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Abstract

Shortcut reasoning is an irrational process of
inference, which degrades the robustness of an
NLP model. While a number of previous work
has tackled the identification of shortcut rea-
soning, there are still two major limitations: (i)
a method for quantifying the severity of the
discovered shortcut reasoning is not provided;
(ii) certain types of shortcut reasoning may be
missed. To address these issues, we propose
a novel method for identifying shortcut rea-
soning. The proposed method quantifies the
severity of the shortcut reasoning by leveraging
out-of-distribution data and does not make any
assumptions about the type of tokens trigger-
ing the shortcut reasoning. Our experiments
on Natural Language Inference and Sentiment
Analysis demonstrate that our framework suc-
cessfully discovers known and unknown short-
cut reasoning in the previous work.1

1 Introduction

While Transformer-based large language models
have remarkably improved various NLP tasks, the
issue of shortcut reasoning has been identified as a
severe problem (Schlegel et al., 2020; Wang et al.,
2022b; Ho et al., 2022). Shortcut reasoning usu-
ally refers to the irrational inference of a model,
which is derived from spurious correlations in the
training data (Gururangan et al., 2018; Poliak et al.,
2018; McCoy et al., 2019). For example, senti-
ment analysis models could learn to classify any
sentences containing the word Spielberg into POSI-
TIVE, given a training dataset with many positive
movie reviews containing Spielberg (e.g., Spielberg
is a great director!).

Shortcut reasoning makes models brittle against
Out of Distribution (OOD) data (i.e., data from a
different distribution from the training data) com-
pared to Independent and Identically Distributed

1Our code is available at https://github.com/
homoscribens/shortcut_reasoning.git

(IID) data (i.e., data from an identical distribution
as the training data) (Geirhos et al., 2020). In the
aforementioned example, the reasoning for movie
reviews would not be valid for OOD data (e.g.,
news articles) because the sentiment of news arti-
cles containing Spielberg could be arbitrary.

Although many studies have explored the detec-
tion of spurious correlations or shortcut reasoning
(Ribeiro et al., 2020; Pezeshkpour et al., 2022; Han
et al., 2020), several challenges persist. Wang et al.
(2022a) propose a state-of-the-art method for dis-
covering shortcut reasoning, which implements an
automated framework to discover shortcuts without
predefining shortcut templates. Still, their approach
suffers from two major limitations.

Firstly, their framework lacks a method for quan-
tifying the severity of the discovered shortcut rea-
soning on OOD data. Even if the shortcuts are iden-
tified, we do not have to necessarily be concerned
about them as long as they have little negative im-
pact on the model’s robustness. Secondly, their
approach assumes that genuine tokens, useful to-
kens for predicting labels across different datasets
(e.g., “good”, “bad”), do not lead to shortcut rea-
soning. While this assumption seems reasonable,
Joshi et al. (2022) argue that such tokens are still
prevalent among spurious correlations. This is be-
cause such tokens are indeed necessary to predict
the label, but these tokens alone may not provide
sufficient information to accurately predict labels.
For example, a genuine token “good” in a sentence
This movie is not good can be spurious, since “good”
is a necessary but insufficient token for determining
its sentiment label. Therefore, genuine tokens can
not be ignored when identifying shortcut reasoning.

To address these problems, we propose a new
method for discovering shortcut reasoning. Our
contributions can be summarized as follows:

• We present an automated method for identify-
ing shortcut reasoning.

https://github.com/homoscribens/shortcut_reasoning.git
https://github.com/homoscribens/shortcut_reasoning.git


Figure 1: Our method to discover shortcut reasoning with 3 steps.

• By applying the less subjective definition of
shortcut reasoning (Geirhos et al., 2020), our
method does not require laborious human eval-
uation for detected shortcuts.

• Our method quantifies the severity of shortcut
reasoning by leveraging OOD data and does
not make any assumptions about the type of
tokens triggering the shortcut reasoning.

• We demonstrate that our method successfully
discovers previously unknown shortcut rea-
soning as well as ones reported in previous
research.

