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Abstract

Text classification systems have impressive ca-001
pabilities but are infeasible to deploy and use002
reliably due to their dependence on prompting003
and billion-parameter language models. Set-004
Fit (Tunstall et al., 2022) is a recent, practi-005
cal approach that fine-tunes a Sentence Trans-006
former under a contrastive learning paradigm007
and achieves similar results to more unwieldy008
systems. Text classification is important for ad-009
dressing the problem of domain drift in detect-010
ing harmful content, which plagues social me-011
dia platforms. Here, we propose Like a Good012
Nearest Neighbor (LAGONN), a modification013
to SetFit that requires no additional parameters014
or hyperparameters but alters input text with015
information from its nearest neighbor, for ex-016
ample, the label and text, in the training data,017
making novel data appear similar to an instance018
on which the model was optimized. LAGONN019
is effective at identifying harmful content and020
generally improves SetFit’s performance. To021
demonstrate LAGONN’s value, we conduct a022
thorough study of text classification systems in023
the context of content moderation under four024
label distributions.1025

1 Introduction026

Text classification is the most important tool for027

NLP practitioners, and there has been substan-028

tial progress in advancing the state-of-the-art, es-029

pecially with the advent of large, pretrained lan-030

guage models (PLM) (Devlin et al., 2019). Modern031

research focuses on in-context learning (Brown032

et al., 2020), pattern exploiting training (Schick033

and Schütze, 2021a,b, 2022), adapter-based fine-034

tuning with learned label embeddings (Karimi Ma-035

habadi et al., 2022), and parameter efficient fine-036

tuning (Liu et al., 2022a). These methods have037

achieved impressive results on the SuperGLUE038

(Wang et al., 2019) and RAFT (Alex et al., 2021)039

few-shot benchmarks, but most are difficult to040

1Code and data: https://github.com/[REDACTED]
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Figure 1: We embed training data, retrieve the text, gold
label, and distance for each instance from its nearest
neighbor and modify the original text with this infor-
mation. Then we embed the modified training data and
train a classifier. During inference, the NN from the
training data is selected, the original text is modified
with the text, gold label, and distance from this NN, and
the classifier is called.

use because of their reliance on billion-parameter 041

PLMs, pay-to-use APIs, and/or prompting. Con- 042

structing prompts is not trivial and may require 043

domain expertise. 044

One exception to these cumbersome systems 045

is SetFit. SetFit does not rely on prompting or 046

billion-parameter PLMs, and instead fine-tunes a 047

pretrained Sentence Transformer (ST) (Reimers 048

and Gurevych, 2019) under a contrastive learning 049

paradigm. SetFit has comparable performance to 050

more unwieldy systems while being one to two or- 051

ders of magnitude faster to train and run inference. 052

An important application of text classification 053

is aiding or automating content moderation, which 054

is the task of determining the appropriateness of 055

user-generated content on the Internet (Roberts, 056

2017). From fake news to toxic comments to hate 057

speech, it is difficult to browse social media without 058

being exposed to potentially dangerous posts that 059

may have an effect on our ability to reason (Ecker 060
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et al., 2022). Misinformation spreads at alarming061

rates (Vosoughi et al., 2018), and an ML system062

should be able to quickly aid human moderators.063

While there is work in NLP with this goal (Markov064

et al., 2022; Shido et al., 2022; Ye et al., 2023), a065

general, practical, and open-sourced method that066

is effective across multiple domains remains an067

open challenge. Novel fake news topics or racial068

slurs emerge and change constantly. Retraining of069

ML-based systems is required to adapt this concept070

drift, but this is expensive, not only in terms of071

computation, but also in terms of the human effort072

needed to collect and label data.073

SetFit’s performance, speed, and low cost would074

make it ideal for effective content moderation, how-075

ever, this type of text classification proves difficult076

for even state-of-the-art approaches. For exam-077

ple, detecting hate speech on Twitter (Basile et al.,078

2019), a subtask on the RAFT few-shot benchmark,079

appears to be the most difficult dataset; at time of080

writing, it is the only task where the human base-081

line has not been surpassed, yet SetFit is among082

the top ten most performant systems.2083

Here, we propose a modification to SetFit,084

called Like a Good Nearest Neighbor (LAGONN).085

LAGONN introduces no parameters or hyperpa-086

rameters and instead modifies input text by retriev-087

ing information about the nearest neighbor (NN)088

seen during optimization (see Figure 1). Specifi-089

cally, we append the label, distance, and text of the090

NN in the training data to a new instance and en-091

code this modified version with an ST. By making092

input data appear more similar to instances seen093

during training, we inexpensively exploit the ST’s094

pretrained or fine-tuned knowledge when consid-095

ering a novel example. Our method can also be096

applied to the linear probing of an ST, requiring097

no expensive fine-tuning of the large embedding098

model. Finally, we propose a simple alteration to099

the SetFit training procedure, where we fine-tune100

the ST on a subset of the training data. This results101

in a more efficient and performant text classifier102

that can be used with LAGONN. We summarize103

our contributions as follows:104

1. We propose LAGONN, an inexpensive modi-105

fication to SetFit- or ST-based text classifica-106

tion.107

2. We suggest an alternative training procedure108

2https://huggingface.co/spaces/ought/
raft-leaderboard (see "Tweet Eval Hate").

to the standard fine-tuning of SetFit, that can 109

be used with or without LAGONN, and results 110

in a cheaper system with similar performance 111

to the more expensive SetFit. 112

3. We perform an extensive study of LAGONN, 113

SetFit, and standard transformer fine-tuning 114

in the context of content moderation under 115

different label distributions. 116

2 Related Work 117

There is little work on using sentence embeddings 118

as features for classification despite the pioneering 119

work being five years old (Perone et al., 2018). STs 120

are pretrained with the objective of maximizing 121

the distance between semantically distinct text and 122

minimizing the distance between text that is seman- 123

tically similar in feature space. They are composed 124

of a Siamese and triplet architecture that encodes 125

text into dense vectors which can be used as fea- 126

tures for ML. STs were first used to embed text 127

for classification by Piao (2021), however, only 128

pretrained representations were examined. 129

SetFit uses a contrastive learning paradigm 130

(Koch et al., 2015) to optimize the ST embedding 131

model. The ST is fine-tuned with a distance-based 132

loss function, like cosine similarity, such that ex- 133

amples with different labels are separated in fea- 134

ture space. Input text is then encoded with the 135

fine-tuned ST and a classifier, such as logistic re- 136

gression, is trained. This approach creates a strong, 137

few-shot text classification system, transforming 138

the ST from a sentence encoder to a topic encoder. 139

Work done by Xu et al. (2021) showed that re- 140

trieving and concatenating text from training data 141

and external sources, such as ConceptNet (Speer 142

et al., 2017) and the Wiktionary3 definition, can be 143

viewed as a type of external attention that does not 144

alter the architecture of the Transformer in ques- 145

tion answering. Liu et al. (2022b) used PLMs and 146

k-NN lookup to prepend examples that are similar 147

to a GPT-3 query, aiding in prompt engineering 148

for in-context learning. Wang et al. (2022) demon- 149

strated that prepending and appending training data 150

helps PLMs in summarization, language modelling, 151

machine translation, and question answering, us- 152

ing BM25 as their retrieval model (Manning et al., 153

2008; Robertson and Zaragoza, 2009). 154

We alter the SetFit training procedure by using 155

fewer examples to adapt the embedding model for 156

3https://www.wiktionary.org/
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Training Data Test Data
"I love this." [positive 0.0] (0) "So good!" [?] (?)

"This is great!" [positive 0.5] (0) "Just terrible!" [?] (?)
"I hate this." [negative 0.7] (1) "Never again." [?] (?)

"This is awful!" [negative 1.2] (1) "This rocks!" [?] (?)

LAGONN Configuration Train Modified

LABEL "I love this. [SEP] [positive]" (0)
DIST "I love this. [SEP] [0.5]" (0)

LABDIST "I love this. [SEP] [positive 0.5]" (0)
TEXT "I love this. [SEP] [positive 0.5] This is great!" (0)
ALL "I love this. [SEP] [positive 0.5] This is great! [SEP] [negative 0.7] I hate this." (0)

Test Modified
LABEL "So good! [SEP] [positive]" (?)

DIST "So good! [SEP] [1.5]" (?)
LABDIST "So good! [SEP] [positive 1.5]

TEXT "So good! [SEP] [positive 1.5] I love this." (?)
ALL "So good! [SEP] [positive 1.5] I love this. [SEP] [negative 2.7] This is awful!" (?)

Table 1: Toy training and test data and different LAGONN configurations considering the first training example.
Text is in quotation marks and the integer label is in parenthesis. In brackets are the gold label or distance from the
NN or both. Train and Test Modified are altered instances that are input into the final embedding model for training
and inference, respectively. The input format is "original text [SEP] [(NN gold) (label distance)] NN training
instance text". See Appendix A.5 for examples of LAGONN ALL modified text.
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Figure 2: LAGONN LABDIST uses an ST to encode training data, performs NN lookup, appends the NN’s gold
label and distance, and optionally SetFit to fine-tune the embedding model. We then embed this new instance and
train a classifier. During inference, we use the embedding model to modify the test data with its NN’s gold label and
distance from the training data, compute the final representation, and call the classifier. Input text is in quotation
marks, the NN’s gold label and distance are in brackets, and the integer label is in parenthesis.

