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Abstract: We study how choices of input point cloud coordinate frames impact
learning of manipulation skills from 3D point clouds. There exist a variety of coor-
dinate frame choices to normalize captured robot-object-interaction point clouds.
We find that different frames have a profound effect on agent learning perfor-
mance, and the trend is similar across 3D backbone networks. In particular, the
end-effector frame and the target-part frame achieve higher training efficiency than
the commonly used world frame and robot-base frame in many tasks, intuitively
because they provide helpful alignments among point clouds across time steps and
thus can simplify visual module learning. Moreover, the well-performing frames
vary across tasks, and some tasks may benefit from multiple frame candidates.
We thus propose FrameMiners to adaptively select candidate frames and fuse
their merits in a task-agnostic manner. Experimentally, FrameMiners achieves on-
par or significantly higher performance than the best single-frame version on five
fully physical manipulation tasks adapted from ManiSkill and OCRTOC. Without
changing existing camera placements or adding extra cameras, point cloud frame
mining can serve as a free lunch to improve 3D manipulation learning.
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Figure 1: A 3D point cloud of a dual-arm
robot pushing a chair, which can be repre-
sented in various coordinate frames without
changing camera placements or requiring ex-
tra camera views. Our FrameMiner takes as
input a point cloud represented in multiple
candidate frames and adaptively fuses their
merits, resulting in better performance.

With the rapid development and proliferation of low-
cost 3D sensors, point clouds have become more ac-
cessible and affordable in robotics tasks [1]. Also,
the tremendous progress in building neural networks
with 3D point clouds [2, 3, 4, 5, 6, 7] has enabled
powerful and flexible frameworks for 3D visual un-
derstanding tasks such as 3D object detection [5, 8,
9], 6D pose estimation [10, 11], and instance seg-
mentation [12, 13]. Very recently, point cloud started
to be used as the input to deep reinforcement learn-
ing (RL) for object manipulation [14, 15, 16], which
aims at learning mappings directly from raw 3D
sensor observations of unstructured environments to
robot action commands. These end-to-end learning
methods avoid highly structured pipelines and labo-
rious human engineering required by conventional
robot manipulation systems.

When building an agent with point cloud input,
existing works [14, 15, 16] typically incorporate
off-the-shelf point cloud backbone networks (e.g.,
PointNet [2]) into the pipeline as a feature extractor
of the scene. However, some facets in constructing
point cloud representations have been overlooked.
For example, in the literature of 3D deep learning,
the choice of coordinate frame significantly affects

*equal contribution

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://colin97.github.io/FrameMining/


task performance [2, 17, 18, 19, 20, 21]. On 3D instance segmentation benchmarks for autonomous
driving, previous work such as [5] showed a pipeline to process input point clouds in the camera
frame, frustum frame, and object frame subsequently, leading to a large performance boost in com-
parison to using the camera frame alone. For our goal of manipulation skill learning, point clouds
describe dynamic interactions between robots and objects, including frequent contacts and occlu-
sions. This is a novel and more complex setting that differs from well-explored scenarios in 3D
supervised learning (e.g., single objects, outdoor scenes for autonomous driving). Under this set-
ting, choices of coordinate frames are more flexible and diverse as multiple entities (e.g., robot and
manipulated object) and dynamic movements are involved.

In this work, we first examine whether and how different coordinate frames may impact the per-
formance and sample efficiency of point cloud-based RL for object manipulation tasks. We study
four candidate coordinate frames: world frame, robot-base frame, end-effector frame, and target-
part frame. These frames differ in positions of origin and orientations of axes, and canonicalize
inputs in different manners (e.g., a fixed third-view, ego-centric, hand-centric, object-centric). The
comparison and analysis are performed on five distinct physical manipulation tasks adapted from
ManiSkill [22] and OCRTOC [23], covering various numbers of arms, robot mobilities, and camera
settings. Results show that the choice of frames has profound effects. In particular, the end-effector
frame and the target-part frames, rarely considered in previous works, lead to significantly better
sample efficiency and final convergence than the widely used world frame and robot-base frame on
many tasks. Visualization and analysis indicate that, by using different coordinate frames to rep-
resent input point clouds, we are actually performing various alignments of input scenes through
SE(3) transformations, which may simplify the learning of visual modules.

