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ABSTRACT

Batch normalization (BatchNorm) has become a standard technique in deep learn-
ing. Its popularity is in no small part due to its often positive effect on generalization.
Despite this success, the regularization effect of the technique is still poorly under-
stood. This study aims to decompose BatchNorm into separate mechanisms that
are much simpler. We identify three effects of BatchNorm and assess their impact
directly with ablations and interventions. Our experiments show that preventing
explosive growth at the final layer at initialization and during training can recover
a large part of BatchNorm’s generalization boost. This regularization mechanism
can lift accuracy by 2.9% for Resnet-50 on Imagenet without BatchNorm. We
show it is linked to other methods like Dropout and recent initializations like Fixup.
Surprisingly, this simple mechanism matches the improvement of 0.9% of the more
complex Dropout regularization for the state-of-the-art Efficientnet-B8 model on
Imagenet. This demonstrates the underrated effectiveness of simple regularizations
and sheds light on directions to further improve generalization for deep nets.

1 INTRODUCTION

Deep learning has made remarkable progress on a variety of domains in the last decade. While part
of this progress relied on training larger models on larger datasets, it also depended crucially on
the development of new training methods. A prominent example of such a development is batch
normalization (BatchNorm) (Ioffe and Szegedy, 2015), which has become a standard component of
training protocols. For example, state-of-the-art models in image recognition (Szegedy et al., 2017;
He et al., 2016; Tan and Le, 2019), object detection (He et al., 2019; Du et al., 2019), and image
segmentation (Chen et al., 2017) all use BatchNorm. Despite its prominence, the mechanisms behind
BatchNorm’s effectiveness are not well-understood (Santurkar et al., 2018; Bjorck et al., 2018; Yang
et al., 2019).

Perhaps at the core of the confusion is that BatchNorm has many effects. It has been correlated
to reducing covariate shift (Ioffe and Szegedy, 2015), enabling higher learning rates (Bjorck et al.,
2018), improving initialization (Zhang et al., 2019), and improving conditioning (Desjardins et al.,
2015), to name a few. These entangled effects make it difficult to properly study the technique. In this
work, we deconstruct some of the effects of BatchNorm in search of much simpler components. The
advantage of this approach compared to previous work is that it allows going beyond correlating these
effects to BatchNorm by evaluating their impact separately. The mechanisms we consider in this
work are purposefully simple. These simpler mechanisms are easier to understand and, surprisingly,
they are competitive even at the level of the state-of-the-art.

Our contributions can be summarized as follows:

1. How does normalization help generalization? We isolate and quantify the benefits of the
different effects of BatchNorm using additive penalties and ablations. To our knowledge,
we are the first to provide empirical evidence that BatchNorm’s effect of regularizing
against explosive growth at initialization and during training can recover a large part of
its generalization boost. Replicating this effect with Fixup initialization and the proposed
additive penalty improves accuracy by 2.9% for Resnet-50 without BatchNorm.
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2. Links to Fixup and Dropout. We draw novel connections between the regularization on
the final layer, Dropout regularization, Fixup initialization and BatchNorm.

3. Simplicity in regularization. The mechanism we identify can be useful as a standalone
regularization. It produces 0.9% improvement on the Efficientnet B8 architecture, matching
the more complex Dropout regularization.

2 DECOMPOSING THE REGULARIZATION EFFECTS OF BATCH
NORMALIZATION
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Figure 1: Diagram of a neu-
ral network showing where the
mechanisms operate.

In this section, we break BatchNorm into different mechanisms that
can be studied separately. BatchNorm (Ioffe and Szegedy, 2015) is a
technique that accelerates training by standardizing the intermediate
activations of a deep network. It achieves this standardization by
using explicit normalization instead of relying on an additive regular-
ization. While BatchNorm has been correlated to many effects, it is
still unclear which effect, if any, explains most of its generalization
boost.