many-shot learning. LAGONN decorates input text157

with its NN’s gold label, Euclidean distance, and158

text from the training data to exploit both the ST’s159

distance-based pretraining and SetFit’s distance-160

based fine-tuning objective. Compared to retrieval-161

based methods, LAGONN uses the same model for162

both retrieval and encoding, retrieving only infor-163

mation from the training data for classification.164

3 Like a Good Nearest Neighbor 165

Xu et al. (2021) formulate a type of external atten- 166

tion, where textual information is retrieved from 167

multiple sources and added to text input to give 168

the model stronger reasoning ability without al- 169

tering the internal architecture. Inspired by this 170

approach, LAGONN exploits pretrained and fine- 171

tuned knowledge through external attention, but the 172
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information we retrieve comes only from data used173

during optimization. We consider an embedding174

function, f , that encodes both training and test data,175

f(Xtrain) and f(Xtest). Considering its success176

on realistic, few-shot data and our goal of practical177

content moderation, we choose an ST that can be178

fine-tuned with SetFit as our embedding function.179

Encoding and nearest neighbors LAGONN180

first uses a pretrained Sentence Transformer to em-181

bed training text in feature space, f(Xtrain), and182

NN lookup with scikit-learn (Buitinck et al., 2013)183

on the resulting embeddings.184

Nearest neighbor information We extract185

text from the nearest neighbor and use it to dec-186

orate the original example. We experimented with187

different text that LAGONN could use. The first188

configuration we consider is the gold label of the189

NN, which we call LABEL. We then consider the190

Euclidean distance of the NN, which we call DIST,191

giving the model access to continuous measure of192

similarity. We then combine these two configu-193

rations, appending both the NN’s gold label and194

Euclidean distance, referring to this as LABDIST.195

Next, we consider the gold label, distance, and the196

text of the NN, which we refer to as TEXT. Finally,197

we tried the same format as TEXT but for all pos-198

sible labels, which we call ALL (see Table 1 and199

Figure 2). Information from the NN is appended to200

the text following a separator token to indicate this201

instance is composed of multiple sequences. While202

the ALL and TEXT configurations are arguably203

the most interesting, we find LABDIST to result204

in the most performant version of LAGONN, and205

this is the version about which we report results.206

See Appendix A.4.1 for a detailed study of and207

comparison between all LAGONN configurations.208

Training LAGONN encodes the modified209

training data, optionally fine-tunes the embed-210

ding model via SetFit, and trains a classifier,211

CLF (f(Xtrainmod)).212

Inference LAGONN uses information from213

the nearest neighbor in the training data to modify214

input text. We compute the embeddings of the test215

data, f(Xtest), and select and extract information216

from the NN’s training text, decorating the input217

instance with this information. Finally, we encode218

the modified data with the embedding model and219

call the classifier, CLF (f(Xtestmod)).220

Intuition The ST’s pretraining and SetFit’s 221

fine-tuning objective both rely on distance, cre- 222

ating a feature space appropriate for distance-based 223

algorithms, such as our NN-lookup. We hypoth- 224

esize that LAGONN’s modifications make novel 225

data appear semantically similar to their NNs in the 226

training data, that is, more akin to an instance on 227

which the encoder and classifier were optimized. 228

As LAGONN utilizes similarity and clear distinc- 229

tions between classes, we believe it fitting for our 230

use case of content moderation, where it is realistic 231

to have few labels, harmful or neutral, for example. 232

4 Experiments 233

4.1 Data and label distributions 234

We study LAGONN’s performance on four binary 235

and one ternary classification dataset related to the 236

task of content moderation. Each dataset is com- 237

posed of a training, validation, and test split. 238

Here, we provide a summary of the five datasets 239

we studied. LIAR was created from Politifact4 for 240

fake news detection and is composed of the data 241

fields context, speaker, and statement, which are 242

labeled with varying levels of truthfulness (Wang, 243

2017). We used a collapsed version of this dataset 244

where a statement can only be true or false. We did 245

not use speaker, but did use context and statement, 246

separated by a separator token. Quora Insincere 247

Questions5 is composed of neutral and toxic ques- 248

tions, where the author is not asking in good faith. 249

Hate Speech Offensive6 has three labels and is 250

composed of tweets that can contain either neutral 251

text, offensive language, or hate speech (Davidson 252

et al., 2017). Amazon Counterfactual7 contains sen- 253

tences from product reviews, and the labels can be 254

"factual" or "counterfactual" (O’Neill et al., 2021). 255

"Counterfactual" indicates that the customer said 256

something that cannot be true. Finally, Toxic Con- 257

versations8 is a dataset of comments where the 258

author wrote with unintended bias9 (see Table 2). 259

We study our system by simulating growing 260

4https://www.politifact.com/
5https://www.kaggle.com/c/

quora-insincere-questions-classification
6https://huggingface.co/datasets/hate_speech_

offensive
7https://huggingface.co/datasets/SetFit/

amazon_counterfactual_en
8https://huggingface.co/datasets/SetFit/toxic_

conversations
9https://www.kaggle.com/c/

jigsaw-unintended-bias-in-toxicity-classification/
overview
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Dataset (and Detection Task) Number of Labels

LIAR (Fake News) 2
Insincere Questions (Toxicity) 2

Hate Speech Offensive 3
Amazon Counterfactual (English) 2

Toxic Conversations 2

Table 2: Summary of datasets and number of labels. We
provide the type of task in parenthesis in unclear cases.

training data over ten discrete steps sampled under261

four different label distributions: extreme, imbal-262

anced, moderate, and balanced (see Table 3). On263

each step we add 100 examples (100 on the first,264

200 on the second, etc.) from the training split265

sampled under one of the four ratios.10 On each266

step, we train our method with the sampled data267

and evaluate on the test split. Considering growing268

training data has two benefits: 1) We can simulate a269

streaming data scenario, where new data is labeled270

and added for training and 2) We can investigate271

each method’s sensitivity to the number of training272

examples. We sampled over five seeds, reporting273

the mean and standard deviation.274

Regime Binary Ternary

Extreme 0: 98% 1: 2% 0: 95%, 1: 2%, 2: 3%
Imbalanced 0: 90% 1: 10% 0: 80%, 1: 5%, 2: 15%
Moderate 0: 75% 1: 25% 0: 65%, 1: 10%, 2: 25%
Balanced 0: 50% 1: 50% 0: 33%, 1: 33%, 2: 33%

Table 3: Label distributions for sampling training data.
0 represents neutral while 1 and 2 represent different
types of undesirable text.

4.2 Baselines275

We compare LAGONN against a number of strong276

baselines, detailed below. We used default hyper-277

parameters in all cases unless stated otherwise.278

RoBERTa RoBERTa-base is a pretrained lan-279

guage model (Liu et al., 2019) that we fine-tuned280

with the transformers library (Wolf et al., 2020).281

We select two versions of RoBERTa-base: an ex-282

pensive version, where we perform standard fine-283

tuning on each step (RoBERTafull) and a cheaper284

version, where we freeze the model body after step285

one and update the classification head on subse-286

quent steps (RoBERTafreeze). We set the learning287

rate to 1e−5, train for a maximum of 70 epochs,288

and use early stopping, selecting the best model289

10For Hate Speech Offensive, 0 and 2 denote undesirable
text and 1 denotes neither.

after training. We consider RoBERTafull an upper 290

bound as it has the most trainable parameters and 291

requires the most time to train of all our methods. 292

Linear probe We perform linear probing of a 293

pretrained Sentence Transformer by fitting logis- 294

tic regression with default hyperparameters on the 295

training embeddings on each step. We choose this 296

baseline because LAGONN can be applied as a 297

modification in this scenario. We select MPNET 298

(Song et al., 2020) as the ST, for SetFit, and for 299

LAGONN.11 We refer to this method as Probe. 300

SetFit Here, we perform standard fine-tuning 301

with SetFit on the first step, and then on subsequent 302

steps, freeze the embedding model and retrain only 303

the classification head. We choose this baseline as 304

LAGONN also uses logistic regression as its final 305

classifier and refer to this method as SetFit. 306

k-nearest neighbors Similar to the above 307

baseline, we fine-tune the embedding model via 308

SetFit, but swap out the classification head for a 309

kNN classifier, where k = 3. We select this base- 310

line as LAGONN also relies on an NN lookup. 311

k = 3 was chosen during our development stage as 312

it yielded the strongest performance. We refer to 313

this method as kNN. 314

SetFit expensive For this baseline we perform 315

standard fine-tuning with SetFit on each step. On 316

the first step, this method is equivalent to SetFit. 317

We refer to this as SetFitexp. 318

LAGONN cheap This method modifies data 319

via LAGONN before fitting logistic regression. 320

Even without adapting the embedding model, as 321

the training data grow, modifications made to the 322

test data may change. Only the classification head 323

is fit on each step. We refer to this method as 324

LAGONNcheap and it is comparable to Probe. 325

LAGONN On the first step, we use LAGONN 326

to modify our data and perform standard fine- 327

tuning with SetFit. On subsequent steps, we freeze 328

the embedding model but continue to use it to mod- 329

ify our data. We only fit logistic regression on later 330

steps, referring to this method as LAGONN. It is 331

comparable to SetFit. 332

LAGONN expensive Here we modify our 333

data and fine-tune the embedding model on each 334

step. We refer to this method as LAGONNexp and 335

11https://huggingface.co/sentence-transformers/
paraphrase-mpnet-base-v2
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it is comparable to SetFitexp. On the first step, this336

method is equivalent to LAGONN.337

5 Results338

Table 4 and Figure 3 show our results. In the339

cases of the extreme and imbalanced regimes, the340

performance of SetFitexp steadily increases with341

the number of training examples. As the label342

distribution shifts to the balanced regime, how-343

ever, the performance quickly saturates or even344

degrades as the number of training examples grows.345

LAGONN, RoBERTafull, and SetFit, other fine-346

tuned PLM classifiers, do not exhibit this behavior.347

LAGONNexp, being based on SetFitexp, exhibits a348

similar trend, but the performance degradation is349

mitigated; on the 10th step of Amazon Counterfac-350

tual in Table 4 SetFitexp’s performance decreased351

by 9.7, while LAGONNexp only fell by 3.7.352

LAGONN and LAGONNexp generally outper-353

form SetFit and SetFitexp, respectively, often re-354

sulting in a more stable model, as reflected in the355

standard deviation. We find that LAGONN and356

LAGONNexp exhibit stronger predictive power357

with fewer examples than RoBERTafull despite358

having fewer trainable parameters. For example,359

on the first step of Insincere Questions under the360

extreme setting, LAGONN’s performance is more361

than 10 points higher.362

LAGONNcheap outperforms all other methods363

on the Insincere Questions dataset for all balance364

regimes, despite being the third fastest (see Table365

5) and having the second fewest trainable param-366

eters. We attribute this result to the fact that this367

dataset is composed of questions from Quora12 and368

our ST backbone was pretrained on similar data.369

This intuition is supported by Probe, the cheapest370

method, which despite having the fewest trainable371

parameters, shows comparable performance.372

5.1 SetFit for efficient many-shot learning373

Respectively comparing SetFit to SetFitexp and374

LAGONN to LAGONNexp suggests that fine-375

tuning the ST embedding model on moderate or bal-376

anced data hurts model performance as the number377

of training samples grows. We therefore hypoth-378

esize that randomly sampling a subset of training379

data to fine-tune the encoder, freezing, embedding380

the remaining data, and training the classifier will381

result in a stronger model.382

12https://www.quora.com/

To test our hypothesis, we add two models to our 383

experimental setup: SetFitlite and LAGONNlite. 384

SetFitlite and LAGONNlite are respectively equiva- 385

lent to SetFitexp and LAGONNexp, except after the 386

fourth step (400 samples), we freeze the encoder 387

and only retrain the classifier on subsequent steps, 388

similar to SetFit and LAGONN. 389

Figure 4 shows our results with these two new 390

models. As expected, in the cases of extreme and 391

imbalanced distributions, LAGONNexp, SetFitexp, 392

and RoBERTafull, are the strongest performers on 393

Toxic Conversations. We note very different re- 394

sults for both LAGONNlite and SetFitlite compared 395

to LAGONNexp and SetFitexp on Toxic Conversa- 396

tions and Amazon Counterfactual under the moder- 397

ate and balanced label distributions. As their expen- 398

sive counterparts start to plateau or degrade on the 399

fourth step, the predictive power of these two new 400

models dramatically increases, showing improved 401

or comparable performance to RoBERTafull, de- 402

spite being optimized on less data; for example, 403

LAGONNlite reaches an average precision of ap- 404

proximately 55 after being optimized on only 500 405

examples. RoBERTafull does not exhibit similar 406

performance until the tenth step. Finally, we point 407

out that LAGONN-based methods generally pro- 408

vide a performance boost for SetFit-based classifi- 409

cation. 410

5.2 LAGONN’s computational expense 411

LAGONN is more computationally expensive than 412

Sentence Transformer- or SetFit-based text classifi- 413

cation. LAGONN introduces additional inference 414

with the encoder, NN-lookup, and string modifi- 415

cation. As the computational complexity of trans- 416

formers increases with sequence length (Vaswani 417

et al., 2017), additional expense is created when 418

LAGONN appends textual information before in- 419

ference with the ST. In Table 5, we provide a speed 420

comparison of comparable methods computed on 421

the same hardware.13 On average, LAGONN in- 422

troduced 24.2 additional seconds of computation 423

compared to its relative counterpart. 424

6 Discussion 425

Flagging potentially dangerous text presents a chal- 426

lenge even for state-of-the-art approaches. It is 427

imperative that we develop reliable and practical 428

text classifiers for content moderation, such that 429

we can inexpensively re-tune them for novel forms 430

13We used a 40 GB NVIDIA A100 Tensor Core GPU.
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Method InsincereQs AmazonCF
Extreme 1st 5th 10th Average 1st 5th 10th Average

