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Abstract

Over the history of Artificial Neural Networks (ANNs), only a minority of algorithms in-1

tegrate structural changes of the network architecture into the learning process. Modern2

neuroscience has demonstrated that structural change is an important part of biological3

learning, with mechanisms such as synaptogenesis and neurogenesis present even in adult4

brains. Despite this history of artificial methods and biological inspiration, and further-5

more the recent resurgence of neural methods in deep learning, relatively few current ANN6

methods include structural changes in learning compared to those that only adjust synap-7

tic weights during the training process. We aim to draw connections between different8

approaches of structural learning that have similar abstractions in order to encourage col-9

laboration and development. In this review, we provide a survey on structural learning10

methods in deep ANNs, including a new neural operator framework from a cellular neuro-11

science context and perspective, aimed at motivating research on this challenging topic. We12

first give a background on biological developmental processes in the brain. We then provide13

an overview of ANN methods which include structural changes within the neural operator14

framework in the learning process, diving into each neural operator in detail. Finally, we15

present overarching trends in how these operators are implemented and discuss the open16

challenges in structural learning in ANNs.17

1 Introduction18

Artificial intelligence algorithms, and specifically artificial neural networks (ANNs), have been able to grow19

exponentially in power and complexity due to new automated techniques such as backpropagation that20

replace some of what has been previously hand designed, as well as breakthroughs in computational power.21

However, many assumptions of current learning approaches such as structurally static learning and isolated22

training from scratch have diverged from what is observed in the brain, the original inspiration for neural23

networks. While such assumptions have thus far helped push the frontier of artificial intelligence to its current24

state by adapting to the characteristics of artificial hardware and software, they may become a bottleneck25

preventing more powerful ANNs that don’t require hand-designed architectures.26

Although ANNs with the simplest architecture of an arbitrarily wide single hidden layer are theoretically27

capable of approximating any function (Cybenko, 1989; Hornik, 1991), deep ANNs with more nuanced28

structures have taken over in popularity in practice. Computational capacities have improved to allow such29

large and deep networks. An ANN structured specifically for a given domain can approximate a function30

more practically and efficiently in storage and training time than a generic wide shallow network (Mhaskar &31

Poggio, 2016; Poggio et al., 2017). Even deep dense ANNs, or multilayer perceptrons (MLPs), use structural32

priors and are not completely dense, as each neuron is only connected to the neurons in the immediately33

preceding and following layers, rather than all neurons in a network. This imposes a basal amount of34

structure on the network. Convolutional networks are even sparser than this, limiting neurons to have35

only spatially local connections and imposing weight-sharing on these connections to create translational36

equivariance for each layer. Skip-connections can be represented as a special operation within the broader37

representation of layers connected in series. Although each of these ANN structures are simply special cases38

of more generic structures, they empirically yield valuable benefits during the learning process. The brain39

1



Under review as submission to TMLR

also shows structural specialization with hierarchical organization in task-specific regions, such as the visual40

cortex (Rash et al., 2016), suggesting the benefit of structure for guiding learning.41

Deeps ANN architectures are usually hand-designed, static during training, and used generally across many42

related tasks within a domain. These architectures have begun to approach the desired specialization through43

their hand-design: however, such deep ANNs are known to be over-parameterized (Ba & Caruana, 2014;44

Frankle & Carbin, 2018), using more parameters than necessary for their performance on a specific task.45

Over-parameterization seems to help gradient descent of parameters of an ANN converge to the global46

optima for a given training dataset, task, and objective function (Zou et al., 2020), particularly given that47

the architectures are reused for many tasks due to prohibitive engineering costs for further specialization.48

However, this over-parameterization also comes at a cost of space and time efficiency, during training and49

deployment. Using even more specialized architectures could reduce this cost and increase the efficacy of the50

ANN in a specific task.51

Automated specialized design of ANN architectures is achievable through structural learning. We define52

structural learning as optimizing both the architecture and the parameters of that architecture in a single53

process. As shown in this work, most of this form of structural learning used in practice has taken the forms54

of pruning, or the removal of parameters to reduce network size while maintaining performance, and Neural55

Architecture Search (NAS), or the automated search of architectures within a search space. Relatively56

few papers have pursued developmental structural learning, which involves creation of new structures or57

connections within the network.58

In this review, we take a biologically-inspired view of structural learning in ANNs. The most recent known59

analysis of structural learning in both biological neural networks and ANNs was completed over two decades60

ago (Quinlan, 1998). Since then, both artificial intelligence and neuroscience research have advanced expo-61

nentially, prompting the need for a modern analysis. The links between biological and artificial structural62

learning have already been well-defined for the modern neural and biological modeling communities, but a63

disconnection still exists between these communities and deep-learning with ANNs.64

In an effort to surpass the structure design bottleneck, we go back to the roots of ANNs in biological nervous65

systems in order to define a framework for structural learning in Section 1.1. We survey methods of structural66

learning in ANNs already existing in literature, providing broad statistical overviews in Section 2 as well as67

detailed tables of features over our selected corpus at the end of the paper, then diving deeper into each68

operator of our framework across implementations in Sections 3 and 4, including the biological mechanisms69

which resemble the patterns of algorithmic components seen in structural learning literature. We finally give70

suggestions on how to progress forward on current challenges in Section 5.71

Our aim in this work is to shed light on a set of similar research directions which are already well established72

in disjoint fields but not yet often linked. Using a common language for structural learning may help connect73

the many subcommunities of ANN research that are already researching similar approaches to structural74

learning with different implementations, abstractions, and goals.75

1.1 Framework Definitions76

In order to understand structural learning, we propose a definition which, in this work, will be used to define77

the scope of study. We consider structural learning to be a change to a neural network through any of the78

following four atomic operators, referred to subsequently as the neural operators:79

• Neuron creation: the addition of a unit to an ANN,80

• Neuron removal: the removal of a unit from an ANN,81

• Synaptogenesis: the creation of a non-zero weight between two units,82

• Synaptic pruning: the removal, or change to zero, of a non-zero weight between two units.83

We purposefully open the definition of neuron creation and removal to different unit types: in many structural84

learning algorithms, entire groups or “units” of parameters are added and removed together. Units may be85
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as simple as a neuron in an ANN, or be another higher level structure such as a convolutional filter, channel,86

layer, or module of layers. A unit contains a portion of the parameters within the network and provides basic87

organization to make the construction of a network more tractable. While the basic computational units in88

both the brain and in ANNs are conventionally called neurons, we use unit as a more generic term that can89

include any structure within a network being used as nodes in a graphical representation of the structure.90

The dominant form of learning in ANNs is weight training through error backpropagation, which optimizes91

synaptic weights and neuron biases in an objective function landscape using gradient descent while keeping92

the other characteristics of each neuron constant: the layer type, activation function, and pattern of non-zero93

connections. In this article, we aim to characterize the impact of these neural operators on learning, which94

permit changes to connectivity and are often coupled with weight training in a bilevel optimization process.95

2 Characterizing Structural Learning in ANNs96

We review relevant implementations of the neural operators in existing ANN literature, focusing on novel97

algorithms for changing the structure during the course of training an ANN. Using the definitions of the neural98

operators of neural creation, synaptogenesis, neural pruning, and synaptic pruning allows for characterization99

of these algorithms from a structural learning perspective, drawing links between different implementations100

of the neural operators. Some instances of these neural operators are brain-inspired by design, while others101

are incidentally correlated to biological operations.102

In general, ANNs are constructed as a composition of individual components, layers, in a directed and usually103

acyclic graph. We refer readers to Goodfellow et al. (2016) for a full review of the different basic components104

of modern ANNs, such as convolutional, pooling, and normalization layers.105

2.1 Scope of Study106

Our 59 collected papers from ANN literature each demonstrate at least one of the four neural operators, neu-107

ral creation, synaptogenesis, neural pruning, and synaptic pruning, over the course of training an individual108

ANN via an optimization method. We focus on standard ANNs with parameterized connections, generally109

with feed-forward, convolutional, or recurrent layers.110

ANNs simplify the biological complexity of connection strength between two neurons into a single continuous111

value. We consider all non-binary changes to this weight, which could represent biological structural change,112

to be weight training, not structural learning. This includes soft structural methods that do not make any113

discrete changes to the architecture and thus no changes to the effective dimensionality of the objective114

function. Only hard structural methods are evaluated, including those which involve a discretization step115

after soft structural learning, such as Liu et al. (2018).116

While synaptogenesis necessarily follows neurogenesis in the brain through different processes, we consider117

the non-learned creation of connections of a new unit to be encapsulated within neuron creation in ANNs,118

such as adding a neuron with default connections to all neurons in the previous and subsequent layers. Thus,119

in our characterization, algorithms are only labeled with both neuron creation and synaptogenesis if there120

is a connection learning component for existing units in addition to a process for creating new units with a121

default set of connections.122

Many structural search papers enumerate all possible options within their prescribed search space throughout123

the learning process in order to select the best combination of structures to build the final architecture. For124

example, some NAS algorithms initialize all possible layers with all possible connections and learn which125

ones are best. We consider this as entity pruning, rather than entity creation.126

A biologically inspired family of algorithms for discovering ANN structures automatically are evolutionary127

algorithms. These algorithms model biological evolution by maintaining a population and recombining128

the genes, which may directly or indirectly encode architectures, of successful candidates to produce more129

candidates. Some such methods meet our criteria for structural learning by persisting network weights130

across individuals within the population (Elsken et al., 2017; Ci et al., 2021). However, many evolutionary131

methods maintain a population of individuals with different structures and weights, such as NSGA-Net132
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Figure 1: Levels of abstractions of found in structural learning algorithms. From the level of (a) feed-forward
neurons, there are the two levels of convolutional paradigms: (b) on the same level as FFNNs with weight-sharing
and systematically pruned connections, and (c) on a higher level with a parameter matrix on each synapse and an
activation matrix within each neuron, compared to singular values respectively on the lower level. The shared weights
in (b) are referred to as a kernel, which are the small matrices parameterizing each edge in the higher level paradigm
in (c). On an even higher level is the NAS super-network paradigm (d), where each edge may contain parameters
based on the operation type, like the parameter-less skip-connection and pooling and the parameterized convolution
operations shown. Higher levels have higher dimensionality, structure, and complexity within each node and edge.