2 Discovering Shortcut Reasoning

Fig. 1 shows the overall procedure of the proposed
method. Given (i) a target model f , (ii) IID data
DIID, and (iii) OOD data DOOD as inputs, shortcut
reasoning is extracted as an output. The procedure
consists of the following three steps.

Step 1 extracts inference patterns, an abstract
representation that characterizes the inferential pro-
cess of a given model (§2.1). To extract inference
patterns, we use input reduction, an algorithm that
automatically derives the inference patterns (§2.2).
Step 2 estimates the generality of the extracted in-
ference patterns. Generality is a measure of the
strength of an inference pattern, indicating its de-
gree of regularity (§2.3). Step 3 identifies shortcut
reasoning. We automatically determine whether
an inference pattern exhibits shortcut reasoning
without human intervention, comparing the effec-
tiveness of inference patterns in DIID with that in
DOOD and leveraging the estimated generality as
a proxy for the severity of the identified shortcut
reasoning (§2.4).

2.1 Inference Pattern
An inference pattern is a crucial pattern that acti-
vates a label during a model’s inference process.
Given a target model f , we formally define an in-
ference pattern p as follows:

p
def
= t

f→ l, (1)

where t denotes a trigger that induces a certain
label, and l is the induced label.

Pezeshkpour et al. (2022) classified spurious
correlations into two types: (i) granular features,
namely discrete units such as an individual token
“Spielberg”, and (ii) abstract features, namely high-
level patterns such as lexical overlap.

This paper focuses on granular features and
leaves the detection of shortcut reasoning with ab-
stract features for future work. We thus adopt the
following definition as an inference pattern:

p
def
= w

f→ l, (2)

where w is a sequence of tokens [w1, w2, · · · , wn].
Although we limit ourselves to granular features,

this definition still enables us to detect shortcut
reasoning with a variety of forms, such as combina-
tions of tokens as well as a single token. For exam-
ple, a sentiment analysis model f may have infer-
ence patterns such as [“not”, “bad”]→ NEUTRAL

or [“Spielberg”] → POSITIVE (possibly shortcut
reasoning).

2.2 Extracting Inference Patterns
Given a target model f and an IID dataset DIID =
{(xi, yi)}Ni=1, we extract a set C of inference pat-
terns by applying input reduction (IR) to each input
xi.



Figure 2: An example of inference pattern extracted by
Input Reduction.

IR gradually reduces the number of tokens in xi
by masking each token one by one, incrementally
increasing the number of masked tokens after each
step. In each step, IR feeds the masked xi into f ,
and obtains a predicted label ŷi. IR stops when the
predicted label ŷi flips. As the final step, IR extracts
a sequence wi of unmasked tokens in xi and ŷi that
is the last predicted label before the prediction flips

as an inference pattern, namely wi
f→ ŷi.

To prioritize which tokens should be masked, we
employ Integrated Gradient (Sundararajan et al.,
2017), which computes the importance of each
token for prediction. IR sorts the tokens in xi ac-
cording to their IG score and then incrementally
applies masks to the tokens in ascending order of
their rank in the sorted sequence. For each mask
applied, IR leaves the corresponding token masked
and proceeds to the next token in the sequence.

Fig. 2 shows an example of the extracting pro-
cess by IR. The tokens are replaced with [MASK]
in the ascending order of the IG scores (values in
orange in the figure). When the predicted label
is flipped from NEGATIVE to POSITIVE, the re-
mained tokens at the previous step and NEGATIVE

label are extracted as the inference pattern [“don’t”,
“like”] → NEGATIVE. See Appendix A for the
pseudocode of IR.

The IR-based extraction algorithm ensures that
the trigger wi of the extracted inference patterns is
concise and not redundant.

2.3 Calculating Generality

In order to verify the validity of an inference pattern
in C as a universal pattern, we assess its generality
on DOOD. This measurement determines the de-
gree to which the pattern exhibits regularity in the
OOD dataset.

