1)

single-step Markov transition matrix that transits X(s−1)
l,t to X

(s)
l,t

G
(C)
t cross-layer coupling graph (V

(C)
t , E

(C)
t)

V
(C)
t nodes representing layer IDs {1, . . . , L}

E
(C)
t

edges representing link existence between distinct layers
{(l,m)|l,m ∈ V

(C)
t ,B(l,m),t ̸= 0}

αs

a parameter that controls noise strength,
defining how fast information is washed out by noise

along the diffusion axis s; αs =
∏s

i=1 αi

γs
a parameter that controls the dependence on previous snapshots,

specifying how strong the temporal smoothing is
along the time axis t; γs =

∏s
i=1 γi

D(·, γs) temporal transition-aware mixture with hyper-parameter γs

q diffusion process
pθ reverse denoising process
ϕθ dynamic transition denoising network

p̂
(X)
l,t , p̂

(E)
l,t , p̂

(B)

(l,m),t

denoising distributions learned from
dynamic transition denoising network ϕθ

ϕ
(C)
θ

cross-layer correlation-aware
dynamic transition denoising network

p̂
(X)

C,(l,t), p̂
(E)

C,(l,t), p̂
(B)

C,(l,t)

denoising distributions learned from cross-layer correlation-aware
dynamic transition denoising network ϕ

(C)
θ

p
(C)
t

distribution learned to predict
cross-layer correlations at t in G

(C)
t according to G0:t

p
(I)
t

distribution learned to predict
intra-layer structure at t according to G0:t

GivenG(0) = (X(0),E(0)), the standard categorical forward process of a node attribute representation
is:

X(s) = αsX
(0) + (1− αs)

1a
a
,E(s) = αsE

(0) + (1− αs)
1a
a
, (21)

with αs controlling noise strength.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

For the reverse denoising process, given G(s), a denoising neural network ϕθ (parameterized by θ) is
designed to predict the denoised graph G(s−1), deriving the reverse denoising process pθ as follows:

pθ(G
(s−1)|G(s)) = q(G(s−1)|G(s), G(0))pθ(G

(0)|G(s));

q(G(s−1)|G(s)) ∝ q(G(s)|G(s−1), G(0))q(G(s−1)|G(0))

= q(G(s)|G(s−1))q(G(s−1)|G(0)),

where q(G(s−1)|G(s)) can be approximated by the noising process.

E DETAILED DERIVATIONS AND PROOFS OF ATTRIBUTE-AWARE DYNAMIC
TRANSLATION-BASED DENOISING

E.1 INTUITION OF CAPTURING LONG-RANGE TEMPORAL COUPLING AND CONTINUITY.

Unlike standard temporal models that rely on one-step Markov dependencies (conditioning only
on Gt−1), our forward process explicitly incorporates the entire history G0:t−1 when defining the
distribution at time t. This is achieved through the attribute-aware dynamic transition mixture D in
Eq. (1):

D(X(0)
l,(0:t), γ̄s) = γ̄sX

(0)
l,t + (1− γ̄s)D(X

(0)
l,(0:t−1), γ̄s),

which recursively accumulates clean snapshots from all previous timestamps. As a result, the forward
prior for X(s)

l,t is not a local variation of X(0)
l,t−1 but rather a history-mixed representation that embeds

long-range temporal signals. This design has two key benefits: i) it enables the reverse denoising
network to perform history-guided denoising, capturing persistent temporal structures and long-range
dependencies that one-step models miss; and ii) since the mixture is formed from clean states X(0), it
mitigates the error propagation issue of autoregressive temporal generators that repeatedly condition
on noisy predictions.

E.2 DERIVATION LOGIC OF CAPTURING LONG-RANGE TEMPORAL COUPLING AND
CONTINUITY.

We aim to capture long-range temporal coupling and continuity in temporal graph sequences, which
is achieved by deriving the temporal-aware diffusion model with the following logic flow:

(1) We first define a temporal aggregation function (Eq. (1)) that summarizes all past clean snap-
shots using an exponentially weighted mixture. This establishes how temporal information
from earlier timestamps is incorporated into the model.

(2) We then inject noise in a temporally consistent way (Eqs. (2) and (3)) by blending local
diffusion at time t with the diffused representation at time t − 1. This step defines how
attribute noise interacts with temporal smoothness.

(3) We show that this forward process admits a closed-form expression (Eq. (4)), which explicitly
reveals the influence of the entire history.

(4) We reinterpret the closed form of the forward process as a Markov transition (Eq. (5)),
clarifying how each diffusion step decomposes into self-preservation, history-driven drift,
and uniform noise injection.

(5) We decompose the multi-step transition into single-step transitions (Eqs. (6) and (7)) to
make posterior inference tractable.

(6) We derive the exact posterior for reverse diffusion (Eq. (9)), enabling us to compute the
probability of the previous noisy state conditioned on the current one.

(7) Finally, we approximate the reverse process with a learned denoiser (Eq. (10)), which maps
noisy states back to clean states in a history-aware manner.

Together, these steps establish a temporally coherent forward diffusion process, whose reverse process
can reconstruct each snapshot using the entire clean history, enabling the model to capture long-range
temporal dependencies rather than purely local transitions.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E.3 DETAILED DERIVATION OF THE TEMPORAL DIFFUSION PROCESS

E.3.1 RECURSIVE EXPANSION ALONG THE TEMPORAL DIMENSION

To incorporate information from all historical snapshots up to time t, we define a recursive temporal
aggregation function. The idea is to let the most recent snapshot contribute most strongly, while earlier
snapshots contribute with exponentially decaying weights. Given historical snapshots X(0)

l,(0:t−1) and

the current snapshot X(0)
l,t , we define the dynamic transition in Eq. (1) by combining the current

snapshot at timestamp t and the dynamic transition over past snapshots from timestamp 0 to t− 1 as
follows:

D(X
(0)

l,(0:t), γs) = γsX
(0)
l,t + (1− γs)D(X

(0)

l,(0:t−1), γs),

with the initial condition D(X
(0)
l,0 , γs) = X

(0)
l,0 . This recursion D means that each historical snapshot

influences the aggregated representation, but with strength controlled by γs. A larger γs prioritizes
the current snapshot, while a smaller one increases the influence of earlier snapshots.

E.3.2 EXTENSION TO TEMPORAL DIFFUSION PROCESS

In the traditional diffusion process, the diffused snapshot Y(s)
l,t in the s-th step of the snapshot X(0)

l,t is

Y
(s)
l,t = αsX

(0)
l,t +(1−αs)

1a

a at timestamp t. To generate temporally consistent noisy representations

X
(s)
l,t , we blend the locally diffused state Y

(s)
l,t at time t with the diffused state X

(s)
l,t−1 from the

previous timestamp t − 1, which ensures smoothness across time. Thus, we define the dynamic
transition-aware forward process in Eq. (2):

X
(s)
l,t = γsY

(s)
l,t + (1− γs)X

(s)
l,t−1

= γs(αsX
(0)
l,t + (1− αs)

1a
a
) + (1− γs)X

(s)
l,t−1, ∀s, t ≥ 1,

where the first term in Eq. (2) adds noise to the current snapshot, while the second term propagates
temporal influence forward from t−1. The parameter γs adjusts the balance: larger values emphasize
the current snapshot; smaller values enforce stronger temporal continuity. Since t = 0 is the starting
point, we initialize its forward diffusion to be the same as the traditional diffusion process in Eq. (3).

X
(s)
l,0 = Y

(s)
l,0 = αsX

(0)
l,0 + (1− αs)

1a
a
,

where 1a ∈ Ra×N denotes an all-one matrix. The weight αs determines how much of the original
structure is retained.

E.3.3 CLOSED-FORM EXPRESSION OF THE FORWARD PROCESS

By expanding the recursive temporal-aware forward equations (Eq. (2) with induction on t), we obtain
a direct relationship between the s-step noisy snapshot and all historical clean snapshots, explicitly
incorporating the entire history X

(0)
l,(0:t) in Eq. (4) as follows:

X
(s)
l,t = αsD(X

(0)

l,(0:t), γs) + (1− αs)
1a
a
.

