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Abstract
Federated graph learning enhances federated learning by enabling privacy-preserving

collaborative training on distributed graph data. While traditional methods are effective
in managing data heterogeneity, they typically assume static graph structures, overlook-
ing the dynamic nature of real-world graphs. Integrating federated graph learning with
dynamic graph neural networks addresses this issue but often fails to retain previously
acquired knowledge, limiting generalization for both global and personalized models. This
paper proposes FedDGL, a novel framework designed to address temporal evolution , and
data heterogeneity in federated dynamic graph learning. Unlike conventional approaches,
FedDGL captures temporal dynamics through a global knowledge distillation technique
and manages client heterogeneity using a global prototype-based regularization method.
The framework employs contrastive learning to generate global prototypes, enhancing fea-
ture representation while utilizing a prototype similarity-based personalized aggregation
strategy for effective adaptation to local and global data distributions. Experiments on
multiple benchmark datasets show that FedDGL achieves significant performance improve-
ments over state-of-the-art methods, with up to 9.02% and 8.77% gains in local and global
testing, respectively, compared to FedAvg. These results highlight FedDGL’s effective-
ness in improving personalized and global model performance in dynamic, heterogeneous
federated graph learning scenarios.
Keywords: Federated Graph Learning, Dynamic Graph Learning, Knowledge Distillation,
Prototype Learning, Personalized Aggregation, Temporal Evolution

1. Introduction

Federated Graph Learning (FGL) (Zhang et al. (2021)) has emerged as a specialized area
within federated learning (FL), attracting significant attention in recent years. FGL focuses
on the collaborative training of graph-based models across multiple decentralized clients
(Zhang et al. (2021); Pei et al. (2021); Yao et al. (2023); Zhang et al. (2024); Chen et al.
(2024)). This computing paradigm leverages the structural information in graph data by

© 2024 Z. Xie, L. Li, X. Chen, H. Yu & Q. Huang.



Xie Li Chen Yu Huang

aggregating information from neighboring nodes to enhance model performance. However,
FGL faces significant challenges due to data heterogeneity in practical applications, where
substantial differences exist in local graph data distributions across various clients (Zhang
et al. (2021)). This heterogeneity can adversely affect the generalization performance of
the global model, given the variations in node distributions, edge types, and feature spaces
among clients (Tan et al. (2023)). Current research (Wan et al. (2024)) suggests that the
inability to effectively address data heterogeneity may undermine the efficacy of federated
learning.

Additionally, real-world graphs are often dynamic, with nodes and edges continuously
evolving due to the nature of the underlying systems they represent. For instance, in social
networks, users (nodes) regularly join and leave, while friendships and interactions (edges)
change over time. In traffic networks (Han et al. (2023)), the connections (edges) between
locations (nodes) vary throughout the day due to fluctuating traffic conditions. Similarly, in
e-commerce recommendation systems (Yin and Yue (2023)), new products are added, and
user preferences evolve, leading to changes in interactions. These examples underscore the
necessity for models that can accommodate the temporal and structural changes in graph
data, making Dynamic Graph Learning (DGL) (Pareja et al. (2020); Pang et al. (2021);
Sun et al. (2022); Zhang et al. (2023b)) essential for accurately capturing and predicting the
behavior of such systems. (Han et al. (2023); Yin and Yue (2023))

Various methods (Pareja et al. (2020); Pang et al. (2021); Yu et al. (2023)) have been
developed to tackle dynamic graph learning (DGL) by predicting changes in graphs over
time. EvolveGCN (Pareja et al. (2020)) leverages recurrent neural networks (RNNs) to
dynamically update the parameters of graph convolutional networks (GCNs), efficiently
managing frequent alterations in node sets. DM-GCN (Pang et al. (2021)) utilizes an at-
tention mechanism with multiple attention heads to enhance the model’s capacity to detect
complex patterns. DyGFormer (Yu et al. (2023)) introduces a neighbor co-occurrence en-
coding scheme to capture correlations between nodes and employs a patching technique to
process longer node histories effectively.

However, these DGL methods can be ineffective in a federated scenario due to several key
challenges (Jiang et al. (2022)). Data heterogeneity across clients leads to inconsistencies in
model aggregation, while the frequent updates required to capture dynamic changes signif-
icantly increase communication overhead and latency (Thakur et al. (2022)). Additionally,
the detailed updates necessary for dynamic graphs can compromise data privacy (Wang
et al. (2024)). The computational intensity of DGL methods poses challenges for clients
with limited resources, and managing updates from numerous clients with complex graphs
can be computationally demanding, affecting scalability. These issues highlight the need
for specialized methods in federated DGL. Among all the challenges of federated DGL, two
critical challenges persist: (1) accurately capturing temporal dynamics in graph snapshots
to prevent knowledge loss in local models, and (2) effectively managing data heterogene-
ity across snapshots to enhance the global model’s generalization capabilities across diverse
distributions.

