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Abstract

Performative prediction is a framework for learning models that influence the data
they intend to predict. We focus on finding classifiers that are performatively stable,
i.e. optimal for the data distribution they induce. Standard convergence results
for the method of repeated risk minimization assume that the data distribution is
Lipschitz continuous to the model’s parameters. Under this assumption, the loss
must be strongly convex and smooth in these parameters; otherwise, the method
will diverge for some problems. In this work, we instead assume that the data
distribution is Lipschitz continuous with respect to the model’s predictions, a
more natural assumption for performative systems. As a result, we are able to
significantly relax the assumptions on the loss function. In particular, we do not
need to assume convexity with respect to the model’s parameters. As an illustration,
we introduce a resampling procedure that models realistic distribution shifts and
show that it satisfies our assumptions. We support our theory by showing that one
can learn performatively stable classifiers with neural networks making predictions
about real data that shift according to our proposed procedure.

1 Introduction

Performative prediction is a framework introduced by [22] to deal with the problem of distribution
shift or concept drift ([9, 25, 23]) when the distribution changes as a consequence of the model’s
deployment, usually through actions taken based on the model’s predictions. For example, election
predictions affect campaign activities and, in turn, influence the final election results. Other natural
examples in economics, social sciences, and Machine Learning include loan granting, predictive
policing, and recommender systems [22, 13, 8].

So far, most works in this area assume strong convexity of the risk function θ 7→ ℓ(z; θ), which
takes as input the model’s parameters θ, and a datapoint z ([22, 17, 3]). However, this strong
convexity assumption does not hold for most modern ML models, e.g. neural networks. From
a different perspective, given a datapoint z = (x, y), the risk function can be expressed as a
mapping from the prediction x 7→ fθ(x) to a loss between the prediction ŷ := fθ(x) and the target
y, in which case convexity almost always holds. For example, the Squared Error loss function
ℓ(fθ(z), z) = (fθ(x)− y)2 is convex with respect to fθ(x), but not necessarily with respect to θ.

With this in mind, we propose a formulation that shifts attention from the space of parameters to the
space of predictions and require distributions to be functions of the model’s prediction function. We
believe this is a more natural assumption, since the framework assumes the data distribution changes
as a result of model’s deployment, and at the time of deployment, it is the final predictions that have
performative effects rather than the parameters. Within our formulation, we show that by having a
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slightly stronger assumption on the distribution map than the original framework, we can relax the
convexity condition on the loss function and prove the existence and uniqueness of a performative
stable classifier under repeated risk minimization. This more general set of assumptions on the loss
function lets us analyze theoretically the performative effects of neural networks with non-convex
loss functions; we believe this is a significant step toward bridging the gap between the theoretical
performative prediction framework and realistic settings.

Background Before stating our main theoretical contribution, we first need to recall the key
concepts of the performative prediction framework. This framework assumes that the distribution
map directly depends on the model’s parameters θ and is denoted by θ 7→ D(θ). The distribu-
tion map is said to satisfy a notion of Lipschitz continuity called ϵ-sensitivity if for any θ and θ′,
W1 (D(θ),D(θ′)) ≤ ϵ∥θ − θ′∥2, where W1 denotes the Wasserstein-1 distance. The performance of
a model with parameters θ is measured by its performative risk under the loss function ℓ, defined as
PR(θ)

def
= Ez∼D(θ) ℓ(z; θ). A classifier with parameters θPS is performatively stable if it minimizes

the risk on the distribution it induces: θPS = argminθ Ez∼D(θPS) ℓ(z; θ). Perdomo et. al in [22]
demonstrate that with an ϵ-sensitive distribution map, γ-strong convexity of ℓ in θ and β-smoothness
of ℓ in θ and z are sufficient and necessary conditions for repeated risk minimization to converge to a
performatively stable classifier. We show, however, that by slightly changing the assumptions on the
distribution map, convexity in θ is no longer a necessary condition to have convergence guarantees.

Our contributions Our paper provides sufficient conditions for the convergence of repeated risk
minimization to a classifier with unique predictions under performative effects in the absence of
convexity to the model’s parameters. The key idea is that the distribution map is no longer a function
of the parameters θ, but a function of model’s prediction function fθ, denoted by D(fθ). We also
express the loss ℓ as a function of the prediction fθ(x) and the target y. Following is the informal
statement of our main theorem.

