
CodePlan: Repository-level Coding using LLMs and
Planning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Software engineering activities such as package migration, fixing error reports from1

static analysis or testing, and adding type annotations or other specifications to a2

codebase, involve pervasively editing the entire repository of code. While Large3

Language Models (LLMs) have shown impressive abilities in localized coding tasks,4

performing interdependent edits across a repository requires multi-step reasoning5

and planning abilities. We frame repository-level coding as a planning problem6

and present a task-agnostic, neuro-symbolic framework called CodePlan . Our7

framework leverages static analysis techniques to discover dependencies throughout8

the repository, which are utilised in providing sufficient context to the LLM along9

with determining the sequence of edits required to solve the repository-level task.10

We evaluate the effectiveness of CodePlan on two repository-level tasks: package11

migration (C#) and temporal code edits (Python) across multiple repositories. Our12

results demonstrate CodePlan consistently beats baselines across tasks. Further13

qualitative analysis is performed to highlight how different components of the14

approach contribute in guiding the LLM towards the correct edits as well as15

maintaining the consistency of the repository.16

1 Introduction17

The remarkable generative abilities of Large Language Models (LLMs) Brown et al. (2020); Chen18

et al. (2021); Chowdhery et al. (2022); Fried et al. (2022); OpenAI (2023); Touvron et al. (2023)19

have opened new ways to automate coding tasks. Tools built on LLMs, such as Amazon Code20

Whisperer Cod (2023), GitHub Copilot Gih (2023) and Replit Rep (2023), are now widely used to21

complete code given a natural language intent and context of surrounding code, and also to perform22

code edits based on natural language instructions Cop (2023). Such edits are typically done for small23

regions of code such as completing or editing the current line, or the body of the entire method.24

While these tools help with the "inner loop" of software engineering where the developer is editing a25

small region of code, there are several tasks in the "outer loop" of software engineering that involve26

the entire code repository For example, if a repository uses a library L, and its API changes from27

version vn to version vn+1, we need to migrate the whole repository to correctly invoke the revised28

version. A simplified example is given in Figure 1. Such a migration task involves making edits not29

only to all the regions of code that make calls to the APIs from the library, but also to regions (across30

file boundaries) having transitive syntactic and semantic dependencies on the updated code.31

We present a task-agnostic neuro-symbolic framework, called CodePlan that utilises the local code32

editing abilities of LLMs along with various static analysis techniques to solve such repository-level33

coding tasks. CodePlan keeps track of relations across the repository and monitors local code34

changes made by the LLM in order to plan how these changes should be propagated. Our evaluations35

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



+ class Complex {
+ float real;
+ float imag;
+ dict<string, string> metadata;
+ }

− tuple<float, float> create_complex(float a, float
b)

+ Complex create_complex(float a, float b, dict
metadata)

Figure 1: Task instruction to migrate a code repository
due to an API change in the Complex Numbers library.

Figure 2: Overview of CodePlan.

tuple<tuple<float, float>, dict> func(float a, float
b) {

string timestamp = GetTimestamp(DateTime.Now);
var c = (create_complex(a,b), new

Dictionary<string, string>()"time",
timestamp);

return c;
}

Complex func(float a, float b) {
String timestamp = GetTimestamp(DataTime

.Now);
dict_metadata = new Dictionary<string,

string>(){"time", timestamp};
Complex c = create_complex(a, b,

metadata);
return c;

}

(a) Create.cs - Original (b) Create.cs - Modified (seed edit)
void process(float a, float b, float k) {
var c = func(a, b);
Console.WriteLine(c[0][0], c[0][1]);
float norm = compute_norm(c[0][0], c[0][1]);
Console.WriteLine(norm * k);

}

void process(float a, float b, float k) {
Complex c = func(a, b);
Console.WriteLine(c.real, c.imag);
float norm = compute_norm(c.real, c.imag

);
Console.WriteLine(norm * k);

}

(c) Process.cs - Original (d) Process.cs - Modified (derived edit)
Figure 3: Relevant code snippets from our repository.

against baselines across a benchmark of repository edits demonstrate the advantages of CodePlan for36

repository level code tasks. In summary, we make the following contributions:37

1. We formalize the novel problem of automating repository-level coding tasks using LLMs,38

which requires analyzing the effects of code changes and propagating them across the39

repository.40

2. We frame repository-level coding as a planning problem and design a task-agnostic, neuro-41

symbolic framework called CodePlan, based on a novel combination of an incremental42

dependency analysis, a change may-impact analysis and an adaptive planning algorithm.43

CodePlan synthesizes a multi-step chain-of-edits (plan) to be actuated by an LLM.44

3. We experiment with two repository-level coding tasks using the gpt-4-32k model1: pack-45

age migration for C# repositories and temporal code edits for Python repositories. We46

compare against baselines that use build system or type checker for guiding repository-wide47

edits.48

4. Our results show that CodePlan has better match with the ground truth compared to baselines.49

CodePlan is able to get 5/7 repositories to pass the validity checks (i.e., to build without50

errors and make correct code edits), whereas the baselines cannot get any of the repositories51

to pass them.52

2 Motivation53

Consider the example API migration task specified in Figure 1 on code in Figure 3. Here we have an54

external library which provides an interface for creating complex numbers which is being used in two55

files within our repository. In this scenario, the external library modifies its interface by introducing a56