This study proposes a novel Federated Dynamic Graph Learning (FedDGL) method
to address the aforementioned two primary challenges. FedDGL captures local evolution
relationships of graph snapshots by selecting sensitive nodes based on estimated loss dif-
ferences and retaining previously learned information through knowledge distillation. To
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capture global evolution relationships, FedDGL aggregates local prototypes from all clients
to generate global prototypes that guide local training. Additionally, contrastive learning
is utilized in FedDGL to enhance feature representations by improving intra-class compact-
ness and inter-class separability. A prototype-based personalized aggregation method is
proposed for personalized federated training. By integrating continual learning and proto-
type learning, clients can effectively capture the temporal evolution of graph snapshots,
maintain predictive performance on global graph snapshots, and achieve improved per-
sonalized training, thereby mitigating these challenges. Our code is publicly available at
https://github.com/zach82/FedDGL and our main contributions are summarized as follows:

• We propose a novel personalized Federated Dynamic Graph Learning (FedDGL) method
to address the issues of temporal evolution in graph snapshots and data heterogeneity
among clients in federated graph learning. FedDGL captures the temporal evolution
of graph snapshots and manages data heterogeneity through a temporal evolution cap-
ture module and a prototype-based global regularization method, enhancing both the
generalization performance of the global model and the personalization for each client.

• Our proposed FedDGL introduces global prototypes generated through contrastive
learning to enhance intra-class compactness and inter-class separability of feature rep-
resentations. It also employs a prototype-based personalized aggregation method,
enabling each client’s model to adapt to its local data distribution while maintaining
alignment with the global data distribution.

• Experimental results demonstrate that FedDGL significantly outperforms state-of-the-
art methods across multiple benchmark datasets, enhancing both personalized and
global model performance. Its ability to improve global model generalization and
effectively adapt to client-specific data through personalized aggregation underscores
its potential as a robust solution for federated dynamic graph learning.

2. Related Work

Federated Graph Learning (FGL) (Zhang et al. (2021); Pei et al. (2021); Yao et al. (2023);
Zhang et al. (2024); Chen et al. (2024)) combines the privacy-preserving features of federated
learning with the capabilities of graph neural networks, enabling collaborative training on
decentralized data. It is an effective solution for advanced graph-based models in various do-
mains. For example, FedSage (Zhang et al. (2021)) addresses distributed subgraph systems,
training a missing neighbor generator to restore edges between clients, while FedEgo (Zhang
et al. (2024)) constructs K-hop ego graphs for server-side use. D-FedGNN (Pei et al. (2021))
supports client collaboration without a central server, and FedGL (Chen et al. (2024)) up-
loads predicted results and node embeddings. FedGCN (Yao et al. (2023)) exchanges average
neighbor information between clients. However, these frameworks may pose privacy risks
when node embeddings, subgraphs, etc., are shared during the federated learning process,
potentially revealing nodes within a client’s private dataset (Zhang et al. (2024)).

Data heterogeneity in FGL involves variations in graph structures, node features, and
edge relationships across clients, resulting in non-IID data. This necessitates personalized
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models that adapt to local distributions, enhancing performance and providing tailored rec-
ommendations. Addressing this heterogeneity is crucial for effective, privacy-preserving, and
scalable federated learning systems. To tackle data heterogeneity, personalization in feder-
ated graph learning has gained attention (Cheng et al. (2023); Wang et al. (2024, 2023)).
ProtoHAR (Cheng et al. (2023)) introduces prototypes into the FGL framework to decou-
ple representation and classifier in heterogeneous environments, using global prototypes to
correct activity feature representations and allow knowledge exchange between clients with-
out compromising privacy. Other methods, such as clustering-based methods (Wang et al.
(2024)), and mixing global and local models (Wang et al. (2023)), have proven effective in
enhancing personalized models.

