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Abstract

In automatic emotion recognition (AER), la-001
bels assigned by different human annotators to002
the same utterance are often inconsistent due003
to the inherent complexity of emotion and the004
subjectivity of perception. Though determin-005
istic labels generated by averaging or voting006
are often used as the ground truth, it ignores007
the intrinsic uncertainty revealed by the incon-008
sistent labels. This paper proposes a Bayesian009
approach, deep evidential emotion regression010
(DEER), to estimating the uncertainty in emo-011
tion attributes. Treating the emotion attribute012
labels of an utterance as samples drawn from an013
unknown Gaussian distribution, DEER places014
an utterance-specific normal-inverse gamma015
prior over the Gaussian likelihood and predicts016
its hyper-parameters using a deep neural net-017
work model. It enables a joint estimation of018
emotion attributes along with the aleatoric and019
epistemic uncertainties. AER experiments on020
the widely used MSP-Podcast and IEMOCAP021
datasets showed DEER produced state-of-the-022
art results for both the mean values and the023
distribution of emotion attributes1.024

1 Introduction025

Automatic emotion recognition (AER) is the task026

that enables computers to predict human emo-027

tional states based on multimodal signals, such028

as audio, video and text. An emotional state029

is defined based on either categorical or dimen-030

sional theory. Categorical theory claims the ex-031

istence of a small number of basic discrete emo-032

tions (i.e. anger and happy) that are inherent in033

our brain and universally recognised (Gunes et al.,034

2011; Plutchik, 2001). Dimensional emotion the-035

ory characterises emotional states by a small num-036

ber of roughly orthogonal fundamental continuous-037

valued bipolar dimensions (Schlosberg, 1954; Nico-038

laou et al., 2011) such as valence-arousal and ap-039

proach–avoidance (Russell and Mehrabian, 1977;040

1Code will be publicly available upon acceptance.

Russell, 1980; Grimm et al., 2007). These dimen- 041

sions are also known as emotion attributes, which 042

allows us to model more subtle and complex emo- 043

tions and are thus more common in psychological 044

studies. As a result, AER includes a classification 045

approach based on categories and a regression ap- 046

proach based on attributes. This paper focuses on 047

attribute-based AER with speech input. 048

Emotion annotation is challenging due to the in- 049

herent ambiguity of mixed emotion, the personal 050

variations in emotion expression, the subjectivity 051

in emotion perception, etc. Most AER datasets use 052

multiple human annotators to label each utterance, 053

which often results in inconsistent labels, either as 054

emotion categories or attributes. This is also a typi- 055

cal manifestation of the intrinsic data uncertainty, 056

also referred to as aleatoric uncertainty (Matthies, 057

2007; Der Kiureghian and Ditlevsen, 2009), that 058

arises from the natural complexity of emotion data. 059

It is common to replace such inconsistent labels 060

with deterministic labels obtained by majority vot- 061

ing (Busso et al., 2008, 2017) or (weighted) av- 062

erages (Ringeval et al., 2013; Lotfian and Busso, 063

2019; Kossaifi et al., 2019; Grimm and Kroschel, 064

2005). However, this causes a loss of data sam- 065

ples when a majority agreed emotion class doesn’t 066

exist (Majumder et al., 2018; Poria et al., 2018; 067

Wu et al., 2021) and also ignores the discrepancies 068

between annotators and the aleatoric uncertainty in 069

emotion data. 070

In this paper, we propose to model the uncer- 071

tainty in emotion attributes with a Bayesian ap- 072

proach based on deep evidential regression (Amini 073

et al., 2020), denoted deep evidential emotion re- 074

gression (DEER). In DEER, the inconsistent hu- 075

man labels of each utterance are considered as ob- 076

servations drawn independently from an unknown 077

Gaussian distribution. To probabilistically estimate 078

the mean and variance of the Gaussian distribution, 079

a normal inverse-gamma (NIG) prior is introduced, 080

which places a Gaussian prior over the mean and an 081
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inverse-gamma prior over the variance. The AER082