RoBERTafull 19.98.4 30.97.9 42.07.4 33.56.7 21.86.6 63.910.2 72.33.0 59.616.8
SetFitexp 24.16.3 29.26.7 36.77.3 31.73.4 22.38.8 64.23.3 68.64.6 56.814.9
LAGONNexp 30.78.9 37.66.1 39.06.1 36.12.3 26.117.5 68.44.4 74.92.9 63.216.7
RoBERTafreeze 19.98.4 34.15.4 37.95.9 32.55.5 21.86.6 41.012.7 51.310.7 40.68.9
kNN 6.80.42 15.93.4 16.94.3 14.43.0 10.30.2 15.34.2 18.43.7 15.62.4
SetFit 24.16.3 31.74.9 36.15.4 31.83.6 22.38.8 32.411.5 42.38.8 34.55.9
LAGONN 30.78.9 39.34.9 41.24.7 38.43.0 26.117.5 31.119.4 33.019.1 30.92.3

Probe 24.38.4 39.85.6 44.84.2 38.36.2 24.29.0 46.34.4 54.62.0 45.110.3
LAGONNcheap 23.67.8 40.75.9 45.34.4 38.66.6 20.16.9 38.34.9 47.83.4 38.29.5

Balanced
RoBERTafull 47.14.2 52.13.6 55.72.6 52.52.9 73.62.1 78.63.9 82.41.1 78.92.2
SetFitexp 43.54.2 47.14.6 48.53.9 48.01.7 73.84.4 69.84.0 64.14.6 69.63.6
LAGONNexp 42.85.3 47.62.9 47.01.7 46.22.0 76.03.0 73.42.6 72.32.9 72.53.4

RoBERTafreeze 47.14.2 52.10.4 53.31.7 51.52.1 73.62.1 76.81.6 77.91.0 76.51.3
kNN 22.32.3 30.22.3 30.91.8 29.52.5 41.73.4 57.93.3 58.33.3 56.85.1
SetFit 43.54.2 53.82.2 55.51.6 52.83.5 73.84.4 79.21.9 80.11.0 78.61.8
LAGONN 42.85.3 54.12.9 56.31.3 53.43.7 76.03.0 80.12.0 81.41.1 79.81.4
Probe 47.51.6 52.41.7 55.31.1 52.22.5 52.43.4 64.72.5 67.50.4 63.44.4
LAGONNcheap 49.32.6 54.41.4 57.60.7 54.22.7 48.13.4 62.02.0 65.30.8 60.55.0

Table 4: Average performance (average precision × 100) on Insincere Questions and Amazon Counterfactual. The
first, fifth, and tenth step are followed by the average over all ten steps. The average gives insight into the overall
strongest performer by aggregating all steps. We group methods with a comparable number of trainable parameters
together. The extreme label distribution results are followed by balanced (see Appendix A.2 for additional results).

Figure 3: Average performance in the imbalanced and balanced regimes relative to comparable methods. We include
RoBERTafull results for reference. The metric is macro-F1 for Hate Speech Offensive, average precision elsewhere.

Method Time in seconds

Probe 22.9
LAGONNcheap 44.2

SetFit 42.9
LAGONN 63.4
SetFitexp 207.3

LAGONNexp 238.0

RoBERTafull 446.9

Table 5: Speed comparison between LAGONN and
comparable methods. Time includes training on 1, 000
examples and inference on 51, 000 examples.

of hate speech, toxicity, and fake news. LAGONN 431

exploits semantic similarity and clear boundaries 432

between labels, which we believe is reflected in sce- 433

narios with fewer classes, such as quickly filtering 434

out harmful content. 435

Our results suggest that LAGONNexp or 436

SetFitexp, relatively expensive techniques, can de- 437

tect harmful content when dealing with imbalanced 438

label distributions, as is common with realistic 439

datasets. This is intuitive from the perspective 440

that less common instances are more difficult to 441

learn and require more effort. An exception would 442

be our examination of Insincere Questions, where 443
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Figure 4: Average performance for all sampling regimes on Toxic Conversations and the moderate and balanced
regimes for Amazon Counterfactual and Hate Speech Offensive. More expensive models, such as LAGONNexp,
SetFitexp, and RoBERTafull perform best when the label distribution is imbalanced. As the distribution becomes
more balanced, inexpensive models, such as LAGONNlite, show similar or improved performance. The metric is
macro-F1 for Hate Speech Offensive, average precision elsewhere (see Appendix A.3 for additional results).

LAGONNcheap excelled in the extreme and bal-444

anced settings. This highlights the fact that we445

can inexpensively extract pretrained knowledge if446

PLMs are chosen with care for related tasks.447

Standard fine-tuning with SetFit does not help448

performance on more balanced datasets that are449

not few-shot. SetFit was developed for few-shot450

learning, but we have observed that it should not451

be applied "out of the box" to balanced, non-few-452

shot data. This can be detrimental to performance,453

directly affecting our own approach. However, we454

have observed that LAGONN can stabilize SetFit’s455

predictions and reduce its performance drop. Fig-456

ures 3 and 4 show that when the label distribution457

is moderate or balanced (see Table 3), SetFitexp458

plateaus, yet cheaper systems, such as LAGONN,459

continue to learn. We believe this is due to SetFit’s460

fine-tuning objective, which optimizes an ST using461

cosine similarity loss to separate examples belong-462

ing to different labels in feature space, assuming463

independence between labels. This may be too464

strong an assumption as we optimize with more ex-465

amples, which is counter-intuitive for data-hungry466

transformers; RoBERTafull, optimized with cross-467

entropy loss, generally showed improved perfor-468

mance as we added training data.469

When dealing with balanced data, it is sufficient470

to fine-tune the Sentence Transformer via SetFit471

with 50 to 100 examples per label, while 150 to 200472

instances appear to be sufficient when the training473

data are moderately balanced. The encoder can474

then be frozen and all available data embedded 475

to train a classifier. This improves performance 476

and is more efficient than full-model fine-tuning. 477

LAGONN is directly applicable to this case, boost- 478

ing the performance of SetFitlite without introduc- 479

ing trainable parameters. In this setup, all models 480

fine-tuned on Hate Speech Offensive exhibited sim- 481

ilar, upward-trending learning curves, but we note 482

the speed of LAGONN relative to RoBERTafull or 483

SetFitexp (see Figure 4 and Table 5). 484

7 Conclusion 485

We have proposed LAGONN, a simple and inex- 486

pensive modification to Sentence Transformer- or 487

SetFit-based text classification. LAGONN does not 488

introduce any trainable parameters or new hyper- 489

parameters, but typically improves SetFit’s perfor- 490

mance. To demonstrate the merit of LAGONN, we 491

examined text classification systems in the context 492

of content moderation under four label distributions 493

on five datasets and with growing training data. To 494

our knowledge, this is the first work to examine 495

SetFit in this way. When the training labels are im- 496

balanced, expensive systems, such as LAGONNexp 497

are performant. However, when the distribution is 498

balanced, standard fine-tuning with SetFit can ac- 499

tually hurt model performance. We have therefore 500

proposed an alternative fine-tuning procedure to 501

which LAGONN can be easily utilized, resulting 502

in a powerful, but inexpensive system capable of 503

detecting harmful content. 504
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8 Limitations505

In the current work, we have only considered text506

data, but social media content can of course consist507

of text, images, and videos. As LAGONN depends508

only on an embedding model, an obvious extension509

to our approach would be examining the modifica-510

tions we suggest, but on multimodal data. This is511

an interesting direction that we leave for future re-512

search. We have also considered English data, but513

harmful content can appear in any language. The514

authors demonstrated that SetFit is performant on515

multilingual data, the only necessary modification516

being the underlying pretrained ST. We therefore517

suspect that LAGONN would behave similarly on518

non-English data, but this is not something we have519

tested ourselves. In order to examine our system’s520

performance under different label-balance distribu-521

tions, we restricted ourselves to binary and ternary522

text classification tasks, and LAGONN therefore523

remains untested when there are more than three524

labels. This was an intentional design choice to ex-525

ploit similar examples in cases with fewer classes526

and clearer label boundaries. This choice, we be-527

lieve, is reflective of realistic content moderation528

settings where fewer labels can be used to filter529

harmful content. We did not study our method530

when there are fewer than 100 training examples,531

and investigating LAGONN in a few-shot learning532

setting is fascinating topic for future study. Finally,533

we note that our system could be misused to detect534

undesirable content that is not necessarily harmful.535

For example, a social media website could detect536

and silence users who complain about the platform.537

This is not our intended use case, but could result538

from any classifier, and potential misuse is an un-539

fortunate drawback of all technology.540

9 Ethics Statement541

It is our sincere goal that our work contributes to542

the social good in multiple ways. We first hope to543

have furthered research on text classification that544

can be feasibly applied to combat undesirable con-545

tent, such as misinformation, on the Internet, which546

could potentially cause someone harm. To this end,547

we have tried to describe our approach as accurately548

as possible and released our code and data, such549

that our work is transparent and can be easily repro-550

duced and expanded upon. We hope that we have551

also created a useful but efficient system which552

reduces the need to expend energy in the form ex-553

pensive computation. For example, LAGONN does554

not rely on billion-parameter language models that 555

demand thousand-dollar GPUs to use. LAGONN 556

makes use of GPUs no more than SetFit, despite 557

being more computationally expensive. We have 558

additionally proposed a simple method to make 559

SetFit, an already relatively inexpensive method, 560

even more efficient. 561
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A Appendix 782