Dynamic Graph Neural Networks (Pareja et al. (2020); Pang et al. (2021); Zhang et al.
(2023a)) are specialized neural networks designed to model and analyze evolving graph struc-
tures and features over time, capturing temporal dynamics and adapting to changes in the
graph topology. For instance, EvolveGCN (Pareja et al. (2020)) integrates recurrent neu-
ral networks with graph convolutional networks to capture the temporal evolution of graph
structures and node features. DM-GCN (Pang et al. (2021)) employs an attention mech-
anism, enhancing the model’s ability to capture complex patterns by computing multiple
attention heads in parallel. DRGCN (Zhang et al. (2023a)) addresses the over-smoothing
problem in GCNs by introducing dynamic blocks that adaptively fetch information for each
node from initial representations and evolving blocks that model the residual evolving pat-
tern between layers. These advancements underscore the importance of developing robust
and adaptive models to handle the complexities of dynamic graph data effectively.

Developing a training method for Federated Dynamic Graph Learning presents several
unique challenges (Wang et al. (2024)). Synchronizing dynamic graph data across decen-
tralized clients is complex due to varying rates of graph evolution (Jiang et al. (2022)),
which complicates aligning temporal aspects for collaborative learning. Ensuring graph
data privacy while handling sensitive temporal patterns is critical, necessitating advanced
privacy-preserving techniques (Thakur et al. (2022)). The risk of model skew, the need
for continuous learning mechanisms, robustness to temporal anomalies, and accommodating
clients’ resource constraints further complicate Federated Dynamic Graph Learning. These
challenges necessitate innovative methods for effective and secure federated graph learning
across evolving decentralized datasets.

3. Problem Formulation

This study addresses the problem of integrating federated learning with dynamic graph
learning to effectively model and analyze time-evolving graph data distributed across mul-
tiple clients. The objective of personalized federated dynamic graph learning is to train
personalized models locally, formulated as follows:

min
{w(t)

k }

K∑
k=1

L(t)CE,k, where L(t)CE,k = −
C∑
c=1

Y
(t)
k log

(
f
(
V(t)k , Ã(t)

k ;w
(t)
k

))
(1)

Here, K denotes the total number of clients, each possessing local dynamic graph datasets
Dk. The parameter w

(t)
k represents the model parameters for client k at time t, where
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t ∈ {1, . . . , T} and T is the number of graph snapshots. Y
(t)
k is the ground truth label for

nodes in the set V(t)k of the client k at time t. The normalized adjacency matrix Ã(t)
k = A(t)

k +I

incorporates synchronous node features, with A(t)
k representing these features at time t. C

indicates the number of classes.
In the federated learning framework, each client k trains its local model on the dataset

Dk and updates its parameters using Stochastic Gradient Descent:

w
(t+1)
k = w

(t)
k − η · ∇L(t)CE,k (2)

where η is the learning rate. The server aggregates the updates from the clients using the
FedAvg (McMahan et al. (2017)) algorithm to construct the global model w(t)

g .

4. Methodology

We propose a novel personalized federated dynamic graph learning (FedDGL) framework
to capture temporal relationships and address data heterogeneity in FL. FedDGL simulta-
neously captures temporal evolutionary relationships in dynamic graph snapshots and ad-
dresses client data heterogeneity. Figure 1 illustrates our FedDGL framework, which includes
a temporal evolution capture using global knowledge distillation for capturing temporal re-
lationships. To manage heterogeneity, we introduce a global prototype-based regularization
method, enhancing both the generalization of the global model and the personalization of
each client’s model. Additionally, FedDGL uses a contrastive learning-based global proto-
type representation to improve feature learning and differentiation, facilitating class-specific
prototypes and enhancing inter-class dispersion. Finally, a prototype similarity-based per-
sonalized aggregation method ensures efficient, personalized training.
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Figure 1: The overall architecture of FedDGL.

4.1. Temporal Evolution Capture Using Global Knowledge Distillation

In federated dynamic graph learning, the evolving graph structure changes the receptive
field of nodes, impacting model performance over time. We propose a temporal evolution



Xie Li Chen Yu Huang

capture method based on global knowledge distillation to effectively capture this temporal
evolution. This module selects sensitive nodes by estimating loss differences and retains
previously learned information through knowledge distillation, enhancing model adaptabil-
ity in dynamic environments. Specifically, for the k-th client and the t-th snapshot, the
optimization objective of this module is:

L(t)KD,k = argmin
w

(t)
k

(
L+ γ

(
Ei∈Sk

DKL

(
z
(t)
i,k∥z

(t−1)
i,g

)))
(3)

where L is the loss on the true labels, Sk is the set of nodes for client k up to the t-th
snapshot, z(t)i,k is the feature of node i output by the model at time t for client k, z(t−1)

i,g is
the feature of node i output by the global model at time t− 1, and γ is a hyperparameter.
By considering both the distillation loss and the ground truth loss, the model learns from
previous snapshots and mitigates distribution shifts.