system is trained to predict the hyper-parameters083

of the NIG prior for each utterance by maximising084

the per-observation-based marginal likelihood of085

each observed label under this prior. As a result,086

DEER not only models the distribution of emo-087

tion attributes but also learns both the aleatoric088

uncertainty and the epistemic uncertainty (Der Ki-089

ureghian and Ditlevsen, 2009) without repeating090

the inference procedure for sampling, where epis-091

temic uncertainty refers to the model uncertainty092

associated with uncertainty in model parameters093

that best explain the observed data. Aleatoric un-094

certainty and epistemic uncertainty are combined095

to induce the total uncertainty, also called predic-096

tive uncertainty, that measures the confidence of097

attribute predictions. As a further improvement, a098

novel regulariser is proposed based on the mean099

and variance of the observed labels to better cal-100

ibrate the uncertainty estimation. The proposed101

methods were evaluated on the MSP-Podcast and102

IEMOCAP datasets.103

The rest of the paper is organised as follows.104

Section 2 summarises related work. Section 3 in-105

troduces the proposed DEER approach. Sections 4106

and 5 present the experimental setup and results107

respectively, followed by the conclusion.108

2 Related Work109

There has been previous work by AER researchers110

to address the issue of inconsistent labels. For emo-111

tion categories, a single ground-truth label can be112

obtained as either a continuous-valued mean vector113

representing emotion intensities (Fayek et al., 2016;114

Ando et al., 2018), or as a multi-hot vector obtained115

based on the existence of emotions (Zhang et al.,116

2020; Ju et al., 2020). Recently, distribution-based117

approaches have been proposed, which consider the118

labels as samples drawn from emotion distributions119

(Chou et al., 2022; Wu et al., 2022b).120

For emotion attributes, annotators often assign121

different values to the same attribute of each ut-122

terance. Deng et al. (2012) derived confidence123

measures based on annotator agreement to build124

emotion-scoring models. Han et al. (2017, 2021)125

proposed predicting the standard deviation of the126

attribute label values as an extra task in the multi-127

task training framework. Dang et al. (2017, 2018)128

included annotator variability as a representation129

of uncertainty in a Gaussian mixture regression130

model. More recently, Bayesian deep learning has131

been introduced to the task, including the use of 132

Gaussian processes (Atcheson et al., 2018, 2019), 133

variantional auto-encoders (Sridhar et al., 2021), 134

Bayesian neutral networks (Prabhu et al., 2021), 135

Monte-Carlo dropout (Sridhar and Busso, 2020b) 136

and sequential Monte-Carlo methods (Markov 137

et al., 2015; Wu et al., 2022a). These techniques 138

model the uncertainty in emotion annotation with- 139

out explicitly using the standard deviation of the 140

human labels. 141

3 Deep Evidential Emotion Regression 142

3.1 Problem setup 143

In contrast to Bayesian neural networks that place 144

priors on model parameters (Blundell et al., 2015; 145

Kendall and Gal, 2017), evidential deep learn- 146

ing (Sensoy et al., 2018; Malinin and Gales, 2018; 147

Amini et al., 2020) places priors over the likelihood 148

function. Every training sample adds support to a 149

learned higher-order prior distribution called the 150

evidential distribution. Sampling from this distri- 151

bution gives instances of lower-order likelihood 152

functions from which the data was drawn. 153

Consider an input utterance x with M emotion 154

attribute labels y(1), . . . , y(M) provided by multiple 155

annotators. Assuming y(1), . . . , y(M) are observa- 156

tions drawn i.i.d. from a Gaussian distribution with 157

unknown mean µ and unknown variance σ2, where 158

µ is drawn from a Gaussian prior and σ2 is drawn 159

from an inverse-gamma prior: 160

y(1), . . . , y(M) ∼ N (µ, σ2)

µ ∼ N (γ, σ2υ−1)

σ2 ∼ Γ−1(α, β)

161

where γ ∈ R, υ > 0, and Γ(·) is the gamma func- 162

tion with α > 1 and β > 0. 163

Denote {µ, σ2} and {γ, υ, α, β} as Ψ and Ω. 164

The posterior p(Ψ|Ω) is a NIG distribution, which 165

is the Gaussian conjugate prior: 166

p(Ψ|Ω) = p(µ|σ2,Ω) p(σ2|Ω)

= N (γ, σ2υ−1) Γ−1(α, β)

=
βα√υ

Γ(α)
√
2πσ2

(
1

σ2

)α+1

· exp
{
−2β + υ(γ − µ)2

2σ2

} 167

Drawing a sample Ψi from the NIG distribution 168

yields a single instance of the likelihood function 169

N (µi, σ
2
i ). The NIG distribution therefore serves 170
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as the higher-order, evidential distribution on top171