However, the well-performing single coordinate frame may vary from task to task, and in many
cases, we may need coordination between decisions made according to multiple coordinate frames.
For example, tasks equipped with dual-arm robots may benefit from both left-hand and right-hand
frames. For mobile manipulation tasks involving both navigation and manipulation, different frames
could favor different skills (e.g., robot-base frame for navigation skills, end-effector frame for ma-
nipulation skills). We thus propose three task-agnostic strategies to adaptively select from multiple
candidate coordinate frames and fuse their merits, leading to more efficient and effective object
manipulation policy learning. Because we do not need to capture additional camera views or rely
on task-specific frame selections, our frame mining strategies can be used as a free lunch to im-
prove existing methods on point cloud-based policy learning. We call these fusion approaches as
FrameMiners. Experimentally, we find that it matters to fuse information from multiple frames, but
the specific FrameMiner to choose does not create much performance difference. In particular, we
use one of the FrameMiners, MixAction, to interpret the importance of different frames in the policy
execution process, and the interpretation agrees with our intuitions.

In summary, the main contributions of this work are as follows:
• We find that the choice of coordinate frame has a profound impact on point cloud-based object

manipulation learning. In particular, the end-effector frame and the target-part frame lead to much
better sample efficiency than the widely-used world frame and robot-base frame on many tasks;

• We find that well-performing frames differ task by task, necessitating task-agnostic ways to select
and fuse frames. This observation is consistent across 3D backbone networks;

• We propose FrameMiners, a collection of methods to fuse information from multiple candiate
frames. FrameMiners provide a free lunch to improve existing point cloud-based manipulation
learning methods without changing camera placements or requiring additional camera views.

2 Related Work
Manipulation Learning with Point Clouds Visual representation learning for object manipula-
tion has been extensively studied [24, 25, 26, 27, 28, 29, 30, 31]. With the flourishment of 3D deep
learning [2, 3, 4, 5, 6, 7], a major line of work learns representations from 3D point clouds for
object manipulation [32, 33, 34, 35, 36, 37, 38]. Recently, people have also started to incorporate
point clouds into deep reinforcement learning (RL) pipelines for manipulation learning [14, 15, 16].
However, existing point cloud-based manipulation learning methods have not paid enough attention
to coordinate frame selections of input point clouds, which is fundamental in 3D visual learning.
Some very recent work [39, 40] explored placement and selection of camera views and fusion of
multi-view images. We differ from them in that we focus on the preprocessing of captured input
point clouds without modifying existing camera configurations or adding additional cameras.
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Figure 2: We study coordinate frame mining on manipulation tasks adapted from OCRTOC [23] and
ManiSkill [22] covering various setups (e.g., #arms, mobility, camera). Simulation is fully physical.

Normalization and View Fusion in Point Cloud Learning Normalizing input point clouds is
a common practice in 3D deep learning literature. For example, in single object analysis (e.g.,
classification and part segmentation), people often normalize input point clouds into a categorical
canonical pose with unit scale [2, 3], simplifying network training. Prior works find that existing
point cloud networks [2, 3, 7, 41, 42] are very sensitive to input normalization [21, 43, 44], and
many recent attempts explore rotation invariant [45, 46, 47] and equivariant methods [21, 48, 49] for
3D deep learning. Compared to well-studied scenarios (e.g., single object and autonomous driving),
normalizations of point clouds under robot-object interactions are under-explored.