Thus, the noisy snapshot is a mixture of a history-aggregated signal and a uniform noise baseline. As
αs decreases, the influence of the uniform noise grows, gradually removing temporal structure.

E.3.4 MULTI-STEP MARKOV TRANSITION

We express Eq. (4) as a Markov transition that changes the state of X(s)
l,t , through Eq. (1)

X
(s)
l,t = αsγsX

(0)
l,t + αs(1− γs)D(X

(0)

l,(0:t−1), γs) + (1− αs)
1a
a

(By Eq. (1)),

= (αsγsI+ αs(1− γs)D(X
(0)

l,(0:t−1), γs)1
⊤
a + (1− αs)1a

1⊤
a
a
)X

(0)
l,t

(∵ 1a1
⊤
a X

(0)
l,t = 1a,D(X

(0)

l,(0:t−1), γs)1
⊤
a X

(0)
l,t = D(X

(0)

l,(0:t−1), γs))

= (αsγsI+ αs(1− γs)1aD(X
(0)

l,(0:t−1), γs)
⊤ + (1− αs)1a

1⊤
a
a
)⊤X

(0)
l,t (Transpose)

= Q
(s)

Xl,(0:t−1)

⊤
X

(0)
l,t ,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where Q
(s)

Xl,(0:t−1)
= αsγsI+αs(1−γs)1aD(X(0)

l,(0:t−1), γs)
⊤+(1−αs)1a

1
⊤
a

a is a Markov transition
matrix decomposing the diffusion into three intuitive effects: (1) self-preservation (i.e., staying in the
same state), (2) drifting toward the aggregated history D(·), and (3) injecting uniform noise.

Thus, we rewrite Eq. (4) using the Markov transition matrix Q
(s)

Xl,(0:t−1)
as in Eq. (5):

q(X
(s)
l,t |X

(0)

l,(0:t)) = Cat(X
(s)
l,t ;Q

(s)

Xl,(0:t−1)

⊤
X

(0)
l,t) = X

(s)
l,t

⊤
Q

(s)

Xl,(0:t−1)

⊤
X

(0)
l,t .

E.3.5 SINGLE-STEP MARKOV TRANSITION

To derive the posterior and the reverse process, we rewrite the multi-step update as a single-step
Markov transition. By subtracting αsγsX

(s−1)
l,t from X

(s)
l,t (using Eq. (4) to cancel out X(0)

l,t), we
obtain the single-step forward process in Eq. (6):

X
(s)
l,t = αsγsX

(s−1)
l,t + αs[(1− γs)D(X

(0)

l,(0:t−1), γs)

− (γs − γs)D(X
(0)

l,(0:t−1), γs−1)] + [1− αsγs − αs(1− γs)]
1a
a
,

in which the three parts correspond to: (1) keeping part of the previous noisy state via αsγsX
(s−1)
l,t ,

(2) adjusting toward the history-consistent direction implied by the multi-step dynamics (the two D(·)
terms ensure that the single-step behavior matches the s-step closed form), and (3) injecting uniform
noise to maintain stochasticity and preserve a valid categorical distribution. This decomposition
reveals how the model preserves previous noise, incorporates temporal structure, and adds randomness.

Similar to Eq. (5), we have Eq. (7) as follows:

q(X
(s)
l,t |X

(s−1)
l,t ,X

(0)

l,(0:t)) = Cat(X
(s)
l,t ;Q

(s)
Xl,(0:t−1)

⊤
X

(s−1)
l,t) = X

(s)
l,t

⊤
Q

(s)
Xl,(0:t−1)

⊤
X

(s−1)
l,t ,

where Q(s)
Xl,(0:t−1)

= αsγsI+αs(1−γs)1aD(X(0)
l,(0:t−1), γs)

⊤+(1−αs)1a
1
⊤
a

a is a Markov transition
matrix encoding: (1) self-preservation, (2) a shift toward the aggregated history D(·), and (3)
movement toward the uniform noise baseline.

It is worth noting that Q(s)
Xl,(0:t−1)

is a transition matrix satisfying the property of a Markov chain, i.e.,

Q
(s−1)

Xl,(0:t−1)
Q

(s)
Xl,(0:t−1)

= Q
(s)

Xl,(0:t−1)
. Thus, the distribution q(X(s)

l,t |X
(0)
l,(0:t)) can be marginalized by

q(X
(s)
l,t |X

(s−1)
l,t X

(0)
l,(0:t)) and q(X(s−1)

l,t |X(0)
l,(0:t)) as follows:

q(X
(s)
l,t |X

(0)

l,(0:t))

=
∑

X
(s−1)
l,t

q(X
(s)
l,t ,X

(s−1)
l,t |X(0)

l,(0:t)) (Marginalization)

=
∑

X
(s−1)
l,t

q(X
(s)
l,t |X

(s−1)
l,t ,X

(0)

l,(0:t))q(X
(s−1)
l,t |X(0)

l,(0:t)) (By Bayesian formula)

=
∑

X
(s−1)
l,t

(X
(s)
l,t

⊤
Q

(s)
Xl,(0:t−1)

⊤
X

(s−1)
l,t)(X

(s−1)
l,t

⊤
Q

(s−1)

Xl,(0:t−1)

⊤
X

(0)
l,t) (By Eqs. (5) and (7))

= X
(s)
l,t

⊤
Q

(s)
Xl,(0:t−1)

⊤∑
X

(s−1)
l,t

(X
(s−1)
l,t X

(s−1)
l,t

⊤
)Q

(s−1)

Xl,(0:t−1)

⊤
X

(0)
l,t

= X
(s)
l,t

⊤
Q

(s)
Xl,(0:t−1)

⊤
Q

(s−1)

Xl,(0:t−1)

⊤
X

(0)
l,t (∵

∑
X

(s−1)
l,t

(X
(s−1)
l,t X

(s−1)
l,t

⊤
) = I)

= X
(s)
l,t

⊤
Q

(s)

Xl,(0:t−1)

⊤
X

(0)
l,t (∵ Q

(s−1)

Xl,(0:t−1)
Q

(s)
Xl,(0:t−1)

= Q
(s)

Xl,(0:t−1)
),

which proves Theorem 4.1.

E.3.6 POSTERIOR DISTRIBUTION

To reverse the diffusion, we use Bayes’ theorem to compute the posterior distribution over the
previous noisy state given the current noisy state and the clean history. From Eqs. (5) and (7), we

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

derive the posterior of the forward process q in Eq. (9) as follows:

q(X
(s−1)
l,t |X(s)

l,t ,X
(0)

l,(0:t)) =
q(X

(s)
l,t

|X(s−1)
l,t

,X
(0)
l,(0:t)

)q(X
(s−1)
l,t

|X(0)
l,(0:t)

)

q(X
(s)
l,t

|X(0)
l,(0:t)

)
(By Bayesian formula)

=
(X

(s)
l,t

⊤
Q

(s)
Xl,(0:t−1)

⊤
X

(s−1)
l,t

)(X
(s−1)
l,t

⊤
Q

(s−1)
Xl,(0:t−1)

⊤
X

(0)
l,t

)

(X
(s)
l,t

⊤
Q

(s)
Xl,(0:t−1)

⊤
X

(0)
l,t

)
(By Eqs. (5) and (7))

=
(X

(s−1)
l,t

⊤
Q

(s)
Xl,(0:t−1)

X
(s)
l,t

)(X
(s−1)
l,t

⊤
Q

(s−1)
Xl,(0:t−1)

⊤
X

(0)
l,t

)

(X
(s)
l,t

⊤
Q

(s)
Xl,(0:t−1)

⊤
X

(0)
l,t

)

(Transpose the first term in the numerator)

= X
(s−1)
l,t

⊤ Q
(s)
Xl,(0:t−1)

X
(s)
l,t

⊙Q
(s−1)
Xl,(0:t−1)

⊤
X

(0)
l,t

X
(s)
l,t

⊤
Q

(s)
Xl,(0:t−1)

⊤
X

(0)
l,t

,

which proves Theorem 4.2 (the closed form of the posterior). The numerator multiplies: (a) how
likely each prior state leads to X(s), and (b) how likely it is under the multi-step history-informed
prior. The denominator normalizes these weights into a valid categorical distribution.