The effects we evaluate are the implicit regularizing effect on the
norms at the final layer, and also its primary effect of standardizing
the intermediate layers. In order to test these purposefully simple
mechanisms we will rely on ablations and additive penalties. The
use of additive penalties allows us to disentangle these effects where
we control for the positive effect of BatchNorm on initialization by
using the recently proposed Fixup initializer (Zhang et al., 2019).

2.1 REGULARIZING AGAINST EXPLOSIVE GROWTH IN THE
FINAL LAYER

First, we characterize the implicit effect of normalization on the final layer. Consider a neural network
of the form NN(x) = WEmb(x) with loss L where x ∈ RI is the input of the network, W ∈ RK×H

is the final weight matrix in the model, and Emb(x) : RI → RH is a feature embedding network with
L layers. Let us take the common case where Emb(x) = Swish(γBatchNorm(PreEmb(x)) + β)
where PreEmb(x) is the output of a residual network, Swish(x) = xσ(ρx) is the Swish activation
(Ramachandran et al., 2017; Elfwing et al., 2018) with scalar parameter ρ (typically denoted β), and
BatchNorm parameters γ, β. BatchNorm makes weight decay regularization on γ, β approximately
equivalent to an additive penalty on the norm on the feature embedding

L(NN(x)) + λ‖γ‖2 + λ‖β‖2 = L(NN(x)) +
λ

4
E[‖Emb(x)‖2] +O(|ρ|). (1)

See the Appendix A for the derivation. It means that the norm of the BatchNorm parameters alone is
enough to directly control the norm of the feature embedding. It is a guarantee that the norm of the
feature embedding cannot grow explosively during training as long as these parameters are small.
This regularization effect of BatchNorm can occur even without explicit weight decay due to the
tendency of stochastic gradient descent to favor low norm parameters (Wilson et al., 2017).

This equivalency does not hold without BatchNorm because the activation of the embedding
network become an important factor in the norm of the feature embedding (‖γ‖2 + ‖β‖2 6=
E
[
‖γPreEmb(x) + β‖2

]
in general). Indeed, (Balduzzi et al., 2017; Gehring et al., 2017; Zhang

et al., 2019) have shown that the activations of residual networks without BatchNorm tend explode
exponentially in the depth of the network at initialization. This results in an extremely large embed-
ding norm, even though the parameters are relatively small. We confirm experimentally in Section
4.3 that networks without BatchNorm have much larger feature embedding norms.

Feature Embedding L2 (EL2) We propose to assess the effect of this regularization mechanism by
isolating it as the following additive penalty

REL2(NN) =
1

H
E[‖Emb(x)‖2]. (2)
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Adding this regularization to the loss allows us to test the impact of this mechanism independently
on networks with and without BatchNorm. We dub this regularization embedding L2 for short in
the following sections as it is L2 with a metric that is at the embedding network function level, with
no additional penalties on the intermediate layers. It is applied right before the classification layer,
in other words right after the final average pooling layer for residual networks. We will see with
our experiments that this simple regularization can in large part recover the regularization boost of
BatchNorm, has links to several known methods and is practically useful even at the level of the
state-of-the-art.

Functional L2 (FL2) Regularizing the feature embedding has an implicit effect on the final output
norm (E[‖NN(x)‖] ≤ 1/2 ‖W‖2 + H/2 · REL2(NN)). In order to test the impact of this effect, we
will also evaluate a direct penalty on the norm of the final output

RFL2(NN) =
1

K
E[‖NN(x)‖2]. (3)

We dub this regularization functional L2 for short in the following sections as it is L2 with a metric
that is at the full network function level. It is applied on the logits of the model for classification. In
Section 4.4, we investigate whether it is regularizing this norm or the feature embedding norm that is
more closely correlated to better generalization.