To estimate the generality of inference pattern

pi = wi → li ∈ C, we collect a set EOOD(wi) of
examples from DOOD such that the input contains
wi. For example, given pi = [“Spielberg”] →
POSITIVE, EOOD(wi) may contain sentences such
as I grew up with Steven Spielberg’s films. His
films are always great!! and Spielberg is overrated.
We then estimate the generality g of the inference
pattern pi as follows:

g(pi)
def
=

∑
x′∈EOOD(wi)

1 [f(x′) = li]

|EOOD(wi)|
×100. (3)

Intuitively, g(pi) explains how much the inference
pattern is dominant on the OOD dataset.

2.4 Identifying Shortcut Reasoning
In this section, we define shortcut reasoning and
describe the method for its detection. According to
Geirhos et al. (2020), shortcut reasoning satisfies
both of the following conditions: (i) performs well
on DIID, and (ii) underperforms on DOOD.

We apply these conditions to inference patterns.
Given pi = wi → li extracted from DIID by IR,
the condition (i) is satisfied when pi works well
on DIID. In other words, when the model per-
forms well on IID examples that contain wi (i.e.,
EIID(wi)). Thus, we evaluate the performance of
each inference pattern using EIID(wi). Specifi-
cally, we define a new metric iid_acci, which com-
putes∑

x∈EIID(wi)
1 [f(x) = li ∧ li = yi]∑

x∈EIID(wi)
1 [f(x) = li]

× 100. (4)

This metric counts the right prediction for inputs
that contain trigger (wi).

The condition (ii) is satisfied when pi does not
deliver accurate results on DOOD, i.e., when the
model operates poorly on OOD inputs that contain
wi (i.e., EOOD(wi)). As a metric to evaluate how
much the pi underperforms over E(wi), we define
∆ as follows:

∆i
def
= F1(EOOD(wi), f)− F1(DOOD, f). (5)

This metric compares the F1 score on EOOD(wi)
to that on DOOD, employed as a baseline for com-
parison.

To sum up, shortcut reasoning is defined as
p̃i = wi → li such that g(pi) is sufficiently large,
iid_acc is large enough and ∆i is small enough.
The set P̃ of shortcut reasoning is defined as

{pi∈C | g(pi)>λ1, iid_acci>λ2,∆i<λ3}. (6)



λ1, λ2, and λ3 are the pre-defined thresholds. Note
that λ2 and λ3 have to be an above-chance score
and less than 0 at least, respectively. This defini-
tion enables us to automatically identify shortcut
reasoning that has a substantial impact on OOD,
unlike previous studies (Pezeshkpour et al., 2022;
Wang et al., 2022a).

3 Experiments

3.1 Setup

One straightforward approach for assessing our
method is to annotate NLP models with their
ground-truth shortcut reasoning. However, recent
NLP models are known to be hard to interpret,
which makes it difficult to create such a reference
dataset. We thus resort to existing datasets for
Natural Language Inference (NLI) and Sentiment
Analysis (SA) that have been shown to contain spu-
rious features and check if our inference patterns
can reveal such features (and unknown ones).
Datasets For NLI, we adopt MNLI (Williams
et al., 2018) as DIID and ANLI (Nie et al., 2020)
as DOOD. ANLI is an NLI dataset based on MNLI,
but adversarially redesigned, which makes it harder
to answer. For SA, we apply Sentiment subset
in Tweeteval (Barbieri et al., 2020) as DIID and
MARC (Multilingual Amazon Reviews Corpus)
(Keung et al., 2020) as DOOD. For all OOD
datasets, we use training split of each. See Ap-
pendix B.1 for the dataset details. Note that all the
datasets are trinary classifications, so the chance
accuracy is 0.33.
Models We apply our method to RoBERTa (Liu
et al., 2019) fine-tuned with the DIID mentioned
above, available at Hugging Face Hub. See Ap-
pendix B.2 for the details.
Configuration The inference patterns of a model
are obtained by learning training data. Thus, aside
from test (or validation) sets, we extract C from the
training set of DIID, expecting to better simulate
the model’s reasoning process. In addition, we
randomly choose 1,000 examples as input to IR
considering its runtime. We set hyperparameters
λ1 = 50, λ2 = 70 and λ3 = −0.05. To reliably
obtain g(pi), we filter out pi with |EOOD(wi)| <
100 from C.