Complex number class and modifying the signature of the create_complex method accordingly.57

At this stage, our repository is in an inconsistent state according to the oracle – it will not build. To58

resolve this inconsistency and complete the migration, we first need to modify func to accomodate59

1https://platform.openai.com/docs/models/gpt-4

2

https://platform.openai.com/docs/models/gpt-4


the updated create_complex. As show in Fig 3b, this involves updating the signature of func to60

return an object of the new Complex type instead of a tuple. After this edit, our repository will still61

fail to build since now the use of the return object from func is incorrect inside the body of process.62

The edit required to process to resolve this is shown in Fig 3d and results in a repository that is63

consistent – it builds. We can think of the initial changes to the complex library as seed changes64

which trigger a set of derived changes across our repository.65

CodePlan determines from the seed change that func needs to be modified, It analyses the code66

change between Figure 3(a)–(b) and classifies it as an escaping change since it affects signature67

of method func. The change may-impact analysis identifies that the caller(s) of func may be68

affected and hence, the adaptive planning algorithm uses caller-callee dependencies to infer a derived69

specification to edit the method process, which invokes func. The derived changes are executed by70

creating suitable prompts for an LLM and the resulting code repository passes the oracle, i.e., builds71

without errors.72

Note that this is a simple example with only one-hop change propagation. In practice, the derived73

changes can necessitate many other changes transitively. Such a migration task is representative of74

a family of tasks that involve editing an entire code repository for various purposes such as fixing75

error reports from static analysis or testing, fixing a buggy coding pattern, refactoring, or adding type76

annotations or other specifications. We define an LLM-driven repository-level coding task as follows:77

LLM-driven Repository-level Coding Task

Given a start state of a repository Rstart, a set of seed edit specifications ∆seeds, an oracle Θ such
that Θ(Rstart) = True, and an LLM L, the goal of an LLM-driven repository-level coding task
is to reach a repository state Rtarget = ExecuteEdits(L,Rstart, P ) where P is a chain of edit
specifications from ∆seeds ∪∆derived where ∆derived is a set of derived edit specifications so
that Θ(Rtarget) = True.

78

3 Design79

As described in Figure 2 CodePlan aims to solve repository-level coding tasks through an adaptive80

planning algorithm that iteratively combines (1) dependency analysis to keep track of the relationships81

within the repository and (2) change may-impact analysis to determine what other parts of the82

repository are effected by an edit. CodePlan maintains two key data structures -83

Dependency Graph.. We utilise dependency analysis Aho et al. (2007) to track syntactic and semantic84

relations between code elements and build a graph where nodes are code blocks (e.g. method, classes,85

imports) and edges are relationships (e.g. calls, overrides, inherits)86

Plan Graph.. P = (O,C) is a directed acyclic graph with a set of code edit obligations O and edges87

C that record the cause from one obligation to the next. Each obligation O is characterised by a block88

to edit B, edit instruction I and the status indicating whether it have been discharged yet.89

Algorithm 1: Core algorithm
while do

O← GetNextPending(P);
Q← PrepareQuery(O, G);
F← InvokeLLM(Q);
L← ClassifyChange(Q, F);
UpdateRepo(R, O, F);
UpdateDepGraph(G, O, F);
UpdatePlanGraph(P, G, L);

end

Given a repository and initial set of seed edit90

∆seeds based on the task description, CodePlan91

first instantiates a dependency graph G (from92

the initial state of the repository) and plan graph93

P (with obligations corresponding to ∆seeds). It94

then infers the derived edits ∆derived required95

to solve the task by iteratively editing the repos-96

itory as described in Alg 2. At each stage it97

fetches an obligation from the plan graph P ,98

uses the LLM to generate the local edit and anal-99

yses the change to update the dependency graph100

G and the plan graph P . The key components101

in Alg 2 are discussed briefly below. A detailed102

description is provided in the appendix.103

GetNextPending. Selects the next obligation to discharge from among the un-fulfilled obligations in104

the plan graph.105

3



PrepareQuery. Given an edit obligation, constructs a query to the LLM to obtain an edit for the local106

code block specified by the obligation. The query aims to be as comprehensive as possible, consisting107

of - (1) task specific instructions (2) temporal context: previous edits that caused the need to edit the108

current block (extracted from the plan graph and presented as before and after code snippets), (3)109

spatial context: all related code for the current block such as methods being called or overridden and110

(4) the code block to be edited.111

ClassifyChanges. Classifies the change made by the LLM to the code block by type (modification,112

addition and deletion changes) and further by which construct is changed (method body, method113

signature, class declaration etc...).114

UpdateRepo. Stitches the modified code block back into the appropriate file in the repository. Also115

adds any new code blocks and deletes any code blocks that were removed in the LLMs response.116

UpdateDepGraph. Updates the dependency relations associated with the code at the change site. For117

example if a method call to B is added in A, then an edge is added between A and B.118