E.3.7 REVERSE PROCESS

Since the true clean snapshot is unknown, we approximate the reverse transition by combining the
exact posterior with a learned clean-state predictor. The reverse denoising process is approximated
by the posterior (Eq. (9)) in Eq. (10) through marginalization as follows:

pθ(X
(s−1)
l,t |X(s)

l,t ,X
(0)

l,(0:t−1))

=
∑

X
(0)
l,t

pθ(X
(s−1)
l,t ,X

(0)
l,t |X

(s)
l,t ,X

(0)

l,(0:t−1)) (Marginalization)

=
∑

X
(0)
l,t

pθ(X
(s−1)
l,t |X(s)

l,t ,X
(0)

l,(0:t−1),X
(0)
l,t)pθ(X

(0)
l,t |X

(s)
l,t ,X

(0)

l,(0:t−1)) (By Bayesian formula)

≈
∑

X
(0)
l,t

q(X
(s−1)
l,t |X(s)

l,t ,X
(0)

l,(0:t−1),X
(0)
l,t)p̂

(X)
l,t (X

(0)
l,t |X

(s)
l,t ,X

(0)

l,(0:t−1)),

where p̂(X)
l,t is learned by a denoising network (parameterized with θ) that denoises X

(s)
l,t to the

clean representation X
(0)
l,t conditioned on the given historical information X

(0)
l,(0:t−1), which captures

long-range temporal coupling and coherence. The denoiser predicts plausible clean states, and the
model averages the exact backward transitions over those predictions, yielding an effective reverse
diffusion step.

F DETAILED DERIVATIONS AND PROOFS OF CROSS-LAYER
CORRELATION-AWARE DENOISING

F.1 INTUITION OF CAPTURING IMPLICIT CO-EVOLUTION VIA ATTENTION

Our model captures both explicit structural coupling and implicit co-evolution. We do not rely solely
on static, observed inter-layer edges; instead, we leverage attention to capture latent correlations
where layers evolve in synchrony without direct connections. This is achieved in the cross-layer
correlation-aware denoising module (Eqs. (15) and (16)), specifically through the predicted coupling
graph Ĝ(C)

t , which dynamically estimates cross-layer correlation strengths at each timestamp. The
denoising network then uses these correlations through a cross-attention mechanism, assigning
weights to other layers based on their state similarity and temporal co-evolution—even when no
explicit inter-layer edge B(l,m) exists (detailed in Appendix G). For example, if nodes in layer A and
nodes in layer B repeatedly undergo similar attribute transitions or community-level changes at the
same times (a “shared temporal shock”), the attention mechanism can learn this pattern and allow
layer A to guide the reconstruction of layer B, and vise versa, despite the absence of direct inter-layer
links between specific node pairs.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F.2 DERIVATION LOGIC OF CAPTURING IMPLICIT CO-EVOLUTION VIA ATTENTION

We aim to capture explicit structural coupling and implicit co-evolution in multi-layer temporal graph
sequences, which is achieved by multiplying the temporal-aware forward and reverse processes of all
layers with the following logic flow:

(1) The multi-step (single-step) forward process of a multi-layer temporal graph sequence is
extended to Eq. (11) from Eq. (5) (Eq. (7)) by multiplying the multi-step (single-step)
forward processes of all layers, which are assumed to be independent of one another.

(2) The posterior of the forward process of a multi-layer temporal graph sequence is extended to
Eq. (12) from Eq. (9) by multiplying the posteriors of all layers with the Bayesian formula
using Eq. (11).

(3) The denoising distribution is derived in Eq. (13). It is the product of the denoising distribu-
tions of all layers, as shown in Eq. (14). These layer-wise distributions are learned separately
and are conditionally independent given the clean snapshots from timestamps 0 to t − 1.
Each layer’s distribution is learned through a cross-layer attention mechanism. The attention
weights are learned from the cross-layer coupling graph predicted by a cross-layer predictor.

(4) The reverse process of a multi-layer temporal graph sequence is extended to Eq. (15) by mul-
tiplying the reverse processes of all layers (Eq. (16)), which are conditionally independent
given the clean snapshots X(0)

(1:L),(0:t−1) during the preceding timestamps 0 to t− 1.

F.3 DERIVATION DETAILS OF CAPTURING IMPLICIT CO-EVOLUTION VIA ATTENTION

F.3.1 FORWARD DIFFUSION PROCESS

We assume that the noise-injection process at diffusion step s is independent across layers. Intuitively,
each layer is corrupted by noise separately, while the reverse denoising process later leverages cross-
layer attention to reintroduce interdependencies. The multi-step and single-step forward processes of
a multi-layer temporal graph sequence are extended from Eqs. (5) and (7) to Eq. (11) as follows:

q(X
(s)

(1:L),t|X
(0)

(1:L),(0:t)) =

L∏
l=1

q(X
(s)
l,t |X

(0)

l,(0:t));

q(X
(s−1)

(1:L),t|X
(s)

(1:L),t,X
(0)

(1:L),(0:t)) =

L∏
l=1

q(X
(s)
l,t |X

(s−1)
l,t ,X

(0)

l,(0:t)).

F.3.2 POSTERIOR

Due to the independence of the forward processes of all layers, the posterior of the forward process
of a multi-layer temporal graph sequence is extended from Eq. (9) to Eq. (12) as follows:

q(X
(s−1)

(1:L),t|X
(s)

(1:L),t,X
(0)

(1:L),(0:t)) =
q(X

(s)
(1:L),t

|X(s−1)
(1:L),t

,X
(0)
(1:L),(0:t)

)q(X
(s−1)
(1:L),t

|X(0)
(1:L),(0:t)

)

q(X
(s)
(1:L),t

|X(0)
(1:L),(0:t)

)
(By Bayesian formula)

=

∏L
l=1 q(X

(s)
l,t

|X(s−1)
l,t

,X
(0)
l,(0:t)

)
∏L

l=1 q(X
(s−1)
l,t

|X(0)
l,(0:t)

)∏L
l=1

q(X
(s)
l,t

|X(0)
l,(0:t)

)
(By Eq. (11))

=

L∏
l=1

q(X
(s)
l,t

|X(s−1)
l,t

,X
(0)
l,(0:t)

)q(X
(s−1)
l,t

|X(0)
l,(0:t)

)

q(X
(s)
l,t

|X(0)
l,(0:t)

)

=

L∏
l=1

q(X
(s−1)
l,t |X(s)

l,t ,X
(0)

l,(0:t)).

F.3.3 DENOISING DISTRIBUTION

Formally, layers exhibit interdependencies and implicit co-evolution in a multi-layer temporal graph
sequence. To model such co-evolution, since layers are conditionally independent given the clean
snapshots X(0)

(1:L),(0:t−1), the denoising distribution is the product of the distributions of all layers

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

conditioned on X
(0)
(1:L),(0:t−1) in Eq. (13) as follows:

pθ(X
(0)

(1:L),t|X
(s)

(1:L),t,X
(0)

(1:L),(0:t−1)) =

L∏
l=1

pθ(X
(0)
l,t |X

(s)
l,t ,X

(0)

(1:L),(0:t−1)),

where pθ(X
(0)
l,t |X

(s)
l,t ,X

(0)
(1:L),(0:t−1)) is learned by a denoising network with a cross-layer attention

mechanism, with weights determined by the predicted cross-layer coupling graph G(C)
t , enabling it

to capture implicit co-evolution through cross-layer attention in Eq. (14) as follows.

pθ(X
(0)
l,t |X

(s)
l,t ,X

(0)

(1:L),(0:t−1)) =
∑
G

(C)
t

pθ(X
(0)
l,t |X

(s)
l,t ,X

(0)

(1:L),(0:t−1), G
(C)
t)pθ(G

(C)
t |X(0)

(1:L),(0:t−1)),

where pθ(G
(C)
t |X(0)

(1:L),(0:t−1)) serves as a learnable prior over cross-layer dependencies. It maps
the clean historical snapshots into a latent adjacency-like structure that reflects the current degree of
coupling across layers at timestamp t. This latent graph then parameterizes the cross-layer attention
mechanism in pθ(X

(0)
l,t |X

(s)
l,t ,X

(0)
(1:L),(0:t−1), G

(C)
t), meaning that the denoiser’s parameters are mod-

ulated by the inferred strength of cross-layer correlations. As a result, cross-layer dependencies are
injected before factorization, ensuring that the final product form in Eq. (13) still embeds inter-layer
influence. This mechanism allows the model to capture both edge-level cross layer correlations (when
explicit inter-layer edges exist) and higher-order co-evolution patterns (when groups of nodes across
layers move together in time, even without explicit inter-layer links).