Theorem 1. (Informal) If the loss ℓ(fθ(x), y) is strongly convex in fθ(x) with a bounded derivative,
and the distribution map fθ 7→ D(fθ) is sufficiently Lipschitz with respect to the χ2 divergence and
satisfies a bounded norm ratio condition, then repeated risk minimization converges linearly to a
stable classifier with unique predictions.

We will state this theorem formally in Section 2. The important assumption we make on the
distribution map is Lipschitz continuity, which captures the idea that a small change in the model’s
predictions cannot lead to a large change in the induced data distribution, as measured by the χ2

divergence. This is more restrictive than the Lipschitz continuity assumption of [22] with W1 since
for the χ2 divergence to be finite, distributions should have the same support. However, we show that
this still holds in realistic settings, and we believe that this stronger assumption on the distribution
map is a price we have to pay to relax the assumptions on the loss function significantly and have
convergence guarantees for neural networks with non-convex loss functions.

In section 4, we demonstrate our main results empirically with a strategic classification task, which
has been used as a benchmark for performative prediction ([22, 19, 3]). Strategic classification
involves an institution that deploys a classifier and agents who strategically manipulate their features
to alter the classifier’s predictions to get better outcomes. We propose a resampling procedure in
Section 3 to model the population’s strategic responses and show that it results in a distribution map
that satisfies the conditions of Theorem 1.

Related work Prior work on performative prediction focused on learning from a data distribution
D(θ) that could change with the model’s parameter θ [22, 17, 4, 7, 20, 10, 16, 24, 14, 6, 11]. In this
work, we propose to strengthen the standard ϵ-sensitivity assumption on the distribution map initially
proposed by [22]. To a certain extent, we propose a novel ϵ-sensitivity assumption for the performative
prediction framework that allows us to relax the convexity assumption on the loss function. Such
relaxation is essential if we want to consider the practical setting of classifiers parametrized by neural
networks.

Exploiting convexity in model’s predictions has previously been explored by [2] who noticed that
most of the loss functions to train neural networks are convex with respect to the neural network itself.
There have been many works trying to leverage this property to show convergence results applied
to neural networks in the context of machine learning [1, 5, 21]. However, none of these results
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are in the context of performative prediction. Jagadeesan et al. [11] proposes an algorithm to find
classifiers with near-optimal performative risk without assuming convexity. First, their work focuses
on a different notion of optimality (namely, performatively optimal points). Second, they focus on
regret minimization, while our work is concerned with finding a performatively stable classifier with
gradient-based algorithms, and having guarantees to make sure we converge to such a stable classifier
within a reasonable number of steps.1

2 Framework and main results

To propose our main theorem, we first need to redefine some of the existing concepts. As mentioned
earlier, we assume D(.) to be a mapping from the model’s prediction function fθ to a distribution
D(fθ) over instances z, where fθ is in F , the set of parameterized functions by θ ∈ Θ. Each
instance z is a pair of features and label (x, y). In this new formulation, the objective risk function,
Performative Risk (PR), is defined as

PR(fθ)
def
= E

z∼D(fθ)
ℓ(fθ(x), y).

In this work, we focus on finding a performatively stable classifier with parameters θPS , which
minimizes the risk on the distribution its prediction function entails:

θPS = argmin
θ∈Θ

E
z∼D(fθPS )

ℓ(fθ(x), y).

To find such a stable classifier, we use Repeated Risk Minimization (RRM) which refers to the
procedure where, starting from an initial θ0, we perform the following sequence of updates for every
t ≥ 0:

θt+1 = G(θt)
def
= argmin

θ∈Θ
E

z∼D(fθt )
ℓ(fθ(x), y).

We can solve this minimization problem in practice by using standard training methods such as
gradient descent. Repeating this process corresponds to retraining on the most recent data.

Assumptions In order to provide convergence guarantees for repeated retraining, we need some
kind of regularity assumptions on the distribution map and the loss function. A natural assumption
we make on D(.) inspired by prior work is Lipschitz continuity, formally referred to as ϵ-sensitivity.
Intuitively, this assumption states the idea that if two models with similar prediction functions are
deployed, then the induced distributions should also be similar. We use Pearson χ2 divergence—
interchangeably referred to as χ2 divergence—to measure the distance between distributions.

