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ABSTRACT

Precision medicine, such as patient-adaptive treatments utilizing medical images,
poses new challenges for image segmentation algorithms due to (1) the large vari-
ability across different patients and (2) the limited availability of annotated data for
each patient. In this work, we propose a data-efficient segmentation method to ad-
dress these challenges, namely Part-aware Personalized Segment Anything Model
(P2SAM). Without any model fine-tuning, P2SAM enables seamless adaptation
to any new patients relying only on one-shot patient-specific data. We introduce
a novel part-aware prompt mechanism to select multiple-point prompts based on
part-level features of the one-shot data, which can be extensively integrated into
different promptable segmentation models, such as SAM and SAM 2. To fur-
ther promote the robustness of the part-aware prompt mechanism, we propose
a distribution-similarity-based retrieval approach to determine the optimal num-
ber of part-level features for a specific case. P2SAM improves the performance
by +8.0% and +2.0% mean Dice score within two patient-specific segmentation
tasks, and exhibits impressive generality across different domains, e.g., +6.4%
mIoU on the PerSeg benchmark. Code will be released upon acceptance.

1 INTRODUCTION

Advances in modern precision medicine and healthcare have emphasized the importance of person-
alized treatment, aiming at adapting to the specific patient (Hodson, 2016). For instance, in radiation
therapy, patients undergoing multi-fraction treatment would benefit from longitudinal medical data
analysis that helps timely adjust treatment planning specific to the individual patient (Sonke et al.,
2019). To facilitate the treatment procedure, such analysis demands timely and accurate automatic
segmentation of tumors and critical organs from medical images, which has underscored the role
of computer vision approaches for medical image segmentation tasks (Hugo et al., 2016; Jha et al.,
2020). Despite the great progress made by previous works (Ronneberger et al., 2015; Isensee et al.,
2021; Dumitru et al., 2023), their focus remains on improving the segmentation accuracy within a
standard paradigm: trained on a large number of annotated data and evaluated on the in-distribution
validation set. However, personalized treatment presents unique challenges for segmentation algo-
rithms: (1) the large variability across different patients, and (2) the limited availability of annotated
training data for each patient. Overcoming these obstacles requires a segmentation approach that
can reliably generalize to out-of-distribution patients, in a data-efficient manner.

In this work, we address the unmet needs of the patient-specific segmentation by formulating it
as an in-context segmentation problem, leveraging the promptable segmentation mechanism inher-
ent in Segment Anything Model (SAM) (Kirillov et al., 2023). Under this objective, our method
seamlessly adapts to any new (out-of-distribution) patients relying only on one-shot patient-specific
prior data without requiring additional training, thus in a data-efficient manner. Moreover, such data
can be obtained in a standard clinical protocol (Chen et al., 2023), which will not burden clinical
researchers. To this end, we propose P2SAM: Part-aware Personalized Segment Anything Model.

In the original prompt mechanism of SAM, as illustrated by Figure 1, a single-point prompt may
result in ambiguous prediction, indicating the limitation in both in-domain and out-of-domain appli-
cations (Zhang et al., 2023; Huang et al., 2024). To alleviate the ambiguity problem, following the
statement in SAM, ”ambiguity is much rarer with multiple prompts”, we propose a novel part-aware
prompt mechanism to meticulously select multiple-point prompts based on part-level features of
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Figure 1: Illustration of SAM’s ambigu-
ity problem. The ground truth is circled
by a red dashed circle; the predicted
mask is depicted by a yellow solid line.

Figure 2: Illustration of two patient-specific segmenta-
tion tasks. P2SAM can segment the follow-up data by
utilizing the prior data as multiple-point prompts. Prior
and predicted masks are depicted by a solid yellow line.

the one-shot prior data. As illustrated in Figure 2, our method enables reliable adaptation to a new
patient across various tasks with one-shot prior data. To extract part-level features, we commence
by clustering the prior data into multiple groups in the embedding space. Then, we select multiple-
point prompts based on the similarity between these part-level features and the follow-up data. The
proposed approach can be generalized to different promptable segmentation models that support the
point modality, such as SAM and its successor, SAM 2 (Ravi et al., 2024). Here, we primarily utilize
SAM as the backbone model, but SAM 2 will be integrated within the specific setting.

On the other hand, when the number of parts is sub-optimal, either more or less, the chance of
encountering outlier prompts may increase. An extreme case is to cluster each image patch into
different groups, which renders a lot of outlier prompts (Liu et al., 2023). To make the part-aware
prompt mechanism more robust, we introduced a retrieval approach to investigate the optimal num-
ber of parts required for each case. The retrieval approach is based on the distribution similarity
between the foreground feature of the prior data and the result obtained under the current part count.
This principle is motivated by the fact that tumors and normal organs manifest in distinct distribu-
tions within medical imaging technologies (Garcı́a-Figueiras et al., 2019).

With the aforementioned designs, P2SAM addresses a general challenge—ambiguity—in prompt-
able segmentation models through a simple yet effective approach, benefiting both medical and
natural image domains. The key contributions of this work lie in three-fold:

1. We formulate the patient-specific segmentation as an in-context segmentation problem,
resulting in a data-efficient segmentation method, P2SAM, which operates with only one-
shot prior data and requires no model fine-tuning.

2. We propose a novel part-aware prompt mechanism that meticulously selects multiple-point
prompts based on part-level features, combined with a distribution-similarity-based re-
trieval approach to determine the optimal number of part-level features for each case. These
two designs effectively mitigate the ambiguity problem in promptable segmentation models
and enable P2SAM to adapt across different tasks, models, and domains.

3. Our method largely benefits real-world applications like patient-specific segmentation, one-
shot segmentation, and personalized segmentation. Experiment results demonstrate that
P2SAM improves the performance by +8.0% and +2.0% mean Dice score in two patient-
specific segmentation tasks and achieves a new state-of-the-art result, i.e., 95.7% mIoU on
the personalized segmentation benchmark PerSeg.