F.3.4 REVERSE DENOISING PROCESS

The reverse process of a multi-layer graph sequence conditioning on the clean snapshots X(0)
(1:L),(0:t−1)

is the product of the reverse processes of all layers in Eq. (15) as follows:

pθ(X
(s−1)

(1:L),t|X
(s)

(1:L),t,X
(0)

(1:L),(0:t−1)) =

L∏
l=1

pθ(X
(s−1)
l,t |X(s)

l,t ,X
(0)

(1:L),(0:t−1)),

where the reverse process of each layer l can be derived by approximation using the posterior
(Eq. (12)) and denoiser (Eq. (14)) of each layer l as in Eq. (16),

pθ(X
(s−1)
l,t |X(s)

l,t ,X
(0)

(1:L),(0:t−1)) =
∑
X

(0)
l,t

q(X
(s−1)
l,t |X(s)

l,t ,X
(0)

l,(0:t))pθ(X
(0)
l,t |X

(s)
l,t ,X

(0)

(1:L),(0:t−1)).

The reverse process factorizes across layers because each layer produces its own categorical transition
from step s to s − 1. However, the transition probabilities themselves are not independent: they
depend on the shared cross-layer attention weights computed from the predicted coupling graph G(C)

t .
Thus, each layer’s reverse update incorporates information from all other layers before generating its
own transition. This design cleanly separates (1) how information flows across layers (attention) and
(2) how categorical diffusion is applied per layer (reverse transition), making the derivation tractable
while still capturing rich cross layer co-evolution.

G DENOISING NETWORK ARCHITECTURE

By exploiting the cross-layer coupling graph G(C)
t , we simultaneously introduce the notion of intra-

layer denoising and inter-layer denoising. The former reconstructs the intra-layer structure by
learning its distribution via a denoising network with G(C)

t learned from a cross-layer correlation
predictor as a condition (detailed later). The latter models the relationships between distinct layers
by considering the correlations between different layers in G(C)

t . Specifically, to generate Ĝ, it
is necessary to consider their intra-layer graph (Gl, Gm) and cross-layer coupling graph (G

(C)
t)

as conditions in the reverse denoising process so that Ĝ(l,m),t can be generated by considering
Gl,t, Gm,t and the correlation between them through the cross-layer correlation predictor.

As illustrated in Figure 5, we extract the encoded embeddings from G0:t−1 to capture the dynamics
from G0:t−1 via the encoder (detailed in Figure 6a) equipped with a self-attention mechanism
(detailed in Figure 7a). Then we follow (Vignac et al., 2023) to build the decoder (detailed in
Figure 6b) with a cross-attention mechanism (detailed in Figure 7b) by extracting structural and

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 5: Denoising network architecture.

spectral features of noisy graphs G(s)
t:T = ({X(s)

l,(t:T),E
(s)
l,(t:T)}

L
l=1, {B

(s)
(l,m),(t:T)}l ̸=m) at diffusion

step s during timestamps t to T , which are then processed by an MLP layer and graph transformer
layers with cross attention (detailed in Figure 7b). Then the denoised graph can be derived by
exploiting the following prediction results from the noisy graphs G(s)

t:T and embeddings X
(0)
l,(t:T),

E
(0)
l,(t:T), and B

(0)
(l,m),(t:T), of snapshots from timestamp t to T by the denoising network into the result

derived from Theorem 4.2
X̂

(0)
l,t = ϕθ(X

(s)
l,t ,X

(0)

l,(0:t−1), s), Ê
(0)
l,t = ϕθ(E

(s)
l,t ,E

(0)

l,(0:t−1), s), B̂
(0)

(l,m),t = ϕθ(B
(s)

(l,m),t,B
(0)

(l,m),(0:t−1), s),

which are plugged into Eq. (10) to denoise noisy graphs.

Intra-layer denoising. By extending Eq. (10), the intra-layer denoising process for each layer l can
be derived from the following marginalization.

pθ(G
(s−1)
l,t |G(s)

l,t ,G
(0)
0:t−1) =

∑
G

(0)
l,t

q(G
(s−1)
l,t |G(s)

l,t , G
(0)

l,(0:t−1))pI(G
(0)
l,t |G

(s)
l,t ,G

(0)
0:t−1), (22)

where pI can be learned by training a denoising network to predict G(0)
l,t from G

(s)
l,t ,G

(0)
0:t−1 with the

assistance of a cross-layer coupling graph G(C)
t by marginalization over the edges (l,m) incident to

node l in the cross-layer coupling graph (i.e., layers connecting to l)

pI(G
(0)
l,t |G

(s)
l,t ,G

(0)
0:t−1) =

∑
(l,m)∈E(G

(C)
t)

p̂I(G
(0)
l,t |G

(s)
l,t ,G

(0)
0:t−1, G

(C)
t)p̂C(G

(C)
t |G(s)

l,t ,G
(0)
0:t−1)

with p̂I learned by training a denoising network to predict G(0)
l,t from G

(s)
l,t ,G

(0)
0:t−1 and G(C)

t , and
p̂C learned by training a neural network-based cross-layer correlation predictor to predict the link
in G(C)

t from G
(s)
l,t ,G

(0)
0:t−1, addressing the need for cross-layer correlation that is not supported in

existing static and dynamic graph generators.

Inter-layer denoising. The reverse denoising process of inter-layer edges B(l,m),t can be derived
through marginalization (extended from Eq. (10)):

p(B
(s−1)

(l,m),t|B
(s)

(l,m),t,G
(0)

(0:t−1)) =
∑

B
(0)
(l,m),t

q(B
(s−1)

(l,m),t|B
(s)

(l,m),t,B
(0)

(l,m),(0:t−1))pB(B
(0)

(l,m),t|B
(s)

(l,m),t,G
(0)

(0:t−1)),

(23)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) Encoder

(b) Decoder

Figure 6: Detailed architectures of the encoder and decoder.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(a) Self-attention

(b) Cross attention

Figure 7: Detailed architectures of each module.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

where pB can be learned by training a denoising network, considering B
(s)
(l,m),t, G

(0)
(0:t−1), and the

cross-layer coupling graph G(C)
t as conditions to predict B(0)

(l,m),t by the following marginalization:

pB(B
(0)

(l,m),t|B
(s)

(l,m),t,G
(0)

(0:t−1))

=
∑

(G
(0)
l,t

,G
(0)
m,t)

[
p̂B(B

(0)

(l,m),t|B
(s)

(l,m),t,B
(0)

(l,m),(0:t−1), (G
(0)
l,t , G

(0)
m,t)) · p̂I((G

(0)
l,t , G

(0)
m,t)|B

(s)

(l,m),t,G
(0)

(0:t−1))

]
,

p̂I((G
(0)
l,t , G

(0)
m,t)|B

(s)

(l,m),t,G
(0)

(0:t−1))

= p̃I((G
(0)
l,t , G

(0)
m,t)|B

(s)

(l,m),t,G
(0)

(0:t−1), (l,m) ∈ E(G
(C)
t)) · p̃C((l,m) ∈ E(G

(C)
t)|B(s)

(l,m),t,G
(0)

(0:t−1))

+ p̃I((G
(0)
l,t , G

(0)
m,t)|B

(s)

(l,m),t,G
(0)

(0:t−1), (l,m) /∈ E(G
(C)
t)) · p̃C((l,m) /∈ E(G

(C)
t)|B(s)

(l,m),t,G
(0)

(0:t−1)),

with p̃I learned by a denoising network to predict the structure of layers l and m from
B

(s)
(l,m),t,G

(0)
(0:t−1) and p̃C learned by the cross-layer predictor to predict whether there is any correla-

tion between layers l and m at timestamp t from B
(s)
(l,m),t,G

(0)
(0:t−1).