In LiDAR point cloud learning for autonomous driving, many work focuses on the fusion of multiple
views [17, 18, 19, 20]. Unlike fusing multiple camera scans, there is only one point cloud. They
propose to process the point cloud from different views (e.g., perspective view and birds-eye view) to
combine their merits, which has proven to be helpful. Our work shares a similar idea. However, we
focus on robotic object manipulation settings, and the choice of coordinate systems is more diverse.

3 Point Cloud Coordinate Frame Selection Matters
3.1 Problem Setup

3D (Fused)
Point Cloud

3D Backbone
(e.g., PointNet) Policy MLP Robot Action 

Proprioceptive
Robot State Value MLP Value

Figure 3: Architecture of a 3D point cloud-based agent,
which is optimized by actor-critic RL algorithms. We study
coordinate frame selection of input (fused) point cloud.

We aim to learn agents with point
cloud input for object manipula-
tion tasks via Reinforcement / Im-
itation Learning (RL/IL). A task
is formally defined as a Partially-
Observable Markov Decision Process
(POMDP), which is represented by a
tuple M = (S,A, µ, T,R, γ,Ω, O).
Here S and A are the environment
state space and the action space. µ(s), T (s′|s, a), R(s, a), and γ are the initial state distribution,
state transition probability, reward function, and discount factor, respectively. O(s) : S → Ω is the
observation function that maps environment states to the observation space Ω. Our agent is repre-
sented by a policy π : Ω → A, which aims to maximize the expected accumulated return given by
J(π ◦ O) = Eµ,T,π[

∑∞
t=0 γ

tr(st, at)]. Note that π does not have access to the environment state s
and only has access to the observation O(s). In this work, O(s) consists of two parts: (1) a 3D point
cloud captured by depth cameras; (2) proprioceptive states for the robot, such as joint positions and
joint velocities. For the first part, if there are multiple cameras, we fuse all point clouds into a single
one by transforming them into the same coordinate frame and concatenating the points together.

Fig. 3 shows the architecture of a 3D point cloud-based agent, which we use to discuss in this section.
It first exploits a 3D backbone (e.g., PointNet [2]) to extract visual features from a 3D (fused) point
cloud. The extracted features are then concatenated with proprioceptive robot states and fed into
separate multi-layer perceptrons (MLP) for action and value prediction. The input (fused) point
cloud can be represented in different coordinate frames before being fed into the 3D backbone
network, and the choice of coordinate frame is independent of camera views. For example, a point
cloud captured by a camera mounted on the robot’s head can be transformed into the end-effector
frame. In this work, we study how point cloud coordinate frames affect sample efficiency and final
convergence of object manipulation learning. Unlike prior works [39, 40], we do not change robot
camera configurations (e.g., camera placement, inclusion of additional cameras).
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Figure 4: Illustration of four coordinate frames, which provide different alignments across time
steps. We visualize three point clouds (three time steps) of an OpenCabinetDoor trajectory. Each
row shows the same point cloud represented in different coordinate frames. Please zoom in for
details. Robot arm, cabinet door handle, cabinet door, and cabinet body are colored in blue, red,
yellow, and brown, respectively. RGB arrows indicate the corresponding origin and axes for each
frame. Since the point clouds used for policy learning can be rather sparse, we show dense point
clouds here for better visualization.

As shown in Fig. 2, we exemplify the frame selection problem on five fully-physical manipulation
tasks, covering various numbers of robot arms, mobilities, and camera settings. Among them, Pick-
Object is adapted from OCRTOC [23], and the other four tasks are adapted from ManiSkill [22].
On PickObject, a fixed-base single-arm robot learns to physically grasp an object from the table, lift
it up to a target height, and keep it static for a while. Point clouds are captured from a 3rd-view
camera. On ManiSkill tasks, agents learn generalizable physical manipulation skills (i.e., opening
cabinet doors / drawers, pushing chairs / moving buckets to target positions) across objects with
diverse topology, geometry, and appearance. We utilize mobile robots with one or two arms. Point
clouds come from a panoramic camera mounted on the robot’s head. Action space includes joint
velocities of the arm(s) and the mobile robot base, along with joint positions of the gripper(s). More
details are presented in the supplementary material.