Lu et al. (2020) and NEAT Stanley & Miikkulainen (2002). These methods include structural learning133

operators; in NEAT, for example, new neurons or connections can be added through mutation. However,134

to compare with structural learning in single networks, changes through mutation from one generation to135

another would have to be studied on specific individuals. We further discuss evolutionary methods in 5, but136

in the following sections, we only include search methods that which persist weights and study structural137

changes on individual networks. This limits the collected corpus to one-shot algorithms, which pursue a138

more continuous path in the changing objective function space during the co-optimization of architecture139

and parameters.140

We exclude architectures with self-gating mechanisms, such as LSTMs (Hochreiter & Schmidhuber, 1997)141

and transformers (Vaswani et al., 2017), from this framework and corpus. These neural networks change their142

own structure in a transient and input-dependent manner, occurring on a shorter timescale than structural143

learning. This is more akin to neural circuitry gating and modulation (Lindsay, 2020). We discuss such144

dynamic architectures further in 5.2.145

The abstraction from individual biological neurons to artificial feed-forward neurons, the most basic type, is146

clear. However, convolutional neural networks (CNNs) have two levels of abstraction, depicted in Figure 1.147

The first is by considering a CNN as a special case of a feed-forward neural network (FFNN) with non-local148

weights zeroed out and local weights shared. The other paradigm moves the neuronal unit up to a higher149

level, considering a channel in each convolutional layer to be the neuron abstraction. Connections between150

channels represent synapses and are parameterized by a small matrix kernel rather than a single value, and151

the activation within the neuron is a larger matrix rather than a single value. While the lower level paradigm152

continues to multiply the singular activation coming as input to each synapse by the single shared synaptic153

weight value, the higher level paradigm performs a convolution of the kernel parameter matrix over the154

incoming activation matrix before summation across connections. Using the lower level paradigm of Figure155

1b for structural learning enables partial-area convolution or changing kernel characteristics such as size and156

striding across neurons and is denoted as "Kernel shape" in Table 1. Using the higher level paradigm of157

Figure 1c becomes adding and removing channels as neurogenesis and neural pruning, respectively, denoted158

as "Filter/channel" in Table 1. An even higher level paradigm is super-networks in NAS, shown in Figure 1d,159

denoted as "Layer(s)" in Table 1. We consider works on structural learning which function on these different160

levels of abstraction.161
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(a) Occurrence of operators over time.
(b) Co-occurrence of operators within the collected cor-
pus.

(c) Occurrence of unit type over time. (d) Co-occurrence of unit type within the collected corpus.

Figure 2: Characterization of neural operators and unit type used in our selected corpus of papers.

2.2 Characterization of the Collected Corpus162

The goal of this work is to characterize structural learning, rather than document all uses of any of the four163

neural operators in the vast ANN literature. Our selection of 59 seminal works is therefore not comprehensive164

and is rather intended to be a qualitatively representative sample, as there are orders of magnitude more165

papers in the subfields of NAS and pruning than in the developmental structural learning space. Completing a166

more rigorous collection process for complete quantitative characterization would be prohibitively nuanced,167

for reasons including inconsistent vocabularies surrounding structural learning used across subfields and168

subtle differences between novel structural algorithms versus applications of existing techniques to new169

architecture types and task domains, and thus is beyond our scope. The 59 works in the collected corpus170

provide a diverse and informed view of the structural learning literature.171

We refer the reader to other reviews for a more complete view of specific domains. Deng et al. (2020)172

covers pruning and many other methods for model compression. Hoefler et al. (2021) discusses sparsity in173

neural networks, which is usually achieved via pruning. Elsken et al. (2019) describes the state of NAS as174

a burgeoning sub-field, while Xie et al. (2021) is more recent and focuses on weight-sharing NAS. He et al.175

(2021) covers AutoML, which encompasses methods that contribute to automating the machine learning176

pipeline beyond parameter tuning and thus includes structural learning as well as data preparation, hyper-177

parameter optimization, and other types of architecture search. Stanley et al. (2019) gives an overview of178
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the use of evolution for neural network optimization, including methods which change neural structure over179

generations. Evolutionary developmental methods which evolve rules for structural learning are reviewed180

in Miller (2022). Parisi et al. (2019) discusses methods for continual learning in ANNs, many of which use181

forms of structural learning to increase the information capacity of networks performing multiple tasks. Han182

et al. (2021) covers dynamic ANNs, considering adaptability of the network beyond just connectivity during183

training as in our framework. Our goal in this article is to offer a coherent synthesis of works from these184

different domains under the framework of structural learning.185

The general statistics for neural operators and units across the collected corpus are shown in Figure 2.186

These plots show trends and frequencies of characteristics across the collected corpus over time, although not187

necessarily representative of structural learning without the aforementioned biases in our sample collection.188

Neural creation and synaptic pruning appeared earlier, while synaptogenesis and neural pruning have become189

more popular in recent years, shown in Figure 2a. Most papers perform a single operator, but a significant190

portion perform a combination, shown in Figure 2b. Operating on units of standard neurons has been191

consistently used over time, while the arrival of deep learning architectures is evident in Figure 2c with192

structural learning over layers and convolutional units of kernel shape and channels becoming more popular193

after 2010. The impact of deep learning is also evident in Figure 2, with a significant increase in pruning194

methods while the automatic creation of new units or connections did not undergo a similar expansion195

of interest. We expect this is partially due to the relative complexity of the creation decision, which we196

explore in section 4. Finally, as with neural operators, operating on a single unit type is common, but more197

algorithms are permitting structural learning across different units and layer types, shown in Figure 2d.198

Further trends over the qualities of each algorithm in the collected corpus sorted by publication year are199

detailed in Tables 1-2 at the end of the paper. The earliest algorithms were designed before convolutions200

and recurrent layers, but now most algorithms are designed for and demonstrated on ANNs with convolu-201

tional layers, with some additionally applied to dense layers or recurrent layers. Regarding tasks, nearly all202

algorithms are demonstrated with supervised learning tasks, particularly image classification in more recent203

years. Some specific techniques are applied to multi-task, continual learning, more specialized computer204

vision, natural language processing, sequential data, and reinforcement learning tasks: all of these pose ad-205

ditional challenges above the relatively simple image classification or tabular dataset classification baselines.206

We discuss existing structural learning methods in the context of each operator in Sections 3-4 and relevant207

implementation trends in Section 5.1.208

Each of the four neural operators have different considerations and effects within structural learning. Per-209

forming synaptic pruning or neuron removal on an ANN is more tractable than their additive counterparts,210

because their structural learning search space is naturally defined by the existing network structure rather211

than being open-ended. As the two pruning operators have also been more commonly used in literature, we212

will consider them first in Section 3 before discussing the two creation operators in Section 4.213

3 Synaptic Pruning and Neural Pruning214

Our main questions to characterize pruning in our selected papers are:215

• Goals of Pruning: Why remove connections or units from an ANN?216

• Biological Inspiration: How can biological synaptic pruning and programmed neural cell death217

inspire artificial methods?218

• Architecture Specificity: How has pruning been adapted to different ANN architectures, such as219

dense layers and convolutional layers?220

• Measuring Entities: How is the search performed? How is importance of a connection or unit221

measured in order to make the pruning selection?222

• Scheduling Pruning: When and how often does pruning occur with respect to optimization of223

the unpruned parameters?224
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Figure 3: Neural pruning and synaptic pruning in a fully connected ANN (figure reproduced with permission from
Han et al. (2015)). When a neuron is pruned, as in structured pruning, all incoming and outgoing synapses are
also removed. Synaptic pruning additionally removes synapses between unpruned neurons and is also referred to as
unstructured pruning.

• Handling Pruned Entities: How should pruned connections and units be handled?225

• Impact on Weight Optimization: What is the impact of pruning on optimization of parameter226

weights?227

The following subsections consider the implementations of synaptic pruning and neural pruning found within228

our corpus. We will first discuss a subset of these questions for pruning in general in Section 3.1 and then229

dive further into specifics of all questions for synaptic pruning in Section 3.2 then neural pruning in Section230

3.3. Finally, we will draw conclusions and connect our discussion back to biology in Section 3.4.231

3.1 Pruning Generalities232

Pruning aims to remove parameters in an optimal manner, but their effect is not independent, and evaluating233

the effect of all possible combinations of parameters to prune on the network performance is not compu-234

tationally feasible. Not only do the combinations grow exponentially with the size of the network, but the235

cost of completely evaluating each one by locating the new optimum through optimization to convergence236

is prohibitively expensive. Thus, algorithms generally make an approximation by estimating the effect of237

removing each parameter independently from the local landscape of the objective function on training data238

(Hoefler et al., 2021). This naturally leads to greedy pruning decisions from the static set of weights, so239

parameters that currently seem beneficial to remove are selected at the time of pruning. Algorithms can240

only assume that this process approximates the globally optimal solution for what to remove from a net-241

work. Many Neural Architecture Search (NAS) papers formalize the difficulty of optimizing architectures242

and network weights simultaneously as a bilevel optimization problem, to be discussed further in Section243

3.3.244

Goals of Pruning: Pruning an ANN, or the removal or zeroing of portions of the network, to make it more245

efficient in space or time while maintaining performance is one of the many orthogonal ways to perform246

network compression. Using smaller networks with the same performance is particularly desirable for real-247

time applications and resource-limited devices such as mobile. Pruning large, over-parametrized networks248

to find their best-performing sub-networks is also a method for finding a high-performing architecture for a249

given network size. These naturally lead to applications of pruning in multi-task learning, where portions250

of the network are shared between tasks and others are task-specific, and NAS, where the architecture is251

optimized on a higher level.252

Beyond efficiency, pruning can also yield generalization benefits (Bartoldson et al., 2020; Hoefler et al.,253

2021). Due to over-parameterization of the base model, pruning can remove learned noise. This is why254

many pruning schemes show slightly increased test performance at low to moderate pruning levels. However,255

the benefit only applies within the initial distribution: pruning may come with a cost of reduced robustness256

to distribution shifts, but this may be ameliorated by explicit regularization (Liebenwein et al., 2021).257
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Biological Inspiration: Activity-based synaptic pruning is a fundamental component of structuring the258

information circuitry of the biological brain, integral in varied processes such as memory formation and259

motor skill learning (Waites et al., 2005; Dayan & Cohen, 2011). Similar to ANN pruning methods such as260

LeCun et al. (1990); Liu et al. (2021b); Peng et al. (2021), synaptic pruning in the adult brain uses measures261

of information passage in synapses to remove redundant connections and form sparse functional patterns.262

Less common is neuron removal, which is most prevalent during early development when neuron removal263

is the default for new neurons and only those with useful activation patterns survive to maturity (Azevedo264

et al., 2009). In both cases, the brain relies on the creation of an excess of neural circuitry which is refined265

into the pertinent functional circuitry through pruning and removal.266

Measuring Entities: Each entity must be evaluated in order to make an informed pruning selection. The267

final effect of changing an entity at a given training step cannot be predicted. Entities to prune may be268

selected by a salience metric computed per-entity designed to estimate the effect of removing the entity on269

the performance. Masks can also be used, introducing a new parameter for each entity that controls whether270

it is active or not. This is particularly useful for ephemeral pruning, where pruned entities may be reactivated271

later in the course of learning. The mask may be discretely controlled by a salience metric or relaxed to272

continuous values that can be trained via optimization. Finally, regularization can be used to encourage273

sparsity of network or mask parameters during gradient descent steps by adding a magnitude-penalizing274

term to the objective function.275

Once the selection metric or mask is evaluated, the algorithm may then use either ranking or thresholding, at276

either a local or global scale, to discretize the pruning decision for each parameter. Ranking allows a defined277

proportion to be pruned, which may be particularly desirable for hard time or space constraints of the final278

ANN, while thresholding allows for only parameters meeting a score criteria to be pruned, which can be more279

consistent over iterative pruning phases. Local pruning makes the ranking or thresholding decision within280

a structure such as a layer, which makes comparisons more homogeneous, while global pruning makes these281

comparisons over the entire architecture, which allows the algorithm to determine the pruning level for each282

structure automatically.283

Scheduling Pruning: The schedule of pruning determines how it is interwoven with weight updates,284

including when and how often. Iterative pruning, rather than all-at-once, has generally been more effective285