A.1 Observations about LAGONN 783

Here, at the suggestion of an anonymous reviewer, 784

we include a little background on LAGONN. We 785

originally attempted to use Sentence Transform- 786

ers/SetFit as a retrieval model that would modify 787

input text and then pass this input to a Transformer- 788

based classifier, such as RoBERTa, instead of back 789

into the ST as in LaGoNN. We experimented with 790

different ST retrieval models and Transformer clas- 791

sifiers, but this system was often beaten by base- 792

lines, and performant versions were too expensive 793

to justify their use. The failure of this system is 794

what ultimately inspired LAGONN. We had hoped 795

to construct a system that did not need to be up- 796

dated after step one and could simply perform infer- 797

ence on subsequent steps, an active learning setup. 798

While the performance of this version of LAGONN 799

did not degrade, it also did not appear to learn any- 800

thing and we found it necessary to update parame- 801

ters on each step. We additionally tried fine-tuning 802

the embedding model via SetFit first before mod- 803

ifying data, however, this hurt performance in all 804

cases. We include this information for transparency 805

and because we find it interesting. 806

A.2 Additional results for initial experiments 807

Here we provide additional results from our ini- 808

tial experimental setup that, due to space limita- 809

tions, could not be included in the main text. We 810

note that a version of LAGONN outperforms or 811

has the same performance of all methods, includ- 812

ing our upper bound RoBERTafull, on 54% of all 813

displayed results, and is the best performer rela- 814

tive to Sentence Transformer-based methods on 815

72%. This excludes LAGONNcheap. This method 816

showed strong performance on the Insincere Ques- 817

tions dataset, but hurts performance in other cases. 818

In cases when SetFit-based methods do outper- 819

form our system, the performances are compara- 820

ble, usually within a point, yet they can be quite 821

dramatic when LAGONN-based methods are the 822

strongest. Below, we report the mean average pre- 823

cision ×100 for all methods over five seeds with 824

the standard deviation, except in the case of Hate 825

Speech Offensive, where the evaluation metric is 826
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the macro-F1. Each table shows the results for a827

given dataset and a given label-balance distribution828

on the first, fifth, and tenth step followed by the829

average for all ten steps. In the table caption we830

provide a summary/interpretation of the results for831

a given setting. The Liar dataset seems to be the832

most difficult for all methods. This is expected833

because it likely does not include enough context834

to determine the truth of a statement.835

Method Insincere-Questions
Imbalanced 1st 5th 10th Average

RoBERTafull 39.85.5 53.14.6 55.71.2 50.64.4
SetFitexp 43.72.7 52.21.9 53.80.9 51.42.9
LAGONNexp 44.54.5 52.72.4 55.42.0 51.83.0
RoBERTafreeze 39.85.5 44.13.6 46.32.4 44.02.0
kNN 23.92.2 30.33.0 31.62.4 30.02.1
SetFit 43.72.7 47.61.6 50.12.1 47.61.8
LAGONN 44.54.5 48.12.2 50.31.7 48.11.9

Probe 40.44.2 49.42.3 52.31.7 49.03.3
LAGONNcheap 40.84.3 51.12.4 54.51.4 50.44.0

Table 6: LAGONN and LAGONNexp are the strongest
performers on the first step, but are overtaken by
RoBERTafull on later steps. The average of all steps
shows that LAGONNexp is the overall strongest per-
former, but we note that LAGONNcheap shows compa-
rable performance to RoBERTafull despite being much
less expensive.

Method Insincere Questions
Moderate 1st 5th 10th Average

RoBERTafull 48.12.3 54.71.9 57.51.5 53.92.9
SetFitexp 48.91.7 53.90.7 54.21.5 52.31.6
LAGONNexp 49.81.6 52.21.9 53.23.3 52.01.4

RoBERTafreeze 48.12.3 50.22.2 52.01.4 50.21.4
kNN 28.02.4 33.92.8 33.62.0 33.51.9
SetFit 48.91.7 53.61.9 55.81.7 53.32.2
LAGONN 49.81.6 54.41.3 56.90.5 54.22.2
Probe 45.72.1 52.31.8 54.41.1 51.42.5
LAGONNcheap 45.72.2 54.41.6 56.40.6 53.23.2

Table 7: LAGONN and LAGONNexp are the strongest
performers on the first step, but are overtaken by
RoBERTafull on later steps. The average of all steps
shows that LAGONN is the overall strongest performer,
but we note that LAGONNcheap shows comparable per-
formance to RoBERTafull despite being much less ex-
pensive.

Method Amazon Counterfactual
Imbalanced 1st 5th 10th Average

RoBERTafull 68.24.5 81.01.7 82.21.0 79.23.9
SetFitexp 72.02.1 78.42.8 78.81.2 78.02.1
LAGONNexp 74.33.8 80.11.4 79.01.6 79.51.9
RoBERTafreeze 68.24.5 75.02.2 77.02.4 74.22.6
kNN 51.04.1 60.03.1 61.32.1 59.73.0
SetFit 72.02.1 74.42.3 76.71.8 74.81.4
LAGONN 74.33.8 76.13.6 77.33.2 76.11.0

Probe 46.62.8 60.31.4 64.21.2 59.25.2
LAGONNcheap 38.23.2 55.31.8 61.01.2 54.46.7

Table 8: LAGONN and LAGONNexp are the strongest
performers on the first step, but are overtaken by
RoBERTafull on later steps. However, the average of all
steps shows that LAGONNexp is the overall strongest
performer.

Method Amazon Counterfactual
Moderate 1st 5th 10th Average

RoBERTafull 73.92.5 80.01.0 80.12.3 79.12.1
SetFitexp 76.51.6 77.02.4 74.70.5 76.51.0
LAGONNexp 78.62.2 78.02.1 76.34.9 78.21.0

RoBERTafreeze 73.92.5 76.61.4 78.50.7 76.41.7
kNN 54.53.1 64.21.9 66.61.3 64.73.5
SetFit 76.51.6 80.60.5 81.20.3 80.01.4
LAGONN 78.62.2 81.21.4 81.61.1 80.80.9
Probe 52.32.0 64.11.8 67.21.4 63.14.3
LAGONNcheap 47.33.4 60.71.5 65.21.4 59.55.2

Table 9: LAGONNexp and LAGONN are the strongest
performers on the first step, but LAGONN is strongest
classifier on subsequent steps and is also the overall
strongest performer based on the average over all steps.

Method Toxic Conversations
Extreme 1st 5th 10th Average

RoBERTafull 7.90.5 21.23.7 33.85.5 21.99.3
SetFitexp 8.81.2 18.13.4 24.74.1 17.65.5
LAGONNexp 8.91.7 17.46.6 26.45.2 17.96.0

RoBERTafreeze 7.90.5 12.82.4 19.13.2 13.53.5
kNN 7.90.0 8.70.4 8.70.2 8.50.3
SetFit 8.81.2 13.12.5 16.33.0 13.02.6
LAGONN 8.91.7 13.83.9 17.14.8 13.42.6

Probe 13.12.8 24.62.6 30.12.1 23.95.6
LAGONNcheap 11.32.2 21.72.7 27.42.3 21.35.3

Table 10: Probe is strongest performer on every step,
except the 10th where it is overtaken by RoBERTafull.
If we average over all steps, we see that Probe is the
strongest performer. We note, however, that LAGONN
and LAGONNexp outperform SetFit and SetFitexp on
all steps.
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Method Toxic Conversations
Imbalanced 1st 5th 10th Average

RoBERTafull 24.15.6 43.13.4 52.12.5 42.48.2
SetFitexp 21.86.6 44.54.1 51.41.9 42.19.3
LAGONNexp 22.79.8 49.15.6 53.42.3 45.69.8
RoBERTafreeze 24.15.6 31.24.4 34.04.0 30.53.1
kNN 11.52.5 14.74.0 15.33.2 14.61.1
SetFit 21.86.6 26.75.3 30.24.0 26.62.7
LAGONN 22.79.8 27.68.9 30.38.7 27.42.4

Probe 23.32.7 33.02.8 37.11.8 32.54.2
LAGONNcheap 20.53.2 31.13.2 35.61.8 30.54.6

Table 11: RoBERTafull and RoBERTafreeze are the
strongest performers on the first step, but are overtaken
by LAGONNexp for the subsequent steps. The overall
strongest performer based on the average over all steps
is LAGONNexp.

Method Toxic Conversations
Moderate 1st 5th 10th Average

RoBERTafull 34.23.4 45.51.9 52.43.3 45.75.6
SetFitexp 33.62.9 47.22.2 46.63.3 44.34.3
LAGONNexp 36.64.2 48.22.7 49.93.7 48.04.4
RoBERTafreeze 34.23.4 38.42.1 39.51.8 38.01.5
kNN 19.41.9 21.53.4 22.42.9 21.60.8
SetFit 33.62.9 39.22.9 41.62.7 38.62.4
LAGONN 36.64.2 42.73.7 45.03.5 42.02.5

Probe 29.02.7 36.11.2 39.11.5 35.53.3
LAGONNcheap 26.12.7 34.31.3 37.51.8 33.63.6

Table 12: LAGONN and LAGONNexp are the strongest
performers on the first step and LAGONNexp remains
the strongest for subsequent steps, also being the
strongest classifier overall based on the average.

Method Toxic Conversations
Balanced 1st 5th 10th Average

RoBERTafull 32.31.1 42.71.8 54.13.4 43.86.3
SetFitexp 35.73.4 32.66.2 37.42.7 36.51.9
LAGONNexp 40.44.4 40.26.6 39.87.5 40.01.2

RoBERTafreeze 32.31.1 39.21.5 41.00.6 38.52.4
kNN 17.40.8 23.72.6 24.32.7 23.12.0
SetFit 35.73.4 44.52.9 46.12.8 43.62.9
LAGONN 40.44.4 46.62.7 48.12.2 46.12.2
Probe 29.52.4 35.90.9 40.20.9 36.13.5
LAGONNcheap 26.82.7 34.51.3 38.50.8 34.43.7

Table 13: LAGONN and LAGONNexp are the strongest
performers on the first step. LAGONN remains the
strongest until the 10th, where it is overtaken by
RoBERTafull. Overall, LAGONN is the strongest clas-
sifier based on the average. Note the performance of
SetFitexp and LAGONNexp. While both degrade after
the first step, LAGONNexp’s performance drop is dra-
matically mitigated.
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Method Hate Speech Offensive
Extreme 1st 5th 10th Average

RoBERTafull 30.21.4 43.52.5 51.22.2 44.37.4
SetFitexp 30.30.8 44.01.3 51.12.0 43.86.5
LAGONNexp 30.30.7 40.72.9 49.14.4 42.26.2

RoBERTafreeze 30.21.4 33.53.1 34.43.4 33.11.4
kNN 31.51.2 35.92.7 37.42.0 35.81.7
SetFit 30.30.8 38.42.5 41.11.5 37.83.3
LAGONN 30.30.7 35.72.6 39.12.4 35.62.7

Probe 29.00.2 34.71.5 40.12.1 35.13.8
LAGONNcheap 29.00.1 36.91.8 40.52.1 36.23.7

Table 14: kNN is the strongest performer on the first
step, while SetFitexp is on the 5th, and RoBERTafull is
the strongest on the 10th while also being strongest over-
all performer for all steps. LAGONN-based methods
are generally beaten by ST/SetFit-based baselines, with
the exception of LAGONNcheap which consistently out-
performs Probe.