3.2 Choices of Point Cloud Coordinate Frame
For 3D supervised learning tasks such as object classification and detection, it’s a common prac-
tice to normalize input point clouds, and the choice of coordinate frames significantly affects task
performance [2, 21, 17, 18, 19, 20]. In point cloud-based manipulation learning, we are faced with
an underexplored, yet more challenging, setting. First, point clouds describe more complex robot-
object interactions, possibly including frequent contacts and occlusions. Furthermore, compared
to supervised learning, 3D visual modules receive weaker supervision signals during RL training.
Therefore, it may become even more important to lessen the burden of visual module learning by
properly normalizing input point clouds. Unlike previous well-studied point cloud learning scenar-
ios (e.g., single-object point clouds, LiDAR point clouds for autonomous driving), there exist more
diverse choices of coordinate frames. In this paper, we compare and analyze four candidates:
• A world frame is attached to a fixed point in the world (e.g., the start point of a trajectory).
• A robot-base frame is attached to the robot base, offering an egocentric perspective on a mobile

robot. For a fixed-base robot, world frame and robot-base frame could be equivalent.
• In many object manipulation tasks, movements of robot end-effector(s) play important roles, and

we can attach an end-effector frame to each of them. Note that for dual-arm robots, there are
two end-effectors and thus two end-effector frames.

• A target-part frame is attached to the object part the robot intends to interact with (e.g., target
door handle for the OpenCabinetDoor task).

When we transform captured point clouds into the world frame, the robot-base frame, and the end-
effector frame, we may need proprioceptive robot states and potential robot movement tracking,
which is typically accessible in modern robots. When we transform point clouds into the target-part
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Robot-Base Frame End-Effector Frame Target-Part FrameWorld Frame 

Figure 5: Comparison of four coordinate frames on five fully-physical manipulation tasks. The
(fused) point cloud is transformed to a single coordinate frame before being fed to the visual back-
bone network. For dual-arm tasks (i.e., PushChair and MoveBucket), we use the right-hand frame
as the end-effector frame. For PickObject, which has a fixed base, the world frame is the same as
the robot-base frame. Mean and standard deviation over 5 seeds are shown.

frame, we may need to leverage off-the-shelf 3D object detection and pose estimation techniques.
However, in this paper, we mainly focus on the choices of coordinate frames themselves. In our
simulated experiments, we use ground truth object poses for the target-part frame.

In Fig. 4, we visualize an example trajectory under four coordinate frames. As shown in the figure,
different coordinate frames canonicalize inputs in different manners (e.g., a fixed third-view, ego-
centric, hand-centric, and object-centric), which is essentially performing various alignments among
point clouds across multiple time steps. For example, in the end-effector frame, the end-effector is
always aligned at the origin throughout a trajectory. Such alignments may simplify the learning of
visual modules in distinct ways. With the end-effector frame, the network does not need to locate
the end-effector in point clouds (always at the origin). Similarly, with the target-part frame, it can
be easier to determine the relative position between the target part and the robot end-effector. The
robot-base frame naturally aligns its frame axes with the moving directions of the robot’s base.

3.3 Single-Frame Comparison on Manipulation Tasks
We compare the four coordinate frames on the five manipulation tasks by training PPO [50] agents
using PointNet [2] as the 3D visual backbone. In this section, the (fused) point cloud is transformed
into a single coordinate frame. For PushChair and MoveBucket tasks that use a dual-arm robot, we
use the right hand frame as the end-effector frame (we observe almost identical performance using
the left hand frame). For the target-part frame, we choose the handle frame for OpenCabinetDoor
and OpenCabinetDrawer tasks, chair seat frame for the PushChair task, bucket for the MoveBucket
task, and the target object for the PickObject task. Further details are presented in the supplementary.