(Liu et al., 2021b). It allows the network to evaluate entities in a more intermediate state of pruning, lessening286

the effects of the assumptions of pruning independence between parameters, high order terms ignored in most287

metrics, and local objective function evaluations. On the other hand, fully pre-training a network before288

pruning may be expensive but can be completed independently of the pruning, such as using an off-the-shelf289

pre-trained model. Most pruning algorithms begin with a large, dense network, while some perform dynamic290

sparse training, where the initial network is sparsely initialized (Bellec et al., 2018; Wortsman et al., 2019;291

Liu et al., 2021b).292

Handling Pruned Entities: After pruning, the pruned entities may be either permanently disregarded or293

allowed to be revived, which we name ephemeral pruning. We distinguish ephemeral pruning from entity294

creation if the revival is done with the same method as the pruning and thus is bounded to the same search295

space as pruning.296

Impact on Weight Optimization: Because the objective of pruning is often to at least maintain perfor-297

mance, this is synonymous to reducing the dimensions of the objective function space as much as possible298

while maintaining or decreasing the cost of the found minimum upon convergence of the objective function.299

Convergence to a globally optimal point is not guaranteed for standard gradient descent techniques in struc-300

turally static networks, but the local minimum found usually has a low enough cost in practice (Goodfellow301

et al., 2016). Because pruning potentially changes the cost and location of each optimum, this is necessarily302

an even more difficult optimization than training a structurally static network. Techniques mentioned so303

far such as iterative pruning and regularization intuitively help ameliorate negative effects of the discrete304

changes in the shape of the objective function while performing gradient descent in parallel to pruning, thus305

aiding in the search (Hoefler et al., 2021).306

Pruning may be categorized by the level of structure used in the pruning process, as shown in Figure 3.307

Unstructured pruning, which we discuss further in Section 3.2, is the zeroing of any parameters within308
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an ANN and thus is generally considered synaptic pruning for our neural operator definitions. Structured309

pruning, which we discuss further in Section 3.3, is the removal of entire units and their associated parameters310

within a network, such as channels, neurons, or layers, so it is synonymous with neural pruning.311

3.2 Pruning Connections312

Goals of Pruning: Synaptic pruning is the lowest level and simplest form of pruning; it intends to remove313

parameters, which each represent a connection, without any pattern or structure. The earliest pruning314

papers began with unstructured pruning (LeCun et al., 1990; Hassibi et al., 1993). Pruning synapses in a315

network is accomplished by zeroing connections and may allow a lower space complexity of storage by storing316

the remaining parameters in sparse matrices. However it does not yield significant improvements in time317

complexity of training or inference without specialized software for accelerating sparse matrix multiplications.318

However, ANNs after unstructured pruning can outperform dense models of the same memory footprint (Zhu319

& Gupta, 2017), showing that the pruned models can be more specialized and effective, The main applications320

of synaptic pruning are for network compression (LeCun et al., 1990; Hassibi et al., 1993; Han et al., 2015;321

Guo et al., 2016; Lee et al., 2019) and for counterbalancing synaptogenesis (Puma-Villanueva et al., 2012;322

Bellec et al., 2018; Wortsman et al., 2019; Dai et al., 2019b;a; Du et al., 2019). It also benefits multitask323

learning such as in Peng et al. (2021), where only important connections are saved for the current task and324

the pruned connections are reused for future tasks.325

Biological Inspiration: Synapses are continuously being generated and pruned in the adult brain as a326

part of learning (Dayan & Cohen, 2011). Synaptic pruning in the biological brain can result in weight327

change, removal of synapses in otherwise connected neurons, or wiring changes, complete disconnection of328

two neurons (Chklovskii et al., 2004). The latter is the equivalent of ANN pruning, where continous weight329

values are removed or set to zero. In the brain, this decision is based on activity correlation (Hebb, 1949),330

where neurons with higher absolute correlation in their activity stay connected while other connections are331

pruned. This can be modelled as a locally-available measure of importance based on Fisher information Scholl332

et al. (2021), similar to unstructured pruning methods in ANNs. However, other decision factors in biological333

synaptic pruning could be further explored in ANNs. Glial cells have been shown to tag potential synapses334

for removal using chemical signals over regions of the brain, using spatially and temporally dependent tags335

(Wilton et al., 2019; Stevens et al., 2007; Riccomagno & Kolodkin, 2015). This allows for coordinated pruning336

of multiple synapses on different neurons which share characteristics such as a response to certain activity337

patterns.338

Architecture Specificity: Unstructured pruning is simple to apply to different neuron and layer types,339

since it can be agnostic to the layer type and just removes single parameters at a time. For convolutional340

layers, synaptic pruning can mean removing single values within a 2-D kernel (Han et al., 2015; Guo et al.,341

2016; Bellec et al., 2018; Dai et al., 2019b;a; Du et al., 2019; Lee et al., 2019) or the entire kernel itself342

(Wortsman et al., 2019). Although each kernel contains more than a single parameter and is thus a higher343

structure, it can abstractly represent a connection between channels in convolutional layers, similar to a344

connection between neurons in dense layers (Wortsman et al., 2019), and cannot be explicitly removed from345

the 4-D convolutional matrix, only zeroed, so it is more akin to unstructured pruning.346

Measuring Entities: Salience metrics try to estimate the importance of each connection in order to prune347

unimportant connections. They can be as simple as the absolute parameter value itself such that weights348

near zero are pruned (Han et al., 2015; Dai et al., 2019b;a), which is intuitive as they would have a lower349

impact on the ANN than weights with stronger magnitudes. More complex calculations include gradients,350

which measure sensitivity of the network outputs with respect to each parameter, so low values signify351

unimportance. Any metrics requiring a derivative of the objective function must be computed with respect352

to training data. For most modern datasets, computing them for the entire dataset is not feasible, so mini-353

batches are often used. A local estimate of the effect of removing a single parameter on the objective function354

may be derived using a Taylor expansion (Laurent et al., 2020). The earliest pruning methods often used up355

to the second order term, including a full Hessian matrix, within their saliency calculations (LeCun et al.,356

1990; Hassibi et al., 1993), while current methods usually use cheaper but less accurate approximations357

with at most first-order derivatives over a single mini-batch (Molchanov et al., 2017; Du et al., 2019; Lee358

et al., 2019; Peng et al., 2021). For example, the diagonal Fisher information matrix is a first-order metric,359
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(a) Single parameter stochastic gradient descent, where
continuing descent from s1 results in a local minimum.

(b) Double parameter stochastic gradient descent, where
continuing descent from either s1 and s2 results in de-
scending to the global optimum.

Figure 4: Comparison of stochastic gradient descent in a toy loss landscape without and with an extra dimension
(figure reproduced with permission from Hoefler et al. (2021)). Transitioning from (a) to (b) represents creation,
while transitioning from (b) to (a) represents pruning. s1 and s2 are potential parameter value(s) at the time of
structural change.

scaling linearly with dimensions in computational complexity, that is often used as an approximation of the360

Hessian matrix, a second-order metric (Peng et al., 2021). The choice of salience metric is usually a trade-off361

between efficiency and effectiveness, but exactly how useful the precision of saliency is may be confounded362

with the greedy, iterative pruning process often used: such metrics can only measure local information363

without interdependencies, so using more expensive may be futile.364

Masks are also utilized in synaptic pruning. The mask may either be relaxed to be continuous so it can be365

trained along with the other network weights through optimization (Guo et al., 2016; Bellec et al., 2018;366

Wortsman et al., 2019; Yan et al., 2019) or remain discretely binary and be controlled with metrics (Dai367

et al., 2019b;a).368

Scheduling Pruning: Regarding the weight training portion of the schedule, pre-training the large un-369

pruned network is a common first step to a pruning, but some synaptic pruning algorithms avoid this370

for training time or space efficiency. Lee et al. (2019) forgoes the pre-training step and instead prunes a371

newly-initialized model using a first-order derivative metric of connection sensitivity. Hassibi et al. (1993)372

determines the optimal weight update for the remaining parameters after each pruning, but the inverse373

Hessian required is too expensive to compute exactly for modern ANNs, although estimations can be used374

(Hoefler et al., 2021). Most neuron-level synaptic pruning algorithms use fine-tuning optimization steps after375

pruning to arrive at the final architecture with optimized weights.376

Handling Pruned Entities: Most metric-based synaptic pruning papers do not allow discrete synapse377

revival, as computing metrics for inactive parameters often is not possible. However, masked selection378

techniques are more amenable to ephemeral pruning of connections, which may help ameliorate the negative379

effects of greediness. Guo et al. (2016); Bellec et al. (2018); Dai et al. (2019a); Wortsman et al. (2019) use380

dynamic connection search, allowing previously pruned connections to be revived if they show a resurgence381

in parameter importance later in training.382

Impact on Weight Optimization: Synaptic pruning may decrease the dimensionality of the objective383

function search as finely as a single dimension at a time. The proceeding effect conjectured by Hoefler et al.384

(2021) is demonstrated in Figure 4. This artificial example supports performing more gradient descent in385

the higher dimensional space and pruning later in the course of training, at least for traditional pruning386

occurring intermittently during training. If the network in Figure 4b is initialized to s1, pruning x2 before387

the value of x1 surpasses the coordinate of the local maximum may lead to convergence to a non-optimal388

local minimum, but pruning after this point should allow convergence to the global minimum. Pruning non-389

zero parameters results in a displacement in the search space based on how large in magnitude the pruned390

parameters were. Magnitude-based pruning has a minimal but not negligible effect on the displacement391
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Figure 5: Structured pruning in convolutional ANNs (figure reproduced with permission from Li et al. (2017)).
Each stack represents the channels of the activation state, while the matrices represent the kernels, which themselves
are nxn matrices of parameters, for each convolutional layer, with each row being the kernels for each channel in
the previous activation and each column being the kernels for each channel in the next activation. Decreasing the
incoming channel count in the first convolution is represented in orange. The blue pruning decreases the outgoing
channel count of the first convolution and the incoming channel count of the second convolution. This is synonymous
with pruning both the incoming and outgoing connections of a neuron in a dense layer. The projection shortcut
performs a 1x1 convolution and is pruned accordingly as necessary for dimensionality agreement.

of the location in the search space, and may also be more greedy. The performance change due to this392

displacement does not have clear consequences: the final performance cannot be tractably predicted for any393

given structural operation. Bartoldson et al. (2020) found that the magnitude of immediate performance394

drop after an iterative pruning step was positively correlated with improved generalization and performance395

of the final network, while Laurent et al. (2020) had conflicting findings, showing loosely inverse correlation.396

While the objective function is an intuitive tool for optimizing the pruning selection, the interacting effects397

of the many local assumptions and approximations as well as hyperparameters such as algorithmic details398

confound its use.399

3.3 Pruning Units400

Goals of Pruning: Neural pruning is the removal of units within an ANN, such as neurons in fully-connected401

layers, filters or channels in convolutional layers, or entire layers themselves. Thus, neural pruning has402

different selection and scheduling considerations compared to synaptic pruning. Structured pruning easily403

yields both time and space efficiency benefits: entire portions of the network can be removed, thus skipping404

their computational steps and storage requirements.405

Beyond network compression, structured pruning is also a very common abstraction for performing Neural406