of the unknown lower-order likelihood distribution172

from which the observations are drawn. The NIG173

hyper-parameters Ω determine not only the loca-174

tion but also the uncertainty, associated with the175

inferred likelihood function.176

By training a deep neural network model to out-177

put the hyper-parameters of the evidential distri-178

bution, evidential deep learning allows the uncer-179

tainties to be found by analytic computation of the180

maximum likelihood Gaussian without the need181

for repeated inference for sampling (Amini et al.,182

2020). Furthermore, it also allows an effective esti-183

mate of the aleatoric uncertainty computed as the184

expectation of the variance of the Gaussian distribu-185

tion, as well as the epistemic uncertainty defined as186

the variance of the predicted Gaussian mean. Given187

an NIG distribution, the prediction, aleatoric, and188

epistemic uncertainty can be computed as:189

Prediction:E[µ] = γ190

Aleatoric:E[σ2] =
β

α− 1
, ∀α > 1191

Epistemic:Var[µ] =
β

υ(α− 1)
, ∀α > 1192

3.2 Training193

The DEER learning procedure is structured as fit-194

ting the model to the data while enforcing the prior195

to calibrate the uncertainty when the prediction is196

wrong.197

3.2.1 Maximising the data fit198

The likelihood of an observation y given the eviden-199

tial distribution hyper-parameters Ω is computed200

by marginalising over the likelihood parameters Ψ:201

p(y|Ω) =

∫
Ψ
p(y|Ψ)p(Ψ|Ω) dΨ202

= Ep(Ψ|Ω)[p(y|Ψ)] (1)203

An analytical solution exists in the case of placing204

an NIG prior on the Gaussian likelihood function:205

p(y|Ω) =
Γ(1/2 + α)

Γ(α)

√
υ

π
(2β(1 + υ))α206

·
(
υ(y − γ)2 + 2β(1 + υ)

)−( 1
2
+α)

207

= St2α

(
y|γ, β(1 + υ)

υ α

)
(2)208

where Stν (t|r, s) is the Student’s t-distribution209

evaluated at t with location parameter r, scale pa-210

rameter s, and ν degrees of freedom. The predicted211

mean and variance can be computed analytically as 212

E[y] = γ, Var[y] =
β(1 + υ)

υ(α− 1)
(3) 213

Var[y] represents the total uncertainty of model 214

prediction, which is equal to the summation of the 215

aleatoric uncertainty E[σ2] and epistemic uncer- 216

tainty Var[µ] according to the law of total variance: 217

Var[y] = E[Var[y|Ψ]] + Var[E[y|Ψ]] 218

= E[σ2] + Var[µ] 219

To fit the NIG distribution, the model is trained 220

by maximising the sum of the marginal likelihoods 221

of each human label y(m). The negative log likeli- 222

hood (NLL) loss can be computed as 223

LNLL(x;Θ) = − 1

M

M∑
m=1

log p(y(m)|Ω) (4) 224

= − 1

M

M∑
m=1

log

[
St2α

(
y(m)|γ, β(1 + υ)

υ α

)]
225

This is our proposed per-observation-based NLL 226

loss, which takes each observed label into consid- 227

eration for AER. This loss serves as the first part 228

of the objective function for training a deep neural 229

network model Θ to predict the hyper-parameters 230

{γ, v, α, β} to fit all observed labels of x. 231

3.2.2 Calibrating the uncertainty on errors 232

The second part of the objective function regu- 233

larises training by calibrating the uncertainty based 234

on the incorrect predictions. A novel regulariser 235

is formulated which contains two terms: Lµ and 236

Lσ that respectively regularises the errors on the 237

estimation of the mean µ and the variance σ2 of 238

the Gaussian likelihood. 239

The first term Lµ is proportional to the error 240

between the model prediction and the average of 241

the observations: 242

Lµ(x;Θ) = Φ |ȳ − E[µ]| 243

where | · | is L1 norm, ȳ = 1
M

∑M
m=1 y

(m) is the 244

averaged label which is usually used as the ground 245

truth in regression-based AER, and Φ is an uncer- 246

tainty measure associated with the inferred poste- 247

rior. The reciprocal of the total uncertainty is used 248

as Φ in this paper, which can be calculated as 249

Φ =
1

Var[y]
=

υ(α− 1)

β(1 + υ)
250
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The regulariser imposes a penalty when there is an251