Fig. 5 shows the results. We observe that distinct coordinate frames lead to very different agent train-
ing performances. Overall, the world frame is the least effective, especially in PushChair and Move-
Bucket that involve more pronounced movement of the robot base. This suggests that the alignment
of a static point in the world-frame is less helpful for the tasks. Compared to the commonly-used
world-frame and robot-base frame, the end-effector frame has much higher sample efficiency on all
single-arm tasks (i.e., OpenCabinetDoor, OpenCabinetDrawer, and PickObject), demonstrating the
benefits of end-effector alignment. However, it shows similar or worse performance on PushChair
and MoveBucket, intuitively because these tasks rely on dual-arm coordination, but our point cloud
is normalized to a single end-effector frame (i.e., right hand frame). In addition, the target-part frame
achieves the best sample efficiency on most tasks, suggesting that the target-part alignment across
time could be of great help for point cloud-based visual manipulation learning.

3.4 Further Analysis
In robot manipulation tasks, agents often need to infer binary relations between subjects (e.g., rela-
tive pose between the end-effector and the cabinet handle). By aligning point clouds under certain
frames (e.g., end-effector frame), these tasks may be reduced to single-subject location tasks (e.g.,
simply copying the handle pose), which become much easier to solve. To confirm this hypothesis,
we perform a diagnosis experiment on OpenCabinetDoor, where we intentionally remove all robot
points (i.e., blue points in Fig. 4) and see its effect on different coordinate frames. As shown in Fig. 6,
after the robot points are removed, the end-effector frame performs the same, while the robot-base
frame performs worse (the task is still solvable since the end-effector position is also provided in the
proprioceptive robot state). This suggests that the end-effector frame allows an agent to focus on the
target object, along with its interaction with the robot hand, which verifies our hypothesis.
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Figure 7: Using SparseConvNet [51] as the 3D visual backbone, we observe similar trends as Fig 5.
Mean and standard deviation over 5 seeds are shown.
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Figure 6: Removing robot points
does not harm the performance of
the EE frame on OpenCabinetDoor.

We utilized PointNet [2] as our 3D visual backbone for its fast
speed and general good performance. However, it’s unclear
whether point cloud frame selection is also crucial for other
3D backbones, especially those more complex and powerful.
Therefore, we conduct the same experiments as Sec 3.3 using
SparseConvNet [51], a heavier 3D backbone network, on the
four ManiSkill tasks (further details in the supplementary).
As shown in Fig. 7, we observe similar relative performance
between frames as before (e.g., the world frame performs
poorly; the end-effector frame outperforms the world frame
and the robot-base frame on OpenCabinetDoor and Open-
CabinetDrawer). Interestingly, using SparseConvNet doesn’t
improve the overall performance over PointNet.

4 Mining Multiple Coordinate Frames
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Figure 8: The pipeline of FrameMiner-
MixAction (FM-MA). Each frame out-
puts an action proposal. Actions are then
fused through input-dependent and joint-
specific weights.

We have shown that different point cloud coordinate
frames lead to distinct sample efficiencies and final per-
formances in manipulation learning. However, a sin-
gle frame can perform well on some tasks but poorly
on others, and we wish to find good frames in a task-
agnostic manner. Moreover, for complex manipulation
tasks, a single frame could be insufficient, and synergis-
tic coordination between multiple frames could provide
unparalleled advantages. For example, when robots are
equipped with multiple arms, each arm may have its pre-
ferred coordinate frame (e.g., left-hand frame and right-
hand frame). In addition, in tasks that involve simultane-
ous navigation and manipulation (e.g., on PushChair and
MoveBucket, an agent needs to move towards the target
while manipulating chairs or buckets), different frames
could benefit different skills (e.g., robot-base frame for
navigation skills, and end-effector frame for manipula-
tion skills). Therefore, it is of great help to propose a
prior-agnostic method that can automatically select the
best frame from multiple candidates or combine the mer-
its of them. Again, we are not talking about fusing mul-
tiple camera views. Point clouds from multiple camera
views are first fused together into a single point cloud,
before being transformed to each coordinate frame.