Architecture Search (NAS), an emerging sub-field pursuing the automation of architecture engineering at407

the layer level. ANN architectures are selected from a predefined search space of possible architectures and408

evaluated according to a performance estimation strategy. This performance estimation then informs the409

search, which can be based on evolutionary algorithms, reinforcement learning, gradient descent, or other410

search methods. Structural learning can be used for NAS by using any of the four neural operators as search411

operators on persistent networks. Some existing NAS methods function as structural learning, integrating412

weight tuning with architectural change to arrive at a final static network in terms of both parameters and413

architecture. Layer-searching NAS algorithms that use structural learning generally employ a hand-designed414

super-network that contains all possible layer types over all possible interconnections, then perform the415

operator of neural pruning after optimizing the super-network to derive the final architecture.416

Biological inspiration: In the adult brain, programmed neural cell death is most common following417

neurogenesis. During early development, neurons must develop sufficient active connections to avoid the418

default fate of removal (Yeo & Gautier, 2004). This is similar to one-shot NAS methods such as DARTS419

(Liu et al., 2018) where large super-networks are created at initialization with only a minority of neurons420

remaining in the final architecture; however, biological cell removal is progressive and occurs at different421

rates in different regions of the brain, more similar to Maile et al. (2021). Neural cell death also follows422
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neurogenesis in the adult brain; in the olfactory bulb, only 50% of newly generated neurons survive to be423

integrated into existing circuitry, with neural activity being a critical factor in determining cell survival424

(Kelsch et al., 2010). This is most similar to grow-and-prune methods such as NeST (Dai et al., 2019b) and425

activity-based pruning Rust et al. (1997); Molchanov et al. (2017); Kang & Han (2020), but further research426

of structural learning methods inspired by adult neurogenesis and subsequent neuron removal is needed.427

Architecture Specificity: The structural types present within a network require some consideration for428

structured pruning, depending on the desired level of structure to prune. Many convolutional structural429

learning algorithms use the higher level paradigm, shown in Figure 1(c), for pruning (Siegel et al., 2016;430

Li et al., 2017; Du et al., 2019; Wu et al., 2020), as depicted in Figure 5. This allows an algorithm to be431

applied to convolutional and dense layers, even within the same architecture. Some sub-unit pruning in432

convolutional layers can still be effective for computational efficiency in contrast to unstructured pruning,433

such as pruning via striding within kernels (Anwar et al., 2017) and limiting the area of convolution (Dai434

et al., 2019b). Beyond each layer’s type, the surrounding structure and functionality may also be utilized435

in more specialized pruning: Kang & Han (2020) prunes channels that tend to have low signal after the436

standard subsequent batch normalization and ReLU operations, while Gordon et al. (2018) regularizes and437

prunes channels via the batch normalization scaling parameters. Exploiting such known structures in the438

limited architecture space of those including these structures has a trade-off between search space flexibility439

and effectiveness within those search spaces. When performing structural learning on units, the algorithm440

must ensure that all intermediate activations maintain compatibility with all incoming and outgoing layers:441

for example, neurons tied by skip-connections can be grouped during structural operations Gordon et al.442

(2018).443

Measuring Entities: Structured pruning with heuristic search requires metrics or selection methods that444

can be measured or enforced at the level of desired unit of pruning. Similarly to unstructured pruning, early445

methods used perturbation-based selection (Narasimha et al., 2008; Puma-Villanueva et al., 2012), where446

the algorithm measures the performance change from removing each neuron individually and retraining the447

rest of the network, but this does not scale well with the size of the network. One recent exception used448

a greedy forward search, where all neurons in a layer are pruned and then useful units are individually449

added back in (Ye et al., 2020). For metric-based pruning of units, a norm, across parameters within a450

unit, of any metrics discussed previously for the unstructured case in Section 3.2 can be used (Li et al.,451

2017; Du et al., 2019; Wu et al., 2020) or group-sparse regularizers can tie parameters within a unit and452

encourage sparsity at the unit level (Pan et al., 2016; Gordon et al., 2018). Selection methods that are only453

possible on the unit-level include activation-based pruning, where units with low or infrequent activations454

are removed (Molchanov et al., 2017; Kang & Han, 2020), and relative metrics of redundancy, where units455

with redundant functionality compared to others are marked for removal (Siegel et al., 2016). One issue456

with the latter approach is time complexity, since it requires a pairwise comparison of all units within each457

layer. Unit-wide masks, where the mask controls whether each unit is active or not, are also common, such458

as in Chen et al. (2019); Wan et al. (2020); Guo et al. (2021) at the convolutional neuron level and in most459

NAS works at the layer level.460

The two main mask-based developmental NAS approaches at the layer level are continuous NAS and path-461

sampling NAS, as shown in Figure 6. These are used in order to both train the network parameters and462

evaluate different architecture possibilities, which may be represented as architecture parameters.463

In continuous NAS, a continuously structured super-network is trained and then discretized into the desired464

architecture, as shown in Figure 6a (Liu et al., 2018; Laube & Zell, 2019; Li et al., 2019; Mei et al., 2020; Yan465

et al., 2019; Bi et al., 2020; Noy et al., 2020; Wang et al., 2021; Roberts et al., 2021). The structural learning,466

namely neural pruning of the units of layers, occurs at discretization, which may happen once at the end467

of the search phase or progressively throughout. Before the super-network is fully discretized, it evaluates468

mixtures of potential layers over potential connections as weighted sums at each activation state, and uses469

back-propagation of the loss error to strengthen or weaken the architectural weight of each layer. Selecting470

the architecture from the super-network by the end of the search using learned architecture weights often471

looks very similar to magnitude-based pruning, selecting the strongest options such that a valid architecture472

is formed.473

For path-sampling NAS, potential paths are discretely sampled from the super-network for training the474

12



Under review as submission to TMLR

(a) Continuous NAS. (b) Path-sampling NAS.

Figure 6: Example of a repeated cell of a super-network in NAS (figure reproduced with permission from Yao
et al. (2020)). Within each cell, the blue nodes represent intermediate activations between layers. Each colored edge
represents a different layer type, such as a skip-connection or convolutional layer. This cell, ck, receives the output
of the two previous cells, ck−2 and ck−1. During network training, in continuous NAS, all layer options are used at
all connections, and a weighted sum is computed at each node using the architecture parameters. In path-sampling
NAS, a path representing a valid architecture is selected within the super-network, which is a form of ephemeral
discretization. A common architecture constraint for cell-based NAS is at most one layer option per connection and
exactly two inputs to each node. For both types of NAS, the final goal is to optimally prune the network into a
discrete architecture within this constraint like (b).

network’s parameters within each path, as shown in Figure 6b (Cai et al., 2019; Veniat & Denoyer, 2018; Ci475

et al., 2021; Guo et al., 2020; Yao et al., 2020; Guo et al., 2021). During the search process, a discrete path is476

selected for the training step of each mini-batch, and only the network weights and architecture parameters477

along that path are updated. Thus, each path is equivalent to performing ephemeral neural pruning for a478

single forward and backward pass, while persisting and updating weights of the super-network. Path selection479

may use the architectural parameters as sampling or state-transition probabilities within the super-network480

(Cai et al., 2019; Veniat & Denoyer, 2018; Guo et al., 2020; 2021) or use a uniform distribution (Ci et al.,481

2021). At the end of the search process, the highest probability path is selected as the final architecture.482

While path-sampling NAS allows training passes to occur in a discretized network more structurally similar483

to the final desired architecture than the continuous mixtures in a super-network, only the parameters on the484

sampled path, rather than all parameters, have gradient information and thus can be updated per mini-batch.485

Scheduling Pruning: As with synaptic pruning, neural pruning has been trending towards iterative meth-486

ods, even as often as every iteration Yuan et al. (2021). In NAS, the earliest continuous NAS methods had487

a single discretization where the pruning neural operator occurred, after searching the continuous super-488

network and before evaluating the discretized architecture (Liu et al., 2018). However, this can lead to a489

discretization gap, where the shallower continuous super-network and deeper discretized architecture are too490

structurally different and have uncorrelated performance, due to the continuous parameters not being close491

enough to the discretized parameters (Xie et al., 2021). More NAS algorithms are incorporating progressive492

discretization (Bi et al., 2020; Wang et al., 2021), among other techniques (Xie et al., 2021), to avoid this493

gap.494

As for the training portion of scheduling, NAS methods also tend to do a full reinitialization and retraining495

of weights after discretization, whereas most other structural learning methods only finetune the network496

after the search and pruning process, as noted in Table 2. As for network compression, Liu et al. (2019b)497

finds that complete reinitialization and training is generally superior while Ye et al. (2020) finds fine-tuning498

inherited weights is better, provably for the case of shallow networks and empirically for deeper networks.499

Avoiding the pretraining step is more difficult in structured pruning than unstructured, since structural prun-500

ing selection techniques often assume all units are trained enough in order to differentiate their function from501

each other and fairly compare their utility. Pretraining is particularly important for comparing parameter-502
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ized units with unparameterized units in NAS, like comparing a convolutional layer with a skip-connection503

at the same location within an architecture. Some relatively zero-cost NAS metrics that measure entire504

architectures without training, such as measuring saliency or sensitivity to perturbation (Abdelfattah et al.,505

2020) or nonlinearity alignment at initialization (Mellor et al., 2021), have been shown to be effective in506

identifying good candidate architectures, which is particularly useful to avoid the expensive search training507

process when the final network is often retrained from scratch.508

Handling Pruned Entities: At the extreme end of ephemeral pruning on the unit level in frequency509

is Dropout (Srivastava et al., 2014), which is a technique of randomly and independently selecting units510

to momentarily prune for each batch during training, preventing co-adaptation and overfitting. Structural511

pruning algorithms use ephemeral pruning in a more principled and informed manner, as in path-sampling512

NAS. This allows the modules of the super-network to learn more independently than in the continuous case.513

This idea is also used by Yuan et al. (2021) at the neuron level, but most other neuron pruning works choose514

to instead reinitialize new neurons as the creation operation, which will be discussed in Section 4.515

Impact on Weight Optimization: Structured pruning is less intuitive to consider in the objective function
search space, since dimensions are tied through the units containing their corresponding parameters. Thus,
multiple dimensions are removed at once for each unit removed. Pruning metrics often gain information
through continued training, but this must be balanced with the cost of training units that will be pruned
and thus not used in the final network or in further pruning decisions.
Many NAS works pose the architecture search as a bi-level optimization problem, where the architecture
parameters α are optimized given that the weight parameters w are optimal for any given architecture and
constrained to certain sparsity rules S that only permit valid architectures (Maile et al., 2021):

min
α

Lval(w∗(α), α) (1a)

s.t. w∗(α) = argmin
w

Ltrain(w, α), α ∈ S. (1b)

This problem is intractable to solve directly, so the process is usually approximated by continuous relaxation516

of α, persisting weights across the architecture optimization search, and alternating weight updates with517

architecture updates. The gradient updates to the architectures variables may only be locally approximated:518

using a second-order estimate of the gradient of α that incorporates an inner update of w∗ only gives519

minor improvements in performance for a higher computational cost compared to first order estimates that520

approximates w∗ as the current w (Liu et al., 2018). See Liu et al. (2021a) for a further discussion on bi-level521

optimization in ANNs.522

3.4 Pruning Conclusions523

In ANNs and in the brain, more information is available for existing neurons and synapses to be pruned524

versus creating new units. This trend is noted in artificial algorithms, both in the popularity of pruning525

versus creation as well as more specifically using masking to propagate gradient information to inactive units,526

thus turning a structural learning problem into a pruning problem.527

Pruning in both the brain and ANNs can improve performance relative to cost: the main costs in both528

medias are time and space, but the realization of these costs change how efficiency is achieved. For example,529

an important difference between brains and ANNs is the locality of physical biological signals versus the530

globality of ANN addressing in memory. Biological neurons are limited by physically transported molecular531

signals, but do not have a scaling time cost for enumerating the local options. ANNs algorithms have no532

distance-based cost and thus may make decisions globally, but do have a linearly scaling time cost for each533

entity that is evaluate due to the hardware’s bound on floating point operations per second.534