3.2 Results

We show samples of the results in Table 1. We se-
lected representative p̃, which have large g, iid_acc,
and |∆|. The column train/test denotes whether

shortcut reasoning is discovered in the training or
the test split of IID dataset (i.e., input for IR).

NLI For OOD data, the model performed 77.8
of F1(DOOD, f). “/s” denotes a separation token
between premise and hypothesis. For OOD data,
the model performed 77.8 of F1(DOOD, f). We
observed that most of t identified as shortcut rea-
soning belonged to the hypothesis, while only a
small proportion was present in the premises. This
observation suggests that the model heavily relies
on the hypothesis to predict labels, corroborating
the findings of Poliak et al. (2018). Furthermore,
we found that negation representation in t, such
as “not” or “never”, often led the model to predict
CONTRADICTION. This phenomenon manifests
itself even when the gold label indicates otherwise,
as indicated by the values of ∆ at the first and
fourth p̃ in the Table 1. This finding aligns with the
results reported by Gururangan et al. (2018). With
this observed consistency with previous work, our
method seems to be effective at accurately identi-
fying shortcuts.

SA The model showed 60.3 points at
F1(DOOD, f). We found that sentiment words,
such as “worst” or “Excellent”, emerged in almost
all t that were classified as shortcut reasoning.
Further analysis showed that reviews with neutral
labels in MARC frequently contained both positive
and negative sentiments (e.g., I hate the wrapping,
but it works pretty well.). Considering a sufficient
number of p with small ∆ are annotated with
neutral label for the original input, we estimate that
the model relies on one among multiple sentiments
in the input and ignores the rest. Therefore, it is
possible to say that these inference patterns are
shortcuts, whose t are necessary but insufficient.

Train/Test No significant difference was ob-
served between the train and test experiments. Al-
though the extracted shortcut reasoning from the
experiments differed, they were essentially similar
in terms of their characteristics (such as negations
in NLI or sentiment words in SA).

Unknown Shortcut Reasoning In the NLI ex-
periment, it is interesting to note that we revealed
several previously unknown shortcut reasoning,
such as [“soon”]→ NEUTRAL and [“is”, “always”]
→ NEUTRAL. Both have sufficiently small ∆, and
large iid_acc and g to be considered as p̃.



p̃ g iid_acc ∆ |EIID(wi)| train/test

NLI [“/s”, “never” ]→ CONTRADICTION 80.3 99.3 -9.0 1515 ✓/✓
[“/s”, “soon” ]→ NEUTRAL 64.1 100.0 -6.5 142 ✓/ ✓
[“/s”, “is”, “always” ]→ NEUTRAL 60.8 96.6 -5.2 102 ✓/ -
[“/s”, “not” ]→ CONTRADICTION 55.0 94.5 -55.6 8708 ✓/✓

SA [“worst” ]→ NEGATIVE 97.5 81.7 -25.4 158 ✓/ -
[“Excellent” ]→ POSITIVE 96.2 100.0 -7.2 184 - /✓
[“Perfect” ]→ POSITIVE 96.0 88.6 -12.9 324 - /✓
[“poor” ]→ NEGATIVE 87.1 76.0 -12.9 458 ✓/ -

Table 1: Samples of identified shortcut reasoning on NLI (above) and SA (bottom). We show several interesting
results and p̃ that holds large g and iid_acc and small ∆.

4 Related work

Numerous studies have tackled the problem of de-
tecting spurious correlations or shortcut reasoning
(Ribeiro et al., 2020; Han et al., 2020). One major
limitation of earlier studies is that they predefine a
specific format or structure for the shortcuts (e.g., a
single token or a predefined set of tokens). This can
hinder the discovery of new and unexplored short-
cuts, which may be manifested in diverse forms.