As illustrated in Figure 5, the cross-layer correlation-aware denoising network ϕ
(C)
θ is con-

structed by dividing a noisy multiplex graph G(s)
t into intra-layer ({X(s)

l,t ,E
(s)
l,t }Ll=1) and inter-layer

({B(s)
(l,m),t}l ̸=m) parts. The encoder part remains the same with using only temporal information. As

for the decoder, we process the intra-layer part with the cross-attention layer using the output of the
encoder from each layer l in previous snapshots Gl,(0:t−1) as the input of keys and values, and the
target sequence Gl,(t:T) for the corresponding layer l as the query. The inter-layer part is processed
by using the output of the encoder from different layers m ̸= l in previous snapshots Gm,(0:t−1) as
the input of keys and values, and the target sequence Gl,(t:T) for the corresponding layer l as the
query, to predict the inter-layer links B(l,m),(t:T) from the intra-layer graph and cross-layer coupling
graph.

H DETAILS OF BEHAVIOR-AWARE GUIDANCE

H.1 KURAMOTO-BASED SYNCHRONIZATION MEASURE

To quantify the synchronization level of a node attribute associated with a user i at a specific time
and layer, we adopt the Kuramoto order parameter (De Domenico, 2023; Danziger et al., 2019) as a
continuous-phase descriptor, measured by the degree of phase coherence among nodes with the m-th
attribute in layer l at time t:

R(l)
m (t) =

∣∣∣∣ 1

N
(l)
t

∑N
(l)
t

i=1
ej·θ

(l)
i,m(t)

∣∣∣∣ , (24)

where j is the imaginary unit and N (l)
t is the number of nodes in layer l at time t.

Since this measure operates in the angular domain, we first normalize and project the m-th raw
attribute value am = x

(0)
l,t [i,m],∀m = 1, . . . ,M of node i in layer l at timestamp t onto the unit

circle:

θ
(l)
i,m(t) = π ·

(x
(0)
l,t

[i,m]−minj x
(0)
l,t

[j,m])

(maxj x
(0)
l,t

[j,m]−minj x
(0)
l,t

[j,m])
. (25)

To clarify the motivation for behavior-aware guidance, we provide an illustrative example in Figure 8
inspired by the dynamics of real social platforms such as Instagram or X. These platforms support
multiple interaction types—most notably repost/share and reply/comment—and each interaction
has a directional nature. When user A reposts user B’s post, A’s active repost count increases, and
B’s passive repost count increases. The same active/passive semantics apply to replies. Such data
naturally form a temporal multiplex network, where

• each layer corresponds to an interaction type (e.g., repost vs. reply).

• each attribute corresponds to the direction of participation (active vs. passive activity).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 8: Illustrative example of behavior-aware guidance.

This representation reflects the fact that user behavior is usually not uniform across interactions:
frequent reposters may rarely reply, and vise versa.

Consider a common scenario on Instagram. A brand plans a giveaway and instructs its followers:
Before the giveaway opens (t = 1, 2), followers are encouraged to repost the promotional poster to
inform their friends. This produces moderately elevated repost activity across the network—users
amplify the message but not explosively. At the giveaway time (t = 3): The brand announces, “Leave
a comment on our post now for a chance to win!” Suddenly, a large number of users reply at exactly
the same moment, producing a sharp, collective surge—an explosive synchronization event—in the
reply layer. Importantly, the reply activity at earlier times does not show strong pre-burst signs,
even though the repost layer has already become active due to brand promotion. This pattern—one
interaction channel warming up while another exhibits a sudden synchronized burst—is extremely
common across real social platforms.

To make this concrete, we consider three nodes i = 1, 2, 3 connecting with one another, two layers:
repost (l = 1) and reply (l = 2), and two directional activity attributes: active (m = 1) and
passive (m = 2). We construct a minimal temporal sequence of interaction records xl,t[i,m] (e.g.,
x1,2[3, 1] = 5 is the frequency of active (m = 1) repost (l = 1) at t = 2) that is consistent with the
above scenario:

x1,1[i, 1] = [1, 2, 3];x1,2[i, 1] = [2, 3, 4];x1,3[i, 1] = [1, 2, 1],

representing moderately elevated active reposts during brand promotion.

Passive reposts are also moderately elevated:
x1,1[i, 2] = [0, 1, 0];x1,2[i, 2] = [1, 2, 1];x1,3[i, 2] = [2, 2, 2].

For the reply layer, the pre-event active reply activity is low:
x2,1[i, 1] = [0, 0, 0];x2,2[i, 1] = [1, 2, 1],

but when the giveaway opens at t = 3, users synchronously comment: x2,3[i, 1] = [5, 5, 5].

Passive replies are similarly stable:
x2,1[i, 2] = [0, 1, 0];x2,2[i, 2] = [1, 1, 1];x2,3[i, 2] = [1, 1, 1].

Thus, the repost layer shows early promotional activity at t = 2, while the reply layer exhibits a
sudden burst at t = 3, mimicking the real behavior observed on social platforms during time-sensitive
events. This example highlights that collective temporal behavior, such as event-driven synchronous
reply bursts, cannot be captured by structure-only generators. Traditional models replicate edges,
degrees, and multiplex topology but fail to reproduce: 1) burst intensity and 2) cross-interaction
causal influence (repost → reply burst).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Thus, behavior-aware guidance is essential for generating temporal multiplex networks that faithfully
preserve how users behave over time—not just their connections with one another.

H.2 HYSTERESIS

In dynamic social networks, hysteresis refers to the phenomenon where a system’s state evolution
is path-dependent (De Domenico, 2023; Danziger et al., 2019), which implies that the current state
of a network does not immediately return to its original state even after external driving factors
(e.g., attention and engagement stimuli) are removed or after a phenomenon of state change (such as
explosive synchronization) ends. Such a phenomenon particularly plays a crucial role in the dynamics
of temporal attributes, in which the lagging inertia of user behaviors or sentiments is revealed after
explosive changes. For instance, even when the initial stimuli subside, there still exists a sustained
high activity following a viral trend.

To capture such a behavioral effect in generated networks, we design a hysteresis-aware regularization
based on global synchronization descriptors derived from the Kuramoto-based synchronization
measure. Specifically, the Kuramoto-based synchronization measure quantifies synchronization
among node attributes (e.g., engagement levels) as a function of θ(l)i,m in Eq. (25). During hysteresis,
the Kuramoto order parameter in Eq. (24) exhibits a bistable loop—the trajectory during increasing
θ
(l)
i,m(t) (forward) diverges from the trajectory during decreasing θ(l)i,m(t) (backward). To this end, we

formulate the hysteresis-aware regularization term as follows:
Lhyst = −|Rm,f −Rm,b|, (26)

where Rm,f (t) and Rm,b(t) exhibit the trajectories of increasing and decreasing values of θ(l)i,m(t),
respectively:

Rm,f (t) =
∑

t:∆R
(l)
m (t)>0

R(l)
m (t);Rm,b(t) =

∑
t:∆R

(l)
m (t)<0

R(l)
m (t).

This loss encourages the generated graph sequences to exhibit non-reversible dynamics consistent
with real-world social hysteresis.

H.3 ILLUSTRATIVE EXAMPLE SHOWING BEHAVIOR-AWARE GUIDANCE

Motivated by the above observation from Figure 8, we follow the Kuramoto model to define the
phase angle of the m-th attribute of each node i in layer l at timestamp t by using the attribute value
x
(0)
l,t [i,m] of the m-th attribute (e.g., the frequency of delivering reposts) of each node i in layer l at

timestamp t in Eq. (25).

We map these activity levels of active (m = 1) reply (l = 2) to Kuramoto phases as follows:

θ
(2)
1,1(1) = θ

(2)
2,1(1) = θ

(2)
3,1(1) = 0;

θ
(2)
1,1(2) = π · 1−1

2−1
= 0; θ

(2)
2,1(2) = π · 2−1

2−1
= π; θ

(2)
3,1(2) = π · 1−1

2−1
= 0;

θ
(2)
1,1(3) = θ

(2)
2,1(3) = θ

(2)
3,1(3) = 0,

which yields dispersed phases at t = 1, perfectly aligned phases at the burst time t = 2, and dispersed
phases again at t = 3.