error in the prediction and dynamically scales it252

by dividing by the total uncertainty of the inferred253

posterior. It penalises the cases where the model254

produces an incorrect prediction with small a un-255

certainty, thus preventing the model from being256

over-confident. For instance, if the model produces257

an error with a small predicted variance, Φ is large,258

resulting in a large penalty. Minimising the regular-259

isation term enforces the model to produce accurate260

prediction or increase uncertainty when the error is261

large.262

In addition to imposing a penalty on the mean263

prediction as in (Amini et al., 2020), a second term264

Lσ is proposed in order to calibrate the estima-265

tion of the aleatoric uncertainty. As discussed in266

the introduction, aleatoric uncertainty in AER is267

shown by the different emotional labels given to268

the same utterance by different human annotators.269

This paper uses the variance of the observations to270

describe the aleatoric uncertainty in the emotion271

data. The second regularising term is defined as:272

Lσ(x;Θ) = Φ |σ̄2 − E[σ2]|273

where σ̄2 = 1
M

∑M
m=1(y

(m) − ȳ)2.274

3.3 Summary and implementation details275

For an AER task that consists of N emo-276

tion attributes, DEER trains a deep neural net-277

work model to simultaneously predict the hyper-278

parameters {Ω1, . . . ,ΩN} associated with the N279

attribute-specific NIG distributions, where Ωn =280

{γn, υn, αn, βn}. A DEER model thus has 4N out-281

put units. The system is trained by minimising the282

total loss w.r.t. Θ as:283

Ltotal(x;Θ) =

N∑
n=1

ϵnLn(x;Θ) (5)284

Ln(x;Θ) = LNLL
n (x;Θ)285

+ λn [Lµ
n(x;Θ) + Lσ

n(x;Θ)] (6)286

where ϵn is the weight satisfying
∑N

n=1 ϵn = 1, λn287

is the scale coefficient that trades off the training288

between data fit and uncertainty regulation.289

At test-time, the predictive posteriors are N290

separate Student’s t-distributions p(y|Ω1) , . . . ,291

p(y|ΩN ), each of the same form as derived in292

Eqn. (2)2. Apart from obtaining a distribution over293

2Since NIG is the Gaussian conjugate prior, the posterior is
in the same parametric family as the prior. Therefore, the pre-
dictive posterior has the same form as the marginal likelihood.
Detailed derivations see Appendix A.

the emotion attribute of the speaker, DEER also al- 294

lows analytic computation of the uncertainty terms, 295

as summarised in Table 1. 296

Term Expression

Predicted mean E[y] = E[µ] = γ

Predicted variance
(Total uncertainty)

Var[y] = β(1+υ)
υ(α−1)

Aleatoric uncertainty E[σ2] = β
α−1

Epistemic uncertainty Var[µ] = β
υ(α−1)

Table 1: Summary of the uncertainty terms.

4 Experimental Setup 297

4.1 Dataset 298

The MSP-Podcast (Lotfian and Busso, 2019) and 299

IEMOCAP datasets (Busso et al., 2008) were used 300

in this paper. The annotations of both datasets 301

use N = 3 with valence, arousal (also called acti- 302

vation), and dominance as the emotion attributes. 303

MSP-Podcast contains natural English speech from 304

podcast recordings and is one of the largest publicly 305

available datasets in speech emotion recognition. 306

A seven-point Likert scale was used to evaluate 307

valence (1-negative vs 7-positive), arousal (1-calm 308

vs 7-active), and dominance (1-weak vs 7-strong). 309

The corpus was annotated using crowd-sourcing. 310

Each utterance was labelled by at least 5 human 311

annotators and has an average of 6.7 annotations 312

per utterance. Ground-truth labels were defined 313

by the average value. Release 1.8 was used in 314

the experiments, which contains 73,042 utterances 315

from 1,285 speakers amounting to more than 110 316

hours of speech. The average variance of the labels 317

assigned to each sentence is 0.975, 1.122, 0.889 318

for valence, arousal, and dominance respectively. 319

The standard splits for training (44,879 segments), 320

validation (7,800 segments) and testing (15,326 321

segments) were used in the experiments. 322

The IEMOCAP corpus is one of the most widely 323

used AER datasets. It consists of approximately 324

12 hours of English speech including 5 dyadic con- 325

versational sessions performed by 10 professional 326

actors with a session being a conversation between 327

two speakers. There are in total 151 dialogues 328

including 10,039 utterances. Each utterance was 329

annotated by three human annotators using a five- 330

point Likert scale. Again, ground-truth labels were 331

determined by taking the average. The average 332

variance of the labels assigned to each sentence is 333
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0.130, 0.225, 0.300 for valence, arousal, and dom-334