A1 (ϵ-sensitivity w.r.t Pearson χ2 divergence) Suppose the base distribution D has the probability
density function (pdf) p over instances z = (x, y). A distribution map D(.) which maps fθ to D(fθ)
with the pdf pfθ is ϵ-sensitive w.r.t Pearson χ2 divergence if for all fθ and fθ′ in F the following
holds:

χ2(D(fθ′),D(fθ)) ≤ ϵ∥fθ − fθ′∥2.

where ∥fθ − fθ′∥2 :=
∫
|fθ(x)− fθ′(x)|2p(z)dz and χ2(D(fθ′),D(fθ)) :=

∫ (pf
θ′

(z)−pfθ
(z))

2

pfθ
(z) dz

A2 (Bounded norm ratio) A distribution map D(.) satisfies bounded norm ratio with the parameter
C ≥ 1 if for all fθ, fθ′ , fθ∗ ∈ F :

∥fθ − fθ′∥2 ≤ C∥fθ − fθ′∥2θ∗

where ∥fθ − fθ′∥2θ∗ =
∫
(fθ(x)− fθ′(x))2pfθ∗ (z)dz is a notation for a θ∗-dependent norm. In other

words, this assumption says that

Ep[(fθ − fθ′)2] ≤ C Epfθ∗
[(fθ − fθ′)2]

where p(z) is the pdf of the base distribution D, and pfθ is the pdf of the distribution induced by fθ.

1For a δ-approximate optimum, [11] propose an algorithm that requires O(1/δd) repeated minimizations
for the last iterate where d is some notion of dimension. In comparison, in Theorem 2 we require O(log(1/δ))
minimizations.
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The distribution map satisfies the bounded norm ratio condition if the bounded density ratio property
holds, i.e. p(x) ≤ C pfθ (x) for every fθ ∈ F . The bounded density ratio property holds in our
example in Section 3.

The followings are the two assumptions we make on the loss function ℓ:

A3 (Strong convexity w.r.t predictions) A loss function ℓ(fθ(x), y) which takes as inputs the prediction
fθ(x) and the target y, is γ-strongly convex in fθ(x) if the following inequality holds for every
fθ, fθ′ ∈ F :

ℓ(fθ(x), y) ≥ ℓ(fθ′(x), y) + ℓ′(fθ′(x), y) (fθ(x)− fθ′(x)) +
γ

2
|fθ(x)− fθ′(x)|2.

A4 (Bounded derivative) A loss function ℓ(fθ(x), y) has bounded derivative if its derivative with
respect to fθ(x) is upper bounded with a finite value M = supx,y,θ |ℓ′(fθ(x), y)|.
We can easily see that these two assumptions on ℓ are satisfied by the Squared Error loss:
ℓ(fθ(x), y) =

1
2 (fθ(x)− y)2. This function is 1-strongly convex in fθ(x) with a derivative bounded

by 1 if y ∈ {0, 1} and fθ(x) ∈ [0, 1] for any θ.

Convergence of RRM Now we can state our main theorem which provides sufficient conditions
for repeated risk minimization to converge to a stable classifier with unique predictions.
Theorem 2. Suppose that the loss ℓ(fθ(x), y) is γ-strongly convex w.r.t fθ(x) (A3) and its derivative
w.r.t fθ(x) is bounded with M = supx,y,θ |ℓ′(fθ(x), y)| (A4). If the distribution map D(.) is ϵ-
sensitive w.r.t Pearson χ2 divergence (A1) and satisfies bounded norm ratio propoerty with parameter
C (A2), then:

∥fG(θ) − fG(θ′)∥ ≤
√
CϵM

γ
∥fθ − fθ′∥.

So if
√
CϵM
γ < 1, G is a contractive mapping and RRM converges to a stable classifier at a linear

rate:
∥fθt − fθPS

∥ ≤ α,

for t ≥ (1−
√
CϵM

γ
)−1 log(

∥fθ0 − fθPS
∥

α
).

As we mentioned earlier, assumptions (A3) and (A4) on ℓ are satisfied by the commonly-used
Squared Error loss function, and this holds even in the presence of deep neural networks as predictors.
To illustrate our results, we propose the Resample-if-Rejected procedure in the following section
and show that it satisfies assumptions (A1) and (A2). The proof of Theorem 2 is available in the
Supplementary Material section.