To optimize this objective, we first identify the set of nodes Sk for client k before the t-th
snapshot. Active nodes are then marked at the current time step, distinguishing between
nodes in the current snapshot and those from previous snapshots. This process ensures the
model accurately tracks the state of each node over different time points.

V
(0)
ii,k =

{
1 if vi ∈ V(t)k

0 if vi ∈Mk

(4)

whereMk is the memory buffer, representing the set of snapshot nodes that the k-th client
has already learned. Next, the node set of the L-hop neighborhood is calculated as follows:

V l
k = A

(t)
k V

(l−1)
k , l = {1, . . . , L} (5)

Here, L is the depth of the model, and V l
k represents the set of neighbor nodes at different

hops for each node, effectively capturing the structural changes of the graph. Since the
choice of L is crucial, we align L with the model depth to ensure balanced information
aggregation and effective propagation.

Subsequently, the set of nodes VC,k that do not belong to the L-hop neighborhood of
the current node is filtered out. These nodes will be used for subsequent loss evaluation and
candidate node selection:

VC,k =

vi |
N∑
j=1

L∑
l=1

V
(l)
ij,k = 0, i = 1, . . . , N

 (6)

where N is the number of nodes. By calculating the loss L(t−1)
k of the node set VC,k in the

previous model, we can evaluate the loss situation of these nodes in the previous model:

L(t−1)
k = ℓ

(
f
(
VC,k, Ã

(t−1)
k ;w

(t−1)
k

))
(7)

Based on the threshold q, we select the set of sensitive candidate nodes V ′
k from VC,k as

those with losses below the threshold in the previous model. This ensures the model focuses
on nodes that are sensitive to new inputs:

V ′
k =

{
vi ∈ VC,k | L

(t−1)
vi,k

< q · L(t−1)
k

}
(8)
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After identifying these sensitive candidate nodes, we evaluate their loss values under the
current input to calculate their losses under the new graph snapshot for subsequent influence
evaluation:

L(t)k = ℓ
(
f
(
V ′k, Ã

(t)
k ;w

(t−1)
k

))
(9)

By comparing the differences between L(t)k and L(t−1)
k , the impact of the candidate nodes is

calculated as:

πk =
{
L(t)vi,k

− L(t−1)
vi,k

| vi ∈ V ′k
}

(10)

Next, the top k most influential candidate nodes are selected from πk, denoted as Sk =
{vi | vi ∼ topk(πk)}. This ensures the model focuses on significantly influential new input
nodes. To retain important information learned from previous time steps, we can calculate
the distillation loss. Using knowledge distillation, the model retains previously learned
knowledge while normalizing node features to ensure the stability and comparability of
feature vectors during training. The distillation loss is calculated as follows:

L(t)KD,k = −
C∑
c=1

Y Sk log f(Sk;w
(t)
k ) + γ

∑
i∈Sk

∥∥∥z(t)i,k − z
(t−1)
i,g

∥∥∥
2

(11)

where the first term on the right represents the cross-entropy loss, penalizing incorrect
predictions under distributional shifts during knowledge distillation. C is the number of
classes in Dk, Y Sk is the true label of Sk, f(·) denotes the classifier prediction, and γ is the
distillation coefficient. Term z

(t)
i,k is the feature of node i output by the model of client k at

time t, and z
(t−1)
i,g is the feature of node i output by the global model w(t−1)

g at time t− 1.
This process helps capture the evolution relationships of dynamic graph snapshots and

retains previously learned information to enhance the performance and adaptability of the
local model.

4.2. Global Prototype-Based Regularization Method

We propose a global prototype-based regularization method to address the diversity of data
distributions across various clients. This method enhances the generalization of the global
model while preserving the personalization of each client’s model. We implement a con-
trastive learning method to train the global prototypes, which enhances the differentiation
between learned features and various global class prototypes. By synthesizing knowledge
from participating clients, our regularization method constructs a more accurate and gen-
eralized model, improving adaptability and performance across diverse data distributions.
Our temporal evolution capture method, essential for understanding dynamic graph rela-
tionships, is thus complemented and strengthened by this method.