inance respectively. Unless otherwise mentioned,335

systems on IEMOCAP were evaluated by training336

on Session 1-4 and testing on Session 5.337

4.2 Model structure338

The model structure used in this paper follows339

the upstream-downstream framework (Yang et al.,340

2021), as illustrated in Figure 1. WavLM (Chen341

et al., 2022) was used as the upstream model, which342

is a speech foundation model pre-trained by self-343

supervised learning. The BASE+ version3 of the344

model was used in this paper which has 12 Trans-345

former encoder blocks with 768-dimensional hid-346

den states and 8 attention heads. The parameters of347

the pre-trained model were frozen and the weighted348

sum of the outputs of the 12 Transformer encoder349

blocks was used as the speech embeddings and fed350

into the downstream model.351

The downstream model consists of two 128-352

dimensional Transformer encoder blocks with 4-353

head self-attention, followed by an evidential layer354

that contains four output units for each of the three355

attributes, which has a total of 12 output units. The356

model contains 0.3M trainable parameters. A Soft-357

plus activaton4 was applied to {υ, α, β} to ensure358

υ, α, β > 0 with an additional +1 added to α to en-359

sure α > 1. A linear activation was used for γ ∈ R.360

The proposed DEER model was trained to simulta-361

neously learn three evidential distributions for the362

three attributes. The weights in Eqn. (5) were set as363

ϵv = ϵa = ϵd = 1/3. The scale coefficients were364

set to λv = λa = λd = 0.1 for Eqn. (6)5.365

A dropout rate of 0.3 was applied to the trans-366

former parameters. The system was implemented367

using PyTorch and the SpeechBrain toolkit (Ra-368

vanelli et al., 2021). The Adam optimizer was used369

with an initial learning rate set to 0.001. Training370

took ∼ 8 hours on an NVIDIA A100 GPU.371

4.3 Evaluation metrics372

4.3.1 Mean prediction373

Following prior work in continuous emotion recog-374

nition (Ringeval et al., 2015, 2017; Sridhar and375

Busso, 2020a; Leem et al., 2022), the concordance376

correlation coefficient (CCC) was used to evaluate377

the predicted mean. CCC combines the Pearson’s378

3https://huggingface.co/microsoft/wavlm-base-plus
4Softplus(x) = ln(1 + exp(x))
5The values were manually selected from a small number

of candidates.

Input waveform
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encoder block 1 …
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encoder block 𝑖𝑖
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encoder block 12 …

… …

Convolutional 
feature encoder
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𝑤𝑤12

𝑤𝑤1

𝑤𝑤𝑖𝑖

…

…
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…

𝛾𝛾a 𝜐𝜐a 𝛼𝛼a 𝛽𝛽a 𝛾𝛾d 𝜐𝜐d 𝛼𝛼d 𝛽𝛽d

𝛾𝛾v, 𝜐𝜐v,𝛼𝛼v,𝛽𝛽v
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Figure 1: Illustration of the model structure.
w1, . . . , w12 are trainable weights for the weighted
sum of the 12 Transformer encoder outputs and sat-
isfy

∑12
i=1 wi = 1.

correlation coefficient with the square difference 379

between the mean of the two compared sequences: 380

ρccc =
2ρ σrefσhyp

σ2
ref + σ2

hyp +
(
µref − µhyp

)2 , (7) 381

where ρ is the Pearson correlation coefficient be- 382

tween a hypothesis sequence (system predictions) 383

and a reference sequence, where µhyp and µref are 384

the mean values, and σ2
hyp and σ2

ref are the variance 385

values of the two sequences. Hypotheses that are 386

well correlated with the reference but shifted in 387

value are penalised in proportion to the deviation. 388

The value of CCC ranges from -1 (perfect disagree- 389

ment) to 1 (perfect agreement). 390

The root mean square error (RMSE) averaged 391

over the test set is also reported. Since the average 392

of the human labels, ȳ, is defined as the ground 393

truth in both datasets, ȳ were used as the reference 394

in computing the CCC and RMSE. However, using 395

ȳ also indicates that these metrics are less informa- 396

tive when the aleatoric uncertainty is large. 397

4.3.2 Uncertainty estimation 398

In machine learning, it is common to use NLL to 399

measure the uncertainty estimation ability (Gal and 400

Ghahramani, 2016; Amini et al., 2020). NLL is 401

computed by fitting data to the predictive posterior 402

q(y). 403
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CCC ↑ RMSE ↓ NLL(avg) ↓ NLL(all) ↓
MSP-Podcast v a d v a d v a d v a d

L in Eqn. (6) 0.506 0.698 0.613 0.772 0.680 0.576 1.334 1.285 1.156 1.696 1.692 1.577
Lσ = 0 0.451 0.687 0.607 0.784 0.679 0.580 1.345 1.277 1.159 1.706 1.705 1.586
LNLL = L̄NLL 0.473 0.682 0.609 0.808 0.673 0.566 1.290 1.060 0.899 2.027 2.089 1.969

IEMOCAP v a d v a d v a d v a d

L in Eqn. (6) 0.596 0.755 0.569 0.755 0.457 0.638 1.070 0.795 1.035 1.275 1.053 1.283
Lσ = 0 0.582 0.752 0.553 0.772 0.466 0.655 1.180 0.773 1.061 1.408 1.069 1.294
LNLL = L̄NLL 0.585 0.759 0.555 0.786 0.444 0.633 1.001 0.727 1.036 1.627 1.329 1.441

Table 2: DEER results variations of the loss in Eqn. (6). ‘v’ , ‘a’, ‘d’ stands for valence, arousal, dominance. ‘↑’
denotes the higher the better, ‘↓’ denotes the lower the better. The ‘L in Eqn. (6)’ row systems used the complete
total loss of DEER. The ‘Lσ = 0’ row systems had no Lσ regularisation term in the total loss. The ‘LNLL = L̄NLL’
row systems replaced the individual human labels with L̄NLL in the total loss.