Then we denote the synchronization degree R(l)
m (t) of the m-th attribute in interaction layer l at

timestamp t by following Kuramoto model R(l)
m (t) =

∣∣∣∣ 1

N
(l)
t

∑N
(l)
t

i=1 e
j·θ(l)

i,m(t)

∣∣∣∣ (Eq. (24)), which

quantifies collective phase coherence: values near 1 indicate that many nodes occupy nearly the same
behavioral stage, whereas values near 0 reflect dispersed or uncoordinated behavior. To observe
the explosive synchronization, we calculate the corresponding variance with Eq. (19) in Sec. 4.2.3
accordingly to obtain

R
(2)
1 (1) = | 1

3
(1 + 1 + 1)| = 1, R

(2)
1 (2) = | 1

3
(1− 1 + 1)| = 1/3, R

(2)
1 (3) = | 1

3
(1 + 1 + 1)| = 1,

whose first-order differences ∆R
(2)
1 (1) = 1/3 − 1 = −2/3,∆R

(2)
1 (2) = 1 − 1/3 = 2/3, and

∆R
(2)

1 = 0 produce a large variance Var(2)1 = 1
3−1 [(−2/3)2 + (2/3)2] = 4/9 by Eq. (19) in

Sec. 4.2.3, capturing a strong explosive-synchronization phenomenon of active reply.

The calculation results of the variances in all layers and attributes are listed in Table 6. From the

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Table 6: Variance calculation in the illustrative example.

Layer l Attribute m R
(l)
m (t) (t = 1, 2, 3) ∆R

(l)
m (t) (t = 1, 2) V ar

(l)
m

1 1 {1/3, 1/3, 1/3} {0, 0} 0
1 2 {1/3, 1/3, 1} {0,+2/3} 1/9
2 1 {1, 1/3, 1} {−2/3,+2/3} 4/9
2 2 {1/3, 1, 1} {+2/3, 0} 1/9

above results, since the variance V ar(2)1 in active reply behaviors is the largest among all behavior
types, we observe that the explosive synchronization phenomenon of active reply behaviors is strong.

To observe the hysteresis phenomenon, we follow the above example and observe that the rising and
falling trajectories of active (m = 1) reply (l = 2) differ (R1,f = R

(2)
1 (2) = 1/3, R1,b = R

(2)
1 (3) =

1 ⇒ |Rm,f −Rb,f | = 1−1/3 = 2/3), indicating a clear hysteresis gap. The values of |Rm,f −Rb,f |
in all layers and attributes are calculated in the following Table 7.

Table 7: Hysteresis calculation in the illustrative example.

Layer l Attribute m R
(l)
m (t) (t = 1, 2, 3) ∆R

(l)
m (t) (t = 1, 2) |Rm,f −Rm,b|

1 1 {1/3, 1/3, 1/3} {0, 0} 0
1 2 {1/3, 1/3, 1} {0,+2/3} 1
2 1 {1, 1/3, 1} {−2/3,+2/3} 2/3
2 2 {1/3, 1, 1} {+2/3, 0} 1

H.4 MORE DISCUSSIONS

Rationale for using a temporal multiplex representation. We clarify that multiplexity is not re-
quired, but is a natural and effective modeling choice when the underlying system involves interacting
contexts. While explosive synchronization and hysteresis can arise on non-multiplex graphs, our
motivation for adopting temporal multiplex graphs follows (De Domenico, 2023; Danziger et al.,
2019), which emphasize that many real systems exhibiting such behaviors unfold across multiple
interacting contexts (e.g., different social platforms). In such settings, single-layer representations
often collapse cross-context dependencies that critically shape the resulting dynamics, making it
difficult for a generative model to preserve behavior. Temporal multiplex graphs, by contrast, offer an
explicit structure for representing interdependence, competition, and asymmetry across layers, which
better preserves the mechanisms driving explosive synchronization and hysteresis.

Clarification that no alignment is required. We clarify that we use the Kuramoto order parameter
purely as a phase-coherence descriptor without simulating continuous-time Kuramoto dynamics;
therefore, no alignment between oscillator time and graph timestamps is required. To make behavior
guidance computationally feasible inside the diffusion steps, we compute the Kuramoto order
parameter snapshot-wise by projecting node attributes to phases, rather than simulating continuous-
time Kuramoto dynamics. This avoids the substantial computational and implementation complexity
that full Kuramoto ODE simulation would require, and keeps the guidance practical for long temporal
sequences. In addition, our formulation avoids any assumptions about timescales. Since the order
parameter is computed independently for each snapshot, there is no continuous oscillator time variable
that must be aligned with the discrete timestamps of the temporal graph.

Spectral properties for behavior guidance. We also discuss the usage of spectral properties for
behavior guidance, following the multiplex-spectral framework (Berner et al., 2021; Liu et al., 2024).
The idea is fully compatible with our formulation, and the spectral quantities such as grounded
supra-Laplacian eigenvalues (Liu et al., 2024) in and spectral heterogeneity in (Berner et al., 2021)
can naturally serve as behavior descriptors within our behavior-aware guidance mechanism.

• Pinning-control spectral theory in (Liu et al., 2024) provides grounded supra-Laplacian
eigenvalues such as λ1(L̃) which quantify the structural tendency of a multiplex network to
sustain or resist coherent states. A derived index such as 1/λ1(L̃) can be directly inserted
into the behavior-aware loss as a structural guidance signal.

• Multiplex decomposition and generalized master stability analysis in (Berner et al., 2021)
offer mode-wise stability parameters ψi derived from the supra-Laplacian spectrum. Their

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 8: Complexity comparison between MulDyDiff and baselines.

Model/Algorithm Parameter count
MulDyDiff (Ours) O(Sl(ndx + n2de))

MoDiff (Xu & Ma, 2025) O(kn2 + Sln2d)
DAMNETS (Clarkson et al., 2022) O(Tnd)

DYMOND (Zeno et al., 2021) O(n3T)
TagGen (Zhou et al., 2020) O(n2T 2)
AGE (Fan & Huang, 2020) O(n2dl)

Table 9: Multi-layer temporal social network dataset statistics.

Dataset # layers # nodes # edges
Wiki-vote 4 7.1K 103K

Twitter 3 456K 14M
Superuser 3 194K 1.44M

distribution (e.g., Vari(ψi)) characterizes spectral heterogeneity across modes and can
likewise be integrated as a structural behavior descriptor.

These spectral quantities serve as structural indicators that enrich the behavioral information available
to the diffusion process. Our formulation of behavior guidance does not require any modifications to
accommodate these spectral terms, and their inclusion naturally broadens the range of behaviors that
can be captured.

I COMPLEXITY ANALYSIS

The parameter counts of MulDyDiff and the baselines are presented in Table 8. MulDyDiff requires
O(Sl(ndx + n2de)) to process graph snapshots (in parallel with the graph transformer architecture),
where S denotes the number of diffusion steps; l denotes the number of (graph) transformer layers;
n denotes the number of nodes; dx denotes the number of node attributes; de denotes the number
of edge attributes. MoDiff (Xu & Ma, 2025) requires O(n2) for Hermitian encoding, O(kn2) to
perform spectral decomposition with k eigenvalues selected, and O(Sln2d) for a l-layer GCN model
denoising a d-dimensional features of n nodes with S diffusion steps. DAMNETS (Clarkson et al.,
2022) requires O(n) to process an adjacency row for each of T snapshots, and each node has a
d-dimensional embedding. DYMOND (Zeno et al., 2021) requires O(n3T) to scan 3-node motifs
in each of T snapshots. TagGen (Zhou et al., 2020) requires O(n2T 2) to process random-walk
sequences of length T with bi-level self-attention. AGE (Fan & Huang, 2020) requires O(n2dl) for l
self-attention layers in the encoder. Although DAMNETS has lower complexity than MulDyDiff,
DAMNETS is insufficient to capture cross-layer dependency and graph-level behaviors.