At each training round t, each client k calculates the class prototypes P
(t)
k for its local

data and uploads these prototypes to the server:

P
(t)
k,c =

1∣∣∣v(t)k,c

∣∣∣
∑

x∈v(t)k,c

h(x;w
(t)
k ) (12)
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where h(·) represents the intermediate features extracted from the model output, and V(t)k,c

denotes the nodes of class c owned by client k. Upon receiving the local prototypes, the
server initializes a trainable vector P̄ (t) for each class c. Using a neural network model H
parameterized by ϕ, the server trains P̄ (t) to obtain the global prototype:

P̄ (t+1) = H(P̄ (t);ϕ) (13)

To learn effective prototypes, the global prototype for class c needs to achieve two objectives:
(1) align closely with the client prototypes of class c to preserve semantic information, and
(2) maintain a significant distance from the client prototypes of other classes to enhance sep-
arability. Contrastive learning inherently supports these goals by promoting both tightness
within the same class and separability between different classes. Therefore, the optimization
objective of this method is as follows:

min
P̄ (t)
L(t)cons,c, where L(t)cons,c = −

K∑
k=1

log
d(k, c, c, t)

d(k, c, c, t) +
∑

c′ ̸=c d(k, c, c
′, t)

(14)

where d(k, c, c′, t) = e− cos(p
(t)
k,c,p̄

(t)

c′ ). Our proposed method ensures that each class’s prototype
has a clear margin in the feature space while maintaining compactness within the same class.
By enhancing the separability and quality of global prototypes, our proposed method can
significantly improve the overall performance of client models.

To constrain local client training, the cosine similarity between the global and local
prototypes is calculated to measure their differences. This difference is incorporated into
the local training loss function as a regularization term, defined as:

L(t)P,k =
1

|Ck|
∑
c∈Ck

cos(P
(t)
k,c , P̄

(t)
c ) (15)

where Ck is the number of categories owned by client k, L(t)P,k can guide the training of each
client, reducing the performance differences caused by data heterogeneity between clients,
thereby improving the overall performance of the entire system.

The model parameters are updated by considering the current input classification loss
L(t)CE,k, distillation loss L(t)KD,k, and global regularization term L(t)P,k, resulting in the final loss

function L(t)k :

L(t)k = L(t)CE,k + L
(t)
KD,k + L

(t)
P,k (16)

During local model training, gradient descent is used to minimize the total loss to improve
model performance:

w
(t+1)
k = w

(t)
k − η · ∇L(t)k (17)

The loss function L(t)k captures temporal evolution in dynamic graphs and manages client
data heterogeneity through global prototype-based regularization, thereby reducing depen-
dency on prototype quality. This dual consideration enhances the generalization and stability
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of the global model. Moreover, contrastive learning in prototype generation improves intra-
class compactness and inter-class separability, further mitigating the impact of insufficient
prototype learning and boosting the model’s discriminative capability.

4.3. Prototype Similarity-Based Personalized Aggregation

We propose a personalized aggregation method based on prototype similarity to achieve
personalized training. During model updates, each client uses a mixture of local and global
weights to leverage the advantages of the global model. First, the residual similarity between
the local prototype P

(t)
k of the k-th client and the global prototype P̄ (t) is calculated to

quantify the similarity between the local and global models, as shown in the following
formula:

cos
(t)
k =

P
(t)
k · P̄

(t)

∥P (t)
k ∥∥P̄ (t)∥

(18)

Next, the similarities of all clients are normalized to obtain personalized weights λk, which
are then used to update the local model:

w
(t+1)
k = λkw

(t)
k + (1− λk)

1

K

K∑
k=1

w
(t)
k , where λk =

cos
(t)
k∑K

k=1 cos
(t)
k

(19)

Algorithm 1 FedDGL

Require: At time step t > 1: Local dataset Dk; Local model w(t)
k ; Round number E

Ensure: Personalized models w
(t)
k , k ∈ {1, . . . ,K}

1: Server initializes global client personalized models w
(t)
k

2: Distribute personalized client models w
(t)
k to each client

3: for e ∈ {1, · · · , E} do
4: for client k ∈ {1, · · · ,K} in parallel do
5: Calculates candidate node set Sk

6: Obtains the local feature z
(t)
k and global node feature z

(t−1)
g

7: for each local epoch do
8: for batch ∈ Dk do
9: Calculate L(t)CE,k, L

(t)
KD,k, L

(t)
P,k by Eq. (1), Eq. (11), Eq. (15)

10: Update model parameters w
(t)
k by Eq. (17)

11: end for
12: end for
13: Calculates local prototype P

(t)
k by Eq. (12)

14: end for
15: Update global prototype P̄ (t) by Eq. (14)
16: w

(t+1)
k ← λkw

(t)
k + (1− λk)

1
K

∑K
k=1w

(t)
k

17: end for
18: return w

(t+1)
k , k ∈ {k, . . . ,K}
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The personalized aggregation method based on prototype similarity dynamically adjusts the
weights of local models for efficient personalized training. This ensures each client’s model
adapts to its data distribution while effectively accommodating the global data distribution.
Algorithm 1 illustrates the overall process of the proposed FedDGL method. In our pro-
posed framework, the computational complexity is primarily determined by the size of the
model and the volume of local data processed by each client. Efficient management of these
factors helps maintain scalability, even as the model or dataset grows. The communication
complexity scales linearly with the number of participating clients and the quantity of data
transmitted during training rounds. This linear growth ensures that the framework remains
efficient and practical for large-scale deployments, minimizing the impact of increasing client
numbers and data volume on overall system performance.