In this paper, NLL(avg) defined as − log q(ȳ)404

and NLL(all) defined as − 1
M

∑M
m=1 log q(y

(m))405

are both used. NLL(avg) measures how much the406

averaged label ȳ fits into the predicted posterior407

distribution, and NLL(all) measures how much how408

much every single human label y(m) fits into the409

predicted posterior. A lower NLL indicates better410

uncertainty estimation.411

5 Experiments and Results412

5.1 Effect of the aleatoric regulariser Lσ413

First, by setting Lσ = 0 in the total loss, an ablation414

study of the effect of the proposed extra regularis-415

ing term Lσ is performed. The results are given in416

the ‘Lσ = 0’ rows in Table 2. In this case, only417

Lµ is used to regularise LNLL and the results are418

compared to those trained using the complete loss419

defined in Eqn. (6), which are shown in the ‘L420

in Eqn. (6)’ rows. From the results, Lσ improves421

the performance in CCC and NLL(all), but not in422

NLL(ref), as expected.423

5.2 Effect of the per-observation-based LNLL424

Next, the effect of our proposed per-observation-425

based NLL loss defined in Eqn. (4), LNLL, is com-426

pared to an alternative. Instead of using LNLL,427

L̄NLL = − log p(ȳ|Ω)428

is used to compute the total loss during training,429

and the results are given in the ‘LNLL = L̄NLL’430

rows in Table 2. While LNLL considers the like-431

lihood of fitting each individual observation into432

the predicted posterior, L̄NLL only considers the433

averaged observation. Therefore, it is expected434

that using L̄NLL instead of LNLL yields a smaller435

NLL(avg) but larger NLL(all), which have been436

validated by the results in the table.437

5.3 Baseline comparisons 438

Three baseline systems were built: 439

• A Gaussian Process (GP) with a radial basis 440

function kernel, trained by maximising the 441

per-observation-based marginal likelihood. 442

• A Monte Carlo dropout (MCdp) system with 443

a dropout rate of 0.4. During inference, the 444

system was forwarded 50 times with different 445

dropout random seeds to obtain 50 samples. 446

• An ensemble of 10 systems initialised and 447

trained with 10 different random seeds. 448

The MCdp and ensemble baselines used the same
model structure as the DEER system, expect that
the evidential output layer was replaced by a stan-
dard fully-connected output layer with three output
units to predict the values of valence, arousal and
dominance respectively. Following prior work (Al-
Badawy and Kim, 2018; Atmaja and Akagi, 2020b;
Sridhar and Busso, 2020b), the CCC loss,

Lccc = 1− ρccc

was used for training the MCdp and ensemble base- 449

lines. The CCC loss was computed based on the 450

sequence within each mini-batch of training data. 451

The CCC loss has been shown by previous stud- 452

ies to improve the continuous emotion predictions 453

compared to the RMSE loss (Povolny et al., 2016; 454

Trigeorgis et al., 2016; Le et al., 2017). For MCdp 455

and ensemble, the predicted distribution of the emo- 456

tion attributes were estimated based on the obtained 457

samples by kernel density estimation. 458

The results are listed in Table 3. The proposed 459

DEER system outperforms the baselines on most of 460

the attributes and the overall values. In particular, 461
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CCC ↑ RMSE ↓ NLL_ref ↓ NLL_all ↓
MSP-Podcast v a d v a d v a d v a d

DEER 0.506 0.698 0.613 0.772 0.680 0.576 1.334 1.285 1.156 1.696 1.692 1.577
GP 0.342 0.595 0.486 0.811 0.673 0.566 1.447 1.408 1.297 1.727 1.808 1.592

MCdp 0.476 0.667 0.594 0.874 0.702 0.623 1.680 1.300 1.071 2.050 2.027 1.776
Ensemble 0.511 0.679 0.608 0.855 0.692 0.615 1.864 1.384 1.112 2.096 2.066 1.795

IEMOCAP v a d v a d v a d v a d

DEER 0.596 0.756 0.569 0.755 0.457 0.638 1.070 0.795 1.035 1.275 1.053 1.283
GP 0.535 0.717 0.512 0.763 0.479 0.657 1.209 0.791 1.047 1.295 1.205 1.380

MCdp 0.539 0.724 0.568 0.786 0.561 0.702 1.291 0.849 1.133 1.549 1.325 1.747
Ensemble 0.580 0.754 0.560 0.778 0.476 0.686 1.296 0.864 1.110 1.584 1.218 1.749

Table 3: Comparison with the baselines. ‘v’, ‘a’, ‘d’ stands for valence, arousal, dominance. ‘↑’ denotes the higher
the better, ‘↓’ denotes the lower the better. Best results in each column shown in bold.