UpdatePlanGraph. Determines how the edit made may affect other parts of the repository and119

updates the plan graph accordingly with appropriate edit obligations. Uses a set of rules to identify120

blocks affected by the code change depending on the labels from ClassifyChange, constructs an121

obligation from each affected block, adds them to the plan graph and constructs an edge from the122

current obligation to each of the affected obligations, with the label being the relationship between123

the blocks. Finally marks the current obligation discharged.124

4 Experimental Setup125

4.1 Tasks126

Migration. Given client repository being migrated from one framework to another, infer the code edits127

required to account for differences in APIs between the older and newer frameworks. We evaluate128

on examples from two specific migration scenarios - (1) migration from legacy logging framework129

to a more modern logging framework where the repositories considered are two large production-130

level proprietary codebases (I1, I2) and (2) modifying repos to use the newer System.Text.Json131

serialization framework instead of the older NewtonSoft.Json framework for which we use two132

open-source repositories (E1, E2). Further details in the appendix.133

Temporal edits. Given a set of repository-local seed edits (e.g. adding an argument to a method), infer134

the derived code edits throughout the repository. This task aims to model the process a developer135

may follow when making a repository-level edits – making an initial edit followed by related edits to136

make the repository consistent. We evaluate on three open source repository changes. (T1, T2, T3)137

Further details in the appendix.138

4.2 Oracles and Baselines139

Oracles. In our experiments, we rely on two specific oracles to evaluate the validity of our solutions.140

For C# migration tasks, passing C# Build tools msb ([n. d.]) without errors serves as the oracle. In141

temporal edits scenarios, we use Pyright pyr ([n. d.]), a Python static checker, as the oracle.142

Oracle-Guided Repair Baselines. An alternative to planning is to use the oracle to detect errors with143

each change. These approaches are reactive and involve attempting to fix errors identified by the144

oracles. We refer to them as oracle-guided repair baselines. For C# migration, we use Build-Repair,145

while for temporal edits, it’s Pyright-Repair. The process includes applying an initial seed edit,146

detecting errors, analyzing error messages, and using an LLM for patching. However, oracle-guided147

repair may lack comprehensive change impact analysis, leading to potentially incomplete or incorrect148

fixes, especially in complex coding tasks. For fair comparison, we use the same contextualization149

method as CodePlan for the baselines.150

Alternate Edit Model: Coeditor Wei et al. (2023). While CodePlan primarily leverages LLMs for151

localized code edits, it can also work with custom models like Coeditor Wei et al. (2023). Coeditor is152

designed for making an edit conditioned on prior temporal edits for Python code. We use Coeditor to153

evaluate whether CodePlan can work with different models and to perform a model ablation study.154

4



4.3 Evaluation155

We use two key metrics, Block Metrics and Edit Metrics, to assess how effectively CodePlan156

propagates changes throughout the code repository and the correctness of these changes.157

Block Metrics. Block Metrics evaluate CodePlan’s ability to identify code blocks in need of modifi-158

cation, including: Matched Blocks: Code blocks successfully identified for change; Missed Blocks:159

Code blocks that should have been modified but weren’t; Spurious Blocks: Incorrectly edited blocks.160

Edit Metrics:. Edit Metrics assess the correctness of CodePlan’s modifications, including: Leven-161

shtein Distance:, which measures edit distance between the Predicted and Target Repositories at the162

file level; and, DiffBLEU:, a modified BLEU Papineni et al. (2002) score focusing on comparing163

modified code sections while disregarding common code. Let ∆gt and ∆p respectively be diffs164

between the Source and Target repositories (ground truth), and the Source and Predicted repositories.165

The BLEU score between ∆gt and ∆p gives us the DiffBLEU score.166

Validity Check. We say that a Predicted repository passes the validity check if the oracle (the build167

system for C# and Pyright for Python) does not detect any errors in it and we have a perfect match168

(modulo whitespace and formatting differences) with the ground truth Target repository.169

Data Pre-processing. We pre-process the data to reduce noise during evaluation (details in the170

appendix). For each repository, we collect the before (Source) and after (Target) snapshots of the171

code from the pull requests and apply changes unrelated to the task either to both Source and Target,172

or remove them from the Target. To prepare the Source, we patch in the seed changes or prepare173

instructions for the LLM to carry them out. We also pre-process the Target repositories to ensure174

uniform coding practices. Note that all methods are evaluated on the same Source repositories (after175

the pre-processing).176

5 Results and Analysis177

In this section, we present empirical results to answer the following research questions:178

RQ1: How well is CodePlan able to localize and make the required changes to automate repository-179

level coding tasks compared to baselines?180

RQ2: How important are temporal and spatial contexts to CodePlan’s performance?181

RQ3: What are the key differentiators that allow CodePlan to outperform baselines in solving182

complex coding tasks?183

5.1 RQ1: How well is CodePlan able to localize and make the required changes to automate184

repository-level coding tasks compared to baselines?185

CodePlan outperforms baselines. As shown in Table 1, CodePlan consistently does better at186

identifying the correct edit sites as it matches on more blocks and misses fewer blocks. The edits it187

makes are more closely aligned to the ground truth edits as seen with higher DiffBLEU score and188

lower Levenshtein Distance. Most notably CodePlan is able to successfully bring 5/7 repositories to189

a consistent state. We discuss these results in detail below.190

C# Migration. Alongside the fact that CodePlan achieves better blocks and edit metrics on both191