2 RELATED WORK

Segmentation Generalist. Over the past decade, various segmentation tasks including semantic
segmentation (Strudel et al., 2021; Li et al., 2023a), instance segmentation (He et al., 2017; Li et al.,
2022a; 2023b), and panoptic segmentation (Carion et al., 2020; Cheng et al., 2021b;a; Li et al.,
2022b) have been extensively explored for the image and video modalities. Motivated by the suc-
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cess of foundational language models (Radford et al., 2018; 2019; Brown et al., 2020; Touvron et al.,
2023), the computer vision research community is increasingly paying attention to developing more
generalized models that can tackle various vision or multi-modal tasks, or called foundation mod-
els (Li et al., 2022b; Oquab et al., 2023; Yan et al., 2023; Wang et al., 2023a;b; Kirillov et al., 2023).
Notably, Segment Anything model (SAM) (Kirillov et al., 2023) and its successor, SAM 2 (Ravi
et al., 2024) introduces a promptable model architecture, including the positive- and negative-point
prompt; the box prompt; and the mask prompt. SAM and SAM 2 emerge with an impressive zero-
shot interactive segmentation capability after pre-training on the large-scale dataset. Given the re-
markable generalization capacity, researchers within the medical image domain have been seeking
to build foundational models for medical image segmentation (Wu et al., 2023; Wong et al., 2023;
Wu & Xu, 2024; Zhang & Shen, 2024) upon them. Certain approaches (Ma et al., 2024a;b) have al-
ready shown promising results: MedSAM (Ma et al., 2024a) has exhibited significant performance
across various medical image segmentation tasks after fine-tuning SAM on an extensive medical
dataset. MedSAM 2 (Ma et al., 2024b) incorporates SAM 2 to segment a 3D medical image vol-
ume as video. However, whether these methods can achieve zero-shot performance as impressive as
SAM and SAM 2 remains an open question that requires further investigation (Ma et al., 2024b).

In-Context Learning First introduced as a new paradigm in natural language processing (Brown
et al., 2020), in-context learning allows the model to adapt to unseen input patterns with a few
prompts and examples, without the need to fine-tune the model. Similar ideas (Li et al., 2023b;
Sonke et al., 2019; Rakelly et al., 2018) have been explored in other fields. In computer vision,
few-shot segmentation (Rakelly et al., 2018; Wang et al., 2019b; Liu et al., 2020; Leng et al., 2024),
like PANet (Wang et al., 2019b), aims to segment new classes with only a few examples; in adaptive
therapy (Sonke et al., 2019), several works (Wang et al., 2019a; Elmahdy et al., 2020; Wang et al.,
2020; Chen et al., 2023) attempt to leverage limited patient-specific data to adapt a model to new pa-
tients, but these methods still require model fine-tuning in different manners. Recent advancements,
such as Painter (Wang et al., 2023a) and SegGPT (Wang et al., 2023b) pioneer novel in-context
learning approaches for vision tasks, enabling the timely segmentation of images based on speci-
fied image-mask prompts. SEEM (Zou et al., 2024) further explores this concept by investigating
different prompt modalities. More recently, PerSAM (Zhang et al., 2023) and Matcher (Liu et al.,
2023) have utilized SAM to tackle few-shot segmentation through the in-context learning fashion.
PerSAM introduces a novel task, known as personalized object segmentation (Zhang et al., 2023),
which aims at adapting SAM to new views of a specific object. However, PerSAM prompts SAM
with only a singular prompt, leading to the ambiguity problem (Kirillov et al., 2023) in the segmen-
tation results. On the other hand, Matcher enhances segmentation accuracy by utilizing multiple
sets of point prompts. However, Matcher’s prompt generation mechanism is based on patch-level
features. This mechanism makes Matcher dependent on DINOv2 (Oquab et al., 2023) to generate
prompts, which is particularly pre-trained under a patch-level objective. Despite this, Matcher still
generates a lot of outlier prompts. Thus, Matcher relies on a complicated framework and lacks
flexibility and robustness when integrated into other vision backbones, including SAM.

3 METHOD

We first introduce the problem setting within the context of patient-specific segmentation in Sec-
tion 3.1. We introduce our proposed methodology, P2SAM, in Section 3.2. Note that our method
can adapt to various domains. Therefore, we incorporate natural image illustrations in this section
to provide a more intuitive understanding. Finally, we present an optional fine-tuning strategy in
Section 3.3, to adapt the backbone model to the medical image domain if required.

3.1 PROBLEM SETTING

Our method aims to adapt a promptable segmentation model to out-of-distribution patients, with
only one-shot patient-specific prior data. As shown in Figure 2, such data can be obtained in a
standard clinical protocol, either from the initial visit of radiation therapy or the first frame of medi-
cal video. The prior data includes a reference image IR and a mask MR delineating the segmented
object. Given a target image, IT , our goal is to predict its mask MT , without additional human anno-
tation costs or model training burdens. This setting is also suitable for object-specific segmentation,
where the target image represents a new view of the same object depicted in the prior data.
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Figure 3: Illustration of presenting the prior data as multiple-point prompts. Masks are depicted
by a yellow solid line. We first cluster foreground features in the reference image into part-level
features. Then, we select multiple-point prompts based on the cosine similarity (⊗ in the figure)
between these part-level features and target image features. A colorful star, matching the color of
the corresponding part, denotes a positive-point prompt, while a gray star denotes a negative-point
prompt. These prompts are subsequently fed into the promptable decoder to do prediction.

3.2 METHODOLOGY OVERVIEW

Part-aware Prompt Mechanism. To facilitate a clearer understanding of the significance of each
part in our part-aware prompt mechanism, we illustrate this approach using a natural image, as
shown in Figure 3. We utilize SAM (Kirillov et al., 2023) as the backbone model here, but our
approach can be generalized to other promptable segmentation models, such as SAM 2 (Ravi et al.,
2024), as long as they support the point prompt modality. Given the reference image-mask pair
from the prior data, {IR,MR}, P2SAM first apply SAM’s Encoder to extract the visual features
FR ∈ Rh×w×d from the reference image IR. Then, we utilize the reference mask MR to select
foreground features F f

R according to:

F f
R = FR ◦MR (1)

where ◦ represents the mask selection, F f
R ∈ Rnf×d, and nf represents the number of foreground

features. We further cluster F f
R with k-mean++ (Arthur et al., 2007) into n parts. Here, we showcase

an example of n=4. We obtain the centroid of each part as the representative for the part-level
features, by applying an average pooling, denoting as {P c

R}
n
c=1 ∈ Rn×d. For illustration, we align

the features of each part with pixels in the RGB space, thereby contouring the corresponding regions
for each part in the image, respectively. We observe that SAM’s encoder tends to cluster features
together based on texture features, such as the characters and images depicted on the can.