Pruning, however, does come with costs, notably the wasted training time of the associated parameters and535

potential disruption to the learning process. Pruning algorithms must thus strike a balance of information536

that could be useful for pruning and later utility in the network if the unit is not pruned versus the cost of537

obtaining this information.538
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Pruning has been used throughout the history of deep ANNs to partially automate the structural design.539

However, it relies upon a predefined and instantiated search space. Currently, most methods explicitly hand-540

design this search space as the initial architecture. Others, as well as the brain, use creation to dynamically541

create the search space. These creation methods and their synergies with pruning will be discussed in the542

following section.543

4 Neuron creation and synaptogenesis544

Adding to a search space is naturally more difficult than removing, because an indefinite number of ways545

to add new elements exists, but removal is limited to only existing elements. For the unit operators of546

structural learning, this means that neural creation is a much different problem from neural pruning. For547

the connection operators, because synaptogenesis occurs between existing structures, it is of the same search548

complexity as synaptic pruning, although metrics for where to add connections are not as straight-forward549

as where to remove them. Thus, synaptic pruning and synaptogenesis often look very similar, especially for550

ephemeral structural changes during training.551

Nearly parallel to our pruning questions, our main questions for characterizing creation are:552

• Goals of Creation: Why add connections or units to an ANN?553

• Biological Inspiration: How can biological neurogenesis and synaptogenesis inspire artificial meth-554

ods?555

• Architecture Specificity: How has creation been adapted to different ANN architectures?556

• Measuring Entities: How are the new entities to be added selected over other options?557

• Scheduling Creation: When and how often does creation occur with respect to optimization of558

the existing parameters?559

• Operator Interactions: What is the impact of using pruning along with creation, versus just one560

such modality?561

• Impact on Weight Optimization: What is the impact of creation on optimization of parameter562

weights?563

In discussing these questions, we focus on the growth aspects of the papers in our corpus: neural creation564

and synaptogenesis. We discuss the few topics that span both modalities of creation in Section 4.1, then565

cover each question specifically for synaptogenesis in Section 4.2 and for neural creation in Section 4.3 before566

concluding in Section 4.4.567

4.1 Creation Generalities568

Not as many shared characteristics exist between the modes of creation compared to that between the modes569

of pruning. We detail these few general characteristics below.570

Goals of Creation: Growing in an ANN allows the architecture to be even more automatically customized:571

pruning-only algorithms require all entities in the search space to already exist in the initial network. Using572

the growing neural operators allow a much larger architectural search space to be explored over the course573

of structural learning, since this search space does not have to be explicitly predefined or instantiated. It is574

rather implicit from the algorithm’s creation operations.575

Biological Inspiration: Synaptogenesis is a frequent event in the biological brain which defines the possible576

neural circuitry using information from genetic cues and neural activity (Waites et al., 2005). Neurogenesis,577

on the other hand, mostly occurs during early development, creating the critical structures of the brain578

largely through genetic influence (Azevedo et al., 2009; Ackerman, 1992; Urbán & Guillemot, 2014). Neural579

activity regulates both processes but is especially important for synaptogenesis (Rash et al., 2016; Yoshihara580

et al., 2009); physical proximity and chemical neuromodulatory signals also influence these processes. As581
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in ANNs, creation is used to expand the possible neural circuitry with relatively uniformed propositions; in582

both cases, creation is a more difficult problem than removal with less information available.583

Impact on Weight Optimization: Creating entities in an ANN expands the dimensionality of the pa-584

rameter search space. Network morphisms are methods of adding entities to an ANN with a specific weight585

initialization that preserves the functionality of the network (Wei et al., 2016). After using a network mor-586

phism to grow units or connections, the expanded ANN may then begin gradient descent at an equivalent587

location of the previous objective function space but now with expanded dimensions. This guarantees that588

the new optimal point will have at most the same cost if not lower, since the previous optimum will necessar-589

ily be included in the new search space within the subspace where all new parameters are nullified. However,590

adding too many dimensions increases the time and space costs for the ANN, including in search time if the591

search space becomes unnecessarily complex. Similarly as for pruning as discussed in section 3.1, creation is592

generally composed of greedy search decisions in a local search, which can only find local optima.593

In the following subsection on synaptogenesis, we focus on algorithms that have a specific method for growing594

connections, rather than just reviving previously pruned connections, previously discussed as ephemeral595

pruning in Section 3.2, or creating units with their associated connections, to be discussed in Section 4.3.596

4.2 Growing Connections597

Goals of Creation: Synaptogenesis can be used in an ANN to create new connections between existing598

units. It has been used with pruning for discovering more effective flexible wirings between channels or599

neurons within ANNs, particularly without an initial overparameterized dense architecture (Puma-Villanueva600

et al., 2012; Bellec et al., 2018; Wortsman et al., 2019; Dai et al., 2019b;a). In other applications, Kim et al.601

(2021) augments an ANN’s performance after training by adding neuron-level connections directly from602

hidden neurons to the output, while Elsken et al. (2017) searches for layer-level skip connections, among603

other network morphisms, concurrent with continual training during evolutionary architecture search.604

Biological Inspiration: Biological synaptogenesis is an integral part of learning which has been demon-605

strated in memory and control tasks (Holtmaat & Svoboda, 2009; Dayan & Cohen, 2011). While a consider-606

able part of biological synaptogenesis only reinforces the existing connection between neurons through adding607

new synapses, previously unconnected neurons can also be linked through synaptogenesis. The information608

used for this process is based on activity and chemical signatures (Yoshihara et al., 2009); nearby neurons609

will exchange signaling molecules to make them more receptive to synaptogenesis (Erskine & Herrera, 2007).610

Physical proximity is an important factor in biological synaptogenesis; for example, in a cortical column,611

two neurons can connect through a short extension, where connection to a neuron to a more distant region612

requires investing space and energy in growing axon branches with a more daunting problem of connection613

choice Chklovskii et al. (2004). There are zones of higher connection density, such as cortical columns which614

have 109 synapses for 105 neurons, as opposed to the overall higher sparsity of the brain, 1015 synapses for615

1011 neurons. This sparsity means that, through rewiring, a neuron can drastically change its role in infor-616

mation passage Chklovskii et al. (2004), and synaptogenesis is the main catalyst of rewiring change. Further617

work similar to Wortsman et al. (2019); Dai et al. (2019b;a) which connect previously unconnected neurons618

during learning should be explored, as the brain demonstrates the importance of forming new connections619

during learning. Neural activity could form the basis for possible connection, as in the brain (Faust et al.,620

2021), by detecting neurons or layers in ANNs which have correlated activity and could be directly linked.621

Architecture Specificity: Neuron-level synaptogenesis algorithms can generally be applied in both con-622

volutional and standard layers. For convolutional layers, synaptogenesis is generally done on the kernel level623

(Dai et al., 2019b;a; Wortsman et al., 2019). Only Bellec et al. (2018) performs synaptogenesis on individual624

parameters within each kernel, but does so randomly on masked connections to balance informed synaptic625

pruning. Wortsman et al. (2019) introduces a rewiring algorithm that is agnostic to whether connections are626

convolutional or dense and removes the constraint of layer organization that engineered deep architectures627

follow.628

Measuring Entities: Metrics for synaptogenesis are less straightforward than for synaptic pruning, since629

the potential connections do not have active information flow. Thus, a common approach is to use a mask that630

inactivates connections during the forward pass but allows propagation of the gradient to them during the631
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backward pass, providing many of the same metrics as are normally available (Dai et al., 2019b;a; Wortsman632

et al., 2019). To shrink the quadratic search space of all possible connections, Dai et al. (2019b;a) only allow633

connections between neurons in neighboring layers, while Wortsman et al. (2019) allows connections across634

multiple layers but still limited within modules of similar depth. Bellec et al. (2018) also uses a mask, but635

rather performs random synaptogenesis of a currently dormant connection each time another connection is636

pruned in order to maintain the sparsity level of the network. While masks bound the search space, that is637

not necessarily limiting to synaptogenesis since it already can only occur between existing units, whether or638

not a mask is used.639

Beyond mask-based approaches, algorithms often use improved performance as the final metric for adding640

connections. Puma-Villanueva et al. (2012) ranks all possible connections with a mutual information heuristic641

amenable to synaptic creation and adds those that improve the performance. Kim et al. (2021) evaluates the642

effects on performance exhaustively for a smaller search space, only allowing hidden neurons to be connected643

directly to output neurons. Using improved performance as the selection criteria is intuitive, but is a greedy644

selection towards the goal of optimizing performance and is expensive to complete exhaustively without645

heuristics, limited search spaces, or randomized evaluations.646

Scheduling Creation: Synaptogenesis is usually performed iteratively and greedily. New connections need647

to be optimized after a random initialization for optimal performance, so synaptogenesis phases are generally648

followed by weight optimization phases of either only the new parameters or the entire network.649

Operator Interactions: Most synaptogenesis algorithms also implement synaptic pruning (Puma-650

Villanueva et al., 2012; Bellec et al., 2018; Dai et al., 2019b;a; Wortsman et al., 2019). Implementing651

synaptogenesis with synaptic pruning can create dynamically balanced connectivity, which may counteract652

any negative effects of earlier greedy synaptic additions to escape local optima. The remaining synaptogen-653

esis algorithms only use synaptogenesis out of our two connection operators (Elsken et al., 2017; Kim et al.,654

2021). This simplifies the search process, but may approach local optima due to greediness.655

Impact on Weight Optimization: Synaptogenesis adds dimensions to the search space. Because any656

added synaptic parameters can be set to zero to nullify their function and thus preserve the objective657

function of the ANN, synaptogenesis can guarantee the new global optimum has at most the same cost.658

However, depending on the initialization and training algorithms used, the synaptogenesis may displace the659

current location in the objective function space far enough to descend towards a different, possibly worse or660

better local optimum. Additionally, adding too many dimensions increases the time and space costs for the661

ANN, including in search time if the search space becomes unnecessarily complex.662

4.3 Growing Units663

Goals of Creation: Neuron creation, or adding units to an ANN, is the most open-ended neural operator.664

The general aims of neuron creation are to improve performance and to create an architecture that is665

specifically effective for the desired task without manual design. The resulting networks should have either666

reduced space and time complexity for deployment at a desired performance level or a better performance667

potential. Beyond algorithms with these general aims, some NAS approaches incorporate neural creation668

in the form of changing the architectural search space over the course of training (Laube & Zell, 2019;669

Ci et al., 2021; Roberts et al., 2021), which provides a larger search space than traditional pruning-only670

approaches. Both the general and NAS-specific applications allow for a more customized architecture with671

less hand-design.672

Biological Inspiration: Neurogenesis in the biological brain is more constrained than in ANNs; neural673

progenitor cells must be properly located to create new neurons, there must be enough space, and the674

associated energy cost is non-negligible. The most common period of neurogenesis, early development, is675

largely guided by genetic cues (Azevedo et al., 2009), with only highly irregular neural activity patterns676

disrupting neurogenesis Rash et al. (2016). In humans, adult neurogenesis is constrained to a few regions,677

notably the hippocampus (Ming & Song, 2011; Ernst et al., 2014), and it is common in other organisms678