2.2 STANDARDIZING THE INTERMEDIATE ACTIVATIONS OF THE MODEL

As a baseline mechanism, we will also consider an additive penalty that encourages the normalization
of every intermediate layer called standardization loss (Collins et al., 2019). This is a useful reference
to gauge the effectiveness of the regularization on the embedding described in the previous sub-section.
It also helps disentangle the side-effects of normalization. The penalty is

DKL(P (x)||N (x|0, I)) =
1

2

∑
i

(µ2
i + σ2

i − log σ2
i − 1) (4)

where µi is the mean and σi is the variance of an intermediate layer of the network. These are
the same statistic that are computed by BatchNorm and a penalty is added to the loss for all the
intermediate layers. This regularization has been considered in (Collins et al., 2019). They found that
it accelerated learning but fell significantly short of the generalization boost of batch normalization.
However, they did not account for the positive effect of normalization on initialization. We correct
for this in our experiments using the recently proposed Fixup initialization (Zhang et al., 2019).

3 DRAWING LINKS TO OTHER METHODS

In this section, we will draw connections between the mechanisms considered for BatchNorm and
other methods.

3.1 DROPOUT REGULARIZATION

Dropout (Hinton et al., 2012) is a regularization that prevents overfitting by randomly omitting subsets
of features during training. Despite its early popularity, its use has declined with the rise of batch
normalized convolutional networks. Ghiasi et al. (2018), and Zagoruyko and Komodakis (2016), find
that it produces comparatively much smaller improvements when applied to the intermediate layers
of such networks. However, Tan and Le (2019) has shown that state-of-the-art results can be obtained
by applying Dropout only at the input of the final layer of the network. Interestingly, we can relate
this particular use of Dropout to BatchNorm. Wang and Manning (2013) have shown that Dropout
with MSE loss can be isolated as an additive regularization when applied at the last layer

LDropout =
1

N

∑
E
[
(WDropout(Emb(xi))− yi)2

]
=

1

N

∑
(WEmb(xi)− yi)2 + λtr(Wdiag(E[Emb(x)Emb(x)T ])WT )

where the additive Dropout regularization is RDropout(NN) = tr(Wdiag(E[Emb(x)Emb(x)T ])WT )
and λ is the strength of the penalty. In this formulation, we can see that Dropout is related to the
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mechanisms in Section 2.1 as follows

K ·RFL2(NN) ≈ RDropout(NN) ≤ 1

4
‖W‖4 +

H

4
REL2(NN). (5)

The approximate relationship to functional L2 relies on the assumption that the features are relatively
decorrelated. To our knowledge this close but simple relationship between the expected norm of the
output and Dropout with MSE loss had not been noted before. The upper bound with embedding
L2 gives us a guarantee on Dropout robustness when training with BatchNorm and weight decay. In
some sense, this means that networks with BatchNorm already incorporate a regularization effect
similar to that conferred by Dropout. This can explain why networks with BatchNorm have tended to
benefit relatively less from Dropout.

The approximate relationship to functional L2 can be extended to networks with cross-entropy by
using Taylor expansion and assuming the network has low-confidence. This assumption is likely only
correct at initialization. In comparison, a related upper-bound can be found for embedding L2 using
Taylor expansion. We will see in Section 4.5 that embedding and functional L2 can match or exceed
Dropout for state-of-the-art architectures on Imagenet such as Efficientnet (Tan and Le, 2019). This
is surprising because using an additive penalty at the final layer is much simpler than Dropout.

3.2 FIXUP INITIALIZATION

Fixup (Zhang et al., 2019) is a recent initialization method for the ubiquitous residual networks.
Recall that residual networks without normalization have explosive dynamics with conventional
initializations (Balduzzi et al., 2017; Gehring et al., 2017; Zhang et al., 2019). In fact, the output
scale of the networks grows exponentially with their depth L. This means that the embedding and
functional L2 at initialization are

REL2(NNt=0
NoBN), RFL2(NNt=0

NoBN) ∈ O(2L) (6)

where t is the training iteration. These explosive dynamics can be very detrimental to learning
(Balduzzi et al., 2017). Fixup aims to stabilize the training of very deep residual networks without
normalization. It does so by initializing the network so that the output does not change explosively in
the first gradient step, that is ‖NNt=1

Fixup(x)− NNt=0
Fixup(x)‖ ∈ Θ(η) where η is the learning rate. They

show this stabilizes learning and the output scale. We find that Fixup initialization minimizes the
initial penalties when compared to conventional initialization

REL2(NNt=0
Fixup), RFL2(NNt=0

Fixup) ∈ O(1) (7)

since it initializes residual branches to zero. Most importantly, Fixup ensures this does not grow
explosively in the first few steps. Zhang et al. (2019) observe that Fixup can improve generalization
compared to conventional initialization, but requires strong regularization to be competitive to
networks with normalization. In Section 4.3, we will see that regularizing the functional L2 not just
at initialization but throughout training remarkably improves generalization.