Method Hate Speech Offensive
Imbalanced 1st 5th 10th Average

RoBERTafull 50.63.0 65.23.9 70.31.2 64.25.3
SetFitexp 54.44.3 66.31.8 68.92.0 64.34.5
LAGONNexp 57.05.2 67.04.4 69.82.1 64.94.6
RoBERTafreeze 50.63.0 54.11.6 55.32.3 54.11.3
kNN 55.64.8 57.32.3 58.83.6 57.41.1
SetFit 54.44.3 57.03.9 58.23.8 57.21.1
LAGONN 57.05.2 58.24.1 58.33.4 58.30.6

Probe 46.52.2 57.81.7 60.31.2 56.54.5
LAGONNcheap 47.11.3 56.52.2 59.52.5 55.63.8

Table 15: LAGONN and LAGONNexp are the strongest
performers on the first step, with LAGONNexp being
the strongest on the 5th and RoBERTafull taking over
on the 10th. LAGONNexp is the strongest performer
overall based on the average over all steps.

Method Hate Speech Offensive
Moderate 1st 5th 10th Average

RoBERTafull 61.93.4 70.81.0 72.51.4 69.93.2
SetFitexp 64.34.2 70.62.4 72.40.5 69.82.8
LAGONNexp 63.84.9 71.02.1 72.31.0 70.03.0
RoBERTafreeze 61.93.4 63.24.1 64.14.5 63.20.6
kNN 64.34.0 63.32.9 63.92.5 63.70.4
SetFit 64.34.2 67.33.2 67.62.3 66.91.1
LAGONN 63.84.9 65.05.3 66.75.9 65.30.9

Probe 55.61.7 63.80.8 66.10.3 63.23.0
LAGONNcheap 56.03.6 62.21.4 66.00.9 62.32.9

Table 16: kNN, SetFit, and SetFitexp start the strongest,
but are overtaken by LAGONNexp on the 5th step,
which is in turn overtaken by RoBERTafull on the 10th

step. Overall LAGONNexp is the strongest performer
based on the average.

Method Hate Speech Offensive
Balanced 1st 5th 10th Average

RoBERTafull 59.73.5 66.91.2 69.21.8 66.42.7
SetFitexp 60.71.3 66.31.6 67.50.9 65.92.2
LAGONNexp 61.51.7 66.41.4 67.70.9 66.11.8

RoBERTafreeze 59.73.5 60.42.7 63.12.3 61.01.3
kNN 60.71.3 59.62.8 59.52.5 59.50.5
SetFit 60.71.3 62.50.7 63.41.0 62.31.0
LAGONN 61.51.7 62.81.5 64.21.0 63.00.9

Probe 54.91.4 58.50.9 60.90.4 58.71.7
LAGONNcheap 54.22.3 58.60.6 60.60.5 58.51.8

Table 17: LAGONN and LAGONNexp are the
strongest performers on the first step, but are over-
taken by RoBERTafull on later steps, which also is
the strongest overall classifier. We note that LAGONN
and LAGONNexp consistently outperform SetFit and
SetFitexp, respectively.

Method Liar
Extreme 1st 5th 10th Average

RoBERTafull 32.02.7 34.72.9 35.14.3 33.71.0
SetFitexp 31.23.8 30.43.1 31.82.9 31.50.7
LAGONNexp 30.64.7 30.32.0 31.32.0 31.10.6

RoBERTafreeze 32.02.7 32.84.5 34.25.0 33.20.7
kNN 27.00.5 27.30.8 27.90.8 27.40.3
SetFit 31.23.8 33.75.1 35.75.1 34.31.6
LAGONN 30.64.7 32.04.6 33.75.4 32.60.9

Probe 30.72.0 30.63.9 31.72.9 31.10.4
LAGONNcheap 30.72.0 30.53.8 31.42.6 31.00.4

Table 18: RoBERTafreeze and RoBERTafull start out
as the strongest performers but are eventually overtaken
by SetFit on the 10th step, and SetFit ends up being the
strongest performer over all steps based on the average.

Method Liar
Imbalanced 1st 5th 10th Average

RoBERTafull 31.43.2 35.82.6 40.04.3 36.22.4
SetFitexp 32.34.5 35.93.1 36.42.2 35.21.1
LAGONNexp 32.34.6 35.73.4 36.52.3 35.71.4

RoBERTafreeze 31.43.2 34.12.6 35.63.2 34.01.4
kNN 27.00.2 28.51.0 29.01.0 28.70.7
SetFit 32.34.5 36.53.1 38.53.4 36.32.0
LAGONN 32.34.6 34.92.2 36.92.5 35.31.4

Probe 30.73.0 32.81.8 35.01.6 33.51.5
LAGONNcheap 30.43.0 32.91.8 35.41.7 33.51.7

Table 19: SetFit, SetFitexp, LAGONN, and
LAGONNexp start out as the strongest perform-
ers. On the 5th step, SetFit is overtaken the other
systems, but is eventually overtaken by RoBERTafull.
Overall SetFit is the strongest system, but we note that
LAGONNexp outperforms SetFitexp.
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Method Liar
Moderate 1st 5th 10th Average

RoBERTafull 33.93.1 38.42.7 43.92.2 39.53.0
SetFitexp 33.02.6 37.21.8 38.71.5 37.41.6
LAGONNexp 34.13.4 38.72.3 39.01.8 37.81.5

RoBERTafreeze 33.93.1 35.32.6 36.82.2 35.41.0
kNN 29.20.8 29.71.5 30.00.6 29.80.3
SetFit 33.02.6 37.23.9 39.43.5 37.01.8
LAGONN 34.13.4 37.03.1 38.63.0 36.81.3

Probe 31.61.1 34.72.5 37.02.5 34.91.7
LAGONNcheap 31.40.9 35.32.3 37.62.0 35.31.9

Table 20: LAGONN and LAGONNexp start out as the
strongest performers and LAGONNexp continues to
be strong, until the 10th step where it is overtaken by
RoBERTafull, which ends up as the most performant
classifier over all steps based on the average.

Method Liar
Balanced 1st 5th 10th Average

RoBERTafull 33.82.1 39.42.4 43.51.7 40.23.2
SetFitexp 34.42.3 36.71.7 37.01.3 36.51.1
LAGONNexp 33.81.8 34.22.7 37.21.9 36.21.4

RoBERTafreeze 33.82.1 36.61.6 38.61.5 36.71.5
kNN 30.10.4 31.32.1 30.61.1 30.90.4
SetFit 34.42.3 38.32.5 40.02.0 37.91.6
LAGONN 33.81.8 38.31.3 40.60.6 38.12.0

Probe 32.11.9 35.21.4 37.22.5 35.21.7
LAGONNcheap 31.91.9 36.01.0 37.52.5 35.71.8

Table 21: SetFit and SetFitexp are the most perfor-
mant systems on the first step, but are overtaken by
RoBERTafull, the strongest overall classifier. We note
that LAGONN outperforms SetFit after the first step
and in aggregate.

A.3 Additional results for secondary836

experiments837

Here, we provide additional results from our sec-838

ond set of experiments that, due to space limita-839

tions, could not be included in the main text. We840

note that a version of LAGONN outperforms or841

has the same performance of all methods, includ-842

ing our upper bound RoBERTafull, on 60% of all843

displayed results, and is the best performer rela-844

tive to Sentence Transformer-based methods on845

65%. This excludes LAGONNcheap. This method846

showed strong performance on the Insincere Ques-847

tions dataset, but hurts performance in other cases.848

In cases when SetFit-based methods do outper-849

form our system, the performances are comparable,850

usually within one point, yet they can be quite851

different when LAGONN-based methods are the 852

strongest. Below, we report the mean average pre- 853

cision ×100 for all methods over five seeds with 854

the standard deviation, except in the case of Hate 855

Speech Offensive, where the evaluation metric is 856

the macro-F1. Each table shows the results for a 857

given dataset and a given label-balance distribution 858

on the first, fifth, and tenth step followed by the 859

average for all ten steps. In the table caption we 860

provide a summary/interpretation of the results for 861

a given setting. Liar appears to be the most difficult 862

dataset for all methods. This is expected because it 863

likely does not include enough context to determine 864

the truth of a statement. 865

Method Insincere Questions
Extreme 1st 5th 10th Average

RoBERTafull 19.98.4 30.97.9 42.07.4 33.56.7
SetFitexp 24.16.3 29.26.7 36.77.3 31.73.4
LAGONNexp 30.78.9 37.66.1 39.06.1 36.12.3

SetFitlite 24.16.3 38.16.3 41.16.5 35.65.5
LAGONNlite 30.78.9 41.88.3 43.48.5 39.34.4
RoBERTafreeze 19.98.4 34.15.4 37.95.2 32.55.4
kNN 6.80.4 15.93.4 16.94.3 14.43.0
SetFit 24.16.3 31.74.9 36.15.4 31.83.6
LAGONN 30.78.9 39.34.9 41.24.7 38.43.0

Probe 24.38.4 39.85.6 44.84.2 38.36.2
LAGONNcheap 23.67.8 40.75.9 45.34.4 38.66.6

Table 22: LAGONN, LAGONNlite, and LAGONNexp

start out as the strongest models, but LAGONNlite re-
mains the most performant by the 10th step. It is also
the overall strongest performer based on the average.
We note the strength of LAGONNcheap relative to far
more expensive methods.