After that, we extract the features FT from the target image IT using the same Encoder, and compute
similarity maps {Sc}nc=1 ∈ Rn×h×w based on the cosine similarity between the extracted part-level
features {P c

R}
n
c=1 and FT by:

Sc
ij =

P c
R · FT ij

∥P c
R∥2 ·

∥∥FT ij

∥∥
2

(2)

We determine n positive-point prompts {Posc}nc=1 with the highest similarity score on each simi-
larity map Sc, depicted as colorful stars in Figure 3.

For natural images, the background of the reference image and the target image may exhibit little
correlation. Thus, following the approach in PerSAM (Zhang et al., 2023), we choose one negative-
point prompt {Neg} with the lowest score on the average similarity map 1

n

∑n
c=1 S

c. {Neg} is
depicted as the gray star in Figure 3. However, for medical images, the background of the refer-
ence image is highly correlated with the background of the target image, usually both representing
normal anatomical structures. As a result, in medical images, shown as Figure 2 in Section 1, we
identify multiple negative-point prompts {Negc}nc=1 from the background. This procedure mirrors
the selection of multiple positive-point prompts but we use background features F b

R by replacing
MR with its logical negation M̃R in Equation 1. Finally, we send both positive- and negative-point
prompts into SAM’s Promptable Decoder and get the predicted mask MT for the target image.
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Figure 4: Illustration of P2SAM’s improvement.
Blue stars represent positive-point prompts.

Figure 5: Illustration of the approach to retrieve
the optimal number of parts for a specific case.

Retrieve the Optimal Number of Parts. Improvements of the part-aware prompt mechanism are
illustrated in Figure 4. The proposed approach can naturally avoid the ambiguous prediction intro-
duced by SAM (e.g., robot) and also improve precision (e.g., can). However, this approach may
occasionally result in outliers, as observed in the segmentation example in Figure 5, n=3. There-
fore, we propose a distribution-similarity-based retrieval approach to answer the question, ”How
many part-level features should we choose for each case?”. We assume the correct target fore-
ground feature F f

T = FT ◦MT , and the reference foreground feature F f
R should belong to the same

distribution. This assumption is grounded in the fact that tumors and normal organs will be reflected
in distinct distributions by medical imaging technologies (Garcı́a-Figueiras et al., 2019), also ob-
served by the density of Hounsfield Unit value in Figure 5. To retrieve the optimal number of parts
for a specific case, we first define N different part counts, n ∈ {1, · · · , N}, and obtain N sets of
part-aware target foreground features {{F f

T }n}Nn=1. Following WGAN (Arjovsky et al., 2017), we
utilize Wasserstein distance to measure the distribution similarity between the reference foreground
feature F f

R and each target foreground feature {F f
T }n. We determine the final number of part-level

features, n, with the smallest distance. The smaller distance value for the correct prediction in
Figure 4 indicates this approach can be further extended to natural images.

3.3 ADAPT SAM TO MEDICAL IMAGE DOMAIN IF NEEDED

Segment Anything Model (SAM) (Kirillov et al., 2023) is initially pre-trained on the SA-1B dataset.
Despite the large scale, a notable domain gap persists between natural and medical images. In more
realistic medical scenarios, clinic researchers could have access to certain public datasets (Aerts
et al., 2015; Jha et al., 2020) tailored to specific applications, enabling them to fine-tune the model.
Nevertheless, even after fine-tuning, the model can still be limited to generalize across various out-
of-distribution medical data from different institutions because of the large variability in patient
population, demographics, imaging protocol, etc., as mentioned in Section 1. P2SAM can then be
flexibly plugged into the fine-tuned model to enhance robustness on testing cases.

Specifically, when demanded, we utilize in-distribution datasets (Aerts et al., 2015; Jha et al.,
2020) to adapt SAM into the medical image domain. We try full fine-tune, and Low-Rank adapta-
tion (LoRA) (Hu et al., 2021) for further efficiency. During the fine-tuning, similar to Med-SA (Wu
et al., 2023), we adhere closely to the interactive training strategy outlined in SAM to maintain
the interactive ability. Details can be found in Appendix B. Then, we employ out-of-distribution
datasets (Bernal et al., 2015; Hugo et al., 2016) obtained from various institutions to mimic new
patient cases. Note that there is no further fine-tuning on these datasets.

4 EXPERIMENTS

We first introduce our experimental settings in Section 4.1. Then we evaluate the quantitative results
of our approach in Section 4.2. We show qualitative results in Section 4.3. Finally, we conducted
several ablation studies to investigate our designs in Section 4.4.
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4.1 EXPERIMENT SETTINGS

Dataset. We utilize a total of four medical datasets, including two in-distribution (i.d.) datasets: The
NSCLC-Radiomics dataset (Aerts et al., 2015), collected for non-small cell lung cancer (NSCLC)
segmentation, contains data from 422 patients. Each patient has a 3-dimensional computed tomog-
raphy volume along with corresponding segmentation annotations. The Kvasir-SEG dataset (Jha
et al., 2020), contains 1000 labeled endoscopy polyp images, with different resolutions ranging
from 332× 487 to 1920× 1072. Two out-of-distribution (o.o.d) datasets from different institutions:
The 4D-Lung dataset (Hugo et al., 2016), collected for longitudinal analysis, contains data from 20
patients, within which 13 patients underwent multiple visits, 3 to 8 visits for each patient. For each
visit, a 3-dimensional computed tomography volume along with corresponding segmentation labels
is available. The CVC-ClinicDB dataset (Bernal et al., 2015), contains 612 labeled polyp images
selected from 29 endoscopy videos, with a resolution of 384×288. i.d. datasets serve as the training
dataset to adapt SAM to the medical domain, while o.o.d. datasets serve as unseen patient cases.