DEER outperforms all baselines consistently in the462

NLL(all) metric.463

5.4 Cross comparison of mean prediction464

Table 4 compares results obtained with those pre-465

viously published in terms of the CCC value. Pre-466

vious papers have reported results on both version467

1.6 and 1.8 of the MSP-Podcast dataset. For com-468

parison, we also conducted experiments on version469

1.6 for comparison. Version 1.6 of MSP-Podcast470

database is a subset of version 1.8 and contains471

34,280 segments for training, 5,958 segments for472

validation and 10,124 segments for testing. For473

IEMOCAP, apart from training on Session 1-4 and474

testing on Session 5 (Ses05), we also evaluated475

the proposed system by a 5-fold cross-validation476

(5CV) based on a “leave-one-session-out” strategy.477

In each fold, one session was left out for testing and478

the others were used for training. The configuration479

is speaker-exclusive for both settings. As shown in480

Table 4, our DEER systems achieved state-of-the-481

art (SOTA) results both versions of MSP-Podcast482

and both test setting of IEMOCAP.483

5.5 Analysis of uncertainty estimation484

5.5.1 Visualisation485

Based on a randomly selected subset test set of486

MSP-Podcast version 1.8, the aleatoric, epistemic487

and total uncertainty of the dominance attribute488

predicted by our proposed DEER system are shown489

in Figure 2.490

Figure 2 (a) shows the predicted mean ± square491

root of the predicted aleatoric uncertainty (E[µ]±492 √
E[σ2]) and the average label ± the standard de-493

viation of the human labels (ȳ ± σ̄). It can be seen494

that the predicted aleatoric uncertainty (blue) over-495

laps with the label standard deviation (grey) and496

0 20 40 60 80 100

4

6

y E[ ] E[ 2]

(a) Aleatoric uncertainty

0 20 40 60 80 100

4

6

y E[ ] Var[ ]

(b) Epistemic uncertainty

0 20 40 60 80 100

4

6

y E[y] Var[y]

(c) Total uncertainty

Figure 2: Visualisation of (a) aleatoric (b) epistemic (c)
total uncertainty of dominance for MSP-Podcast. x-asix
is the test utterance index.

the overlapping is more evident when the mean 497

predictions are accurate (i.e. samples around index 498

80-100). 499

Figure 2 (b) shows the predicted mean ± square 500

root of the predicted epistemic uncertainty (E[µ]± 501√
Var[µ]). The epistemic uncertainty is high when 502

the predicted mean deviates from the target (i.e. 503

samples around index 40-50) while low then the 504

predicted mean matches the target (i.e. samples 505

around index 80-100). 506

Figure 2 (c) shows the predicted mean ± square 507

root of the total epistemic uncertainty (E[y] ± 508
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MSP-podcast

Paper Version v a d Average

Sridhar and Busso (2020a) 1.6 0.323 0.735 0.665 0.574
Ghriss et al. (2022) 1.6 0.412 0.679 0.564 0.552
Mitra et al. (2022) 1.6 0.57 0.75 0.67 0.663

Srinivasan et al. (2022) 1.6 0.627 0.757 0.671 0.685
DEER 1.6 0.629 0.777 0.684 0.697

Leem et al. (2022) 1.8 0.212 0.572 0.505 0.430
DEER 1.8 0.506 0.698 0.613 0.606

IEMOCAP

Paper Setting v a d Average

Atmaja and Akagi (2020a) Ses05 0.421 0.590 0.484 0.498
Atmaja and Akagi (2021) Ses05 0.553 0.579 0.465 0.532

DEER Ses05 0.596 0.755 0.569 0.640

Srinivasan et al. (2022) 5CV 0.582 0.667 0.545 0.598
DEER 5CV 0.625 0.720 0.548 0.631

Table 4: Cross comparison of the CCC value on MSP-Podcast and IEMOCAP. ‘v’, ‘a’, ‘d’ stands for valence,
arousal, dominance. ‘Version’ of MSP-Podcast denotes the release version of the dataset., and only the results
from the same dateset version are comparable. ‘Test set’ of IEMOCAP denotes the train/set split. ‘Ses05’ denotes
training on Session 1-4 and tested on Session 5. ‘5CV’ denotes leave-one-session-out 5-fold cross validation.

√
Var[y]) which combines the aleatoric and epis-509

temic uncertainty. The total uncertainty is high510

either when the input utterance is complex or the511

model is not confident.512

5.5.2 Reject option513

A reject option was applied to analyse the uncer-514

tainty estimation performance, where the system515

has the option to accept or decline a test sample516

based on the uncertainty prediction. Since the eval-517

uation of CCC is based on the whole sequence518

rather than individual samples, its computation519

would be affected when the sequence is modified520

by rejection (Wu et al., 2022a). Therefore, the521

reject option is performed based on RMSE.522

0 10 20 30 40 50 60 70 80 90
Percentage of rejection (%)

0.50

0.55

0.60

0.65

0.70

0.75
v
a
d

(a) MSP-Podcast

0 10 20 30 40 50 60 70 80 90
Percentage of rejection (%)

0.45

0.50

0.55

0.60

0.65

0.70

0.75 v
a
d

(b) IEMOCAP

Figure 3: Reject Option of RMSE based on predicted
variance for (a) MSP-Podcast and (b) IEMOCAP.