Method Insincere Questions
Imbalanced 1st 5th 10th Average

RoBERTafull 39.85.5 53.14.6 55.71.2 50.64.4
SetFitexp 43.72.7 52.21.9 53.80.9 51.42.9
LAGONNexp 44.54.5 52.72.4 55.42.0 51.83.0

SetFitlite 43.72.7 52.92.6 55.81.8 52.23.4
LAGONNlite 44.54.5 53.52.7 55.92.4 52.63.5
RoBERTafreeze 39.85.5 44.13.6 46.32.4 44.02.0
kNN 23.92.2 30.33.0 31.62.4 30.02.1
SetFit 43.72.7 47.61.6 50.12.1 47.61.8
LAGONN 44.54.5 48.12.2 50.31.7 48.11.9

Probe 40.44.2 49.42.3 52.31.7 49.03.3
LAGONNcheap 40.84.3 51.12.4 54.51.4 50.44.0

Table 23: LAGONN, LAGONNlite, and LAGONNexp

start out as the strongest models, but LAGONNlite re-
mains the most performant by the 10th step. It is also
the overall strongest performer based on the average.
We note the strength of LAGONNcheap relative to far
more expensive methods.
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Method Insincere Questions
Moderate 1st 5th 10th Average

RoBERTafull 48.12.3 54.71.9 57.51.5 53.92.9
SetFitexp 48.91.7 53.90.7 54.21.5 52.31.6
LAGONNexp 49.81.6 52.21.9 53.23.3 52.01.4

SetFitlite 48.91.7 56.51.4 58.70.6 55.03.5
LAGONNlite 49.81.6 56.12.8 58.31.5 54.63.5

RoBERTafreeze 48.12.3 50.22.2 52.01.4 50.21.4
kNN 28.02.4 33.92.8 33.62.0 33.51.9
SetFit 48.91.7 53.61.9 55.81.7 53.32.2
LAGONN 49.81.6 54.41.3 56.90.5 54.22.2

Probe 45.72.1 52.31.8 54.41.1 51.42.5
LAGONNcheap 45.72.2 54.41.6 56.40.6 53.23.2

Table 24: LAGONN, LAGONNlite, and LAGONNexp

start out as the strongest models, but SetFitlite overtakes
the other methods by the 5th step and is the strongest
performer based on the average. We note the strength of
LAGONNcheap relative to far more expensive methods.

Method Insincere Questions
Balanced 1st 5th 10th Average

RoBERTafull 47.14.2 52.13.6 55.72.6 52.52.9
SetFitexp 43.54.2 47.14.6 48.53.9 48.01.7
LAGONNexp 42.85.3 47.62.9 47.01.7 46.22.0

SetFitlite 43.54.2 54.62.4 59.60.9 53.65.8
LAGONNlite 42.85.3 53.53.7 58.62.5 52.26.4

RoBERTafreeze 47.14.2 52.10.4 53.31.1 51.52.1
kNN 22.32.3 30.22.3 30.91.8 29.52.5
SetFit 43.54.2 53.82.2 55.51.6 52.83.5
LAGONN 42.85.3 54.12.9 56.31.3 53.43.7

Probe 47.51.6 52.41.7 55.31.1 52.22.5
LAGONNcheap 49.32.6 54.41.4 57.60.7 54.22.7

Table 25: LAGONNcheap, starts out as the strongest
model, but SetFitlite overtakes the other methods on
the 5th and 10th step. Overall LAGONNcheap is the
strongest model despite being one of the least expensive.

Method Amazon Counterfactual
Extreme 1st 5th 10th Average

RoBERTafull 21.86.6 63.910.2 72.33.0 59.616.8
SetFitexp 22.38.8 64.23.3 68.64.6 56.814.9
LAGONNexp 26.117.5 68.44.4 74.92.9 63.216.7
SetFitlite 22.38.8 62.45.1 67.55.2 56.514.7
LAGONNlite 26.117.5 68.34.3 68.94.3 60.615.1

RoBERTafreeze 21.86.6 41.012.7 51.310.7 40.68.9
kNN 10.30.2 15.34.2 18.43.7 15.62.4
SetFit 22.38.8 32.411.5 42.38.8 34.55.9
LAGONN 26.117.5 31.119.4 33.019.1 30.92.3

Probe 24.29.0 46.34.4 54.62.0 45.110.3
LAGONNcheap 20.16.9 38.34.9 47.83.4 38.29.5

Table 26: LAGONN, LAGONNlite, and LAGONNexp

are the most performant models on the first step, but
only LAGONNexp remains the most performant on sub-
sequent steps, also being the strongest overall method
based on the average over all steps.

Method Amazon Counterfactual
Imbalanced 1st 5th 10th Average

RoBERTafull 68.24.5 81.01.7 82.21.0 79.23.9
SetFitexp 72.02.1 78.42.8 78.81.2 78.02.1
LAGONNexp 74.33.8 80.11.4 79.01.6 79.51.9

SetFitlite 72.02.1 79.11.4 81.61.3 79.12.7
LAGONNlite 74.33.8 79.21.7 81.91.1 80.22.2
RoBERTafreeze 68.24.5 75.02.2 77.02.4 74.22.6
kNN 51.04.1 60.03.1 61.32.1 59.73.0
SetFit 72.02.1 74.42.3 76.71.8 74.81.4
LAGONN 74.33.8 76.13.6 77.33.2 76.11.0

Probe 46.62.8 60.31.4 64.21.2 59.25.2
LAGONNcheap 38.23.2 55.31.8 61.01.2 54.46.7

Table 27: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest but
LAGONNlite performs slightly worse than
RoBERTafull on the 5th and 10th step. How-
ever, LAGONNlite is the best overall method based on
the average.

Method Amazon Counterfactual
Moderate 1st 5th 10th Average

RoBERTafull 73.92.5 80.01.0 80.12.3 79.12.1
SetFitexp 76.51.6 77.02.4 74.70.5 76.51.0
LAGONNexp 78.62.2 78.02.1 76.34.9 78.21.0

SetFitlite 76.51.6 80.43.8 83.50.8 80.32.8
LAGONNlite 78.62.2 80.81.9 83.10.7 81.01.7
RoBERTafreeze 73.92.5 76.61.4 78.50.7 76.41.7
kNN 54.53.1 64.21.9 66.61.3 64.73.5
SetFit 76.51.6 80.60.5 81.20.3 80.01.4
LAGONN 78.62.2 81.21.4 81.61.1 80.80.9

Probe 52.32.0 64.11.8 67.21.4 63.14.3
LAGONNcheap 47.33.4 60.71.5 65.21.4 59.55.2

Table 28: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest. On the 5th

step, LAGONN is the most performant method while
on the 10th step it is SetFitlite. However, LAGONNlite

is the best overall method based on the average.

Method Amazon Counterfactual
Balanced 1st 5th 10th Average

RoBERTafull 73.62.1 78.63.9 82.41.1 78.92.2
SetFitexp 73.84.4 69.84.0 64.14.6 69.63.6
LAGONNexp 76.03.0 73.42.6 72.32.9 72.53.4

SetFitlite 73.84.4 80.41.8 82.40.8 78.34.3
LAGONNlite 76.03.0 80.01.3 82.50.9 79.23.2

RoBERTafreeze 73.62.1 76.81.6 77.91.0 76.51.3
kNN 41.73.4 57.93.3 58.33.3 56.85.1
SetFit 73.84.4 79.21.9 80.11.0 78.61.8
LAGONN 76.03.0 80.12.0 81.41.1 79.81.4
Probe 52.43.4 64.72.5 67.50.4 63.44.4
LAGONNcheap 48.13.4 62.02.0 65.30.8 60.55.0

Table 29: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest. On the 5th

step, SetFitlite pulls ahead slightly, yet on the 10th step
LAGONNlite is the best performer. Overall, LAGONN
is the best method based on the average.
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Method Toxic Conversations
Extreme 1st 5th 10th Average

RoBERTafull 7.90.5 21.23.7 33.85.5 21.99.3
SetFitexp 8.81.2 18.13.4 24.74.1 17.65.5
LAGONNexp 8.91.7 17.46.6 26.45.2 17.96.0

SetFitlite 8.81.2 15.94.8 18.03.9 14.93.2
LAGONNlite 8.91.7 16.15.9 19.86.0 15.53.7

RoBERTafreeze 7.90.5 12.82.4 19.13.2 13.53.5
kNN 7.90.0 8.70.4 8.70.2 8.50.3
SetFit 8.81.2 13.12.5 16.33.0 13.02.6
LAGONN 8.91.7 13.83.9 17.14.8 13.42.6

Probe 13.12.8 24.62.6 30.12.1 23.95.6
LAGONNcheap 11.32.2 21.72.7 27.42.3 21.35.3

Table 30: Probe is most performant method on all steps
and the overall strongest performer. We note, however,
that LAGONN-based methods tend to outperform their
SetFit-based counterparts.

Method Toxic Conversations
Imbalanced 1st 5th 10th Average

RoBERTafull 24.15.6 43.13.4 52.12.5 42.48.2
SetFitexp 21.86.6 44.54.1 51.41.9 42.19.3
LAGONNexp 22.79.8 49.15.6 53.42.3 45.69.8
SetFitlite 21.86.6 41.44.4 44.83.1 39.07.0
LAGONNlite 22.79.8 47.06.3 50.25.4 43.78.6

RoBERTafreeze 24.15.6 31.24.4 34.04.0 30.53.1
kNN 11.52.5 14.74.0 15.33.2 14.61.1
SetFit 21.86.6 26.75.3 30.24.0 26.62.7
LAGONN 22.79.8 27.68.9 30.38.7 27.42.4

Probe 23.32.7 33.02.8 37.11.8 32.54.2
LAGONNcheap 20.53.2 31.13.2 35.61.8 30.54.6

Table 31: RoBERTafull and RoBERTafreeze start out
as the strongest classifiers on the first step, but are over-
taken on subsequent steps by LAGONNexp, which ends
up as strongest method overall.

Method Toxic Conversations
Moderate 1st 5th 10th Average

RoBERTafull 34.23.4 45.51.9 52.43.3 45.75.6
SetFitexp 33.62.9 47.22.2 46.63.3 44.34.3
LAGONNexp 36.64.2 48.22.7 49.93.7 48.04.4

SetFitlite 33.62.9 52.62.0 55.11.6 48.87.3
LAGONNlite 36.64.2 56.11.5 57.71.4 52.36.8
RoBERTafreeze 34.23.4 38.42.1 39.51.8 38.01.5
kNN 19.41.9 21.53.4 22.42.9 21.60.8
SetFit 33.62.9 39.22.9 41.62.7 38.62.4
LAGONN 36.64.2 42.73.7 45.03.5 42.02.5

Probe 29.02.7 36.11.2 39.11.5 35.53.3
LAGONNcheap 26.12.7 34.31.3 37.51.8 33.63.6

Table 32: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest, but it is
LAGONNlite that remains performant for all other steps.
LAGONNlite is also the strongest overall method based
on the average.

Method Toxic Conversations
Balanced 1st 5th 10th Average

RoBERTafull 32.31.1 42.71.8 54.13.4 43.86.3
SetFitexp 35.73.4 32.66.2 37.42.7 36.51.9
LAGONNexp 40.44.4 40.26.6 39.87.5 40.01.2

SetFitlite 35.73.4 52.72.5 53.92.2 46.87.8
LAGONNlite 40.44.4 52.92.6 54.02.3 48.36.4
RoBERTafreeze 32.31.1 39.21.5 41.00.6 38.52.4
kNN 17.40.8 23.72.6 24.32.7 23.12.0
SetFit 35.73.4 44.52.9 46.12.8 43.62.9
LAGONN 40.44.4 46.62.7 48.12.2 46.12.2

Probe 29.52.4 35.90.9 40.20.9 36.13.5
LAGONNcheap 26.82.7 34.51.3 38.50.8 34.43.7

Table 33: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest, but it is
LAGONNlite that remains performant for all other steps.
LAGONNlite is also the strongest overall method based
on the average.