Patient-Specific Segmentation Tasks. We test P2SAM under two patient-specific segmentation
tasks: NSCLC segmentation in the patient-adaptive radiation therapy and polyp segmentation in the
endoscopy video. For NSCLC segmentation, medical image domain adaptation will be conducted
on the i.d. dataset, NSCLC-Radiomics. For P2SAM, experiments are then carried out on the o.o.d.
dataset, 4D-Lung. We evaluate P2SAM on patients who underwent multiple visits during treatment.
For each patient, we utilize the image-mask pair from the first visit as the patient-specific prior
data. For polyp segmentation, domain adaptation will be conducted on i.d. dataset, Kvasir-SEG.
For P2SAM, experiments are then carried out on o.o.d. dataset, CVC-ClinicDB. For each video, we
utilize the image-mask pair from the first stable frame as the patient-specific prior data.

Implementation Details. All experiments are conducted on A40 GPUs. For the NSCLC-Radiomics
dataset, we extract 2-dimensional slices from the original computed tomography scans, resulting in
a total of 7355 labeled images. As for the Kvasir-SEG dataset, we utilize all 1000 labeled images.
We process two datasets following existing works (Hossain et al., 2019; Dumitru et al., 2023). Each
dataset was randomly split into three subsets: training, validation, and testing, with an 80:10:10
percent ratio (patient-wise splitting for the NSCLC-Radiomics dataset to prevent data leak). The
model is initialized with the SAM’s pre-trained weights and fine-tuned on the training splitting using
the loss function proposed by SAM. We optimize the model by AdamW optimizer (Loshchilov &
Hutter, 2017) (β1=0.9, β2=0.999), with a weight decay of 0.05. We further penalize the SAM’s
encoder with a drop path of 0.1. We fine-tune the model for 36 epochs on the NSCLC-Radiomics
dataset and 100 epochs on the Kvasir-SEG dataset with a batch size of 4. The initial learning rate is
1e-4, and the fine-tuning process is guided by cosine learning rate decay, with a linear learning rate
warm-up over the first 10 percent epochs. More details are provided in Appendix C.

Summary. We test P2SAM on o.o.d. datasets with three different SAM backbones: 1. SAM
pre-trained on the SA-1B dataset (Kirillov et al., 2023), denoted as Meta. 2. SAM adapted on
i.d. datasets with LoRA (Hu et al., 2021) and 3. full fine-tune, denoted as LoRA and Full-Fine-
Tune, respectively. We compare P2SAM against various methods, including previous approaches
such as the direct-transfer baseline; fine-tune on the prior data (Wang et al., 2019a; Elmahdy et al.,
2020; Wang et al., 2020; Chen et al., 2023); the one-shot segmentation method, PANet (Wang et al.,
2019b); and concurrent methods that also utilize SAM, such as PerSAM (Zhang et al., 2023) and
Matcher (Liu et al., 2023). For PANet, we utilize its align method for one-shot segmentation. For
Matcher, we adopt its setting of FSS-1000 (Li et al., 2020). It is important to note that all baseline
methods share the same backbone model as P2SAM does for fairness.

4.2 QUANTITATIVE RESULTS

Patient-Adaptive Radiation Therapy. As shown in Table 1, on the 4D-Lung dataset (Hugo et al.,
2016), P2SAM outperforms all other baselines across various backbones. Notably, when utilizing
Meta, P2SAM can outperform Matcher by +15.24% and PerSAM by +18.68% mean Dice score.
This highlights P2SAM’s superior adaptation to the out-of-domain medical applications. After
domain adaptation, P2SAM can outperform the direct-transfer baseline by +8.01%, Matcher by
+11.60%, and PerSAM by +2.48% mean Dice score. Demonstrate that P2SAM is a more effective
method to enhance model generalization on the o.o.d. data.
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Table 1: Results of NSCLC segmentation for patient-adaptive radiation therapy. We show the mean
Dice score for each method. base5.5M indicates tuning 5.5M parameters of the base SAM on the
NSCLC-Radiomics dataset before testing on the 4D-Lung dataset. † indicates training-free method;
‡ indicates the method using SAM.

Method Meta LoRA Full-Fine-Tune

huge0.0M base5.5M large5.9M base93.8M large312.5M

direct-transfer† - 56.10 57.83 58.18 61.11
fine-tune - 52.11 32.55 55.27 53.85

PANet† (Wang et al., 2019b) 4.28 5.24 7.79 40.03 44.70

Matcher†‡ (Liu et al., 2023) 13.28 50.81 50.88 59.52 57.67
PerSAM†‡ (Zhang et al., 2023) 9.84 63.63 64.69 62.58 64.45

P2SAM †‡ (Ours) 28.52 64.38 67.00 66.68 67.23

Table 2: Results of polyp segmentation for endoscopy video. Similar to Table 1, we show the mean
Dice score for each method. base5.5M indicates tuning 5.5M parameters of the base SAM on the
Kvasir-SEG dataset before testing on the CVC-ClinicDB dataset.

Method Meta LoRA Full-Fine-Tune

huge0.0M base5.5M large5.9M base93.8M large312.5M

direct-transfer† - 77.20 81.16 84.62 86.68
fine-tune - 75.29 79.50 83.14 86.67

PANet† (Wang et al., 2019b) 38.22 44.61 55.48 75.99 86.48

Matcher†‡ (Liu et al., 2023) 63.54 78.65 79.56 85.17 87.15
PerSAM†‡ (Zhang et al., 2023) 45.82 79.02 81.63 85.74 87.88

P2SAM †‡ (Ours) 66.45 80.03 82.60 86.40 88.76

Discussion. fine-tune is susceptible to overfitting with one-shot data, PANet fully depends on the
encoder, and Matcher selects prompts based on patch-level features. These limitations prevent them
from surpassing the direct-transfer baseline. On the other hand, NSCLC segmentation remains
a challenging task. We consider MedSAM (Ma et al., 2024a), which has been pre-trained on a
large-scale medical image dataset, as a strong baseline method. In Table 3, MedSAM achieves a
69% mean dice score on the 4D-Lung dataset with a human-given box prompt at each visit, while
P2SAM achieves comparable performance only with the ground truth provided at the first visit.

Endoscopy Video. As shown in Table 2, on the CVC-ClinicDB dataset (Bernal et al., 2015), P2SAM
still achieves the best result across various backbones. When utilizing Meta, P2SAM can surpass
Matcher by +2.91% and PerSAM by +20.63% mean Dice score. After domain adaptation, P2SAM
can outperform direct-transfer by +2.03%, Matcher by +1.81% and PerSAM by +0.88% mean Dice
score. Demonstrates P2SAM’s generality to various patient-specific segmentation tasks.