In this section, we will present a collection of three strategies to adaptively select and fuse multiple
candidate coordinate frames, and we call them FrameMiners. In particular, we will first introduce
FrameMiner-MixAction in Section 4.1 in detail to interpret the importance of different frames in the
policy execution process. We will then briefly introduce the other two FrameMiners and compare
different approaches with single-frame baselines.

4.1 FrameMiner-MixAction
Inspired by the idea of mixture of experts [52], we propose a general and interpretable framework,
FrameMiner-MixAction (FM-MA). As shown in Fig. 8, FM-MA takes a (fused) point cloud and n
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Figure 9: Left: learned weights of FrameMiner-MixAction over a MoveBucket trajectory, where
three coordinate frames are fused. We divide robot joints into three groups and show the average
weights of each group in each coordinate frame. Right: three stages of the trajectory. (a) Approach-
ing the bucket. (b) Moving the bucket to the platform. (c) Placing the bucket on the platform.

candidate coordinate frames as input, and first transforms the point cloud into n coordinate frames.
For each transformed point cloud, FM-MA employs an expert network, consisting of a 3D visual
backbone (e.g., PointNet [2]) and an MLP, to propose full robot actions (e.g. target velocity of m
joints). Since different experts use different coordinate frames, they are encouraged to specialize
different skills and controls of different joints. Finally, we combine actions from the n experts
through input-dependent weights. Specifically, we concatenate extracted visual features from all n
frames with the proprioceptive robot state, feed it into an MLP, and predict a weight for each pair of
expert and joint (there are n×m weights in total). For each joint, we normalize the weights over n
experts via softmax and fuse the actions through weighted linear combination.

FM-MA fuses actions by predicting joint-specific weights, since we believe that, for different joints,
we need to extract information from different coordinate frames. Furthermore, the weights are
input-dependent, potentially allowing the model to capture dynamic joint-frame relations at differ-
ent stages of a task. Fig. 9 confirms these hypotheses. On MoveBucket trajectories, we observe
distinct frame preferences between different robot joints. The left and right-hand frames contribute
significantly to their respective joint actions. In addition, the weight distribution changes greatly
over different trajectory stages. Initially, when the robot is moving towards the bucket but not in-
teracting with it, the base frame contributes more. However, when the hands start to manipulate the
bucket, the hand frames’ weights increase. In particular, when the robot places the bucket onto the
platform, we need careful coordination among all joints, and thus similar weights from each frame.

4.2 FrameMiners vs. Single Coordinate Frame

To study how network architectures influence coordinate frame fusion, we also propose other two
strategies: FrameMiner-FeatureConcat (FM-FC) and FrameMiner-TransformerGroup (FM-TG).
For each transformed point cloud, FM-FC uses an individual PointNet to extract visual feature.
All visual features are then concatenated and fed into an MLP to predict robot action. FM-TG
decomposes our robot action into three groups: base joint actions, left-hand joint actions, and right-
hand joint actions (only two groups for single-arm tasks). After visual features are extracted from
PointNets, they are fused through a Transformer [53] to produce a feature for each action group,
which passes through an MLP to predict its respective joint actions (see the supplementary material
for details).

Base EE FM-FC FM-MA FM-TG

Door 54±7 80±2 79±3 84±2 70±6
Drawer 88±2 93±1 94±1 93±1 93±2
Chair 7±3 2±1 32±4 36±4 34±6

Bucket 23±6 19±4 77±5 81±3 90±2

Table 1: Success rates (%) on four
ManiSkill tasks.