3 ϵ-sensitivity of the RIR procedure

An example of strategic classification, which was introduced in Section 1, occurs in social media
when users’ posts get rejected because they violated the platform’s policies. In these cases, users
usually re-post the same content but with different words in order to get accepted. Inspired by
this application, we propose the Resample-if-Rejected (RIR) procedure to model distribution shifts.
Consider we have a base distribution with pdf p and a function g : fθ(x) 7→ g(fθ(x)) which indicates
the probability of rejection. Let RIR(fθ) be the distribution resulted from deploying a model with
prediction function fθ under this procedure, and take pfθ as its pdf. To sample from pfθ , we first take
a sample x∗ from p, and then we toss a coin whose probability of getting a head is 1− g(fθ(x)). If it
comes head, we output x∗ and if it comes tail, we output another sample from p.

pfθ is defined mathematically as pfθ (x) = p(x)
(
1− g(fθ(x))

)
+ p(x)EX [g(fθ(X))]

The following theorem shows that the distribution resulting from the RIR procedure satisfies our
conditions on the distribution map. This Theorem is proved in the Supplementary Material section.
Theorem 3. If fθ(x) ∈ [0, 1− δ] ∀θ ∈ Θ for some fixed 0 < δ < 1, then for g(fθ(x)) = fθ(x) + δ,
RIR(.) is 1

δ -sensitive w.r.t χ2 divergence (A1) and satisfies the bounded norm ratio property (A2) for
C = 1

δ .
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Figure 1: Evolution of log of performative risk (left) and accuracy (right) through iterations of RRM
for δ = 0.9. The blue lines show the changes in risk (accuracy) after optimizing on the distribution
induced by the last model, and the green lines show the effect of the distribution shift on the risk
(accuracy).

4 Experiments

We complement our theoretical results with experiments on a credit-scoring task and illustrate how
they support our claims. We implemented our simulations based on the code of [22] in the Whynot
Python package [18], and changed it according to our settings so we can use auto-differentiation of
PyTorch. This strategic classification task is a two-player game between a bank that predicts the
creditworthiness of loan applicants, and individuals who strategically manipulate their features to
alter the classification outcome. We run the simulations using Kaggle’s Give Me Some Credit dataset
([12]), which consists of features x ∈ Rd corresponding to applicants’ information along with their
label y ∈ {0, 1}, where y = 1 indicates that the applicant defaulted and y = 0 otherwise.

Individual features are divided into two sets: strategic and non-strategic. Strategic features are those
that can be (easily) manipulated without affecting the true label, e.g. Number of open credit lines
and loans. Non-strategic features, however, can be seen as causes of the label and include monthly
income for example. In our simulations, we assume that the data distribution induced by the classifier
fθ shifts according to the RIR procedure where strategic features are resampled with the probability
of rejection g(fθ(x)) = fθ(x) + δ. For the classifier, we use a two-layer neural network with a
scaled-sigmoid activation function after the second layer to bring the outcome fθ(x) to the interval
[0, 1− δ] to make sure that g(fθ(x)) ∈ [δ, 1] is a valid probability and the assumption of Theorem 3
is satisfied. Since the outcome fθ(x) is in [0, 1− δ], we change the label 1 to 1− δ. The objective is
to minimize the expectation of the Squared Error loss function over instances, i.e. E[ 12 (fθ(x)− y)2].
The definition of RRM requires solving an exact minimization problem at each optimization step;
however, we solve this optimization problem approximately using several steps of gradient descent
until the absolute difference of two consecutive risks is less than the tolerance of 10−9.

Figure 1 shows the evolution of log of performative risk (left) and accuracy (right) through iterations
of RRM for δ = 0.9. For this δ, all the conditions of Theorem 2 including

√
CϵM
γ < 1 are satisfied,

and the Theorem claims that in this case, RRM converges to a stable model; this is supported by
our results in Figure 1. Additional experiments on the effect of δ is provided in the Supplementary
Material section.

5 Conclusion

In this paper, we contribute the first set of convergence guarantees for finding performative stable
models on problems where the risk is allowed to be non-convex with respect to parameters. This
is an important development: our results pertain to modern machine learning models, like neural
networks. We achieve these stronger results by appealing to functional analytical tools, but also
making slightly stronger assumptions on the performative feedback loop: rather than assuming that
the distribution is ϵ-sensitive to parameters as measured by Wasserstein-1 distance, we instead assume
that the distribution is ϵ-sensitive to predictions as measured by the χ2 divergence. While we provide
in Section 3 a well-motivated, concrete example of a performative problem that satisfies our proposed
conditions on the distribution map, it is nonetheless an interesting open question how much our
analytical assumptions can be loosened.
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6 Supplementary Material

6.1 Proof of Theorems

6.1.1 Auxiliary Lemmas

In order to prove theorems, we first state a definition and a lemma based on Chapter 1 of [15] that
will be used later in the proof of Theorem 2.