I1 and I2, 3/4 C# repositories migrated using CodePlan pass the build check. Build-Repair on the192

other hand is not able to complete any of the tasks, in each case getting stuck on a particular set of193

errors which it is unable to fix even after multiple retries. Note that the non-perfect DiffBlue and194

Levenstein distances for E1 and E2 are due to differences in code formatting and the order of method195

declarations in the predicted file. In E2, where CodePlan is unable to reach a valid state, we observe196

that the LLM did not perform a necessary type cast when using a library API, which was uncaught by197

CodePlan, resulting in missed blocks. Some of the resulting errors are fixed in "Iter-2".198

CodePlan versus Build-Repair We observe that a significant factor contributing to this performance199

difference is Build-Repair’s reliance on "build error location" to indicate where code corrections are200

needed. Build errors may not always align with the actual correction site, leading to misinterpretation.201

For instance, an error may manifest as a derived class’s overridden function signature mismatch, but202

5



Dataset Approach Matched
Blocks

Missed
Blocks

Spurious
Blocks

Diff
BLEU

Levenshtein
Distance

Validity
Check

C# Migration Task on Internal (Proprietery) Repositories

I1
(Logging)

CodePlan (Iter 1) 151 0 0 0.99 60 ✗ (4) ̸=
CodePlan (Iter 2) 4 0 0 1.00 0 ✓
Build-Repair 82 69 13 0.81 6465 ✗ (46) ̸=

I2
(Logging)

CodePlan (Iter 1) 438 0 0 0.99 90 ✗ (6) ̸=
CodePlan (Iter 2) 6 0 0 1.00 0 ✓
Build-Repair 337 101 25 0.66 7496 ✗ (68) ̸=

C# Migration Task on External (Public) Repositories

E1 CodePlan (Iter 1) 64 0 0 0.86 2931 ✓
Build-Repair 34 30 27 0.65 9145 ✗ (40) ̸=

E2 CodePlan (Iter 1) 38 8 0 0.61 1121 ✗ (13) ̸=
CodePlan (Iter 2) 2 0 6 0.62 1261 ✗ (7) ̸=
Build-Repair 19 27 5 0.49 1379 ✗ (11) ̸=

Python Temporal Edit Task on External (Public) Repositories

T1
CodePlan (Iter 1) 8 2 0 0.90 1044 ✗ (0) ̸=
Pyright-Repair 5 5 0 0.76 1089 ✗ (0) ̸=
Pyright-Strict-Repair 8 2 0 0.90 1045 ✗ (0) ̸=
Coeditor-CodePlan 8 2 0 0.90 1160 ✗ (0) ̸=
Coeditor-Pyright-Repair 5 5 0 0.66 1206 ✗ (0) ̸=
Coeditor-Pyright-Strict-Repair 8 2 0 0.83 1106 ✗ (6) ̸=

T2
CodePlan (Iter 1) 4 0 0 0.86 147 ✓
Pyright-Repair 1 3 0 0.58 344 ✗ (0) ̸=
Pyright-Strict-Repair 1 3 0 0.58 344 ✗ (0) ̸=
Coeditor-CodePlan (Iter 1) 2 2 0 0.82 254 ✗ (0) ̸=
Coeditor-Pyright-Repair 1 3 0 0.58 344 ✗ (0) ̸=
Coeditor-Pyright-Strict-Repair 1 3 0 0.58 344 ✗ (0) ̸=

T3
CodePlan (Iter 1) 11 0 0 0.94 288 ✓
Pyright-Repair 1 10 0 0.53 840 ✗ (0) ̸=
Pyright-Strict-Repair 1 10 0 0.53 840 ✗ (0) ̸=
Coeditor-CodePlan (Iter 1) 10 1 0 0.76 759 ✗ (0) ̸=
Coeditor-Pyright-Repair 1 10 0 0.53 840 ✗ (0) ̸=
Coeditor-Pyright-Strict-Repair 1 10 0 0.53 840 ✗ (0) ̸=

Table 1: Comparison of CodePlan with baselines. Higher values of Matched Blocks and DiffBLEU,
and lower values of Missed Blocks, Spurious Blocks, Levenshtein Distances are better. For each
repository, different approaches are separately by a dashed line and the respective best values are
highlighted in the bold font (except when all approaches have the same value). ✓ and ✗ respectively
indicate if the Validity Check (Section 4.3) passes or fails, respectively. Against ✗, we also give the
number of errors detected by the oracle in parentheses and indicate via ̸= that the output from the
approach does not match the ground truth. In several cases in Python, even though the oracle (Pyright)
does not flag any errors, the generated code does not match ground truth as indicated by “✗ (0) ̸=”
entries in the last column. This is because of the lack of sufficient type hints in the Python repositories
to catch correctness requirements. In contrast, for the statically typed language C#, mismatch with
ground truth is also reflected in non-zero build errors.