5. Experiment

5.1. Experimental Setup

5.1.1. Datasets and Baselines

We evaluate our method on Brain, DBLP-3, DBLP-5 (Tang et al. (2008)), and Reddit (Ku-
mar et al. (2018)) datasets. The Brain1 dataset comprises 5,000 nodes, 1,955,488 edges,
20 attributes, and 10 classes, spanning 12 timesteps, where nodes represent small cubes of
brain tissue. The DBLP-3 and DBLP-5 datasets2 are extracted from the bibliography web-
site DBLP, the DBLP-3 and DBLP-5 datasets include 4,257 and 6,606 nodes, respectively,
representing authors in different research areas, with 3 classes in DBLP-3 and 5 classes in
DBLP-5. Both datasets contain 100 attributes and cover 10 timesteps. The Reddit3 dataset
consists of 8,291 nodes, 264,050 edges, 20 attributes, and 4 classes, covering 10 timesteps,
where nodes represent posts and edges connect posts with similar keywords.

We benchmark our FedDGL against nine state-of-the-art federated learning methods,
divided into federated static and dynamic graph learning algorithms. The static algorithms
include FedAvg (McMahan et al. (2017)), FedSage (Zhang et al. (2021)), FedProto (Tan
et al. (2022)), FedEgo (Zhang et al. (2024)), FedGCN (Yao et al. (2023)), and D-FedGNN
(Pei et al. (2021)), all utilizing the static GCN (Kipf and Welling (2017)) as their base model.
The dynamic algorithms include FedAvgDyn, FedSageDyn, and FedProtoDyn, based on the
dynamic GNN model EvolveGCN (Pareja et al. (2020)).

5.1.2. Tasks

We conduct experiments on dynamic graph classification tasks, where the graph structure
evolves over T dynamic graphs in the dataset. To simulate a realistic federated environment,
a central server collaborates with K clients, each holding a portion of the entire dynamic
graph. We adopt two data partitioning strategies proposed by (Zhang et al. (2024)) for
federated dynamic graph classification tasks: label-skew and community clustering.

The label-skew strategy partitions data based on label distribution, ensuring each client’s
data contains different proportions of labels. This simulates non-IID data scenarios common

1. https://neurodata.io/project/ocp/
2. https://www.aminer.cn/billboard/citation
3. https://snap.stanford.edu/data/soc-RedditHyperlinks.html

https://neurodata.io/project/ocp/
https://www.aminer.cn/billboard/citation
https://snap.stanford.edu/data/soc-RedditHyperlinks.html
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in real-world federated learning. The community clustering strategy uses community detec-
tion algorithms to partition the graph, grouping densely connected nodes. This preserves
the graph’s structural characteristics within each client’s data, improving the model’s ability
to learn from local graph structures.

We evaluate the effectiveness of FedDGL on two tasks: local and global. The local task
assesses the model’s performance on datasets reflecting the clients’ local data distribution,
providing insights into its personalized learning capability. The global task uses a test dataset
reflecting the aggregated data distribution of all clients, measuring the model’s ability to
generalize and manage local knowledge biases on a larger scale.

5.1.3. Implementation Details

Our FedDGL framework is implemented in PyTorch and deployed across 10 clients, each
participating in every communication round with one training epoch per round. A subset of
nodes is excluded from the global dataset, and the remaining nodes are distributed among
clients as local datasets.

To simulate label-skew scenarios, nodes are divided by labels. Each client randomly
selects two primary node labels, making up 80% of its local dataset, with the remaining
20% from non-primary labels. For each client, 10% of the nodes are used for testing, 20%
for validation, and the rest for training. In the community clustering scenario, we use the
Louvain method (Blondel et al. (2008)) to extract community clusters, assigning nodes from
one cluster as the global test set. Each node includes its two-hop neighbors, with a maximum
of six neighbors for self-graph sampling.