In the following, a functional J : V 7→ R is a function over a space of functions V .
Definition 6.1 (First variation of a functional). Let J : V → R be a functional on a function space
V , and consider some function y ∈ V . The derivative of J at y, which is called the first variation
(a.k.a Gateaux derivative), is also a functional on V and is defined as follows:
A linear functional δJ |y : V → R is called the first variation of J at y if for all η and all α we have

J(y + αη) = J(y) + δJ |y(η)α+ o(α). (1)

where limα→0
o(α)
α = 0. In other words:

δJ |y(η) = lim
α→0

J(y + αη)− J(y)

α
. (2)

Lemma 1 (First-order necessary condition for optimality in a constrained function space). If y
is a minimizer of J , then for every η ∈ V such that y + αη ∈ V, ∀α ∈ [0, δ] for some δ > 0:
δJ |y(η) ≥ 0.

Proof of Lemma 1. Let η be an element of V such that y + αη ∈ V, ∀α ∈ [0, δ] for some δ > 0 and
let g(α) := J(y + αη) with domain [0, δ]. From (2) we can conclude that δJ |y(η) = g′(0), so it
suffices to show that g′(0) ≥ 0.
Since y is a minimizer of J , then 0 is a minimizer of g. The first-order Taylor approximation of g
around 0 is as follows:

g(α) = g(0) + g′(0)α+ o(α). (3)

where limα→0
o(α)
α = 0. Now I want to show that g′(0) ≥ 0. Suppose that g′(0) < 0. Then there

exists an ϵ > 0 small enough such that for any α < ϵ, | o(α)α | < |g′(0)|, i.e. |o(α)| < |g′(0)α|.
Therefore, for α < ϵ we can write the following inequality using (3):

g(α)− g(0) < g′(0)α+ |g′(0)α|. (4)

Since we assumed g′(0) < 0 and α > 0, (4) will result in g(α)− g(0) < 0, which contradicts the
fact that g is minimum at 0. This gives us the proof that g′(0) ≥ 0, hence δJ |y(η) ≥ 0.

6.1.2 Proof of Theorem 2

For proving Theorem 2, we were inspired by the proof of Theorem 3.5 in [22], but our proof is
significantly different from theirs since our analysis is dependent on the prediction function and we
need to use infinite-dimensional optimization.

Proof. Fix θ and θ′ in Θ. Let h : F 7→ R and h′ : F 7→ R be two functionals defined as follows:

h(fθ̂) = Ez∼D(fθ)[ℓ(fθ̂(x), y)] =

∫
ℓ(fθ̂(x), y)pfθ (z)dz. (5)

h′(fθ̂) = Ez∼D(fθ′ )
[ℓ(fθ̂(x), y)] =

∫
ℓ(fθ̂(x), y)pfθ′ (z)dz. (6)

where each data point z is a pair of features x and label y.
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For a fixed z = (x, y), due to strong convexity of ℓ(fθ(x), y) in fθ(x) we have:

ℓ(fG(θ)(x), y)−ℓ(fG(θ′)(x), y) ≥
(
fG(θ)(x)− fG(θ′)(x)

)
ℓ′(fG(θ′)(x), y)+

γ

2
|fG(θ)(x)−fG(θ′)(x)|2.

(7)
Now take integral over z, and define ∥fG(θ) − fG(θ′)∥2θ =

∫
|fG(θ)(x)− fG(θ′)(x)|2pfθ (z)dz:

h(fG(θ))−h(fG(θ′)) ≥
(∫ (

fG(θ)(x)− fG(θ′)(x)
)
ℓ′(fG(θ′)(x), y)pfθ (z)dz

)
+
γ

2
∥fG(θ)−fG(θ′)∥2θ.

(8)
Similarly:

h(fG(θ′))−h(fG(θ)) ≥
(∫ (

fG(θ′)(x)− fG(θ)(x)
)
ℓ′(fG(θ)(x), y)pfθ (z)dz

)
+
γ

2
∥fG(θ)−fG(θ′)∥2θ.