Discussion. All methods demonstrate improved performance in datasets like CVC-ClinicDB, which
exhibit a smaller domain gap (Matsoukas et al., 2022) with the SA-1B, SAM’s pre-training dataset.
In Table 3, we compare our results with Sanderson & Matuszewski (2022), which is reported as the
method achieving the best performance in Dumitru et al. (2023) under the same evaluation objective:
trained on Kvasir-SEG dataset and tested on the CVC-ClinicDB dataset. Our direct-transfer baseline
has already surpassed this result, which can be attributed to the superior generality of SAM but our
P2SAM can further improve the generalization.

On the other hand, we observe that P2SAM’s improvements over PerSAM become marginal after
domain adaptation (LoRA and Full-Fine-Tune v.s. Meta) on both datasets. This is because, as de-
tailed in Appendix B, the ambiguity inherent in SAM, which is the primary limitation of PerSAM, is
significantly reduced after fine-tuning on a dataset with a specific segmentation objective. Neverthe-
less, our method shows that providing multiple curated prompts can achieve further improvement.
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Table 3: Comparison with existing base-
lines. ⋆ indicates using a human-given
box prompt during the inference time.

Method 4D-Lung CVC-ClinicDB

baseline 69.00⋆ 83.14
direct-transfer 61.11 86.68

P2SAM 67.23 88.76

Table 4: Results of one-shot semantic segmentation.
We show the mean IoU score for each method. Note
that all methods utilize SAM’s encoder for fairness.

Method COCO-20i FSS-1000 LVIS-92i PerSeg

Matcher 25.1 82.1 12.6 90.2
PerSAM 23.0 71.2 11.5 89.3

P2SAM (Ours) 26.0 82.4 13.7 95.7

Table 5: Comparison with tracking meth-
ods. ∗ indicates utilizing Full-Fine-Tune.

Method 4D-Lung CVC-ClinicDB

AOT - 62.34
P2SAM - 67.23
SAM 2 - 81.98

SAM 2 + P2SAM - 84.43

label-propagation∗ 57.00 82.92

P2SAM ∗ 67.23 88.76

Table 6: Ablation study for the number of parts n and
the retrieval. Default settings are marked in Gray .

# parts (n) CVC-ClinicDB PerSeg

w.o. w. retrieval w.o. w. retrieval

1 (PerSAM) 45.8 45.8 89.3 89.3

2 53.9 59.5 83.7 92.9
3 53.6 61.9 91.0 95.6
4 54.3 63.1 93.8 95.6
5 56.6 64.2 93.3 95.7

Comparison with Tracking Algorithms. In Table 5, we additionally compared P2SAM with track-
ing algorithms: the label-propagation (Jabri et al., 2020) baseline, AOT (Yang et al., 2021), and
SAM 2 (Ravi et al., 2024). On the 4D-Lung dataset, we only test algorithms with Full-Fine-Tune
due to the large domain gap (Matsoukas et al., 2022). P2SAM outperforms the label-propagation
baseline, as the discontinuity in sequential visits—where the interval between two CT scans can
exceed a week—leads to significant changes in tumor position and features. On the CVC-ClinicDB
dataset, dramatic content shifts within the narrow field of view can also lead to discontinuity. De-
spite this, SAM 2 achieves competitive results even without additional domain adaptation. However,
as we have stated, P2SAM can be integrated into any promptable segmentation model. Indeed, we
observe further improvements when applying P2SAM to SAM 2.

Existing One-shot Segmentation Benchmarks. To further demonstrate P2SAM can also be gen-
eralized to natural image domain, we evaluate its performance on existing one-shot semantic seg-
mentation benchmarks: COCO-20i (Nguyen & Todorovic, 2019), FSS-1000 (Li et al., 2020), LVIS-
92i (Liu et al., 2023), and a personalized segmentation benchmark, PerSeg (Zhang et al., 2023). We
follow previous works (Zhang et al., 2023; Liu et al., 2023) for data pre-processing and evaluation.
In Table 4, when utilizing SAM’s encoder, P2SAM outperforms concurrent works, Matcher and
PerSAM, on all existing benchmarks. In addition, P2SAM can achieve a new state-of-the-art result
on the personalized segmentation benchmark, PerSeg (Zhang et al., 2023).

4.3 QUALITATIVE RESULTS

Figure 6 and 7 showcase the advantage of P2SAM for out-of-domain applications. As shown in Fig-
ure 6, by presenting sufficient negative-point prompts, we enforce the model’s focus on the semantic
target. Results in Figure 7 further summarize the benefits of our method: unambiguous segmenta-
tion and robust prompts selection. Our P2SAM can also improve the model’s generalization after
domain adaptation. By providing precise foreground information, P2SAM enhances segmentation
performance when the object is too small (e.g., the first two columns in Figure 8) and when the
segmentation is incomplete (e.g., the last two columns in Figure 9). Figure 10 and 11 showcase the
qualitative results on the PerSeg dataset, compared with Matcher and PerSAM respectively. The
remarkable results demonstrate that P2SAM can generalize well to different domain applications.

4.4 ABLATION STUDY

Ablation studies are conducted on the PerSeg dataset (Zhang et al., 2023) and CVC-ClinicDB
dataset (Bernal et al., 2015) using Meta. We explore the effects of the number of parts in the
part-aware prompt mechanism; the retrieval approach; distribution similarity measurements in the
retrieval approach; and the model size, which can be considered a proxy for representation capacity.
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Figure 6: Qualitative results of NSCLC segmen-
tation on the 4D-Lung dataset, with Meta.

Figure 7: Qualitative results of polyp segmenta-
tion on the CVC-ClinicDB dataset, with Meta.

Figure 8: Qualitative results of NSCLC segmen-
tation from two patients on the 4D-Lung dataset,
with Full-Fine-Tune.

Figure 9: Qualitative results of polyp segmen-
tation from one video on the CVC-ClinicDB
dataset, with Full-Fine-Tune.

Figure 10: Qualitative results of personalized
segmentation on the PerSeg dataset, compared
with Matcher.

Figure 11: Qualitative results of personalized
segmentation on the PerSeg dataset, compared
with PerSAM.