4 EXPERIMENTS

In this section, we evaluate the regularization mechanisms on a set of architectures for two challenging
benchmarks.

4.1 DATASETS

CIFAR-10 CIFAR-10 has 50k samples for training and 10k samples for test evaluation. We tune
hyperparameters using 5k of the training samples as a validation set. We then train a final model using
the whole training set of 50,000 samples with the best hyperparameters for 10 different seeds, and
report the median test accuracy. Each model is trained on a single GPU. The robustness is reported as
the accuracy on CIFAR-10-C dataset (Hendrycks and Dietterich, 2019), averaged over all corruptions
and their severities.

SVHN SVHN has 73,257 samples for training and 26,032 samples for testing (note that we do not
consider the 531,131 “extra” samples). We tune hyperparameters using 3,257 of the training samples
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as a validation set. We then train a final model using the whole training set of 73,257 samples with
the best hyperparameters and report the median test accuracy for 10 different random initializations.

Imagenet Imagenet is a large scale image recognition dataset with over 1.2M examples and 1000
classes. Following the past work, we report classification accuracy on the validation set of 50k
examples.

4.2 IMPLEMENTATION DETAILS

WideResnet We train WideResNet-28-10 architecture (Zagoruyko and Komodakis, 2016) on
CIFAR-10, which is one of the most commonly used architectures for this dataset. We train the model
for 200 epochs using a cosine learning rate decay with a batch size of 128. We use the standard data
augmentation of horizontal flips and pad-and-crop. For models without BatchNorm, we use Fixup
initialization. We use the activation function Swish (Ramachandran et al., 2017), with the ρ value
initialized to 0.

Resnet-50 Resnet-50 (He et al., 2016) has quickly become a standard architecture to evaluate on
Imagenet. Our implementation makes use of the improvements proposed by Goyal et al. (2017). Only
the networks trained without BatchNorm use Fixup initialization (Zhang et al., 2019). In order to
improve results for the standardizing loss, we found it was useful to use a special case of Fixup where
the residual branches are not initalized to zero: when the standardization loss is used we initialize the
last layer of each residual block inversely proportional to the square root of the depth. The models are
trained for 90 epochs with a batch size of 512 and a precision of float32. All results are the average
of two seeds. The coefficient for the standardizing loss is cross-validated in the range from 10−7 to
10−5 logarithmically. We found that higher coefficients led to divergence at high learning rates. The
coefficient for embedding and functional L2 was found in the range from 0 to 1 with increments of
0.1.

Efficientnet Efficientnet (Tan and Le, 2019) is the state-of-the-art architecture on Imagenet at the
time of writing. We will evaluate on the biggest version trained with RandAugment (Cubuk et al.,
2019b) data augmentation and without additional data, called the B8 (Xie et al., 2020). We follow the
implementation of Tan and Le (2019) and the hyper-parameters they found optimal. We use early
stopping based on a held-out validation set of 25022 images. All results reported are averaged over
two random seeds.

4.3 RESULTS: ABLATION OF BATCHNORM AND INTERVENTIONS

Table 1: Accuracy on CIFAR-10 dataset for Wide-Resnet-28-10.

Method Accuracy (%) Robustness (%)
Baseline (WRN-28-10 without BatchNorm) 94.9± 0.1 82.8± 0.1
Baseline + BatchNorm 96.1± 0.1 82.8± 0.2
Baseline + Standardizing Loss (λ = 1e−7) 95.0± 0.2 83.4± 0.2
Baseline + Functional L2 (λ = 1.0) 95.5± 0.2 84.1± 0.3
Baseline + Embedding L2 (λ = 0.5) 95.5± 0.2 84.1± 0.2

Table 2: Accuracy on Imagenet dataset for Resnet-50. Functional L2 with proper initialization allows
us to match the generalization of networks trained with batch normalization.