(9)
Knowing that fG(θ) minimizes h, it is enough to show that

∫ (
fG(θ′)(x)− fG(θ)(x)

)
ℓ′(fG(θ)(x), y)pfθ (z)dz ≥ 0. (10)

to conclude:

−γ∥fG(θ) − fG(θ′)∥2θ ≥
∫ (

fG(θ)(x)− fG(θ′)(x)
)
ℓ′(fG(θ′)(x), y)pfθ (z)dz. (11)

This is a key inequality that we will use later in the proof.

Now let’s prove inequality (10) using lemma 1. Let η = fG(θ′) − fG(θ). For every α ∈ [0, 1],
fG(θ) + αη is in the function space (supposing it is convex). We know that fG(θ) is a minimizer of h,
so using Lemma 1, δh|fG(θ)

(η) ≥ 0. We can write δh|fG(θ)
(η) as follows:

δh|fG(θ)
(η) = lim

α→0

h(fG(θ) + αη)− h(fG(θ))

α

= lim
α→0

∫
ℓ(fG(θ)(x) + αη(x), y)− ℓ(fG(θ)(x), y)

α
pfθ (z)dz

=

∫
lim
α→0

ℓ(fG(θ)(x) + αη(x), y)− ℓ(fG(θ)(x), y)

α
pfθ (z)dz

=

∫
lim
α→0

ℓ(fG(θ)(x) + αη(x), y)− ℓ(fG(θ)(x), y)

αη(x)
η(x)pfθ (z)dz

=

∫
ℓ′(fG(θ)(x), y)η(x)pfθ (z)dz

=

∫
ℓ′(fG(θ)(x), y)(fG(θ′)(x)− fG(θ)(x))pfθ (z)dz. (12)

Knowing δh|fG(θ)
(η) ≥ 0 completes the proof of (10).

Now recall that there exists M such that M = supx,y,θ |ℓ′(fθ(x), y)| and the distribution map over
data is ϵ-sensitive w.r.t Pearson χ2 divergence, i.e.

χ2(D(fθ′),D(fθ)) ≤ ϵ∥fθ − fθ′∥2. (13)
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With this in mind, we do the following calculations:∣∣∣∣∫ (fG(θ)(x)− fG(θ′)(x)
)
ℓ′(fG(θ′)(x), y)pfθ (z)dz −

∫ (
fG(θ)(x)− fG(θ′)(x)

)
ℓ′(fG(θ′)(x), y)pfθ′ (z)dz

∣∣∣∣
=

∣∣∣∣∫ (fG(θ)(x)− fG(θ′)(x)
)
ℓ′(fG(θ′)(x), y)

(
pfθ (z)− pfθ′ (z)

)
dz

∣∣∣∣
(∗)
≤
∫ ∣∣(fG(θ)(x)− fG(θ′)(x)

)
ℓ′(fG(θ′)(x), y)

(
pfθ (z)− pfθ′ (z)

)∣∣ dz
≤ M

∫ ∣∣(fG(θ)(x)− fG(θ′)(x)
) (

pfθ (z)− pfθ′ (z)
)∣∣ dz

= M

∫ ∣∣∣∣(fG(θ)(x)− fG(θ′)(x)
) pfθ (z)− pfθ′ (z)

pfθ (z)
pfθ (z)

∣∣∣∣ dz
= M

∣∣∣∣∫ |
(
fG(θ)(x)− fG(θ′)(x)

) pfθ (z)− pfθ′ (z)

pfθ (z)
|pfθ (z)dz

∣∣∣∣
Cauchy-Schwarz Ineq.

≤ M

(∫ (
fG(θ)(x)− fG(θ′)(x)

)2
pfθ (z)dz

) 1
2

(∫ (
pfθ (z)− pfθ′ (z)

pfθ (z)

)2

pfθ (z)dz

) 1
2

= M∥fG(θ) − fG(θ′)∥θ
√
χ2(pfθ , pfθ′ )

13
≤ M

√
ϵ∥fG(θ) − fG(θ′)∥θ∥fθ − fθ′∥

(∗) comes from the fact that
∣∣∫ f(x)dx

∣∣ ≤ ∫ |f(x)|dx, and the Cauchy-Schwarz inequality states
that |E[XY ]| ≤

√
E[X2]E[Y 2].