Number of Parts n. To validate the efficacy of the part-aware prompt mechanism, we establish a
method without the retrieval approach. As shown in Table 6 (w.o.), for both datasets, even solely
relying on the part-aware prompt mechanism, increasing the number of parts n enhances segmenta-
tion performance. When setting n=5, our part-aware prompt mechanism enhances performance by
+10.7% mean Dice score on CVC-ClinicDB, +4.0% mean IoU score on PerSeg. These substantial
improvements underscore the effectiveness of our part-aware prompt mechanism.

Retrieval Approach. The effectiveness of our retrieval approach is also shown in Table 6 (w. re-
trieval). When setting n=5, the retrieval approach enhances performance by +7.6% mean Dice score
on the CVC-ClinicDB dataset, +2.4% mean IoU score on the PerSeg dataset. These substantial im-
provements show that our retrieval approach can retrieve an appropriate number of parts for different
cases. Moreover, these suggest that we can initially define a wide range of part counts for retrieval,
rather than tuning it meticulously as a hyperparameter.
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Table 7: Ablation study for the distribu-
tion similarity measurement. Default set-
tings are marked in Gray .

Algorithm CVC-ClinicDB PerSeg

w.o. 54.3 93.8

Hungarian 61.1 95.6
Jensen–Shannon 58.1 94.0

Wasserstein 63.1 95.6

Table 8: Ablation study for model sizes. ↑ indicates
the improvement when compared with the same size
PerSAM. Default settings are marked in Gray .

Model CVC-ClinicDB PerSeg

PerSAMhuge 45.8 89.3

P2SAM base 55.1 90.0 26.0↑
P2SAM large 63.8 95.6 9.0↑
P2SAM huge 63.1 95.6 6.3↑

Distribution Similarity Measurements (n=4). The cornerstone of our retrieval approach lies in
distribution similarity measurements. To evaluate the efficacy of various algorithms, in Table 7,
we juxtapose two distribution-related algorithms, namely Wasserstein distance (Rüschendorf, 1985)
and Jensen–Shannon divergence (Menéndez et al., 1997), alongside a bipartite matching algorithm,
Hungarian algorithm. Given foreground features from the reference image and the target image,
we compute: 1. Wasserstein distance following the principles of WGAN (Arjovsky et al., 2017); 2.
Jensen-Shannon divergence based on the first two principal components of each feature; 3. Hun-
garian algorithm after clustering these two sets of features into an equal number of groups. All
algorithms exhibit improvements in segmentation performance compared to the w.o. retrieval base-
line, while the Wasserstein distance is better in our context. Note that, the efficacy of the Jensen-
Shannon divergence further corroborates our assumption that foreground features from the reference
image and a correct target result should align in the same distribution, albeit it faces challenges when
handling the high-dimensional data.

Model Size (n=4). In Table 8, we investigate the performance of different model sizes for our
P2SAM, i.e., base, large, and huge, which can alternatively be viewed as the representation capacity
of different backbones. For the CVC-ClinicDB dataset, a larger model size does not necessarily lead
to better results. This result aligns with current conclusions (Mazurowski et al., 2023; Huang et al.,
2024): In medical image analysis, the huge SAM may occasionally be outperformed by the large
SAM. On the other hand, for the PerSeg dataset, even utilizing the base SAM, P2SAM achieves
higher accuracy compared to PerSAM with the huge SAM. These findings further underscore the
robustness of P2SAM, particularly in scenarios where the model exhibits weaker representation, a
circumstance more prevalent in medical image analysis.

5 CONCLUSION

We propose a data-efficient segmentation method, P2SAM, to solve the patient-specific segmen-
tation problem. With a novel part-aware prompt mechanism and a distribution-similarity-based
retrieval approach, P2SAM can effectively integrate the patient-specific prior information into the
current segmentation task. P2SAM demonstrates promising versatility in enhancing the backbone’s
generalization across various levels: 1. At the task level, P2SAM enhances performance across dif-
ferent patient-specific segmentation tasks. 2. At the model level, P2SAM can be integrated into
various promptable segmentation models, such as SAM, SAM 2, and SAM after domain adaptation.
3. At the domain level, P2SAM performs effectively in both medical and natural image domains. We
discuss a potential limitation of P2SAM in Appendix E. P2SAM may face challenges when multiple
similar objects are present, a difficulty also encountered by other methods. While this scenario is
uncommon in most patient-specific segmentation settings, we acknowledge this limitation and pro-
pose a potential solution. In this work, to meet clinical requirements, we choose to adapt SAM to
the medical imaging domain with public datasets. We opted not to adopt SAM 2, as it requires video
data for fine-tuning, which is more costly. Additionally, treating certain patient-specific segmenta-
tion tasks as video tracking is inappropriate. In contrast, approaching patient-specific segmentation
as an in-context segmentation problem offers a more flexible solution for various patient-specific
segmentation tasks. Moreover, P2SAM has demonstrated advantages when integrated with SAM 2
for polyp video segmentation even before domain adaptation, suggesting its potential to enhance
performance in methods of segmenting medical video and in methods of segmenting 3D medical
volumes as video. Further exploration of this potential is left for future work. We hope our work
brings attention to the patient-specific segmentation problem within the research community.
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APPENDIX

• A: SAM Review

• B: SAM Adaptation Details

• C: Test Implementation Details

• D: Visualization

• E: Multiple Objects

• F: Discussion on Additional Related Works

A SAM REVIEW

Overview. Segment Anything Model (SAM) (Kirillov et al., 2023) comprises three main compo-
nents: an image encoder, a prompt encoder, and a mask decoder, denoted as EncI , EncP , and
DecM . As a promptable segmentation model, SAM takes an image I and a set of human-given
prompts P as input. SAM predicts segmentation masks Ms by:

Ms = DecM (EncI(I),EncP (P )) (3)

During training, SAM supervises the mask prediction with a linear combination of focal loss (Lin
et al., 2017) and dice loss (Milletari et al., 2016) in a 20:1 ratio. When only a single prompt is pro-
vided, SAM generates multiple predicted masks. However, SAM backpropagates from the predicted
mask with the lowest loss. Note that SAM returns only one predicted mask when presented with
multiple prompts simultaneously.