Method Hate Speech Offensive
Extreme 1st 5th 10th Average

RoBERTafull 30.21.4 43.52.5 51.22.2 44.37.4
SetFitexp 30.30.8 44.01.3 51.12.0 43.86.5
LAGONNexp 30.30.7 40.72.9 49.14.4 42.26.2

SetFitlite 30.30.8 43.42.5 45.53.4 41.64.6
LAGONNlite 30.30.7 40.93.4 41.54.8 39.13.6

RoBERTafreeze 30.21.4 33.53.1 34.43.4 33.11.4
kNN 31.51.2 35.92.7 37.42.0 35.81.7
SetFit 30.30.8 38.42.5 41.11.5 37.83.3
LAGONN 30.30.7 35.72.6 39.12.4 35.62.7

Probe 29.00.2 34.71.5 40.12.1 35.13.8
LAGONNcheap 29.00.1 36.91.8 40.52.1 36.23.7

Table 34: kNN is the strongest method at first, but
is overtaken by SetFitexp on the 5th step, which is
then overtaken by RoBERTafull on the 10th step.
RoBERTafull is overall most performant system based
on the average.

Method Hate Speech Offensive
Imbalanced 1st 5th 10th Average

RoBERTafull 50.63.0 65.23.9 70.31.2 64.25.3
SetFitexp 54.44.3 66.31.8 68.92.0 64.34.5
LAGONNexp 57.05.2 67.04.4 69.82.1 64.94.6
SetFitlite 54.44.3 65.53.0 65.93.5 63.53.9
LAGONNlite 57.05.2 66.62.6 66.61.9 64.34.1

RoBERTafreeze 50.63.0 54.11.6 55.32.3 54.11.3
kNN 55.64.8 57.32.3 58.83.6 57.41.1
SetFit 54.44.3 57.03.9 58.23.8 57.21.1
LAGONN 57.05.2 58.24.1 58.33.4 58.30.6

Probe 46.52.2 57.81.7 60.31.2 56.54.5
LAGONNcheap 47.11.3 56.52.2 59.52.5 55.63.8

Table 35: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest, and
LAGONNexp continues to be performant, but is over-
taken on the 10th step by RoBERTafull. LAGONNexp

is the strongest overall method based on the average.
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Method Hate Speech Offensive
Moderate 1st 5th 10th Average

RoBERTafull 61.93.4 70.81.0 72.51.4 69.93.2
SetFitexp 64.34.2 70.62.4 72.40.5 69.82.8
LAGONNexp 63.84.9 71.02.1 72.31.0 70.03.0
SetFitlite 64.34.2 70.32.2 71.22.1 69.32.3
LAGONNlite 63.84.9 70.71.4 71.41.0 69.42.5

RoBERTafreeze 61.93.4 63.24.1 64.14.5 63.20.6
kNN 64.34.0 63.32.9 63.92.5 63.70.4
SetFit 64.34.2 67.33.2 67.62.3 66.91.1
LAGONN 63.84.9 65.05.3 66.75.9 65.30.9

Probe 55.61.7 63.80.8 66.10.3 63.23.0
LAGONNcheap 56.03.6 62.21.4 66.00.9 62.32.9

Table 36: Similar to the imbalanced setting, on the
first step, LAGONN, LAGONNlite, and LAGONNexp

start out the strongest, and LAGONNexp continues to
be performant, but is overtaken on the 10th step by
RoBERTafull. LAGONNexp is the strongest overall
method based on the average.

Method Hate Speech Offensive
Balanced 1st 5th 10th Average

RoBERTafull 59.73.5 66.91.2 69.21.8 66.42.7
SetFitexp 60.71.3 66.31.6 67.50.9 65.92.2
LAGONNexp 61.51.7 66.41.4 67.70.9 66.11.8

SetFitlite 60.71.3 66.32.0 66.50.9 65.11.7
LAGONNlite 61.51.7 67.11.1 67.30.8 66.01.7

RoBERTafreeze 59.73.5 60.42.7 63.12.3 61.01.3
kNN 60.71.3 59.62.8 59.52.5 59.50.5
SetFit 60.71.3 62.50.7 63.41.0 62.31.0
LAGONN 61.51.7 62.81.5 64.21.0 63.00.9

Probe 54.91.4 58.50.9 60.90.4 58.71.7
LAGONNcheap 54.22.3 58.60.6 60.60.5 58.51.8

Table 37: Similar to the moderate setting, on the
first step, LAGONN, LAGONNlite, and LAGONNexp

start out the strongest, but RoBERTafull overtakes
LAGONNlite by the 10th step. RoBERTafull slightly
outperforms LAGONNlite and LAGONNexp as the
overall strongest method based on the average.
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Method Liar
Extreme 1st 5th 10th Average

RoBERTafull 32.02.7 34.72.9 35.14.3 33.71.0
SetFitexp 31.23.8 30.43.1 31.82.9 31.50.7
LAGONNexp 30.64.7 30.32.0 31.32.0 31.10.6

SetFitlite 31.23.8 32.73.8 33.54.2 32.70.8
LAGONNlite 30.64.7 31.83.9 32.42.7 31.60.6

RoBERTafreeze 32.02.7 32.84.5 34.25.0 33.20.7
kNN 27.00.5 27.30.8 27.90.8 27.40.3
SetFit 31.23.8 33.75.1 35.75.1 34.31.6
LAGONN 30.64.7 32.04.6 33.75.4 32.60.9

Probe 30.72.0 30.63.9 31.72.9 31.10.4
LAGONNcheap 30.72.0 30.53.8 31.42.6 31.00.4

Table 38: RoBERTafreeze and RoBERTafull start out
performant and RoBERTafull continues to be until the
10th step where it is overtaken by SetFit, which ends up
being the strongest overall method.

Method Liar
Imbalanced 1st 5th 10th Average

RoBERTafull 31.43.2 35.82.6 40.04.3 36.22.4
SetFitexp 32.34.5 35.93.1 36.42.2 35.21.1
LAGONNexp 32.34.6 35.73.4 36.52.3 35.71.4

SetFitlite 32.34.5 35.62.7 37.42.6 35.81.6
LAGONNlite 32.34.6 35.22.4 36.62.7 35.51.3

RoBERTafreeze 31.43.2 34.12.6 35.63.2 34.01.4
kNN 27.00.2 28.51.0 29.01.0 28.70.7
SetFit 32.34.5 36.53.1 38.53.4 36.32.0
LAGONN 32.34.6 34.92.2 36.92.5 35.31.4

Probe 30.73.0 32.81.8 35.01.6 33.51.5
LAGONNcheap 30.43.0 32.91.8 35.41.7 33.51.7

Table 39: LAGONN, LAGONNlite, LAGONNexp, Set-
Fit, SetFitlite, and SetFitexp start out as the most per-
formant, but SetFit is the strongest on the 5th step and
RoBERTafull on the 10th. Overall, SetFit is strongest
method based on the average over all steps.

Method Liar
Moderate 1st 5th 10th Average

RoBERTafull 33.93.1 38.42.7 43.92.2 39.53.0
SetFitexp 33.02.6 37.21.8 38.71.5 37.41.6
LAGONNexp 34.13.4 38.72.3 39.01.8 37.81.5

SetFitlite 33.02.6 38.51.3 40.42.0 38.22.1
LAGONNlite 34.13.4 38.42.0 39.61.5 37.91.6

RoBERTafreeze 33.93.1 35.32.6 36.82.2 35.41.0
kNN 29.20.8 29.71.5 30.00.6 29.80.3
SetFit 33.02.6 37.23.9 39.43.5 37.01.8
LAGONN 34.13.4 37.03.1 38.63.0 36.81.3

Probe 31.61.1 34.72.5 37.02.5 34.91.7
LAGONNcheap 31.40.9 35.32.3 37.62.0 35.31.9

Table 40: LAGONN, LAGONNlite, and LAGONNexp

are the most performant classifiers on the first step,
while LAGONNexp remains strong until the 10th step
where it is overtaken by RoBERTafull. RoBERTafull is
the overally strongest method if we aggregate over all
steps.

Method Liar
Balanced 1st 5th 10th Average

RoBERTafull 33.82.1 39.42.4 43.51.7 40.23.2
SetFitexp 34.42.3 36.71.7 37.01.3 36.51.1
LAGONNexp 33.81.8 34.22.7 37.21.9 36.21.4

SetFitlite 34.42.3 38.72.3 40.32.8 38.02.1
LAGONNlite 33.81.8 37.62.0 39.42.8 37.21.9

RoBERTafreeze 33.82.1 36.61.6 38.61.5 36.71.5
kNN 30.10.4 31.32.1 30.61.1 30.90.4
SetFit 34.42.3 38.32.5 40.02.0 37.91.6
LAGONN 33.81.8 38.31.3 40.60.6 38.12.0

Probe 32.11.9 35.21.4 37.22.5 35.21.7
LAGONNcheap 31.91.9 36.01.0 37.52.5 35.71.8

Table 41: SetFit, SetFitlite, and SetFitexp start out
the strongest on the first step, but are overtaken by
RoBERTafull on the 5th which remains the most per-
formant on the 10th step and if we consider the average
over all steps.
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A.4 Ablations866

In this Appendix section, we perform ablation stud-867

ies with LAGONN to support our findings in the868

main text.869

A.4.1 Ablation: LAGONN configurations870

Here, we provide an in-depth comparison between871

all LAGONN configurations, LABEL, DIST,872

LABDIST, TEXT, and ALL (see Table 1) for all873

datasets, balances, and levels of expense. The eval-874

uation metric is the mean average precision (×100)875

over five seeds in all cases except for Hate Speech876

Offensive where the metric is the macro-F1.877

Below, Figures 5 through 9 are the results for878

the LAGONNcheap training strategy, Figures 10879

through 14 are the results for LAGONN, Figures880

15 through 19 are the results for LAGONNlite,881

and Figures 20 through 24 are the results for882

LAGONNexp. We place the figures on a new page883

for ease of viewing.884

In the case of LAGONNcheap, if we do not fine-885

tune the embedding model we see little variation in886

the standard deviation bands, with the exception of887

the LIAR dataset, which seems to be a very difficult888

dataset. When we do fine-tune, we see a great deal889

of variation, especially in cases of label imbalance,890

which is expected as the representations are altered891

more. The performance of TEXT and ALL is very892

unstable, often being the worst performers, while893

sometimes being the best. Interestingly, we note894

that DIST, LABEL, and LABDIST often show895

very similar performance. In our opinion. LAB-896

DIST seems to be the most consistent and stable897

performer, especially in cases when the embedding898

model is fine-tuned, LAGONN, LAGONNlite, and899

LAGONNexp.900

Overall, we believe that LABDIST is the most901

performant/stable configuration of LAGONN, and902

it is about this version that we present results in the903

main text. We note that we could have presented the904

best performer for each evaluation scenario, how-905

ever, this is not in the spirit of our work as it adds906

yet another hyperparameter to configure, standing907

in the way of practical usage and convoluting our908

analysis. However, in our codebase, we hope that909

we have made it easy for one to change these con-910

figurations for their own usage, be it scientific or911

otherwise.912
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Figure 5: LAGONNcheap performance for all configurations and balance regimes on the Insincere Questions dataset.
The relevant balance is in the title of each panel.

