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Abstract

Atomic force microscopy (AFM) is a widely used tool for characterizing material
surfaces. Here, we present a framework, namely, artificially intelligent lab assistant
(AILA), which enables automation of AFM experiments using large language
model-based (LLMs) agents. To evaluate the performance of AILA, we present
the first benchmarking dataset, AFMBench, that consists of 45 manually curated
tasks corresponding to real-world AFM experiments. These include single-step,
multi-step, and mathematical reasoning-based tasks that critically analyze the abil-
ity of AILA to perform AFM experiments. Finally, we present two automated
experiments using AILA, first, the calibration of the AFM, and second, the imag-
ing of a graphene step. The results presented here highlight the capability of
LLMs to guide automated high throughput experiments, accelerating the materials
characterizations.

1 Introduction
Large language models (LLMs) have revolutionised several domains due to their ability to process
information, which is then used to guide the next set of actions. Recent works have demonstrated the
capability of these models to act as a planner, even for large-scale tasks [1]. This capability has been
exploited further by the development of automated experiments [2, 3, 4, 5] and agent-based modelling
that enables the use of LLMs for experiments [6, 7] and materials discovery [8]. While there has been
an increased use of LLMs in chemistry for synthesis and chemical reaction planning [7], there have
been only limited efforts towards using them to make characterization techniques more accessible or,
for example, for predicting experimental effort and cost [9].

Scanning problem microscopy, including atomic force microscopy (AFM), are widely used to
characterize material, surfaces, interfaces, and interactions at the atomic scale [10]. There have been
several efforts to automate these techniques [11, 12], as efficient execution of these experiments
require years of training. However, most of these techniques are task-specific and restricts an
interactive approach to address an out-of-distribution task that may arise during the operation [13].

Here, we address this challenge by developing an LLM-based lab assistant that automates the
operation of AFM. The major contributions of the present work are as follows.
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• AI-lab assistant: We present an LLM-based agent, artificial intelligence lab assistant
(AILA), that enables automated operation of AFM.

• AFMBench: We present a benchmark dataset comprising question-answer pairs, which
evaluates the capabilities of LLMs to perform real-world AFM-based experiments.

• Automated AFM: We demonstrate the capability of AILA to capture images in an auto-
mated fashion by optimizing the parameters of AFM, thereby, enabling a truly self-driving
characterization lab.

2 Methodology
2.1 AILA framework
Figure 1 shows the architecture of AILA. The core of this architecture is the LLM-based planner,
namely, AILA. The planner’s primary role is to obtain user input and assign tasks between two
specialized agents: the AFM Operation Handler Agent and the Data Handler Agent. The planning
system utilizes different large language models (LLMs), such as GPT-4 and GPT-3.5 turbo, to enable
the delegation of tasks. AILA, the decision-making component, evaluates user queries and assigns
them to the suitable agent according to the specifics of the request. Suppose the inquiry refers to AFM
instrument operations, it is routed to the AFM Operation Handler Agent. It comes with two essential
tools: document retrieval for relevant information extraction from the specific AFM documentation,
and a code executor for instrument control. Alternatively, if the query involves image characterization
or optimization, it is assigned to the Data Handler Agent. This agent is equipped with an image
optimization tool to improve image quality, and an image analyzer tool capable of viewing and
extracting crucial information from images. If a query falls outside the scope of both agents, the
planner provides the user with suggested actions or alternative solutions.

Figure 1: (A) Architecture of AILA (Artificially Intelligent Laboratory Assistant). (B) Components
of the AFM (Atomic Force Microscope) system.