Prompt Encoder Details. EncI and DecM primarily employ the Transformer (Vaswani, 2017;
Dosovitskiy et al., 2020) architecture. Here, we provide details on components in EncP . EncP
supports three prompt modalities as input: the point, box, and mask logit. The positive- and negative-
point prompts are represented by two learnable embeddings, denoted as Epos and Eneg, respectively.
The box prompt comprises two learnable embeddings representing the left-up and right-down cor-
ners of the box, denoted as Eup and Edown. In cases where neither the point nor box prompt is
provided, another learnable embedding Enot-a-point is utilized. If available, the mask prompt is
encoded by a stack of convolution layers, denoted as Emask; otherwise, it is represented by a learn-
able embedding Enot-a-mask.

Interactive Training. SAM employs an interactive training strategy. In the first iteration, either
a positive-point prompt, represented by Epos, or a box prompt, represented by {Eup, Edown}, is
randomly selected with equal probability from the ground truth mask. Since there is no mask prompt
in the first iteration, Epos or {Eup, Edown} is combined with Enot-a-mask and fed into DecM . In
the follow-up iterations, subsequent positive- and negative-point prompts are uniformly selected
from the error region between the predicted mask and the ground truth mask. SAM additionally
provides the mask logit prediction from the previous iteration as a supplement prompt. As a result,
{Epos, Eneg, Emask} is fed into DecM during each iteration. There are 11 total iterations: one
sampled initial input prompt, 8 iteratively sampled points, and two iterations where only the mask
prediction from the previous iteration is supplied to the model.

B SAM ADAPTATION DETAILS

In Section 3.3, we propose to adapt SAM to the medical image domain when it is needed, with full
fine-tune (Full-Fine-Tune) and LoRA (Hu et al., 2021) (LoRA). For Full-Fine-Tune, we fine-tune all
parameters in SAM backbone. For LoRA, we insert the LoRA module in the image encoder EncI
and only fine-tune parameters in the LoRA module and the mask decoder DecM . Our fine-tuning
objectives are as follows:

1. The model can accurately predict a mask even if no prompt is provided.

2. The model can predict an exact mask even if only one prompt is given.

3. The model maintains promptable ability.
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The training strategy outlined in SAM cannot satisfy all these three requirements: 1. The mask
decoder DecM is not trained to handle scenarios where no prompt is given. 2. The approach to
resolving the ambiguous prompt by generating multiple results is redundant as we have a well-
defined segmentation objective. Despite that, we find a simple modification can meet all our needs:

1. In the initial iteration, we introduce a scenario where no prompt is provided to SAM. As a
result, {Enot-a-point, Enot-a-mask} is fed into DecM in the first iteration.

2. To prevent Enot-a-point and Enot-a-mask from introducing noise when human-given
prompts are available, we stop their gradients in every iteration.

3. We ensure that SAM always returns an exact predicted mask. As a result, the ambiguity
problem does not exist in the model after fine-tuning.

C TEST IMPLEMENTATION DETAILS

In this section, for further reproducibility, we provide the details of the retrieval range during the test
time for the COCO-20i (Nguyen & Todorovic, 2019), FSS-1000 (Li et al., 2020), LVIS-92i (Liu
et al., 2023), and Perseg (Zhang et al., 2023) dataset in Table 9, the 4D-Lung (Hugo et al., 2016) and
CVC-ClinicDB (Bernal et al., 2015) dataset in Table 10,.

Table 9: Retrieval range for the COCO-20i, FSS-1000, LVIS-92i,
PerSeg dataset. Blue indicates the retrieval range for positive-point
prompts. Red indicates the retrieval range for negative-point prompts.

COCO-20i FSS-1000 LVIS-92i PerSeg

1, 6-10 / 1 1-5 / 1 1, 4-10 / 1 1-5 / 1

Table 10: Retrieval range for the 4D-Lung and CVC-ClinicDB dataset. Blue in-
dicates the retrieval range for positive-point prompts. Red indicates the retrieval
range for negative-point prompts.

Dataset Meta LoRA Full-Fine-Tune

huge base large base large

4D-Lung 1-2 / 45 1-3 / 1 1-3 / 1 1-3 / 1 1-3 / 1
CVC-ClinicDB 1-5 / 1-3 1-3 / 1-3 1-2 / 1-3 1-2 / 1 1-5 / 1-3

The final number of positive-point and negative-point prompts is determined by our distribution-
similarity-based retrieval approach. Below, we explain how the retrieval range is determined.

For LoRA and Full-Fine-Tune, the retrieval range is determined based on the validation set of the i.d.
datasets. We uniformly sample positive-point and negative-point prompts on the ground-truth mask
and perform interactive segmentation. The number of prompts is increased until the improvement
becomes marginal, at which point this maximum number is set as the retrieval range for o.o.d. test
datasets. On the 4D-Lung dataset, we consistently set the number of negative-point prompts to 1
for these two types of models. This decision is informed by conclusions from previous works (Ma
et al., 2024a; Huang et al., 2024), which suggest that the background and semantic target can appear
very similar in CT images, and using too many negative-point prompts may confuse the model.

On the CVC-ClinicDB dataset, the endoscopy video is in RGB space, resulting in a relatively small
domain gap (Matsoukas et al., 2022) compared to SAM’s pre-trained dataset. Therefore, for Meta,
we use the same retrieval range as the Full-Fine-Tune large model. In contrast, on the 4D-Lung
dataset, CT images are in grayscale, leading to a significant domain gap (Matsoukas et al., 2022)
compared to SAM’s pre-trained dataset. Consequently, we set the retrieval range for positive-point
prompts to 2 to avoid outliers and fixed the number of negative-point prompts to a large constant
(i.e., 45) rather than a range, to ensure the model focuses on the semantic target. These values were
not further tuned.
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Figure 12: Visualization results on the 4D-Lung
dataset, based on a varying number of part-level
features.

Figure 13: Visualization results on the CVC-
ClinicDB dataset, based on a varying number of
part-level features.

Figure 14: Visualization results on the PerSeg dataset, based on a varying number of part-level
features.

D VISUALIZATION

In this section, to provide deeper insight into our part-aware prompt mechanism and distribution-
similarity-based retrieval approach, we present additional visualization results on the 4D-
Lung (Hugo et al., 2016) dataset, the CVC-ClinicDB (Bernal et al., 2015) dataset, and the
PerSeg (Zhang et al., 2023) dataset. These visualizations are based on a varying number of part-
level features, offering a clearer understanding of how the part-aware prompt mechanism adapts to
different segmentation tasks and domains.