Method Accuracy (%)
Baseline (Resnet-50 without BatchNorm) 73.1± 0.1
Baseline + BatchNorm 75.7± 0.0
Baseline + Standardizing loss (λ = 1e−5) 74.7± 0.2
Baseline + Functional L2 (λ = 0.4) 76.0± 0.1
Baseline + Embedding L2 (λ = 1) 76.0± 0.0

First, we measure the impact of the regularization mechanisms under consideration for networks
where we have removed BatchNorm. We also include results for network trained with BatchNorm
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for reference. On CIFAR-10 (Table 1) and Imagenet (Table 2), we observe a significant gap between
the baseline network and the network trained with BatchNorm. The baseline networks benefit from
improved initialization with Fixup, which (Zhang et al., 2019) find stabilizes training at higher
learning rates and increases accuracy by up to 2.9% on Imagenet without BatchNorm. However, the
baseline networks do not have extra regularization during training.

We find that the standardization regularization produces modest robustness improvements on CIFAR-
10 but not for the accuracy, and moderate improvements on Imagenet. We see that this regularization
does not replicate BatchNorm’s generalization boost, even with proper initialization. This matches
the results of Collins et al. (2019) which considered the use of this regularization without accounting
for the initialization effects of BatchNorm. We do not believe this indicates that standardization is
not an important effect but rather reflects a failure of this particular approach. There are a number of
possible explanations, including that this type of constraint is difficult for the optimizer to balance
successfully with the classification loss. Indeed, we see that only comparatively small regularization
coefficients were found to produce stable training with high learning rates.

In comparison, we note that replicating standardization’s implicit effect on the norms at the final
layer produces better results on both CIFAR-10 and Imagenet. While it is enough to match the
generalization boost of BatchNorm on Imagenet, this is not the case on CIFAR-10. However, the
scale of the improvement suggest that controlling the norm of the output through the norm of the
feature embedding is an important benefit of standardization and as a result BatchNorm. In particular,
embedding and functional L2 produces an improvement of close to 3% on Imagenet and 0.6% on
CIFAR-10. We analyze this results more closely in Section 4.4.

To further test the effect of output norm regularization on a small dataset, we experiment with the
SVHN core set. The Wide-Resnet-28-10 model with BatchNorm achieves 96.9% test accuracy on
this dataset, whereas the same model without BatchNorm (but with Fixup initialization) achieves
95.5%. If we utilize the Functional L2 or the Embedding L2 regularization, we reach 96.5% accuracy.
Similar to the models on CIFAR-10, output norm regularization offers a significant improvement in
generalization (1.0%) for a model without BatchNorm.

Bjorck et al. (2018) have shown that BatchNorm allows using larger learning rates without divergence.
It is thus interesting to take note of how the optimal learning rate changed when we removed
BatchNorm. We observe that in our experimental setup on Imagenet the optimal base learning rate
with BatchNorm of 0.1 remains optimal with embedding and functional L2. In our experimental setup
on CIFAR-10, the optimal learning rates increased from 0.1 with BatchNorm to 0.2 with functional
L2.

While BatchNorm is effective at improving accuracy, we find that it does not improve the robustness
of the baseline model to distortions applied at test-time. We measure the robustness of the models
by evaluating their accuracy on the 15 different corruptions described by Hendrycks and Dietterich
(2019), which include corruptions from noise, blue, weather, and digital categories. Models trained
with standardizing loss have 1.1% lower accuracy than the models trained with BatchNorm, but their
robustness is 0.6% higher. This suggests that while BatchNorm might be improving robustness due
to the standardization of the intermediate layers, it is reducing robustness by a larger amount due to
its other effects (negative effects of BatchNorm on adversarial robustness have been discussed by
Galloway et al. (2019)). Functional L2 is able to improve both accuracy and robustness (by 1.3%
over the baseline model and the BatchNorm model), by its ability to reduce the output norm.