2.2 AFM operation handler agent
Operating an Atomic Force Microscope (AFM) includes numerous complex stages that must be done
in a precise order. For example, acquiring a topographic image necessitates the selection of imaging
parameters, the suitable AFM tip type, and determining the operational mode, e.g., in sliding or
non-contact configuration. The AFM tip must then approach the surface of the specimen and scan the
image, which is subsequently stored digitally in the desired format. Deviating from this sequence may
lead to inaccurate results, potential harm to the equipment, or loss of data. In our investigation, we
utilized the DriveAFM system from Nanosurf and interfaced with the Nanosurf control software via
a Python API. Note that this can be integrated into any AFM system with API access. Controlling the
AFM with Python requires developing task-specific code in the correct sequence, a process impeded
by often unorganised technical documentation. To overcome this challenge, we designed a vector
database that organizes the appropriate Python scripts for specific activities. A document retriever tool
was built to interface between this database and an AFM operation handler agent, which contains its
own language model and memory. This agent dynamically retrieves, updates, and generates Python
code in the appropriate order for each task, communicating with the code executor tool that interfaces
with the Nanosurf software via API.

The document retrieval tool utilises ChromaDB, an open-source vector database, for storing and
retrieving vector embeddings. We utilised the text-embedding-3-lar model to create embeddings
by splitting Python codes from technical documentation into segments with a maximum token
size of 1000, ensuring no overlaps. These embeddings were thereafter saved together with their
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corresponding metadata. For retrieval, we used LangChain’s Recursive Similarity Search, providing
similarity-based searches based on a minimum similarity threshold. The code execution tool runs
Python scripts generated by LLM models using technical documentation. The agent organizes tasks
between the document retriever and a code execution tool, assigning actions accordingly. Following
the completion of the task, the AFM operation handler can either return the output to the user or
transfer it to other agents, depending on the experimental workflow.

2.3 Data handler agent
Attaining precise surface tracking in AFM requires the optimization of scan parameters, namely
the Proportional (P), Integral (I), and Derivative (D) gains[14, 15]. Optimally adjusted parameters
guarantee that the trace and retrace lines closely track each other, indicating stable scanning conditions.
Here we develop a Data Handler agent that can effectively handle user queries relevant to the
optimization of AFM scan parameters and image characterization. The agent interfaces with two
tools, an image optimizer and an image analyser, which are connected to a storage device for
processing saved images. A genetic algorithm was incorporated into the image optimizer to optimize
the AFM scan parameters. The method functions by producing and assessing three sets of images per
iteration, finally providing the optimized PID gain values to the Data Handler agent for subsequent
processing based on query specifications supplied by the user.

An inherent obstacle in contact-mode Atomic Force Microscopy (AFM) is the occurrence of tip
wear and fracture, frequently resulting from prolonged scanning, diminishing the tip’s longevity[16].
Our method effectively addresses this issue by reducing the number of scans needed for parameter
optimization. The Structural Similarity Index (SSIM) was employed as the fitness function in the
genetic algorithm to streamline the optimization of scanning settings while minimizing surface
contact. SSIM quantifies the degree of similarity between the backward and forward images produced
during the trace and retrace procedure. In contrast to the mean square error (MSE), which necessitates
extensive surface scans and may fail to provide correct results in the presence of drift, SSIM can
capture variations in structural information, brightness, and contrast[17, 18]. This allows the algorithm
to optimize parameters even while scanning small regions efficiently.

2.4 AFM Bench
To evaluate the performance of the AILA framework, we created a hand-curated set of question
(see appendix 3). These are tasks that are routinely involved in the operation of AFM, such as
approaching the cantilever tip, scanning, saving a file, or renaming a file, to name a few. Further, the
questions involved single instruction, multi-step instructions, and mathematical reasoning. While
single instruction refers to tasks such as saving a file, multi-step instruction refers to tasks such as
approaching the tip, scanning a surface, and then saving any associated data as a file. Mathematical
reasoning is the most complex category of question, where information provided in the form of
data should be analysed to deduce the results and take further action. This involves actions such
as scanning an image, analysing its quality, and taking another image with different values of PID
gain. Note that these tasks correspond to realistic actions that an experimentalist needs to perform
while taking measurements using an AFM. Thus, AFM Bench enables critical evaluation of LLMs
for performing real-life AFM experiments.

3 Evaluation of AILA
We start by evaluating the usability of the AILA framework considering two language models namely,
GPT-4 and GPT-3.5 turbo. The overall framework is agnostic to the choice of LLMs and hence, any
LLM can be used as plug-and-play.