In Figure 12 and 13, we observe that an appropriate number of part-level features can effectively
divide the tumor into distinct parts, such as the body and edges for non-small cell lung cancer, and
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Figure 15: Qualitative results of single-cell segmentation on the PhC-C2DH-U373 dataset. The
second row highlights the challenge P2SAM faces in handling multiple similar objects. The third
row demonstrates that P2SAM can overcome this challenge with a cost-free regularization.

the body and light point (caused by the camera) for the polyp. This illustrates how P2SAM can assist
in cases of incomplete segmentation. In Figure 14, we observe that an appropriate number of part-
level features can effectively divide the object into meaningful components, such as the pictures,
characters, and aluminum material of a can; the legs and platforms of a table; or the face, ears, and
body of a dog. These parts can merge naturally based on texture features when using the appropriate
number of part-level features, whereas using too many features may result in over-segmentation.
Our retrieval approach, on the other hand, helps determine the optimal number of part-level features
for each specific case.

E MULTIPLE OBJECTS

In this section, we want to discuss a potential limitation of P2SAM. P2SAM demonstrates improve-
ments in the backbone’s generalization across domain, task, and model levels. At the task level,
we have already shown how P2SAM enhances performance for NSCLC segmentation in patient-
adaptive radiation therapy and polyp segmentation in endoscopy videos. However, when addressing
specific tasks that involve multiple similar targets, P2SAM may fail. Although this scenario is un-
common in patient-specific segmentation, we acknowledge that P2SAM faces the same challenge
of handling multiple similar objects as other methods (Zhang et al., 2023; Liu et al., 2023). In Fig-
ure 15, we present an example of single-cell segmentation on the PhC-C2DH-U373 dataset (Maška
et al., 2014), which goes beyond the patient-specific setting. In Figure 15, the second row illustrates
that P2SAM fails to segment the target cell due to the presence of many similar cells in the field of
view. However, given the slow movement of the cell, we can leverage its previous information to
regularize the current part-aware prompt mechanism. The third row in Figure 15 demonstrates that
when using the bounding box from the last frame, originally propagated from the reference frame,
to regularize the part-aware prompt mechanism in the current frame, P2SAM achieves strong per-
formance on the same task. Since the bounding box for the first frame can be generated from the
ground truth mask, which is already available, this regularization incurs no additional cost. Utilizing
such tailored regularization incorporating various prompt modalities, we showcase our approach’s
flexible applicability to other applications.

F DISCUSSION ON ADDITIONAL RELATED WORKS

Interactive Segmentation for Medical Images. Complementary to the works discussed in Sec-
tion 2, several studies (Butoi et al., 2023; Wong et al., 2023; Ma et al., 2024a;b; Wu & Xu, 2024)
have aimed to develop promptable segmentation models specifically for medical image segmenta-
tion. UniverSeg (Butoi et al., 2023) utilizes a support set to provide additional information to the
model during the test time. In this work, we did not include UniverSeg as a baseline method be-
cause our problem setting provides only a single image-mask pair, and UniverSeg’s performance
significantly declines under such conditions. Moreover, UniverSeg employs a different backbone
model and training objective, making it challenging to test on our dataset. Other methods, such
as ScribblePrompt (Wong et al., 2023), One-Prompt (Wu & Xu, 2024), and MedSAM2 (Ma et al.,
2024b), primarily focus on interactively segmenting medical images. In contrast, our work presents

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

an effective approach that leverages patient-specific prior data to address segmentation for out-of-
distribution patient samples that lie outside the training distribution. Among them, we have chosen
MedSAM Ma et al. (2024a) for comparison in Table 3, as it was pre-trained on a large-scale medical
image dataset and supplemented with a human-given box prompt during inference. It is worth noting
that other methods either utilized smaller pre-training datasets or were not available at the time this
work was conducted. On the other hand, utilizing other prompt modalities, such as scribble, mask,
and box, presents challenges for solving the patient-specific segmentation problem, as it is difficult
to represent prior data in these formats. In this work, we adopt a more flexible prompt modality:
point prompts. Although it may be possible to convert our multiple-point prompts into a scribble
prompt by connecting them together, we leave the exploration of this direction for future work.

MedSAM as a Strong Baseline. At the outset, we would like to clarify that this paper focuses
on the task of external validation (o.o.d.), where the testing dataset differs from the distribution of
the training dataset. In this scenario, the model’s generalization ability becomes critical for achiev-
ing better performance. We acknowledge that MedSAM is widely used as a baseline across many
benchmarks (Antonelli et al., 2022; Ji et al., 2022). However, these comparisons primarily focus
on internal (i.d.) validation. MedSAM has the potential to outperform many models on external
validation sets due to its pre-training on a large-scale medical image dataset. While there is no
direct evidence to confirm this, DuckNet (Dumitru et al., 2023) (Table 1 v.s. Table 5) suggests
that large-scale pre-trained models generally outperform others on external validation sets, even if
they lag behind on internal validation. The 4D-Lung dataset (Hugo et al., 2016) is a relatively new
benchmark for longitudinal data analysis, and no standard benchmark for comparison was avail-
able at the time this work was conducted. The results from MedSAM in Table 3 could serve as a
strong baseline, particularly when supplemented with human-provided box prompts. Therefore, we
consider MedSAM a reliable baseline for comparison, especially for external validation, given its
generalization ability.

Different SAM Adaptation Methods. The main purpose of P2SAM is to leverage one-shot patient-
specific prior data to address segmentation for o.o.d. patient samples. Under this objective, the SAM
adaptation is an optional and orthogonal procedure that can be employed when limited labeled data
is available to further enhance the pre-trained model. In this work, we test full fine-tune method and
LoRA (Hu et al., 2021) for parameter-efficient fine-tuning. When compared with other parameter-
efficient fine-tuning strategies like Adapter (Houlsby et al., 2019) and Prompt-Tuning Li & Liang
(2021), LoRA integrates the learned parameters directly into the original model, ensuring no ad-
ditional latency during inference. Since P2SAM can be integrated with any backbone model that
supports the point-prompt modality, it is compatible with various parameter-efficient fine-tuning
methods, such as Adapter or Prompt-Tuning, as adopted in Med-SA (Wu et al., 2023).
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