the fix is required in the base class’s virtual function signature, causing Build-Repair to misinterpret203

the correction site.204

Multiple Iterations We see the importance of supporting multiple iteration in 3/4 C# migration cases205

where the first iteration of CodePlan still left some build errors. By requesting the LLM to fix the206

left-over build errors and seeding CodePlan with the resultant changes, we are able to reduce errors207

further in all 3 cases, completely eliminating them in 2. We observe that these iterations are especially208

useful in making the system more robust to inaccuracies in LLM outputs as they allow a pathway for209

these to be repaired.210

Python Temporal Edit Task on External (Public) Repositories. In the Python Temporal Edits task,211

CodePlan identifies all edit locations across two repositories (T2, T3) and performs well in the third212

(T1) It also consistently has higher DiffBLEU score and lower Levenshtein Distance, although not213

always achieving perfect 1.0 and 0 values due to slight differences in LLM edits and ground truth. In214

contrast, the Pyright-Repair baseline fails to make any derived edits at all in two repositories (T2,215

T3). In T2, Pyright doesn’t flag errors for method call sites due to presence of a default parameter216

while in T3, Pyright misses edits required by changes to method behavior that were not reflected in217

changes to type information. Pyright in strict checking mode (Pyright-Strict-Repair) improves results218

but matches CodePlan only in one repository (T1). CodePlan’s change may-impact analysis handles219

these cases, whereas the oracle-guided repair baseline lacks such detection, focusing on fixing rule220

violations rather than propagating changes.221

6



Approach Matched
Blocks

Missed
Blocks

Spurious
Blocks

Diff
BLEU

Levenshtein
Distance

Validity
Check

I1

CodePlan 151 0 0 1.00 0 ✓
− Temporal Context 135 16 32 0.63 3892 ✗ (61) ̸=
− Spatial Context 134 17 51 0.61 4161 ✗ (65) ̸=
− Temporal & Spatial 121 30 54 0.51 4524 ✗ (69) ̸=

E1

CodePlan 65 0 0 0.86 2931 ✓
− Temporal Context 62 3 2 0.74 1014 ✗ (8) ̸=
− Spatial Context 62 3 2 0.74 1014 ✗ (8) ̸=
− Temporal & Spatial 61 4 2 0.71 1036 ✗ (9) ̸=

T1 CodePlan 8 2 0 0.90 1044 ✗ (0) ̸=
− Spatial Context 8 2 0 0.89 1266 ✗ (0) ̸=

T2 CodePlan 4 0 0 0.86 147 ✓
− Spatial Context 4 0 0 0.76 443 ✓

T3 CodePlan 11 0 0 0.94 288 ✓
− Spatial Context 11 0 0 0.92 325 ✓

Table 2: Ablation study with and without temporal/spatial context. For Temporal Edit task (T-1,2,3),
temporal context is the necessary part of input and hence, only spatial context is ablated.

(a) Temporal (b) Spatial
Figure 4: Illustration of the importance of (a) temporal and (b) spatial context.

Coeditor Evaluation (Model Ablation). To study the behavior of CodePlan with a smaller model as222

well as to demonstrate the framework’s flexibility, we experimented with using Coeditor in place of223

codegpt-4-32k. We see that Coeditor-CodePlan misses one edit site each in both T2 and T3 when224

compared to CodePlan (with the GPT model). In both cases, Coeditor misses adding an argument225

to a method being edited, thus missing out on editing the callers of that method. We also observe226

lower DiffBLEU scores and higher Levenshtein Distance (L.D.) in T2 and T3 for Coeditor-CodePlan227

compared to CodePlan. On T1, we further observe that Coeditor-Pyright-Strict-Repair incorrect228

local edits lead to 6 Pyright errors popping up. Since Coeditor was not trained with build errors as229

context, it was unable to fix these. Being a significantly more powerful model, gpt-4-32k is better at230

understanding the context of the temporal edits, hence the edits it makes are more aligned with the231

ground truth as compared to Coeditor. These observations indicate the importance of LLMs for tools232

such as CodePlan.233

5.2 RQ2: How important are temporal and spatial contexts to CodePlan’s performance?234

The results of ablating on temporal and spatial context are reported in Table 2. We observe that both235

types of context are integral to CodePlan as removing them leads to failure in all the migration tasks236

as well as more missed and spurious blocks across tasks. We briefly discuss the importance of each237

aspect here. A detailed discussion is present in the appendix.238

Temporal Context. Removing temporal contexts leads to a noticeable increase in missed blocks.239

Without the context of edits made in the past, the LLM is not able to comprehend the need for edits240

to certain blocks as illustrated in Figure 7 Here, changes to the virtual method in the base class241

necessitate an edit to the overriding method in the derived class. However, without temporal context,242

the LLM does not know about the base class’s method, leading it to believe that no changes are243

necessary to the derived class method.244

7



Figure 5: Example from E1 where CodePlan effectively executes a series of changes in steps 1-4
while Build-Repair fails to perform steps 2-4.