4.4 ANALYSIS: HOW MUCH DOES THIS EXPLAIN THE REGULARIZATION OF BATCHNORM?

In the previous section, we show that the mechanisms considered are effective. This section investi-
gates their relationship to BatchNorm.

How much does BatchNorm regularize the norm at the last layer? Figure 2 (left column) shows
learning curves for networks with and without BatchNorm. As the networks without BatchNorm use
a suitable initialization, we observe that the networks converge at similar speeds at first. However, we
see a generalization gap emerge later in training on both datasets. We see that this gap is associated
with larger growth throughout training in the norm of the final output and feature embedding
for networks without BatchNorm. This confirms that BatchNorm prevents explosive growth in the
representation from cascading to the output during training. This also makes clear that these quantities
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Figure 2: Statistics of models with and without BatchNorm on CIFAR-10 (top) and Imagenet
(bottom) showing the accuracy (left), feature embedding norm (middle), mean output norm (right).
Without additional regularization models without BatchNorm display explosive growth in the feature
embedding norm. This correlates with poor generalization.

must be controlled throughout training and not just at initialization. And given that these networks
are already trained with a well-tuned parameter L2, it is evidence that parameter L2 is not sufficient
to control these quantities without BatchNorm.
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Figure 3: Effect of increasing the penalty coefficient for Imagenet on the accuracy (left), feature
embedding norm (middle), and output norm (right). We see that embedding and function L2 recover
most of BatchNorm’s generalization boost when the embedding norm matches that of BatchNorm
networks.

Does regularizing the norm to the same level as BatchNorm improve results? In Figure 3, we
see that the accuracy increases with the coefficient of functional or embedding L2. Both the output
and feature embedding norm reduce as expected. We see that at comparable output norms, networks
with functional L2 perform much worse than BatchNorm. Indeed, the coefficient of functional L2
must be quite small to allow for such high norms. In contrast, we see that the methods perform
comparably when the norm of the feature embedding is similar. These results indicate that the
coefficient must be high enough to control the reduce the norm of the feature embedding as much
as BatchNorm to obtain good results. This is consistent with the interpretation that the methods
prevent explosions in the residual representation of the network from cascading to the output. Thus
controlling the norm of the feature embedding appears more tightly related to generalization than the
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norm of the final output. Like other regularizations such as classical L2, a single regularization does
not tell the whole story and it matters how these quantities are minimized.

Can we disentangle BatchNorm’s effect on initialization to its effect on the norm at the last
layer? Can we train networks with only a single BatchNorm layer at the feature embedding
level? Next, we evaluate Resnet-50 with only a single BatchNorm layer at the level of the final
feature embedding on Imagenet (added before the average pooling layer). Let us first consider the
case without Fixup initialization. This bad initialization leads to an explosion at the level before the
BatchNorm layer, which has a norm of 1.8× 105± 3.8× 104 at initialization. Normally this network
would not train at reasonable learning rates but thanks to the BatchNorm at that final layer it trains
to 73.8 ± 0.1 accuracy. This a slightly higher accuracy than with Fixup only but lower than with
BatchNorm in every layer. This shows that preventing explosion in the feature embedding is sufficient
to allow training even without proper initialization. In combination with Fixup, the accuracy rises to
74.9± 0.0. This network contains over 100× less normalization layers, but recovers nearly 70% of
the generalization improvement with respect to Fixup. It is corroboration of the previous results with
additive penalties that proper initialization and controlling the feature embedding norm recovers a
large part of the boost of BatchNorm.

Table 3: Accuracy drop from 50% Dropout at test time for Resnet-50 models trained without Dropout
on Imagenet. Networks regularized with BatchNorm or embedding L2 are considerably more robust
to Dropout than the baseline.