5.2. Label-skew Scenarios Analysis

5.2.1. Personalization Ability

Table 1 presents the local test F1 scores, demonstrating the personalization capabilities of
each method in the label-skew scenario. The local test results are significantly higher than
the global test results, primarily because the training and test data distributions are identi-
cal. Additionally, federated dynamic graph algorithms generally outperform federated static
graph algorithms. FedDGL outperforms all algorithms across all datasets. For example, on
the Brain dataset, FedDGL outperforms the state-of-the-art FedProtoDyn by 2.40% and
exceeds FedAvg by 9.02%. FedGCN performs particularly poorly on the DBLP-3 and Brain
datasets, with scores of 57.48% and 47.65%, respectively, likely due to its insufficient gener-
alization capability when handling complex non-IID data. Conversely, D-FedGNN performs
the worst on the Reddit dataset, with a score of 26.02%, potentially due to the high com-
plexity of the Reddit dataset and its inability to effectively capture relationships between
graph structures and node features, resulting in poor model performance.

5.2.2. Generalization Ability

The comparison of F1 scores in Table 1 also reveals the superior generalization ability
of FedDGL compared to other methods. By leveraging past knowledge, clients achieve a
7.48%-8.77% performance improvement over FedAvg. This demonstrates FedDGL’s ability
to facilitate client collaboration and address the non-IID problem in dynamic graph data.
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Table 1: F1 scores for node classification on local (L) and global (G) tasks across four
datasets under label-skew scenarios.

Test Average AccMethod DBLP-5 (L) DBLP-5 (G) DBLP-3 (L) DBLP-3 (G) Brain (L) Brain (G) Reddit (L) Reddit (G)
FedAvg 0.7807 0.6446 0.5834 0.4958 0.5040 0.3895 0.2529 0.1984
FedSage 0.7949 0.6753 0.6028 0.5224 0.5262 0.4186 0.2597 0.2064
FedProto 0.8018 0.6897 0.6263 0.5491 0.5375 0.4415 0.2749 0.2241
FedEgo 0.8076 0.6891 0.6202 0.5066 0.5378 0.4152 0.2665 0.2246
FedGCN 0.7640 0.6329 0.5748 0.4941 0.4765 0.3550 0.2477 0.1887

D-FedGNN 0.8228 0.6787 0.6009 0.5188 0.5494 0.4399 0.2603 0.2033
FedAvgDyn 0.7914 0.6733 0.5982 0.5381 0.5457 0.4248 0.2794 0.2353
FedSageDyn 0.8133 0.6856 0.6236 0.5439 0.5547 0.4316 0.3016 0.2506
FedProtoDyn 0.8347 0.7099 0.6316 0.5648 0.5701 0.4415 0.3017 0.2487

FedDGL(Ours) 0.8431 0.7243 0.6416 0.5836 0.5942 0.4706 0.3204 0.2733

It is worth noting that FedProtoDyn also demonstrates good performance in global tests,
indicating that combining prototype learning with dynamic graph neural networks can effec-
tively enhance generalization. In contrast, FedGCN and D-FedGNN perform poorly, likely
due to insufficient generalization capabilities when handling complex non-IID data.

5.3. Community Clustering Scenarios Analysis

5.3.1. Personalization Ability

Table 2 shows the F1 scores for node classification on local (L) and global (G) tasks across
four datasets under Community Clustering scenarios. The significant decline in performance
of all algorithms in the label-skew scenario suggests that the local structures captured by
the community detection algorithm may be challenging for GNNs to train and learn from.
Federated dynamic graph algorithms continue to perform well, generally surpassing federated
static graph algorithms. FedDGL excels in local tests and significantly outperforms FedAvg.
Although slightly inferior to FedProtoDyn in DBLP-3 and Reddit, FedDGL still achieves
the second-highest scores. Notably, FedGCN exhibits high performance in local evaluations
but demonstrates suboptimal results in global assessments, presumably due to its inability
to model inter-graph node connections, resulting in a localized focus on individual datasets.

Table 2: F1 scores for node classification on local (L) and global (G) tasks across four
datasets under Community Clustering scenarios. FedDGL achieves the best results on local
tasks in DBLP-5 and Brain and is slightly weaker than FedProtoDyn on DBLP-3 and Reddit.