Importance of Spatial Context. We also observe an increase in spurious blocks when spatial context245

is insufficient. In the absence of adequate spatial context, the LLM incorrectly attempts to re-create246

blocks that exist in the code but are not supplied in the prompt, leading to the generation of spurious247

code blocks as illustrated in Figure 9. Here, the task is to modify the AuthorizeUser method by248

migrating the logging calls from an old logging framework to a new one. However, due to the lack of249

spatial context that would specify the existence of the ValidateUser method, the LLM attempts to250

unnecessarily create this method as well.251

5.3 RQ3: What are the key differentiators that allow CodePlan to outperform baselines in252

solving complex coding tasks?253

The core of repository-level coding problems is being able to do multi-step reasoning over reposi-254

tories towards achieving a goal. LLMs have been shown to struggle with direct multi-step reason-255

ing Creswell et al. (2022) and planning Valmeekam et al. (2023). CodePlan leverages the structure256

inherently present in source code via dependency and change may-impact analysis to provide robust257

planning. These features also distinguish it from baseline methods like Build-Repair, which prioritize258

syntactic correctness but overlook contextual details and change propagation as described in Fig 10.259

The key factors contributing to the success of CodePlan are -260

• Dependency analysis provides a rich semantic view of the repository.261

• Change may-impact analysis robustly propagates a variety of behavioral changes.262

• Comprehensive spatial and temporal context guide the LLM to make the correct edits.263

• Support for repairing errors makes it robust to incorrect outputs from the LLM.264

Please refer to the supplementary material for detailed discussion of further differentiators.265

6 Related Work266

LLMs for Coding Tasks. A multitude of LLMs Ahmad et al. (2021); Wang et al. (2021); Austin et al.267

(2021); Chen et al. (2021); Black et al. (2022); Chowdhery et al. (2022); OpenAI (2023); Touvron268

et al. (2023) have been trained on large-scale corpora of source code and natural language text.269

These have been used to accomplish a variety of coding tasks. A few examples of their use include270

program synthesis Li et al. (2022); Nijkamp et al. (2023), program repair Xia et al. (2023); Jin et al.271

(2023); Ahmed and Devanbu (2023), vulnerability patching Pearce et al. (2022), inferring program272

8



invariants Pei et al. (2023), test generation Schäfer et al. (2023) and multi-task evaluation Tian et al.273

(2023). These investigations are performed on independent examples that are extracted isolated from274

their origin repositories and are meant to be accomplished with independent invocations of the LLM.275

In orthogonal directions, Jiang et al. (2023) uses an LLM to derive a plan given a natural language276

intent before generating code to solve complex coding problems and Zhang et al. (2023) performs277

lookahead planning (tree search) to guide token-level decoding of code LMs. In contrast, we consider278

tasks posed at the scale of code repositories, where an LLM needs to process multiple different279

interdependent examples across a repository.280

Automated Planning and Reasoning with LLMs. Automated planning Ghallab et al. (2004); Russell281

(2010) is a well-studied topic in AI. Online planning Russell (2010) is used when the effect of actions282

is not known and the state-space cannot be enumerated a priori. It requires monitoring the actions283

and plan extension. In our case, the edit actions are carried out by an LLM whose results cannot be284

predicted before-hand and the state-space is unbounded. As a consequence, our adaptive planning is285

an online algorithm where we monitor the actions and extend the plan through static analysis. Many286

recent works also develop techniques to iteratively prompt the LLM in different ways to extract a287

plan to achieve a given goal – leveraging the the common sense knowledge of the LLM for decision288

making Raman et al. (2022); Huang et al. (2022); Ahn et al. (2022); Yao et al. (2023). In contrast we289

aim to solve a planning problem within the code domains where we leverage the highly structured290

nature of code to generate the plan, where each action is a combination of edit site (identified through291

static analysis and adaptive planning) along with local code edit (generated by the LLM).292

Analysis of Code Changes. Static analysis can be expensive to recompute the analysis results every293

time the code undergoes changes. Incremental program analysis offers techniques to recompute only294

the analysis results impacted by the change Ryder (1983); Arzt and Bodden (2014); Yur et al. (1999);295

Person et al. (2011); Busi et al. (2019). Program differencing Apiwattanapong et al. (2004); Lahiri296

et al. (2012); Kim et al. (2012) and change impact analysis Arnold and Bohner (1996); Jashki et al.297

(2008) determine the differences in two program versions and the effect of a change on the rest of the298

program. We analyze the code generated by an LLM and incrementally update the syntactic (e.g.,299

parent-child) and dependency (e.g., caller-callee) relations. We further analyze the likely impact of300

those changes on related code blocks and create change obligations to be discharged by the LLM.301

Learning Edit Patterns. Many approaches have been developed to learn edit patterns from past edits302

or commits in the form of rewrite rules de Sousa et al. (2021), bug fixes Andersen and Lawall (2010);303

Bader et al. (2019), type changes Ketkar et al. (2022), API migrations Lamothe et al. (2020); Xu et al.304

(2019) and neural representations of edits Yin et al. (2019). Approaches such as Meng et al. (2011)305

and Meng et al. (2013) synthesize context-aware edit scripts from user-provided examples and apply306

them in new contexts. Other approaches observe the user actions in an IDE to automate repetitive307

edits Miltner et al. (2019) and temporally-related edit sequences Zhang et al. (2022). We do not aim308

to learn edit patterns and we do not assume similarities between edits. Our focus is to identify effects309

of code changes made by an LLM and to guide the LLM towards additional changes that become310

necessary.311

7 Conclusions and Future Work312

In this paper, we introduced CodePlan, a neuro-symbolic framework for handling complex repository-313

level coding tasks involving extensive code changes across interdependent files in large codebases.314