Alunni & Bally-Cuif (2016). Adult neurogenesis could serve as further inspiration for structural learning679

in ANNs as there are fewer constraints. For example, new neurons in the mature brain first develop input680

synapses which observe incoming connections before firing action potentials (Kelsch et al., 2010); in other681
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words, new neurons are well-initialized based on surrounding activity, similar to the recent studies of Evci682

et al. (2022); Maile et al. (2022) in ANNs. The conditions leading to adult neurogenesis are the subject of683

current research in neuroscience (Christian et al., 2014) and could lead to further inspiration in ANNs.684

Architecture Specificity: Neuron-level creation usually adds neurons of a predetermined type to existing685

or new layers. However, since selection techniques are often agnostic to layer type, many neural creation686

algorithms can be applied to architectures with layers of various types like convolutional or dense (Du et al.,687

2019; Liu et al., 2019a; Wu et al., 2020; Evci et al., 2022; Maile et al., 2022). Similarly to pruning, growing688

new filters in a convolutional layer also involves a mapping in the subsequent layer (Du et al., 2019), as689

shown in Figure 5. Layer-level creation often extends layers with the same type as previous layers (Dong690

et al., 2020; Wen et al., 2020). Roberts et al. (2021) avoids pre-engineering the layer type selection by691

parameterizing the layer function in a search space that includes most commonly used layer types in NAS692

among many others.693

Measuring Entities: Selecting where and how to add new units to a network is not straight-forward. In694

order to avoid explicitly bounding the search space, a mask cannot be used as it requires all elements to be695

instantiated to be associated to an element of the mask. Most approaches limit the instantaneous search696

space of possibilities, such as iteratively adding a single neuron to an existing layer (Ash, 1989; Fahlman &697

Lebiere, 1990; Frean, 1990; Lehtokangas, 1999; Ma & Khorasani, 2003; Islam et al., 2009; Dai et al., 2019b;698

Wu et al., 2020), adding a single new layer beyond the current architecture (Fahlman & Lebiere, 1990; Ma699

& Khorasani, 2003; Cortes et al., 2017; Wen et al., 2020; Wu et al., 2020), or splitting existing neurons (Du700

et al., 2019; Liu et al., 2019a; Wu et al., 2020). This results in a simpler problem at each step, but stills701

gives the algorithm the power of an unbounded search space over the course of training.702

The simplest approaches, often combined with some form of pruning, use a generic creation scheme that703

adds some default number of new units (Narasimha et al., 2008; Gordon et al., 2018). Slightly more informed704

approaches use the network’s objective function as a heuristical measure of success, adding the units that705

reduce the error the most out of generated options to the network (Cortes et al., 2017; Dai et al., 2019b).706

Evci et al. (2022) adds neurons that maximize the immediate improvement in performance, while Maile707

et al. (2022) dynamically adds neurons with unique activations or weights to avoid redundancy. Liang et al.708

(2018) adds special exponentially activated neurons that provably improve the loss landscape.709

Scheduling Creation: The objective function is used not only for creation selection but also for iterative710

scheduling and termination. In early construction algorithms, often a single neuron was added at a time upon711

convergence of the current network until the desired performance is reached (Ash, 1989; Fahlman & Lebiere,712

1990; Frean, 1990; Lehtokangas, 1999; Ma & Khorasani, 2003; Islam et al., 2009; Puma-Villanueva et al.,713

2012). This approach of a single neuron added between training to convergence does not scale very well with714

the size of the network or complexity of the task. Many of the recent methods still use performance stagnation715

during training as a trigger for a neural creation phase, but for adding either many new neurons or an entire716

layer at a time Elsken et al. (2017); Cortes et al. (2017); Liu et al. (2019a). Otherwise, a manual schedule717

for iterative phases may be implemented (Narasimha et al., 2008; Du et al., 2019; Guo et al., 2021). Most of718

these schedules introduce hyperparameters, such as thresholds or durations per each phase of the schedule.719

These require hand-tuning or optimization for each specific dataset, task, and initial architecture. This is720

not desirable for generality and automation of algorithms across applications, but selecting hyperparameters721

is a much smaller search space for manual exploration than that of the architecture being automatically722

designed. Maile et al. (2022) uses a dynamic schedule that adds neurons while novel directions to explore in723

either the activations or weights in that layer still exist.724

Operator Interactions: Most of the recent neural creation algorithms also use neural pruning, while the725

older ones did not. This dynamic approach not only can ameliorate effects of greedy structural changes, but726

also leaves the size of the final ANN as either an objective to optimize in tandem to performance or as an727

open-ended result. For example, Guo et al. (2021) can adapt initial seed networks to any computational728

budget, whether smaller, approximately the same, or larger than the original network. Connection operators729

may also be used in addition to unit operators to make finer adjustments to the network (Puma-Villanueva730

et al., 2012; Dai et al., 2019b; Du et al., 2019).731
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Impact on Weight Optimization: Neural creation expands the dimensionality of the search space of732

gradient descent. To determine the starting point in the newly expanded space, the weights of new units733

need to be initialized before they are trained. Unit-splitting algorithms (Lu et al., 2017; Du et al., 2019;734

Liu et al., 2019a; Dong et al., 2020; Wu et al., 2020) copy the weights and may add a small perturbation to735

ensure the units are not redundant if split in parallel. Network morphisms, named by Wei et al. (2016) and736

used by Islam et al. (2009); Elsken et al. (2017); Laube & Zell (2019); Wen et al. (2020); Evci et al. (2022);737

Maile et al. (2022), are structural operations that initialize new structures to be null, which generally means738

initializing new weights to be zero. Most other neural creation algorithms use a similar initialization scheme739

to the original network, such as random weight initialization. Both unit-splitting without random noise and740

network morphisms perturb the location of the network in the new space less than methods that use random741

noise in their initialization. Both cases can be beneficial: staying in a similar location with newly added742

dimensions allows the path of gradient descent to continue with less disturbance or risk of regressing from743

the current level of performance, while a small perturbation may help escape local optima or saddle points744

(Liu et al., 2019a; Wu et al., 2020), as demonstrated in Figure 4.745

Liang et al. (2018) theoretically shows that the addition of special exponentially-activated neurons to a basic746

ANN can make all minima globally optimal. However, no empirical work has shown whether these simple747

additions affect other aspects of training dynamics and performance. For example, additional saddle points748

may confound the benefits of no bad local minima (Dauphin et al., 2014).749

4.4 Creation Conclusions750

Creation has been less well-studied than pruning in ANNs, due to the additional complexity imposed by the751

open-ended search space of creation, which is less cooperative with back-propagation than static architectures752

and even pruning. Hand-designing neural architectures has also made it less practical and imperative, but753

the desire for it is continuing to increase alongside computational capabilities.754

The brain has rather distinct phases of early development and adult life. These correspond roughly to defining755

the neural architecture search space, or hand-design of an ANN architecture for the case of conventional non-756

structural learning, and searching within this space over the process of learning. Most structural learning757

research focuses on automating and improving the latter process, leaving further optimization of search space758

design as an open problem. However, the search space design is also synonymously influenced by the genetic759

priors used in the brain that have been optimized over the course of human evolution, making search space760

design a much broader problem with a larger scope than one-shot learning. The creation operations allow761

for a more dynamic approach to search space design.762

The brain uses Hebbian learning, or reinforcing effective connection strengths in response to correlations in763

activity between interacting neurons, as a mechanism for dynamic structural learning (Hebb, 1949). Synaptic764

scaling, or the post-synaptic homeostatic plasticity, and non-synaptic plasticity, such as membrane conduc-765

tance changes, counterbalance this strengthening and are analogous to weight decay and batch normalization766

in ANNs (Turrigiano, 1999; Mozzachiodi & Byrne, 2010). The explicit use of Hebbian learning in ANNs,767

which could be implemented as increasing weight magnitude between artificial neurons with correlated ac-768

tivations, is thus far not as popular as back-propagation but has been done (Miconi et al., 2019). Standard769

ANNs are not time-dependent, which changes the nature of correlations in activity compared to that of the770

brain, and ANNs have global information access, permitting back-propagation of errors more easily than in771

the brain, although there are theories of supervised learning via target activity patterns (Magee & Grien-772

berger, 2020). Dai et al. (2019b) applies this technique to the creation operations and shows that growing773

connections via larger values of the gradient of the network loss with respect to dormant masked weights774

is a Hebbian-like rule. This suggests further exploration into appropriate application of Hebbian and other775

plasticity theories for artificial media.776

As previously discussed in Section 3.4, the physical brain excels at local communication without indexing777

cost while ANNs can operate globally but with a cost per index. This has implications for effective creation778

in ANNs: to maintain search efficiency, non-random creation in ANNs, where each potential entity must be779

indexed and evaluated, should be strategically bounded at a given structural step without overly restricting780

the size of the overall search space. Creation is not as explicitly bounded in brains: unit creation, including781
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migration, is guided by genetic and developmental factors while synaptogenesis is guided locally by chemical782

signals, yet there are no restrictions such as having predefined patterns of connections for each neuron. For783

synapse measurement, the brain does not use simulated heuristics like ANNs often do, but instead selects784

connections by dynamic processes of repeated synaptogenesis and synaptic removal as directed by various785

types of plasticity Hebb (1949); Turrigiano (1999); Mozzachiodi & Byrne (2010). Similarly for neurons, the786

heightened neurogenesis of early development is balanced by the automatic removal of new neurons unless787

they prove their utility. This suggests an approach for ANNs to make sub-optimal but less expensive additions788

balanced with more careful pruning to dynamically and efficiently construct an informed architecture.789

5 Perspectives790

With the deepened understanding of how each of the four neural operators work in ANNs, we present our791

perspectives on the overall state of structural learning. We first note implementational trends that shape792

recent structural learning works in Section 5.1. We then discuss related domains not completely covered by793

the proposed framework but which are related to structural learning, particularly those with analogies to794

the brain, in Section 5.2. We finally discuss current challenges with future directions in Section 5.3.795

5.1 Implementations and Trends796

In order to successfully implement structural learning on modern machines rather than biological media, we797

note several approaches used commonly across algorithms. The ongoing development of computer hardware798

and software, which provide the media on which ANNs are implemented, has potentiated each of the in-799

novations in ANNs throughout history. Present computational technology is particularly adept at handling800

array-based calculations. For example, GPUs drastically speed up ANN training wallclock time particularly801

with stochastic gradient descent (SGD) and tensor-based architecture parameterizations and data structures.802

However, they also impose a limit in random-access memory (RAM): ANN training is much more efficient803

and easier to implement if the entire memory-intensive backward pass of SGD can fit on the GPU’s RAM804

at once. The inference computational cost of an ANN is often measured in the number of Multiply-Adds,805

or equivalently floating point operations (FLOPs), required per inference of a single input. This value can806

be used as part of a multi-objective approach, maximizing performance while minimizing the inference cost.807

The training cost is usually measured in GPU-days, the number of days to train on a single GPU using808

current hardware and software. Low training costs are a key benefit of structural learning over techniques809

that instantiate and train a statically structured model for many individual architectures. The following810

implementation trends are noted across our structural learning corpus, specified in Table 2.811