What we can conclude from the above derivations is that:∣∣∣∣∫ (fG(θ)(x)− fG(θ′)(x)
)
ℓ′(fG(θ′)(x), y)pfθ (z)dz −

∫ (
fG(θ)(x)− fG(θ′)(x)

)
ℓ′(fG(θ′)(x), y)pfθ′ (z)dz

∣∣∣∣
≤ M

√
ϵ∥fG(θ) − fG(θ′)∥θ∥fθ − fθ′∥. (14)

Similar to inequality (10), since fG(θ′) minimizes h′, one can prove:∫ (
fG(θ)(x)− fG(θ′)(x)

)
ℓ′(fG(θ′)(x), y)pfθ′ (z)dz ≥ 0. (15)

From (11) we know that
∫ (

fG(θ)(x)− fG(θ′)(x)
)
ℓ′(fG(θ′)(x), y)pfθ (z)dz is negative, so with this

fact alongside (14) and (15), we can write:∫ (
fG(θ)(x)− fG(θ′)(x)

)
ℓ′(fG(θ′)(x), y)pfθ (z)dz ≥ −M

√
ϵ∥fG(θ) − fG(θ′)∥θ∥fθ − fθ′∥. (16)

Combining (11) and (16), we will get:

γ∥fG(θ) − fG(θ′)∥2θ ≤ M
√
ϵ∥fG(θ) − fG(θ′)∥θ∥fθ − fθ′∥

⇒ ∥fG(θ) − fG(θ′)∥θ ≤
√
ϵM

γ
∥fθ − fθ′∥ (17)

Since the distribution map satisfies the bounded norm ratio assumption with parameter C, we can
write:

∥fG(θ) − fG(θ′)∥2 ≤ C∥fG(θ) − fG(θ′)∥2θ (18)

Consequently,
∥fG(θ) − fG(θ′)∥ ≤

√
C∥fG(θ) − fG(θ′)∥θ (19)

Using (19) in (17) results in:

∥fG(θ) − fG(θ′)∥ ≤
√
CϵM

γ
∥fθ − fθ′∥. (20)
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So if
√
CϵM
γ < 1, G is a contractive mapping and RRM converges to a stable classifier based on

Banach fixed point theorem.

If we set θ = θt−1 and θ′ = θPS for θPS being a stable classifier, we know that G(θ) = θt and
G(θ′) = θPS . So we will have:

∥fθt − fθPS
∥ ≤

√
CϵM

γ
∥fθt−1

− fθPS
∥

≤ (

√
CϵM

γ
)t∥fθ0 − fθPS

∥ (21)

We can easily see that for t ≥ (1−
√
CϵM
γ )−1 log(

∥fθ0−fθPS
∥

α ),

(

√
CϵM

γ
)t∥fθ0 − fθPS

∥ ≤ α

So based on (21),
∥fθt − fθPS

∥ ≤ α.

which shows that RRM converges to a stable classifier at a linear rate.

6.1.3 Proof of Theorem 3

Proof. As explained in section 3 of the paper, the pdf of pfθ (x) is as follows:

pfθ (x) = p(x)
(
1− g(fθ(x))

)
+ p(x)EX [g(fθ(X))]

= p(x)(1− g(fθ(x)) + Cθ). (22)

where Cθ = EX [g(fθ(X))] =
∫
p(x′)g(fθ(x

′))dx′.

For g(fθ(x)) = fθ(x) + δ, we have:

pfθ (x) = p(x)(1− fθ(x)− δ + Cθ). (23)

where δ ≤ Cθ ≤ 1 since 0 ≤ fθ(x) ≤ 1− δ, so δ ≤ g(fθ(x)) ≤ 1 for every x.

In the RIR procedure, the distribution of the label y given x is not affected by the predictions, so for
every z = (x, y) we have pfθ (z) = pfθ (x)p(y|x) for any fθ. However, we assume that the label is
a deterministic function of the features, so for (x, y) ∼ p(z), p(y|x) = 1 for the true label y, and
this simplifies our following calculations since pfθ (z) = pfθ (x) and p(z) = p(x) for data points that
have a positive probability.