The complexity of processing a graph snapshot is O(Sl(ndx + n2de)), where S denotes the number
of diffusion steps; l denotes the number of (graph) transformer layers; n denotes the number of nodes;
dx denotes the number of node attributes; de denotes the number of edge attributes. To reduce the
overhead for scaling to very large network datasets, we process the layers in parallel with cross-layer
attention mechanism according to the weights determined by cross-layer predictor. In order to achieve
efficiency and avoid error propagation, we aggregate the past snapshots with dynamic transition
function to generate future snapshots according to clean previous snapshots instead of noisy ones
with a graph transformer architecture in parallel.

Furthermore, the cross-layer attention mechanism in MulDyDiff can adopt sparse attention in convo-
lutional transformer layers and message-passing with a random attention mechanism in (Qin et al.,
2025) to restrict attention to existing edges, reducing the time complexity of processing edges from
O(ln2de) to O(lmde), where l denotes the number of (graph) transformer layers; n denotes the
number of nodes; m denotes the number of edges; de denotes the number of edge attributes.

J EXPERIMENT SETTINGS

Details of the datasets. The experiments are conducted on three real-world multiplex temporal
networks: 1) The Wiki-vote dataset (Leskovec et al., 2010) has 4 layers containing nominations and
voting with 3 types of opinions (support/neutral/oppose). 2) The Twitter dataset (De Domenico et al.,

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameter settings.

Hyperparameter Value
Graph transformer layers 6

Batch size 64
Epochs 50

Learning rate 0.2
Weight decay 10−12

Diffusion steps (S) 1000

αs cos2 [0.5π(s/S+p
1+p

)], p = 0.008

γs ηαs + (1− η), η = 0.5

2013) has 3 layers, with each layer representing relationships of retweets, mentions, and sending
messages to others. 3) The Superuser dataset (Paranjape et al., 2017) also has 3 layers, with each
layer consisting of answering questions, commenting on questions, and commenting on answers. The
statistics of the datasets are presented in Table 9.

Input data preparation. For each dataset, we sample 20% of the input dataset as the testing set, and
then we sample 80% of the remaining data as the training set and 20% of the remaining data as the
validation set. The batch size is 16 graphs per batch. Since the memory of a GPU card has a capacity
of around 1000 nodes, we sample 100 subgraphs with an average of 50 nodes for each layer in each
of the datasets.

Computing resources. The experiments are conducted on a server equipped with 2 Intel(R) Xeon(R)
Gold 6154 @ 3.00 GHz CPUs, 8 NVIDIA Tesla V100 GPUs, and 720 GB RAM.

Metrics. The usage of KS metrics is explained as follows.

KS metrics: We choose KS metrics since it better captures local and global property changes of graph
sequences than MMD. According to Zeno et al. (2021), the importance of KS metrics for significant
graph property change detection lies in 1) assessing the discrepancy of the distributions between input
and generated graph sequences, 2) capturing individual behavior of each node and joint behavior of
all nodes in a graph snapshots, and 3) benefits in capturing variability or dispersion with KS tests on
inter-quartile range, in which the latter two cannot be achieved by MMD.

Per-layer degree/betweenness centrality distributions: This metric measures the distributional fidelity
of degree and betweenness centrality via the KS distance. Matching these distributions verifies
whether the generator preserves the heterogeneity of roles within each layer (i.e., the relative propor-
tions of hubs, bridges, and peripheral nodes), which strongly influences temporal dynamics.

Cross-layer node-behavior distribution: It is defined as the number of unique neighbors a node has
across all layers. This metric assesses whether the model accurately reproduces the heterogeneity of
cross-layer engagement, thereby complementing the per-layer centrality metrics.

Cross-layer random-walk reachability distribution: This metric evaluates cross-layer, multi-hop
accessibility by the number of distinct nodes reachable within a fixed-length random walk. It tests
whether the generator preserves higher-order structural connectivity beyond direct neighbors.

Parameter settings. The hyperparameter settings used to derive the main results are listed in Table 10.
We train the denoising network, which consists of 6 graph transformer layers, for 50 epochs with the
Adam optimizer, in which the learning rate is set to 0.2, and the weight decay is set to 10−12. The
number of steps in the proposed models is set to 1000.

K ADDITIONAL EXPERIMENT RESULTS

K.1 MMD RESULTS

Table 11 presents the evaluation results of MulDyDiff compared with the baselines on Wiki-vote,
Twitter and Superuser. On the Wiki-vote dataset, MulDyDiff outperforms most baselines including
MoDiff in almost all metrics since MulDyDiff jointly considers structural and attribute changes. In
contrast, since MoDiff primarily focuses on analyzing motif structure changes with spectral values, it
does not perform well in most cases. However, there is no model with consistent outperformance in

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 11: Comparative study results on MMD metrics.
Data/Model degree (↓) spectral (↓)

W
ik

i-
vo

te AGE 0.5145 0.3395
DAMNET 0.3904 0.6162

TagGen 0.6365 0.4231
DYMOND 0.5384 0.3069

MoDiff 0.9919 0.4127
MulDyDiff 0.3676 0.3214

Tw
itt

er

AGE 0.2000 0.1607
DAMNET 0.3123 0.1895

TagGen 0.5624 0.2702
DYMOND 0.3132 0.1536

MoDiff 1.0128 0.6621
MulDyDiff 0.4062 0.3402

Su
pe

ru
se

r AGE 0.3670 0.1345
DAMNET 0.2919 0.1729

TagGen 0.4420 0.1965
DYMOND 0.2461 0.1040

MoDiff 0.9396 0.2255
MulDyDiff 0.3389 0.3023

Table 12: Ablation study results on Wiki-vote.
Component KS-node behavior (↓) KS-RW (↓)

Plain 1.0000 1.0000
Temporal 0.6953 0.2563

Cross-layer 0.8038 0.6000
Both 0.5430 0.2219

the evaluated MMD metrics on all datasets, demonstrating that only using MMD is insufficient to
assess the effectiveness of multiplex dynamic graph generation.

K.2 ABLATION STUDY

To examine the model’s capability in handling multiplex dynamic networks, we compare the full
version of MulDyDiff with three variants: 1) Plain, which corresponds to static single-layer genera-
tion, omitting both temporal and cross-layer denoising; 2) Temporal, supporting dynamic single-layer
networks; 3) Cross-layer, capturing static multiplex structures.

Table 12 demonstrates the results evaluated on Wiki-vote. MulDyDiff generally outperforms the
variants that consider only cross-layer correlations or temporal dynamics in terms of KS metrics
because it effectively addresses the joint considerations in both dimensions. Furthermore, on the Wiki-
vote dataset, temporal dynamics perform better than the plain ones, and considering both mechanisms
is superior to denoising with solely cross-layer correlation because attribute-aware and dynamic
transition-aware denoising effectively capture the evolution in structural and attribute information.
Without considering layer correlations and temporal dynamics, the plain variant performs the worst
in terms of almost all metrics.

K.3 SENSITIVITY TESTS

We conduct the sensitivity tests on Wiki-vote to evaluate the performance under various numbers
model parameters, which are determined by the number of graph transformer layers, in Tables 13
and 14. From the results, we observe that the performance obtained with 2 to 6 graph transformer
layers is comparable, but an excessive number of graph transformer layers may deteriorate the
performance due to overfitting (Zhao et al., 2023). The advantages of MulDyDiff lie on the capability
of capturing cross-layer dependencies cross-layer coupling with graph-level behaviors with behavioral-
aware guidance instead of massive parameters.

We conduct sensitivity tests on Wiki-vote dataset with various diffusion steps and present the execution
time of various diffusion steps in Table 15. From the above results, we observe that the training time
does not vary significantly since we adopt multi-step Markov transition matrices with a sampled
number s of diffusion steps in each iteration of the training phase. Since the denoising process
iterates in all steps, the sampling time slightly increases as the number of diffusion steps increases.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 13: Sensitivity test with various numbers of graph transformer layers (part 1).

#GT-layers MMD-degree MMD-clustering MMD-spectral KS-node behavior KS-random walk
2 0.3897 0.9233 0.3768 0.9140 0.6937
4 0.3764 1.0734 0.3721 0.9296 0.6843
6 0.3923 0.8955 0.3818 0.9218 0.6968
8 0.4166 1.1583 0.4117 0.9765 0.7281

Table 14: Sensitivity test with various numbers of graph transformer layers (part 2).