Confidence is measured by the total uncertainty523

given in Eqn. (3). Figure 3 shows the performance524

of the proposed DEER system with a reject option525

on MSP-Podcast and IEMOCAP. A percentage of 526

utterances with the largest predicted variance were 527

rejected. The results at 0% rejection corresponds 528

to the RMSE achieved on the entire test data. As 529

the percentage of rejection increases, test coverage 530

decreases and the average RMSE decreases show- 531

ing the predicted variance succeeded in confidence 532

estimation. The system then trades off between the 533

test coverage and performance. 534

6 Conclusions 535

This paper proposes DEER for estimating uncer- 536

tainty in emotion attributes. Treating observed 537

attribute-based annotations as samples drawn from 538

a Gaussian distribution, DEER places a normal- 539

inverse gamma prior over the Gaussian likelihood. 540

A novel training loss was proposed which combines 541

a per-observation-based NLL loss with a regulariser 542

on both the mean and the variance of the Gaus- 543

sian likelihood. Experiments on the MSP-Podcast 544

and IEMOCAP datasets show that DEER produced 545

SOTA results in estimating both the mean value 546

and the distribution of emotion attributes. DEER 547

also allows effective estimation of the aleatoric and 548

epistemic uncertainty associated with attribute pre- 549

diction, which is analysed by visualisation and a 550

reject option. Beyond the scope of AER, DEER 551

could also be applied to other tasks with subjective 552

evaluations yielding inconsistent labels. 553
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Limitations813

The proposed method made an Gaussian assump-814

tion on the likelihood function for analytic compu-815

tation of the uncertainties. The results show that816

this modelling approach is effective.817

Data collection processes for AER datasets vary818

in terms of recording condition, emotional elicita-819

tion scheme, annotation procedure, etc. This work820

was tested on two typical datasets: IEMOCAP and821

MSP-Podcast. The two datasets differs in various 822

aspects: 823

• IEMOCAP contains emotion acted by pro- 824

fessional actors while MSP-Podcast contains 825

natural emotion. 826

• IEMOCAP contains dyadic conversations 827

while MSP-Podcast contains Podcast record- 828

ings. 829

• IEMOCAP contains 10 speakers and MSP- 830

Podcast contains 1285 speakers. 831

• IEMOCAP contains about 12 hours speech 832

and MSP-Podcast contains more than 110 833

hours speech. 834

• IEMOCAP was annotated by six professional 835

evaluators with each sentence being annotated 836

by three evaluators. MSP-Podcast was an- 837

notated by crowd-sourcing where a total of 838

11,799 workers were involved and each work 839

annotated 41.5 sentences on average. 840

The proposed approach has been shown effective 841

over both. We believe the proposed technique 842

should be generic but would need to be validated 843

for new conditions. 844

A Derivation of the predictive posterior 845

Since NIG is the Gaussian conjugate prior, 846

p(Ψ|Ω) = N (γ, σ2υ−1) Γ−1(α, β)

=
βα√υ

Γ(α)
√
2πσ2

(
1

σ2

)α+1

· exp
{
−2β + υ(γ − µ)2

2σ2

} 847

its posterior p(Ψ|D) is in the same parametric fam- 848

ily as the prior p(Ψ|Ω). Therefore, given a test 849

utterance x∗, the predictive posterior p(y∗|D) has 850

the same form as the marginal likelihood p(y|Ω), 851

where D denotes the training set. 852

p(y∗|D) =

∫
p(y∗|Ψ)p(Ψ|D) dΨ (8) 853

p(y|Ω) =

∫
p(y|Ψ)p(Ψ|Ω) dΨ (9) 854

In DEER, the predictive posterior and posterior 855

are both conditioned on Ω, written as p(y∗|D,Ω) 856

and p(Ψ|D,Ω) to be precise. Also, the informa- 857

tion of D is contained in Ω∗ since Ω∗ = fΘ̂(x∗) 858
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and Θ̂ is the optimal model parameters obtained by859

training on D. Then the predictive posterior can be860

written as p(y∗|Ω∗). Given the conjugate prior, the861

predictive posterior in DEER can be computed by862

directly substituting the predicted Ω∗ into the ex-863

pression of marginal likelihood derived in Eqn. (2),864

skipping the step of calculating the posterior.865
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