Now we can prove that this distribution map is ϵ-sensitive w.r.t χ2 divergence for ϵ = 1
δ :

χ2(D(fθ′),D(fθ)) =

∫
(pfθ′ (x)− pfθ (x))

2

pfθ (x)
dx

=

∫
p(x)2(fθ(x)− fθ′(x)− (Cθ − Cθ′))2

p(x)(1− fθ(x)− δ + Cθ)
dx

Cθ≥δ

≤ 1

δ

∫
p(x)

[
(fθ(x)− fθ′(x))2 + (Cθ − Cθ′)2 − 2(fθ(x)− fθ′(x))(Cθ − Cθ′)

]
dx

=
1

δ

[(∫
p(x)(fθ(x)− fθ′(x))2dx

)
+ (Cθ − Cθ′)2 − 2(Cθ − Cθ′)

∫
p(x)(fθ(x)− fθ′(x))dx

]
(∗′)
=

1

δ

[(∫
p(x)(fθ(x)− fθ′(x))2dx

)
+ (Cθ − Cθ′)2 − 2(Cθ − Cθ′)2

]
=

1

δ

[ ∫
p(x)(fθ(x)− fθ′(x))2dx− (Cθ − Cθ′)2

]
≤ 1

δ

∫
p(x)(fθ(x)− fθ′(x))2dx

=
1

δ
∥fθ − fθ′∥2 (24)
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Where (∗′) comes from the fact that
∫
p(x)(fθ(x)− fθ′(x))dx = Cθ − Cθ′ .

Since δ ≤ Cθ ≤ 1 ∀θ, it is easy to see that for any fθ∗ and for any x:

p(x)

pfθ∗ (x)
=

1

1− g(fθ∗(x)) + Cθ∗
≤ 1

δ
. (25)

Consequently,

Ep[(fθ − fθ′)2] ≤ 1

δ
Epfθ∗

[(fθ − fθ′)2]

So the distribution map satisfies the bounded norm ratio condition for C = 1
δ .

The case where we only resamply strategic features. Suppose that features x are divided into
strategic features xs and non-strategic features xf , i.e. x = (xs, xf ), and we resample only strategic
features with probability g(fθ(x)) which is the probability of rejection. The pdf of pfθ would be as
follows:

pfθ (x) = p(x)(1− g(fθ(x))) +

∫
x′
p(x′

s, x
′
f = xf ) g(fθ(x

′)) p(xs|xf )dx
′ (26)

Since we only resample strategic features, the integral should be taken over those samples that have
the same non-strategic features as x.

Assuming that strategic and non-strategic features are independent, we can re-write (26) as follows:

pfθ (x) =p(x)(1− g(fθ(x))) +

∫
x′
p(x′

s, x
′
f = xf ) g(fθ(x

′)) p(xs|xf )dx
′

= p(x)(1− g(fθ(x))) +

∫
x′
g(fθ(x

′))pXs(x
′
s)pXf

(xf )pXs(xs)dx
′

= p(x)(1− g(fθ(x))) +

∫
x′
g(fθ(x

′))pXs
(x′

s)p(x)dx
′

= p(x)
(
(1− g(fθ(x))) +

∫
x′
g(fθ(x

′))pXs(x
′
s)dx

′
)

(27)

where pXs and pXf
refer to the marginal distributions of srategic and non-strategic features respec-

tively.

Taking C ′
θ =

∫
x′ g(fθ(x

′))pXs
(x′

s)dx
′, pfθ (x) = p(x)

(
1 − g(fθ(x)) + C ′

θ

)
has the same form

as (22) with Cθ replaced with C ′
θ, so the given proof of Theorem 3 applies to this case as well, hence

Theorem 3 holds for this case.
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Figure 2: Evolution of log of performative risk for different values of δ = 0.1, 0.4, 0.7, 0.9 through
iterations of RRM.

6.2 Additional Experiments

Figures 2 shows the log of Performative Risk for different values of δ = 0.1, 0.4, 0.7, 0.9. The plot
for δ = 0.9 is generated through a different run than Figure 1. Based on our theory, for δ = 0.7
and δ = 0.9 we should see convergence behavior, though for δ < 0.5, our theory neither gives a
guarantee of convergence nor claims that repeated retraining will diverge, so we might or might
not see convergence behavior for δ = 0.1 or δ = 0.4. What we see in Figure 2 is aligned with our
expectations. It is important to note that for smaller δ, the value of ϵ which indicates the strength of
performative effects is larger, and for high performative effects, it is more difficult for the model to
converge since the distribution is allowed to move more after the model’s deployment.

On a high level, we interpret the stable classifier to be a model that relies less on non-strategic features
for classification. Throughout the training, for a fixed data point z = (x, y) where x = (xs, xf ) for
xs being the strategic features and xf being the non-strategic ones, the model sees the same xf but
different values for xs chosen randomly, all with the same label y. So intuitively, the model would
learn to rely less on strategic features and more on non-strategic ones for classification, and this
makes it more robust to the strategic behavior of agents.
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