Modularity: Dividing a design problem into multiple hierarchical levels and reusing modules learned at812

lower levels makes it more tractable. This is seen biologically, where symmetry and modularity can be813

seen from the genetic level, reusing sections of DNA for many proteins that can each have many functions,814

through the nervous system level, showing bilateral and other symmetries, and even further, as in convergent815

evolution where unrelated organisms evolve similar structures or functionalities.. For ANN architectures,816

this entails searching for smaller modular structures that can be used as building blocks to build larger817

architectures. This technique has already been used in the hand-design of architectures, like ResNet (He818

et al., 2016). It is also used in structural learning, notably unit creation and pruning where groups of819

parameters are added or removed as a unit. Modularity has especially been used in NAS in order to reduce820

the complexity of the search space. Most NAS algorithms that allow flexible interconnectivity use repeated821

cells of the same architecture during the search process. Some recent NAS approaches incorporate structural822

learning on multiple levels, such as searching for both layer-level and neuron-level structures (Yan et al.,823

2019). NAS algorithms incorporating creation take this even further by also optimizing the layer options824

used (Laube & Zell, 2019; Ci et al., 2021; Roberts et al., 2021), thus expanding the search space. Modularity825

is particularly capitalized in algorithms that either duplicate or split units (Lu et al., 2017; Du et al., 2019;826

Liu et al., 2019a; Dong et al., 2020; Wu et al., 2020). These algorithms reuse neurons, layers, or branches of827

the network that have already been trained on the present dataset and task as initialization points.828

Masking and Super-networks: A common approach to allow structural learning is to use masking within829

the ANN implementation. This mask is an encoding of the structure, enumerating all possible entities and830
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controlling which ones are actively used in a given structure. By relaxing this mask to be continuous, the831

mask can permit continuous learning where the mask itself is treated like parameters of the network that832

can be optimized and discretized, such as in pruning or continuous neural architecture search.833

When implemented on the layer level for NAS, masking also naturally leads to weight-sharing, where many834

different architectures are represented with shared parameter data structures but the mask imposes different835

functionality by specifying the architectural path and thus the parameters used within the super-network.836

The architectures parameters used for this specification in continuous NAS are usually activated by softmax,837

gumbel-softmax, or another balancing function in order to enforce scaling across parallel options. Gumbel-838

softmax and annealing are more recent innovations in activation of NAS parameters to smooth the transition839

to the final discretization (Guo et al., 2020; Kang & Han, 2020; Noy et al., 2020; Wan et al., 2020). Other840

NAS papers have introduced non-competitive activation functions (Chu et al., 2020). Once activated, the841

architecture parameters may then be used for weighted sums of the activations from parallel layer options842

in continuous architecture search. For path-sampling architecture search, the activated parameters are often843

used as a sampling probability.844

When implemented on the neuron level, masking for synaptic pruning, such as in unstructured pruning845

algorithms, allows for simpler computations by element-wise multiplication, but does not lead to any com-846

putational speed-up without specialized software. Because masks for neural pruning control multiple synaptic847

parameters per unit with a single masking parameter, they may require regularization to enforce group-wise848

operations on the parameters during the algorithm, or else the mask may be implemented across dimensions849

of the parameter matrices if that is compatible with the parameter data structure representation, such as850

batch normalization scaling factors (Gordon et al., 2018). Like NAS, some neuron-level masking implemen-851

tations also use temperature in their implementation to smooth the transition from the continuous relaxation852

to discrete masking (Bellec et al., 2018).853

Masking naturally turns architectural selection problems into a pruning problem with a bounded search854

space. This often creates a limitation in neural architecture search and pruning methods where these meth-855

ods are used: the maximum size network over the course of search should be able to fit its forward and856

backward passes on a GPU at the same time, even if the desired final network will be much smaller. For857

example, super-networks in NAS are often limited by the GPU size: for continuous NAS methods, all op-858

tions are at least partially activated, resulting in a very large network to evaluate and optimize. In order for859

the final network discretized from the super-network to also approach the GPU size, many continuous NAS860

works search in a shallower architecture with fewer channels and then implement the discretized structure861

in a deeper architecture by repeating cells, which is another benefit of using modular cells. However, this862

restrains the architecture search to repeatable cells with channels, which is not always applicable for tasks863

outside of image classification. It also further deepens the discretization gap by contributing to the structural864

differences between the super-network and the discretized network, as discussed in Section 3.3.865

Dynamically sparse training methods avoid the large initial model by sparsely initializing the network and866

dynamically adjusting which entities are active, allowing the network to maintain a maximum density level867

(Bellec et al., 2018; Wortsman et al., 2019). This results in a predefined structural search space with-868

out limitations on the size of the full search space, but requires structural learning processes that are not869

memory-bound to fully reap the benefits over standard pruning techniques.870

Interconnectivity: The brain shows connectivity patterns that are much more flexible and complex than871

modern standard feed-forward networks, where neurons are organized in layers and each layer is only con-872

nected to its immediate neighbors. Neural architectures tended towards this organized structure in the early873

decades of backpropagation, particularly for the multi-layer perceptron. Recently, the skip-connection broke874

this simple patterning and improved the state of the art in computer vision and many other tasks (Srivastava875

et al., 2015). It allows for much deeper networks to be trained without vanishing gradients and for higher876

and lower-level features to be used together. Many structural learning algorithms like NAS allow for inter-877

connectivity flexibility on the layer level, while Bellec et al. (2018); Wortsman et al. (2019) allow even finer878

interconnectivity outside of layer organization on the neuron level. Including the potential for such flexible879

interconnectivity in structural learning, rather than using a rigid connectivity backbone, greatly expands880

the search space and thus adds complexity to the search, but also yields the potential for more powerful881

networks.882
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Weight Reinitialization: Most neural-level structural learning algorithms are end-to-end, where weights883

learned in tandem to the architecture are used in the final ANN either without any further training or with884

only finetuning. In contrast, most layer-level continuous NAS approaches require full weight reinitialization885

and training after architecture discretization. While this does allow the super-network and discretized886

architecture to have different shapes and training hyperparameters, it is generally more expensive and has a887

risk of uncorrelated performance between the two stages. This trend is also seen in Frankle & Carbin (2018),888

although here the pruned network returns to the initial initialization for the remaining weights.889

5.2 Adjacent Domains890

In addition to the external review papers cited in 2.2, we build upon our analysis to mention closely related891

domains and techniques that are not quite covered by our structural learning framework. They generally892

cover neural timescales or non-structural operations outside of the scope of our neural operators, but could893

be used in tandem with or inspire other forms of structural learning.894

Attention and LSTMs: In contrast to the methods we have considered that specifically use dynamic895

connectivity and structures during the training process, networks incorporating self-gating mechanisms,896

such as recurrence and attention, exhibit ephemerality at inference time (Hochreiter & Schmidhuber, 1997;897

Vaswani et al., 2017). This is most analogous to computation on the neuromodulatory timescale. Attention898

operates similarly to regulatory firing, instantaneously adjusting computation for a single input without899

longer term effects using feedback connections (Herstel & Wierenga, 2021). Simpler recurrence structures900

can also operate on this very short timescale, while LSTMs are more akin to chemical neuromodulation901

(Marder, 2012).902

Biologically-inspired networks: There are a number of artificial neural model and network types which903

are further inspired by biology. Spiking neural networks (SNNs) use the transmission of discrete spikes,904

sometimes along multiple synapses between a given pair of neurons, to transmit information (Maass, 1997;905

Tavanaei et al., 2019); liquid state machines, a recurrent version of SNNs, have been studied using similar906

neural operatorsas the ones studied in this work (Tian et al., 2021). As SNNs imitate the spiking behavior907

of biological cells, they can be used to model biological networks, including network structure (Kasabov,908

2014). Simple organisms such as C. Elegans with mapped neural circuits can be modelled with high levels909

of detail (Olivares et al., 2021); neural circuit policy models, inspired by the brain structure of C. Elegans,910

use cellular dynamics that model biological neurons, including time dependence and sparsity (Lechner et al.,911

2020). Modelling biological neural structure can help understand how such structures form and their role in912

learning, and biologically-inspired networks are well-positioned for this.913

Evolutionary algorithms: Evolutionary algorithms are a logical choice for NAS due to their flexible914

problem encoding and high parallelization; in addition, searching for the evolutionary priors for effective915

learning is a clear inspiration from biology. There is a long history of using evolution to find ANN structure:916

Miller et al. (1989) was among the first to describe architecture search using a Genetic Algorithm; in Richards917

et al. (1998), ANNs were evolved to play Go; and NEAT (Stanley & Miikkulainen, 2002) has been applied918

in domains from image generation (Secretan et al., 2011) to Atari game playing (Hausknecht et al., 2014).919

Contemporary methods combine evolutionary architectural search with gradient descent on weights (Lu920

et al., 2020; Ci et al., 2021). In these methods, structural changes usually happen at the generational level,921

for example as mutations of existing architectures; while this makes them difficult to study in the context922

of individual neural operators, they can provide insight and comparison for structural learning methods, as923

highlighted in Stanley et al. (2019).924

A different evolutionary domain which takes direct inspiration from the biological evolution of nervous925

systems is the evolution of structural learning rules, as in Gruau (1994); Miller & Wilson (2017); Miller926

(2022). In these works, structural learning decisions such as performing neural operators are taken by927

evolved rule sets, in the form of L-systems (Hornby & Pollack, 2002), grammars (Gruau, 1994), or functional928

graphs (Miller & Wilson, 2017). In these works, individuals in a population representing different structural929

learning rules are used to develop ANNs; structural characteristics of the resulting ANNs or the performance930

of the ANN on tasks are used to inform the fitness and optimization of the various rules. Miller (2022)931

presents a comprehensive overview of this domain. As demonstrated in this article, structural learning932
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decisions can be difficult to design, with aspects like timing, relation to learning, and information from other933

parts of the network contributing to the decision. Evolution can aid in this design, and we aim in this article934

to provide information about structural learning which may help inform these evolutionary approaches.935

Meta-learning: The fields of AutoML and more specifically meta-learning go beyond optimizing a single936

model and rather tackle optimization of how a model learns (He et al., 2021; Huisman et al., 2021). Many937

meta-learning works aim for fast learning, using only a few samples to learn a new task. Humans and other938

animals developed fast learning, such as easily learning how to toss a new object after learning how to toss939

other objects, over the course of evolution; we cannot nor need to conscientiously change brain structure940

to learn a new skill, while genes and structural operations in the brain are separated by many processes941

that prevent any strong direct effects. Thus, while fast learning itself happens on a timescale between942

neuromodulation and structural learning, the technique of fast learning was discovered over the course of943

the much longer timescale of evolution.944

Similar hierarchies of automation occur in meta-learning and large language models, even going towards945

networks building networks (Zoph & Le, 2017; Chen et al., 2022). In these approaches and evolutionary946

search, there must be hand-design at some level, but engineering at a higher level allows for higher complexity947

to occur throughout the subsequent lower levels. In the biological case, operations within neural networks948

are abstracted away from the two controllable variables of consciousness and genes. This suggests continuing949

setting up artificial systems from progressively higher levels, but also comes with the disadvantage of turning950

the abstraction between levels into a black box. Similarly, meta-learning works often by training ANNs in951

the pursuit of learning how to improve learning (Finn et al., 2017; Chen et al., 2022), although the recent952

trend of massive models with attention mechanisms allowing sparse module activations trained on massive953

amounts of data and tasks exhibit fast learning as well (Brown et al., 2020).954

With the current state of structural learning and adjacent domains in mind, we next present challenges and955

future directions within structural learning.956

5.3 Current Challenges and Future Directions for Development957

As computational speed and power, as well as datasets, continue to increase, the desire to automate the958

engineering of ANN architectures is increasing as well. Human engineering is currently a rate-limiting step959

of ANN architecture innovation. Among discussions already presented throughout this paper on the past and960

current state of structural learning, we will end our discussion with present challenges and future directions961

for development.962

Many of the benchmark applications that structural learning algorithms are implemented and demonstrated963

for are well-studied supervised tasks over datasets with static and representative distributions across the964

training and test partitions. While these provide a consistent benchmark against hand-designed networks965

and are useful for algorithm development, their utilization is almost paradoxical for one of the powerful966

potentials of structural learning: automating structural design even for tasks that are not well-studied.967