AFMBench: Table 1 shows the performance of AILA on the AFMBench dataset. We observe a
notable difference in the performance of GPT-4 and GPT-3.5 turbo in AFMBench. In the case of
mathematical reasoning, the LLMs exhibit start differences with GPT-4 giving an accuracy of 80%,
while GPT-3.5 turbo gives an accuracy of mere 6.67%. Thus, while GPT-4 is a reasonable candidate
as an LLM for AILA, GPT-3.5 turbo is not suitable for real-life AFM experiments within the current
framework.

Question type Total # Models Models
GPT-4 GPT-3.5 turbo GPT-4 GPT-3.5 turbo

Single Instruction 15 100% 86.70% 27 s 9 s
Multi-step Instruction 15 93% 20% 75 s 16 s

Mathematical Reasoning 15 80% 6.67% 100s 14s
Table 1: Comparison of accuracy and time efficiency between GPT-4 and GPT-3.5

3



Calibration of AFM: Imaging using AFM requires careful calibration of PID gain values on a grid
sample (or any other standard calibration sample). Due to the continuous values taken by these
gains, it requires a trained expert operator to optimize toward high quality images. This limits
the equipment’s accessibility for a wider base of users. To this end, we optimize the gains using
AILA, by minimizing the error on the forward and backward line scan of the AFM. Figure 2 shows
several examples of experimental AFM data obtained at variable PID gain values, together with the
corresponding line scan. The error between the forward and backward scan is obtained using the
SSIM which computes the similarity of the distribution from the two cases. The calibration of AFM
is posed as an optimization problem to minimize the SSIM, which is achieved through the genetic
algorithm. We observe that already within a few trials (<15), we obtain the optimized PID values for
which high-quality images are generated. The quality obtained from these images is comparable or
even superior to that obtained by a human expert at a significantly higher experimental cost in terms
of operational time.

Figure 2: (A) The first set of three AFM images (left) with their corresponding horizontal line profile.
Dotted lines indicate the backward profile, and the solid line shows the forward profile. The last
set of three optimized (right) images after the 15th generation. (B) Optimized AFM image with
its corresponding horizontal line profile. (C) Variation of SSIM across generations in the genetic
algorithm. (D) Optimizing the AFM to image a step in the graphene. (E) Optimized AFM topography
of HOPG and variation of SSIM across generations.
Imaging a graphene step: Surface characterization devices, such as atomic force microscopy
(AFM), often cause baseline artifacts[19] due to factors such as noise, drift over time[20], mechanical
vibrations, temperature changes, and electronic interference. These artifacts might affect actual
topographic data, concealing the true surface features of the material. For example, when the surface
of a specimen is slightly inclined, it can create a sloping baseline, which can further complicate the
identification of surface characteristics. While baseline correction is usually more straightforward
for more prominent features, it becomes problematic for weak topographic features, which are more
easily masked by baseline noise.

We now utilize a highly ordered pyrolytic graphite (HOPG) sample to collect topographic data
containing prominent surface characteristics with minute features, i.e., graphene steps. As illustrated
in Figure 2(D), small graphene steps were difficult to detect because of the dominating baseline
artifacts cause by the more prominent features. We incorporate a baseline correction technique as
part of our image optimization tool to address this issue. By applying a higher-degree polynomial
baseline correction, we successfully minimized the baseline noise and enhanced the visibility of small
features. Polynomial baseline correction is a generally established method for correcting baseline
artifacts in topographic data. Its flexibility allows for mimicking various baseline shapes, from simple
linear trends to more complex functions, making it excellent for reducing instrumental noise while
keeping the integrity of the surface topography.

4 Conclusions
Altogether, here we proposed a GPT model-based framework, AILA, which takes instructions from
users in natural language, and converts them into executable code for AFM imaging. Our results show
that LLM-based agents can act as effective lab assistants that enable high-throughput experiments.
Our work is currently limited to simple experiments using AFM; doing more extensive evaluation of
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other measurement modes, performing open experiments requiring recursive feedback, and extending
this approach to other probe measurements are interesting future directions to pursue.
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A Appendix / supplemental material

Figure 3: Examples of questions used in AFMBench.
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