Method Accuracy Drop (%)
Baseline −22.8± 0.1
BatchNorm −11.0± 0.3
Embedding L2 −18.5± 0.1

How much do these methods increase natural robustness to Dropout? Section 3.1 establishes
a link between BatchNorm, embedding L2 and Dropout, with a link to functional L2 at initialization
only. We showed that a low feature embedding norm should correlate to Dropout regularization.
Table 3 shows the robustness to Dropout at test time for networks that were not trained with Dropout.
We see that networks with embedding L2 suffer considerably less from Dropout corruption at test
compared to the baseline. Similarly, the use of BatchNorm also boost robustness to Dropout. While
it had been observed that Dropout regularizing during training is less effective for networks with
BatchNorm, this is the first time it has been shown that BatchNorm networks have a naturally higher
robustness to Dropout.

4.5 REGULARIZATION WITH BATCHNORM

In this section, we evaluate using the regularizations on the final layer with BatchNorm. As explained
in Section 2.1, BatchNorm already reduces the embedding L2 to some degree. However, BatchNorm
and weight decay by themselves does not make it easy to control the strength of the regularization.
On one hand, it would require using independent weight decay coefficients between parameters γ and
the other parameters, and on the other they only approximately reduce these quantities. Embedding
L2 allows us to minimize this quantity directly.

Table 4 shows our results for Efficient B8. This model produces state-of-the-art results for Imagenet
without additional data sources. We find that embedding and functional L2 boosts accuracy by
0.9% compared to Efficientnet B8 without Dropout. This improvement matches that of Dropout.
It is surprising that regularizing such a simple additive penalty improves results for a state-of-
the-art architecture at the same level as the more complicated Dropout regularization. This is
even more surprising considering that the baseline is already regularized by powerful methods like
RandAugment (Cubuk et al., 2019b) and StochasticDepth (Huang et al., 2016). This suggests that
further investigation of simple regularizations could be beneficial even for state-of-the-art models.

5 CONCLUSION

In this work, we have quantified a number of the regularization effects of BatchNorm. Surprisingly,
our empirical study shows that preventing explosion of the feature embedding norm at initialization
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Table 4: Accuracy on Imagenet dataset for Efficienet-B8.

Method Accuracy (%)
ResNet-50 (He et al., 2016) 76.0
DenseNet-169 (Huang et al., 2017) 76.2
ResNet-152 (He et al., 2016) 77.8
Inception-v3 (Szegedy et al., 2017) 78.8
ResNeXt-101 (Xie et al., 2017) 80.9
NASNet-A (Zoph et al., 2018) 82.7
AmoebaNet-C (Cubuk et al., 2019a) 83.5
GPipe (Huang et al., 2019) 84.3
Efficientnet B8 without Dropout 84.3± 0.0
Efficientnet B8 with Dropout at last layer 85.1± 0.0
Efficientnet B8 without Dropout + Functional L2 85.1± 0.1
Efficientnet B8 without Dropout + Embedding L2 85.2± 0.1

and during training can recover a large part of the generalization improvement of BatchNorm. Further-
more, this much simpler regularization produces improvements on state-of-the-art architectures such
as Efficienet-B8. We hope that these results will help guide the way to more effective regularization
methods.
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A APPENDIX

Here we provide the derivation for Equation 1. Consider the Taylor expansion of this expression
around ρ = 0

‖Swish(x)‖2 =
1

4
‖x‖2 +O(|ρ|). (8)

Putting this together with the mean squared norm of the feature embedding

E[‖Emb(x)‖2] = E[‖Swish(γBatchNorm(PreEmb(x)) + β)‖2], (9)

we have

E[‖Emb(x)‖2] =
1

4
E[‖γBatchNorm(PreEmb(x)) + β)‖2] +O(|ρ|). (10)

This further simplifies due to the normalizing effect of BatchNorm

E[‖γBatchNorm(PreEmb(x)) + β‖2] =
∑
i

E
[
(γiBatchNorm(PreEmb(x))i + βi)

2
]

(11)

= ‖γ‖2 + ‖β‖2, (12)

yielding the result

E[‖Emb(x)‖2] =
1

4
‖γ‖2 +

1

4
‖β‖2 +O(|ρ|). (13)
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