#GT-layers KS-page rank KS-degree centrality KS-betweenness centrality KS-closeness centrality
2 0.5859 0.8281 0.6562 0.9140
4 0.5742 0.8710 0.6523 0.9335
6 0.5820 0.8398 0.6523 0.9218
8 0.5937 0.9609 0.6640 0.9765

Nevertheless, since we generate a batch of graph sequences, processing each snapshot requires only a
few seconds, which is within the acceptable range.

To examine the sensitivity of parameter γ0 in MulDyDiff, we conduct tests on Wiki-vote, Twitter,
and Superuser, and report the results in Table 16. In all three datasets, the KS metrics perform better
as γ0 increases, showing the importance of temporal transition dynamics in the diffusion process of
MulDyDiff.

To examine the sensitivity of MulDyDiff to sequence length, we conduct tests on dynamic attributed
multiplex networks of varying lengths. We compare the training and sampling time of attribute-
aware dynamic transition-aware denoising, with and without cross-layer correlation-aware denoising,
to assess whether modeling inter-layer dependencies incurs additional time costs as sequences
grow longer. Table 17 presents the results on the Twitter dataset. The results manifest that jointly
considering temporal dynamics and cross-layer correlations is more scalable than using solely
dynamic transition-aware denoising when dealing with temporal sequences of multiplex graphs,
thanks to the parallel processing of the multiplex structure with the entire size distributed to each
of the layers. Table 18 reports the MMD metrics of MulDyDiff as the number of diffusion steps
increases on the Wiki-vote dataset. Table 19 presents the execution times of MulDyDiff in each
phase with various batch sizes on Wiki-vote and Twitter. Table 20 measures the memory usage of
MulDyDiff with various batch sizes on Wiki-vote and Twitter.

K.4 TRAINING SCALABILITY AND SAMPLING TIME

To demonstrate the scalability of MulDyDiff, the results of the scalability tests on the Wiki-vote
dataset (with 4 layers) are presented in Table 21. From the results, we observe that MulDyDiff is able
to process graphs with 300 nodes per layer.

Besides, Table 22 presents (1) the training time under various amounts of graph sequences with
different lengths extracted from the Wiki-vote, Twitter, and Superuser datasets over 50 training
epochs, and (2) the elapsed time for sampling approximately 1000 multiplex graph sequences of
various lengths. The results manifest that MulDyDiff scales well on both datasets since it processes
the intra-layer and inter-layer parts in parallel. Wiki-vote requires less time for training and sampling
than Twitter and Superuser, as graphs sampled from Twitter and Superuser instances have greater
density than those sampled from Wiki-vote.

L LLM USAGE

We use ChatGPT to aid or polish writing, and debugging in our implementation.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 15: Number of diffusion steps vs. training/sampling time on Wiki-vote.

#Diffusion steps Training time (min.) Sampling time (min./per batch)
250 79.118 18.406
500 75.787 18.251
750 77.665 21.021

1000 76.051 23.318

Table 16: Sensitivity tests varying γ0.
Data/γ0 MMD-degree (↓) MMD-clustering (↓) MMD-spectral (↓) KS-node behavior (↓) KS-RW (↓)

W
ik

i-
vo

te 0.25 0.3644 1.2376 0.3407 0.7930 0.3375
0.5 0.3954 1.2396 0.3312 0.7422 0.3344

0.75 0.2209 0.2171 0.2860 0.8038 0.6000
1.0 0.3689 1.1393 0.3321 0.6523 0.2469

Tw
itt

er

0.25 0.4073 0.9589 0.3361 0.7637 0.2734
0.5 0.3867 1.1729 0.3104 0.5931 0.1979

0.75 0.4222 0.7639 0.3233 0.6143 0.1493
1.0 0.4062 0.9875 0.3402 0.5957 0.1172

Su
pe

ru
se

r 0.25 0.3630 1.1751 0.3266 0.6836 0.3016
0.5 0.3577 1.3202 0.3155 0.6426 0.3125

0.75 0.3323 1.1665 0.3067 0.5664 0.1750
1.0 0.3389 1.0552 0.3023 0.5484 0.1684

Table 17: Seq. length vs training/sampling time on Twitter.
Variation Seq. length Training (hr.) Sampling (hr.)

with
cross-layer

3 1.0184 0.9803
4 1.4317 1.2201
5 1.8044 1.5471

w/o
cross-layer

3 1.3799 1.1472
4 1.3355 1.5701
5 1.6341 1.3075

Table 18: MMD vs. number of diffusion steps on Wiki-vote.
#steps 250 500 750 1000

Degree dist. 0.1713 0.2788 0.2627 0.2412
Clustering Coeff. 0.6319 0.7967 0.6443 0.8450

Spectral 0.1199 0.2030 0.1687 0.2001

Table 19: Execution time (sec.) vs. batch size in different phases.
Data/Phase 32 64 128 256

W
ik

i-
vo

te

Training
(per epoch) 88.7 44.4 25 14.2

Validation
(per epoch) 14.9 7.8 4.6 2.8

Inference
(per epoch) 26.6 19.6 13.1 13.2

Sampling
(per batch) 22.88 91.53 139.95 227.13

Tw
itt

er

Training
(per epoch) 996.8 624.9 443.8 107.4

Validation
(per epoch) 113.6 58.9 34.5 19.6

Inference
(per epoch) 153 82.8 49.9 34

Sampling
(per batch) 132.88 231.55 410.96 761.73

Table 20: Memory usage (MiB) vs. batch size in different phases.
Dataset 32 64 128 256

Wiki-vote 476.19 720.49 1183 2116
Twitter 357.43 480.38 744 1209

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 21: Scalability test on Wiki-vote.

Snapshot size (per layer) Training time (hr.)
50 1.0114
70 1.5179

100 5.7083
300 5.9675

Table 22: Training scalability and sampling time.
Data/length Training (min.) Sampling (min.)

Wiki-vote
2 23.5871 26.9479
4 34.9766 64.2513
6 39.7568 108.4987

Twitter
2 54.8505 41.0588
4 68.7585 55.0928
6 79.9298 75.3005

Superuser
2 90.2640 63.2339
4 104.6353 74.6572
6 128.2297 99.5931

38

	Introduction
	Related Works
	Problem Definition
	Multiplex dynamic attributed network Generation
	Attributed Evolution-aware Forward Process
	Cross-layer Dynamic-aware Reverse Process
	Attribute-aware Dynamic Transition-based Denoising
	Cross-layer correlation-aware denoising
	Behavior-aware Guidance

	Experiments
	KS Evaluation
	Behavior Guidance Evaluation

	Conclusion
	Explanation of the Illustrative Example
	More Related Work Comparisons
	Related Work Comparison Table
	Static Graph Generation
	More Comparisons with Prior Temporal Graph Generators

	Notation Table
	Preliminary: Discrete Denoising Diffusion Probabilistic Model
	Detailed Derivations and Proofs of Attribute-aware Dynamic Translation-based Denoising
	Intuition of capturing long-range temporal coupling and continuity.
	Derivation logic of capturing long-range temporal coupling and continuity.
	Detailed Derivation of the Temporal Diffusion Process
	Recursive Expansion Along the Temporal Dimension
	Extension to temporal diffusion process
	Closed-form expression of the forward process
	Multi-step Markov transition
	Single-step Markov transition
	Posterior distribution
	Reverse Process

	Detailed Derivations and Proofs of Cross-layer Correlation-aware Denoising
	Intuition of Capturing Implicit Co-evolution via Attention
	Derivation logic of Capturing Implicit Co-evolution via Attention
	Derivation details of Capturing Implicit Co-evolution via Attention
	Forward Diffusion Process
	Posterior
	Denoising Distribution
	Reverse Denoising Process

	Denoising network architecture
	Details of Behavior-aware Guidance
	Kuramoto-based synchronization measure
	Hysteresis
	Illustrative Example Showing Behavior-aware Guidance
	More Discussions

	Complexity Analysis
	Experiment Settings
	Additional Experiment Results
	MMD results
	Ablation Study
	Sensitivity Tests
	Training Scalability and Sampling Time

	LLM Usage