Figure 6: LAGONNcheap performance for all configurations and balance regimes on the Amazon Counterfactual
dataset. The relevant balance is in the title of each panel.

Figure 7: LAGONNcheap performance for all configurations and balance regimes on the Toxic Conversations
dataset. The relevant balance is in the title of each panel.

Figure 8: LAGONNcheap performance for all configurations and balance regimes on the Hate Speech Offensive
dataset. The relevant balance is in the title of each panel.

Figure 9: LAGONNcheap performance for all configurations and balance regimes on the Liar dataset. The relevant
balance is in the title of each panel.
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Figure 10: LAGONN performance for all configurations and balance regimes on the Insincere Questions dataset.
The relevant balance is in the title of each panel.

Figure 11: LAGONN performance for all configurations and balance regimes on the Amazon Counterfactual dataset.
The relevant balance is in the title of each panel.

Figure 12: LAGONN performance for all configurations and balance regimes on the Toxic Conversations dataset.
The relevant balance is in the title of each panel.

Figure 13: LAGONN performance for all configurations and balance regimes on the Hate Speech Offensive dataset.
The relevant balance is in the title of each panel.

Figure 14: LAGONN performance for all configurations and balance regimes on the Liar dataset. The relevant
balance is in the title of each panel.
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Figure 15: LAGONNlite performance for all configurations and balance regimes on the Insincere Questions dataset.
The relevant balance is in the title of each panel.

Figure 16: LAGONNlite performance for all configurations and balance regimes on the Amazon Counterfactual
dataset. The relevant balance is in the title of each panel.

Figure 17: LAGONNlite performance for all configurations and balance regimes on the Toxic Conversations dataset.
The relevant balance is in the title of each panel.

Figure 18: LAGONNlite performance for all configurations and balance regimes on the Hate Speech Offensive
dataset. The relevant balance is in the title of each panel.

Figure 19: LAGONNlite performance for all configurations and balance regimes on the Liar dataset. The relevant
balance is in the title of each panel.
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Figure 20: LAGONNexp performance for all configurations and balance regimes on the Insincere Questions dataset.
The relevant balance is in the title of each panel.

Figure 21: LAGONNexp performance for all configurations and balance regimes on the Amazon Counterfactual
dataset. The relevant balance is in the title of each panel.

Figure 22: LAGONNexp performance for all configurations and balance regimes on the Toxic Conversations dataset.
The relevant balance is in the title of each panel.

Figure 23: LAGONNexp performance for all configurations and balance regimes on the Hate Speech Offensive
dataset. The relevant balance is in the title of each panel.

Figure 24: LAGONNexp performance for all configurations and balance regimes on the Liar dataset. The relevant
balance is in the title of each panel.
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A.4.2 Ablation: the effect of encoding distance913

Here, at the suggestion of an anonymous reviewer,914

we present ablation results and analysis of how en-915

coding distance affects LAGONN, because PLMs916

often struggle to understand numbers. Note that917

during our development stage, we ensured that our918

tokenizer was capable of encoding floats with trail-919

ing digits. To examine the effect of trailing digits920

on LAGONN, we consider the DIST configuration921

(see Table 1), where we append only the Euclidean922

distance to the input text. In this ablation, however,923

we round to different levels of precision. For exam-924

ple, if the distance were a float of 0.123456789, we925

round it to the nearest whole number, 0.0, single926

digit float, 0.1, three digit float, 0.123, six digit927

float, 0.123457, and finally keep it unrounded, that928

is, the original DIST configuration, 0.123456789.929

The below results are only for the LAGONNlite930

training strategy. We chose LAGONNlite for this931

ablation because it provides insight into both how932

distance affects full-model fine-tuning and only re-933

fitting the classification head. The results can be934

seen below in Figures 25 through 29. We place the935

figures on a new page for ease of viewing.936

Interestingly, we tend to observe very similar per-937

formance curves for all rounding precisions. The938

exceptions to this would perhaps be Amazon Coun-939

terfactual and Hate Speech Offensive in the bal-940

anced regime where DIST and rounding to the941

third trailing digit respectively exhibit large insta-942

bility.943

Although not always the case, it appears that944

providing the model with the distance rounded to945

the nearest whole number tends to result in the946

strongest and stablest performer, however, we em-947

phasize that in general there does not seem to a948

dramatic difference between the rounding preci-949

sions we considered. Longer digits slightly worsen950

model performance and the model might learn the951

most from simpler or abbreviated representations952

of distance. This finding motivated us to consider953

the ablation in Appendix A.4.3.954
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Figure 25: LAGONNlite performance when considering different rounding precisions for the Euclidean distance
before appending it to a modified instance. We consider all balance regimes on the Insincere Questions dataset and
the relevant balance is in the title of each panel.

Figure 26: LAGONNlite performance when considering different rounding precisions for the Euclidean distance
before appending it to a modified instance. We consider all balance regimes on the Amazon Counterfactual dataset
and the relevant balance is in the title of each panel.

Figure 27: LAGONNlite performance when considering different rounding precisions for the Euclidean distance
before appending it to a modified instance. We consider all balance regimes on the Toxic Conversations dataset and
the relevant balance is in the title of each panel.

Figure 28: LAGONNlite performance when considering different rounding precisions for the Euclidean distance
before appending it to a modified instance. We consider all balance regimes on the Hate Speech Offensive dataset
and the relevant balance is in the title of each panel.

Figure 29: LAGONNlite performance when considering different rounding precisions for the Euclidean distance
before appending it to a modified instance. We consider all balance regimes on the Liar dataset and the relevant
balance is in the title of each panel.
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A.4.3 Ablation: support for LABDIST955

The results from the ablation in Appendix A.4.2956

suggest that rounding the distance to the nearest957

whole number results in a stronger classifier than958

appending the unrounded distance. Thus far, we959

have asserted that LABDIST, where we append960

both the gold label of the NN and unrounded dis-961

tance is the most performant version of LAGONN962

(see Table 1). To demonstrate that this is reason-963

able, in this ablation study, we compare the orig-964

inal LABDIST configuration against three mod-965

els, namely the LABEL configuration, distance966

rounded to near whole number (Whole), and finally967

a new configuration similar to LABDIST, but where968

we append the gold label and distance rounded to a969

whole number, which we refer to as LABROUND.970

As in Appendix A.4.2, in this ablation we consider971

only the LAGONNlite fine-tuning strategy. We972

chose for this ablation because it provides insight973

into both how the different configurations affect974

full-model fine-tuning and only re-fitting the clas-975

sification head. The results can be seen below in976

Figures 30 through 34. We place the figures on a977

new page for ease of viewing.978

In general, we note very similar performance979

curves for these four models. In the case of Insin-980

cere Questions, appending the distance after round-981

ing it to the nearest whole number (Whole, the red982

curve), is a strong model, except in the balanced983

regime where we note large instability. The results984

for Amazon Counterfactual tell a different story,985

where rounding the Euclidean distance to the near-986

est whole number causes large instability and even987

degrades performance on the fifth step.988

For the other evaluation scenarios, it is unclear989

what is the strongest method as sometimes LAB-990

DIST is the best performer and sometimes it is991

Whole (the red curve). However, we believe that in992

general LABDIST is the most stable model while993

also often being the most performant. We therefore994

choose it as our default LAGONN configuration as995

a compromise between strength and stability. It is996

about this configuration which we report results in997

the main text. Our interpretation of this is that pass-998

ing the model both a discrete prediction (the gold999

label of the NN) and a truly continuous measure1000

of similarity (the unrounded Euclidean distance)1001

gives it the most consistent and dependable reason-1002

ing ability.1003

We note, as we did in Appendix A.4.1, that we1004

could have presented the best performer for each1005

evaluation scenario, however, it is not the goal of 1006

our work to create even more hyperparameters that 1007

must be iterated over. However, we hope that our 1008

codebase has made it easy for one to change these 1009

configurations for their own purposes. 1010
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Figure 30: LAGONNlite performance where we compare the LABDIST against LABEL, LABROUND, and rounding
the distance to the nearest whole number. We consider all balance regimes on the Insincere Questions dataset and
the relevant balance is in the title of each panel.

Figure 31: LAGONNlite performance where we compare the LABDIST against LABEL, LABROUND, and rounding
the distance to the nearest whole number. We consider all balance regimes on the Amazon Counterfactual dataset
and the relevant balance is in the title of each panel.

Figure 32: LAGONNlite performance where we compare the LABDIST against LABEL, LABROUND, and rounding
the distance to the nearest whole number. We consider all balance regimes on the Toxic Conversations dataset and
the relevant balance is in the title of each panel.

Figure 33: LAGONNlite performance where we compare the LABDIST against LABEL, LABROUND, and rounding
the distance to the nearest whole number. We consider all balance regimes on the Hate Speech Offensive dataset
and the relevant balance is in the title of each panel.

Figure 34: LAGONNlite performance where we compare the LABDIST against LABEL, LABROUND, and rounding
the distance to the nearest whole number. We consider all balance regimes on the Liar dataset and the relevant
balance is in the title of each panel.
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A.5 Examples of LAGONN modified text1011

WARNING: Some of the examples below are of1012

an offensive nature. Please view with caution.1013

In this section, we provide examples of how1014

LAGONNexp modifies test text from the datasets1015

we studied under the ALL configuration. We1016

choose this configuration because the informa-1017

tion it appends from a NN in the training data1018

to a test instance encapsulates all configurations.1019

LAGONNexp was trained under a balanced dis-1020

tribution and five examples per label were chosen1021

randomly on the first, fifth, and tenth step to demon-1022

strate how the same test instance might be deco-1023

rated with different training examples as the train-1024

ing data grow. We recognize that some the images1025

below are difficult to see and have made the .csv1026

files available with our code and data files. Note1027

that MPNET’s separator token is </s>, not [SEP].1028
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Figure 35: Insincere Questions, step 1.

Figure 36: Insincere Questions, step 5.

Figure 37: Insincere Questions, step 10.

Figure 38: Amazon Counterfactual, step 1.

Figure 39: Amazon Counterfactual, step 5.
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Figure 40: Amazon Counterfactual, step 10.

Figure 41: Toxic Conversations, step 1.

Figure 42: Toxic Conversations, step 5.
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Figure 43: Toxic Conversations, step 10.

Figure 44: LIAR, step 1.

Figure 45: LIAR, step 5

Figure 46: LIAR, step 10
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Figure 47: Hate Speech Offensive, step 1

Figure 48: Hate Speech Offensive, step 5

Figure 49: Hate Speech Offensive, step 10.
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