Test Average AccMethod DBLP-5 (L) DBLP-5 (G) DBLP-3 (L) DBLP-3 (G) Brain (L) Brain (G) Reddit (L) Reddit (G)
FedAvg 0.5914 0.6141 0.5173 0.4925 0.3898 0.3896 0.2318 0.1995
FedSage 0.5973 0.6234 0.5137 0.4965 0.4054 0.4024 0.2285 0.1989
FedProto 0.5969 0.6367 0.5069 0.4994 0.4084 0.4148 0.2426 0.2121
FedEgo 0.6106 0.6349 0.5278 0.5172 0.3832 0.3881 0.2535 0.2158
FedGCN 0.6010 0.5997 0.5145 0.4737 0.4040 0.3775 0.2414 0.1803

D-FedGNN 0.6137 0.6239 0.5166 0.5047 0.4200 0.4411 0.2361 0.2032
FedAvgDyn 0.6140 0.6334 0.5278 0.4967 0.3976 0.4038 0.2529 0.2068
FedSageDyn 0.6223 0.6458 0.5330 0.5145 0.4082 0.4213 0.2563 0.2119
FedProtoDyn 0.6283 0.6455 0.5494 0.5296 0.4196 0.4302 0.2882 0.2316

FedDGL(Ours) 0.6354 0.6649 0.5469 0.5360 0.4307 0.4512 0.2757 0.2320
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5.3.2. Generalization Ability

The global test results in the community clustering scenario, shown in Table 2, demonstrate
that FedDGL continues to achieve state-of-the-art performance, exceeding FedAvg by 3.25%-
6.15% and surpassing FedProtoDyn by 0.63%-1.90%. Notably, the performance of baselines
aligns with the conclusions drawn from the label-skew scenario.

5.4. Ablation Study

To further verify the effectiveness of each module in FedDGL, we perform three ablation
studies: (1) FedDGL w/o KD: To investigate the effectiveness of the temporal evolution
capture method based on global knowledge distillation, we conducted experiments without
the knowledge distillation component. (2) FedDGL w/o GP: To examine the effectiveness
of constraining local training using global prototypes, we conducted experiments without
the global prototype component. (3) FedDGL w/o PA: To explore the effectiveness of the
personalized aggregation method based on prototype similarity, we conducted experiments
without the personalized aggregation component. The experimental results are shown in
Figure 2, and the detailed results are reported in Table 3.
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Figure 2: Comparison between FedDGL, FedDGL w/o KD, FedDGL w/o GP, and FedDGL
w/o PA, where (L) represents local tasks and (G) represents global tasks.

Table 3 summarizes the F1 scores for node classification of local and global tasks across
four datasets under label-skew scenarios. The poor performance of FedDGL w/o KD sug-
gests that capturing past node information is crucial for enhancing model memorization.
Without the temporal evolution capture module, clients tend to forget learned information,
negatively affecting both local and global generalization. Similarly, the poor performance of
FedDGL w/o GP highlights the effectiveness of the regularization method based on global
prototypes. Without this regularization, client training deviates from the global data distri-
bution, impairing generalization. Additionally, personalized aggregation plays a critical role
in performance improvement. Replacing this module with federated averaging reduces train-
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Table 3: F1 scores for node classification on local and global tasks across four datasets under
label-skew scenarios. FedDGL consistently surpasses FedDGL w/o KD, FedDGL w/o GP,
and FedDGL w/o PA on local tasks and excels on global tasks.

Local Global
Methods DBLP-5 DBLP-3 Brain Reddit DBLP-5 DBLP-3 Brain Reddit

FedDGL w/o KD 0.7952 0.5824 0.5394 0.2814 0.6696 0.5227 0.4232 0.2365
FedDGL w/o GP 0.8094 0.5935 0.5473 0.2865 0.6716 0.5260 0.4295 0.2398
FedDGL w/o PA 0.8291 0.6116 0.5658 0.3007 0.6990 0.5584 0.4402 0.2536

FedDGL 0.8430 0.6416 0.5941 0.3204 0.7242 0.5836 0.4706 0.2732

ing effectiveness, as local models may fail to adequately capture diverse data characteristics
from different clients, leading to performance degradation.

6. Conclusion

This paper presented FedDGL, a novel framework for federated dynamic graph learning
that addresses temporal evolution and data heterogeneity challenges. FedDGL integrates
global knowledge distillation, prototype-based regularization, and contrastive learning to
enhance both personalized and global model performance. Experimental results across mul-
tiple datasets demonstrate FedDGL’s significant improvements over state-of-the-art meth-
ods, with up to 9.02% and 8.77% gains in local and global testing, respectively, compared
to FedAvg. These findings highlight FedDGL’s effectiveness in managing federated dynamic
graph learning environments. Future work could explore FedDGL’s scalability to larger
graph structures and its application in specific domains. Overall, FedDGL represents a
substantial advancement in federated learning for dynamic graph data, offering a promising
solution for real-world scenarios involving evolving graph structures and distributed data.
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