Structural learning may allow for more power in less studied and engineered applications, bypassing the968

need for specific architectural innovations to be designed by hand for every such task. This phenomenon969

is particularly noted in NAS; automating the engineering of architectures could potentiate the application970

of ANNs to less-studied tasks, but the majority of NAS papers only report results on the same few image971

classification datasets for which architectures have already been thoroughly researched, each trial trained972

independently from scratch, with image-specific search spaces like convolutional layers in repeatable cells.973

Learning environments that go beyond the basics include multi-task learning (Lu et al., 2017; Dai et al.,974

2019a; Guo et al., 2020; Peng et al., 2021), continual learning (Dai et al., 2019a; Li et al., 2019; Wu et al.,975

2020; Peng et al., 2021; Niu et al., 2021), and reinforcement learning (Hornby & Pollack, 2001; Fu et al.,976

2020; Miao et al., 2021). These may also approach the dynamic learning environment of the human brain977

more closely, where representations, labels, and rewards must be internally implemented (Botvinick et al.,978

2020; Banerjee et al., 2021). Few structural learning papers have implemented their algorithms in these979

environments thus far, but they represent a deeper level of artificial intelligence.980

Our definition of structural learning implies dimensionality changes to the objective function space of ANNs.981

Structural optimization alongside weight optimization thus prompts a multi-level optimization, with the982
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structure of the network being the outer-most level that defines the space of parameters being optimized on983

a lower level (Xie et al., 2021). This is explicitly considered in many continuous super-network NAS papers984

as a bilevel problem (Liu et al., 2018), but the optimization is often simplified to alternating gradient descent985

steps without theoretical guarantees but with reasonable performance relative to time and computation cost986

in practice. Multi-level optimization methods are continuously being developed (Huang & Huang, 2021)987

and may be applied to structural learning, but the trade-off of performance with complexity cost must be988

considered for effective use.989

The level of abstraction, demonstrated in Figure 1, has resulting trade-offs for the structural learning al-990

gorithm employing it. Lower level abstractions, such as the direct paradigm of feed-forward neurons, allow991

for fine-grained tuning of the architecture, but may be too minute for architectures with multiple higher992

orders of structure and billions of parameters. Higher level paradigms, towards NAS super-networks, impose993

difficulty by requiring additional structural design in the search space, such as selecting or even structurally994

optimizing the layer options present in each connection as modules. Combining multiple levels within a995

single algorithm has thus far been rare (Yan et al., 2019), but presents a powerful direction for structural996

learning, requiring coordination of each level that have mostly been studied in isolation thus far.997

Structural creation is the most difficult form of structural learning because it is open-ended and slow with998

current methods. However, such a large search space gives it the potential to be the most fruitful in the999

pursuit of automating architectural design of ANNs. It is represented not only in selecting where and how1000

to add new units, but also in widening the search spaces of potential layer types and connectivity patterns,1001

which are currently rather limited to discrete, hand-engineered choices. In order to surpass this limited space,1002

Bronstein et al. (2021) presents a geometric framework to unite diverse ANN architectures, layer types, and1003

data structure types. Applying these ideas to ANN structural learning could expand the search space by1004

utilizing symmetry-inducing invariances with less restrictions on the input data structure, thus supporting1005

applications even to less naturally tensor-like data structures.1006

In biology, the genetic code potentiates each neural operator within biological media through transcription1007

then translation to proteins underlying the cellular processes that govern brain structure dynamics. In ANNs,1008

the components of the learning algorithm can be considered like the genetic sequence which determines how1009

ANN learning, both basic weight optimization and the more difficult structural learning, can operate within1010

the computational media of hardware and software given an individual in a learning scenario with training1011

data. The developmental search space is encoded in the algorithm. Most such genetic sequences are hand-1012

designed, but some efforts have been made towards recipe search, where the algorithm itself is automatically1013

designed and optimized. Evolution was the crucial process for discovering the current foundation for bi-1014

ological structural learning, such as discovering useful modular structures and defining the phases of high1015

neurogenesis in early development to dynamic connectivity later in life. Some efforts towards replicating1016

this process are in evolutionary recipe search, where an evolutionary algorithm tries to optimize the entire1017

procedure of structuring and training a neural network. This represents learning on multiple timescales,1018

beyond just the lifetime of a single ANN.1019

Beyond providing a biologically-inspired framework for structural learning in ANNs, we also intend for this1020

work to strengthen connections between the various sub-communities performing structural learning. We1021

noted a lack of cross-citations both across time and across sub-communities. Many pruning algorithms in1022

the last five years implement the same main abstract methodology as those from three decades ago, but1023

now show drastic improvements in performance (Blalock et al., 2020). While pruning and NAS works are1024

somewhat well-connected within their respective corpora, developmental works using the creation operations1025

are not, due to both a lack of common vocabulary and a relatively low frequency of new methods. Further,1026

algorithms for more dynamically structured ANNs often compare against their more static counterparts,1027

but not vice versa, and a similar pattern occurs for some of the adjacent domains mentioned in 5.2 versus1028

conventional networks. Our provided framework can help bridge the abstract similarities between algorithms1029

to promote collaboration, not only between the neuroscience and machine learning communities, but also1030

between the sub-communities of the latter.1031
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5.4 Conclusion1032

Structural learning in ANNs is a dynamic and diverse field with a vast potential. Our biologically-inspired1033

framework of neural operators, consisting of neural creation, synaptogenesis, neural pruning, and synaptic1034

pruning, provides a means for synergy not only between neuroscience and machine learning, but also between1035

subcommunities within structural machine learning such as pruning, AutoML, neural architecture search,1036

and developmental neural networks. Furthering structural learning across these approaches could lead to1037

significant breakthroughs beyond the current state of the art in artificial intelligence and machine learning.1038
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Ash (1989) + + + +
Fahlman & Lebiere (1990) + + + + +
Frean (1990) + + + +
LeCun et al. (1990) + + + + +
Hassibi et al. (1993) + + + +
Lehtokangas (1999) + + + +
Ma & Khorasani (2003) + + + + +
Narasimha et al. (2008) + + + + +
Islam et al. (2009) + + + + +
Puma-Villanueva et al. (2012) + + + + + + +
Han et al. (2015) + + + + + +
Guo et al. (2016) + + + + + + +
Pan et al. (2016) + + + + +
Siegel et al. (2016) + + + + + +
Anwar et al. (2017) + + + + + + +
Cortes et al. (2017) + + + + +
Elsken et al. (2017) + + + + + + + +
Li et al. (2017) + + + + +
Lu et al. (2017) + + + + + + +
Bellec et al. (2018) + + + + + + + +
Gordon et al. (2018) + + + + + + + +
Liu et al. (2018) + + + + + + +
Veniat & Denoyer (2018) + + + + + + +
Cai et al. (2019) + + + + +
Chen et al. (2019) + + + + + +
Dai et al. (2019a) + + + + + + + + + + + +
Dai et al. (2019b) + + + + + + + + +
Du et al. (2019) + + + + + + + + +
Laube & Zell (2019) + + + + + + + +
Lee et al. (2019) + + + + + + + + +
Li et al. (2019) + + + + + + +
Liu et al. (2019a) + + + + + + + +
Wortsman et al. (2019) + + + + + +
Yan et al. (2019) + + + + + + +
Bi et al. (2020) + + + + +
Dong et al. (2020) + + + + +
Guo et al. (2020) + + + + + + + + +
Kang & Han (2020) + + + +
Mei et al. (2020) + + + + + + +
Noy et al. (2020) + + + + +

Wan et al. (2020) + + + + + +
Wen et al. (2020) + + + + +
Wu et al. (2020) + + + + + + + + + +
Yao et al. (2020) + + + + + + +
Ye et al. (2020) + + + + + + +
Bian et al. (2021) + + + + + +
Ci et al. (2021) + + + + + +
Guo et al. (2021) + + + + + + +
Kim et al. (2021) + + + + + +
Peng et al. (2021) + + + + + + + + +
Roberts et al. (2021) + + + + + + + + + +
Sinha & Chen (2021) + + + + +
Wang et al. (2021) + + + + +
Yuan et al. (2021) + + + + + + + +
Evci et al. (2022) + + + + + + +
Maile et al. (2022) + + + + + + +

Table 1: Operator type, unit type, layer type, and task qualities across the collected corpus.
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Ash (1989) +
Fahlman & Lebiere (1990) +
Frean (1990) +
LeCun et al. (1990) +
Hassibi et al. (1993) +
Lehtokangas (1999) +
Ma & Khorasani (2003) +
Narasimha et al. (2008) + +
Islam et al. (2009) +
Puma-Villanueva et al. (2012) + +
Han et al. (2015) + + +
Guo et al. (2016) + +
Pan et al. (2016) + +
Siegel et al. (2016) +
Anwar et al. (2017) + +
Cortes et al. (2017) + +
Elsken et al. (2017) + + +
Li et al. (2017) +
Lu et al. (2017) + + +
Bellec et al. (2018) + + +
Gordon et al. (2018) +
Liu et al. (2018) + + + + + +
Veniat & Denoyer (2018) + + + + + +
Cai et al. (2019) + + + + + +
Chen et al. (2019) + +
Dai et al. (2019a) + + +
Dai et al. (2019b) + +
Du et al. (2019) + +
Laube & Zell (2019) + + + + + + +
Lee et al. (2019) +
Li et al. (2019) + + +
Liu et al. (2019a) + +
Wortsman et al. (2019) + + + +
Yan et al. (2019) + + + + +
Bi et al. (2020) + + + + + +
Dong et al. (2020) +
Guo et al. (2020) + + +
Kang & Han (2020) + + + +
Mei et al. (2020) + + + +
Noy et al. (2020) + + + + + +
Wan et al. (2020) + + + +
Wen et al. (2020) +
Wu et al. (2020) + +
Yao et al. (2020) + + + + + +
Ye et al. (2020) + +
Bian et al. (2021) + + + +
Ci et al. (2021) + + + + + +
Guo et al. (2021) + + + +
Kim et al. (2021) + +
Peng et al. (2021) + +
Roberts et al. (2021) + + + +
Sinha & Chen (2021) + + + +
Wang et al. (2021) + + + +
Yuan et al. (2021) + + +
Evci et al. (2022) +
Maile et al. (2022) + +

Table 2: Method and implementation qualities across the collected corpus.
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