Recently, Pezeshkpour et al. (2022) address this
problem by combining multiple interpretability
techniques, such as influence function (Koh and
Liang, 2017) and feature attribution methods (e.g.,
Integrated Gradient). However, they rely on human
assessment to identify shortcut reasoning, which
can result in misjudgment between rational and ir-
rational reasoning. Besides, human evaluation is
laborious and time-consuming.

Wang et al. (2022a) solve this issue by automati-
cally identifying genuine tokens, important tokens
that appear across different datasets, and spurious
tokens, important tokens that appear only in an in-
domain dataset. Still, as discussed in §1, there is
a major limitation with their approach in that they
fail to consider the influence of the identified short-
cut reasoning on OOD data. Our work attempts
to address this issue by estimating the generality
of inference patterns. Besides, our definition of
shortcut reasoning aligns well with more practical
scenarios. While they rely on a subjective defini-
tion of shortcut reasoning (i.e., whether reasoning
is irrational from humans’ point of view), our work
targets shortcut reasoning that performs well on IID
but underperforms on OOD (Geirhos et al., 2020),
namely the one that clearly hurts the robustness of
NLP models by definition.

5 Conclusion

We introduced a method to automatically discover
shortcut reasoning. With minimal predefinition,
our method successfully identified known and pre-
viously unknown examples of shortcut reasoning.
For future research, we plan to adapt our method
to large language models and other tasks such as
machine reading comprehension. Overall, we hope
that our study provides a promising approach to-
wards understanding the behavior of deep learning
models and improving their trustworthiness.

6 Limitations

Firstly, we have yet to develop an evaluation pro-
cess to validate the discovered shortcut reasoning.
Even though we indicate the metrics or measure-
ment of shortcut reasoning, knowing the actual
reasoning process is impossible if we use black
box models. Unfortunately, this problem would
require significant effort to be solved.

Secondly, as our method is not compatible with
abstract inference patterns, it cannot cover all kinds
of shortcut reasoning other than the granular one.

Thirdly, preparing two datasets, i.e., IID and
OOD, is challenging for low-resource languages or
some tasks. This problem limits the further studies
or application of this method. Fortunately, now that
we can access large language models that have sur-
prising linguistic capabilities and are well-aligned
with the user’s instruction. The generated exam-
ples by LLMs have a certain distribution which can
be treated as OOD for target models, or we can
prompt them to generate examples with specific
distribution.

The fourth limitation is about IR. If the predic-
tion for the masked input does not flip during the



reduction, then we alternatively output the last to-
ken left in the input. Therefore, in some cases,
we cannot guarantee that the extracted inference
pattern is genuine.

Finally, input reduction can be utilized only
when a MASK token is available on the input
model.
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A Details of Input Reduction

Algorithm 1 Pseudo-code of Input reduction

1: function INPUT_REDUCTION_IG(D)
2: for all (x, y) ∈ D do
3: ŷ ← f(x) ; x′ ← x ; ŷ′ ← ŷ
4: while ŷ = ŷ′ do
5: x′prev ← x′ ; ŷ′prev ← f(x′prev)
6: x′ ← IG_mask(x′)
7: ŷ′ ← f(x′)
8: if all tokens in x′ are mask then
9: break

10: end if
11: end while
12: C ← C ∪ {p = (x′prev, ŷ

′
prev)}

13: end for
14: return C
15: end function

B Experimental setup

B.1 Dataset detail

Dataset train validation test

NLI
MNLI (matched) 392,702 9,815 9,796
ANLI (round3) 100,459 1,200 1,200

SA
Tweeteval (sentiment) 45,615 2,000 12,284
MARC (en) 200,000 5,000 5,000

B.2 Models detail

Task Model

NLI roberta-large-mnli
SA cardiffnlp/twitter-roberta-base-sentiment
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