We compare our three FrameMiners with single-frame base-
lines. Specifically, in this section, we focus on frame mining
among the robot-base frame and end-effector frame(s). For
the dual-arm tasks (i.e., PushChair and MoveBucket), the end-
effector frames include both the left-hand frame and the right-
hand frame. We will discuss the inclusion of target-part frame
in Section 4.3. Fig. 10 and Tab. 1 show the comparison re-
sults. On single-arm tasks (i.e., OpenCabinetDoor/Drawer),
our FrameMiners perform on par with the end-effector frame, which suggests that FrameMiners
can automatically select the best single frame. On dual-arm tasks, our FrameMiners significantly
outperform single-frame baselines, demonstrating the advantage of coordination between multiple
coordinate frames. We also demonstrate that our FrameMiners outperform alternative designs and
provide robust advantages (more details in the supplementary material). While it matters to fuse
information from multiple frames, the specific FrameMiner to choose does not create much perfor-
mance difference. Empirically, we find FM-MA less sensitive to training parameters, and FM-TG
more computationally expensive.
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Robot-Base Frame FM-FC FM-MA FM-TGEnd-Effector Frame

Figure 10: Comparison of different frame mining approaches on the four ManiSkill tasks, where the
robot-base frame and end-effector frame(s) are fused. Black lines indicate single-frame baselines.
Mean and standard deviation over 5 seeds are shown.

Our previous experiments were conducted using online RL. To investigate whether our previous
findings can generalize to other algorithm domains, we perform experiments on imitation learning,
and more details are presented in the supplementary material. The results corroborate our previous
findings, i.e., different coordinate frames have a profound effect on point cloud-based manipulation
skill learning, and FrameMiners are capable of automatically selecting the best coordinate frame or
combining the merits from multiple frames and outperforming single-frame results.

4.3 Target-Part Frame

FM-MA w/o TP Frame FM-MA w/ TP Frame

Robot-Base Frame Target-Part Frame

Figure 11: Fusion of target-part frame
could further boost the performance.

In Section 4.2, we focus on the fusion of robot-base frame
and end-effector frames, since the target-part frame relies
on pose estimation of target objects, which requires ex-
tra efforts in real-world settings. As shown in Fig. 11, if
object poses are estimated, we sometimes observe further
performance boost of FrameMiners from the target-part
frame. For example, on PushChair, by incorporating the
target-part frame, the success rate of FM-MA increases
from 36±4% to 53±3%. On PickObject, FM-MA al-
ready achieves good performance without the target-part
frame (94±2%); incorporating it slightly improves the
success rate to 97±1%.

5 Real World Experiments

Figure 12: Real robot setup.

To further verify that our learned policies can be deployed on real-
world robots without introducing extra domain gaps, we test on Pick-
Object with a Kinova Jaco2 Spherical 7-DoF robot, an Intel Re-
alSense [54] D435 camera for uncolored point cloud capture, and a
Rubik’s cube from YCB objects [55, 56] (see Fig. 12). We use a
3-DoF end-effector position controller and a 1-DoF gripper position
controller. We train the FM-MA policy (Section 4.1) by fusing the
robot-base frame and the end-effector frame. At test time, we build a
digital twin in the simulator over 25 sampled initializations of the real
environment with a vision-based pipeline like Jiang et al. [57]. By
following trajectories from policy rollout, we obtain a 84% success
rate with FM-MA, compared to an 80% success rate with the end-
effector frame. The robot-base frame is unable to achieve successful
picks under our training budget. Note that the performance differences in the real world are very
similar to the simulation environment, indicating that point cloud frame selection or mining does
not affect original domain gap. More details are presented in the supplementary material.

6 Conclusion and Limitations
We find that choices of point cloud coordinate frames have a profound impact on learning manipu-
lation skills. Our proposed FrameMiners can adaptively select and fuse multiple candidate frames,
serving as a free lunch for 3D point cloud-based manipulation learning. Currently, our FrameM-
iners need to process each frame separately, leading to more network computation. In the future, we
would like to explore more advanced fusion strategies to further improve network efficiency as well
as performance. In addition, the target-part frame requires human judgment to determine the target
part candidates and 6D pose estimation of the target parts, although we have shown our method can
also achieve great improvements without the target-part frame (Section 4.2).
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