CodePlan employs incremental dependency analysis, change may-impact analysis, and adaptive315

planning to coordinate multi-step code edits using large language models. Our evaluation on various316

code repositories in C# and Python demonstrated that CodePlan surpasses baseline methods in317

accuracy. It shows great promise for automating repository-level coding tasks, but there’s room318

for future improvements. We plan to extend its applicability to more programming languages319

and explore enhancements to its editing strategy and analysis as well as conducting large-scale320

experiments to further refine CodePlan’s effectiveness across diverse coding tasks. Additionally there321

are opportunities to explore the use of the LLM itself for planning within the dependency graph.322

References323

[n. d.]. Jedi. https://github.com/davidhalter/jedi.324

9

https://github.com/davidhalter/jedi


[n. d.]. MS-Build. https://learn.microsoft.com/en-us/visualstudio/msbuild/325

msbuild.326

[n. d.]. Pyright. https://github.com/microsoft/pyright.327

2020. Reactive Streams TCK. https://github.com/reactive-streams/328

reactive-streams-dotnet/tree/master/src/tck.329

2022. das-qna-api. https://github.com/SkillsFundingAgency/das-qna-api.330

2023. Amazon Code Whisperer - AI Code Generator. https://aws.amazon.com/331

codewhisperer/.332

2023. audiocraft. https://github.com/facebookresearch/audiocraft.333

2023. GitHub Copilot chat for Visual Studio 2022. https://devblogs.microsoft.com/334

visualstudio/github-copilot-chat-for-visual-studio-2022/.335

2023. GitHub Copilot: Your AI pair programmer. https://github.com/features/copilot.336

2023. JARVIS. https://github.com/microsoft/JARVIS.337

2023. Replit. https://replit.com/.338

2023. whisper. https://github.com/openai/whisper.339

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified Pre-340

training for Program Understanding and Generation. arXiv:2103.06333 [cs.CL]341

Toufique Ahmed and Premkumar Devanbu. 2023. Better patching using LLM prompting, via342

Self-Consistency. arXiv:2306.00108 [cs.SE]343

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea344

Finn, Keerthana Gopalakrishnan, Karol Hausman, Alexander Herzog, Daniel Ho, Jasmine Hsu,345

Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey, Sally346

Jesmonth, Nikhil Jayant Joshi, Ryan C. Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-347

Huei Lee, Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao,348

Kanishka Rao, Jarek Rettinghouse, Diego M Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan,349

Alexander Toshev, Vincent Vanhoucke, F. Xia, Ted Xiao, Peng Xu, Sichun Xu, and Mengyuan Yan.350

2022. Do As I Can, Not As I Say: Grounding Language in Robotic Affordances. In Conference on351

Robot Learning. https://api.semanticscholar.org/CorpusID:247939706352

Alfred V Aho, Ravi Sethi, Jeffrey D Ullman, et al. 2007. Compilers: principles, techniques, and353

tools. Vol. 2. Addison-wesley Reading.354

Jesper Andersen and Julia L Lawall. 2010. Generic patch inference. Automated software engineering355

17 (2010), 119–148.356

Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. 2004. A differencing algo-357

rithm for object-oriented programs. In Proceedings. 19th International Conference on Automated358

Software Engineering, 2004. IEEE, 2–13.359

RS Arnold and SA Bohner. 1996. An introduction to software change impact analysis. Software360

Change Impact Analysis (1996), 1–26.361

Steven Arzt and Eric Bodden. 2014. Reviser: efficiently updating IDE-/IFDS-based data-flow362

analyses in response to incremental program changes. In Proceedings of the 36th International363

Conference on Software Engineering. 288–298.364

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,365

Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. 2021. Program Synthesis366

with Large Language Models. http://arxiv.org/abs/2108.07732 arXiv:2108.07732 [cs].367

Johannes Bader, Andrew Scott, Michael Pradel, and Satish Chandra. 2019. Getafix: Learning to Fix368

Bugs Automatically. Proc. ACM Program. Lang. 3, OOPSLA, Article 159 (Oct. 2019), 27 pages.369

https://doi.org/10.1145/3360585370

10

https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild
https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild
https://github.com/microsoft/pyright
https://github.com/reactive-streams/reactive-streams-dotnet/tree/master/src/tck
https://github.com/reactive-streams/reactive-streams-dotnet/tree/master/src/tck
https://github.com/reactive-streams/reactive-streams-dotnet/tree/master/src/tck
https://github.com/SkillsFundingAgency/das-qna-api
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://github.com/facebookresearch/audiocraft
https://devblogs.microsoft.com/visualstudio/github-copilot-chat-for-visual-studio-2022/
https://devblogs.microsoft.com/visualstudio/github-copilot-chat-for-visual-studio-2022/
https://devblogs.microsoft.com/visualstudio/github-copilot-chat-for-visual-studio-2022/
https://github.com/features/copilot
https://github.com/microsoft/JARVIS
https://replit.com/
https://github.com/openai/whisper
https://api.semanticscholar.org/CorpusID:247939706
http://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3360585


Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace371

He, Connor Leahy, Kyle McDonell, Jason Phang, and others. 2022. Gpt-neox-20b: An open-source372

autoregressive language model. arXiv preprint arXiv:2204.06745 (2022).373

Bruno Blanchet. 2003. Escape analysis for JavaTM: Theory and practice. ACM Transactions on374

Programming Languages and Systems (TOPLAS) 25, 6 (2003), 713–775.375

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,376

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models377

are few-shot learners. Advances in neural information processing systems 33 (2020), 1877–1901.378

Matteo Busi, Pierpaolo Degano, and Letterio Galletta. 2019. Using standard typing algorithms379

incrementally. In NASA Formal Methods: 11th International Symposium, NFM 2019, Houston, TX,380

USA, May 7–9, 2019, Proceedings 11. Springer, 106–122.381

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared382

Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, and others. 2021. Evaluating383

large language models trained on code. arXiv preprint arXiv:2107.03374 (2021).384

Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C Sreedhar, and Sam Midkiff. 1999.385

Escape analysis for Java. Acm Sigplan Notices 34, 10 (1999), 1–19.386

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam387

Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. 2022. Palm:388

Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311 (2022).389

Antonia Creswell, Murray Shanahan, and Irina Higgins. 2022. Selection-Inference: Exploiting390

Large Language Models for Interpretable Logical Reasoning. ArXiv abs/2205.09712 (2022).391

https://api.semanticscholar.org/CorpusID:248887351392

Reudismam Rolim de Sousa, Gustavo Soares, Rohit Gheyi, Titus Barik, and Loris D’Antoni. 2021.393

Learning Quick Fixes from Code Repositories. In SBES ’21: 35th Brazilian Symposium on Software394

Engineering, Joinville, Santa Catarina, Brazil, 27 September 2021 - 1 October 2021, Cristiano D.395

Vasconcellos, Karina Girardi Roggia, Vanessa Collere, and Paulo Bousfield (Eds.). ACM, 74–83.396

https://doi.org/10.1145/3474624.3474650397

Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-oriented programs398

using static class hierarchy analysis. In ECOOP’95—Object-Oriented Programming, 9th European399

Conference, Åarhus, Denmark, August 7–11, 1995 9. Springer, 77–101.400

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,401

Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A generative model for code402

infilling and synthesis. arXiv preprint arXiv:2204.05999 (2022).403

Malik Ghallab, Dana Nau, and Paolo Traverso. 2004. Automated Planning: theory and practice.404

Elsevier.405

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and Premkumar Devanbu. 2016. On the406

naturalness of software. Commun. ACM 59, 5 (2016), 122–131.407

Wenlong Huang, P. Abbeel, Deepak Pathak, and Igor Mordatch. 2022. Language Models as Zero-Shot408

Planners: Extracting Actionable Knowledge for Embodied Agents. ArXiv abs/2201.07207 (2022).409

https://api.semanticscholar.org/CorpusID:246035276410

Mohammad-Amin Jashki, Reza Zafarani, and Ebrahim Bagheri. 2008. Towards a more efficient static411

software change impact analysis method. In Proceedings of the 8th ACM SIGPLAN-SIGSOFT412

workshop on Program analysis for software tools and engineering. 84–90.413

Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. 2023. Self-planning Code414

Generation with Large Language Model. arXiv:2303.06689 [cs.SE]415

Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan, and Alexey416

Svyatkovskiy. 2023. InferFix: End-to-End Program Repair with LLMs. arXiv preprint417

arXiv:2303.07263 (2023).418

11

https://api.semanticscholar.org/CorpusID:248887351
https://doi.org/10.1145/3474624.3474650
https://api.semanticscholar.org/CorpusID:246035276


Ameya Ketkar, Oleg Smirnov, Nikolaos Tsantalis, Danny Dig, and Timofey Bryksin. 2022. Inferring419

and applying type changes. In Proceedings of the 44th International Conference on Software420

Engineering. 1206–1218.421

Miryung Kim, David Notkin, Dan Grossman, and Gary Wilson. 2012. Identifying and summarizing422

systematic code changes via rule inference. IEEE Transactions on Software Engineering 39, 1423

(2012), 45–62.424

Shuvendu K Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. 2012. Symdiff: A425

language-agnostic semantic diff tool for imperative programs. In Computer Aided Verification:426

24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings 24.427

Springer, 712–717.428

Maxime Lamothe, Weiyi Shang, and Tse-Hsun Peter Chen. 2020. A3: Assisting android api429

migrations using code examples. IEEE Transactions on Software Engineering 48, 2 (2020),430

417–431.431

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom432

Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien433

de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,434

Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet435

Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-level code436

generation with AlphaCode. Science 378, 6624 (2022), 1092–1097. https://doi.org/10.437

1126/science.abq1158 _eprint: https://www.science.org/doi/pdf/10.1126/science.abq1158.438

Na Meng, Miryung Kim, and Kathryn S McKinley. 2011. Sydit: Creating and applying a program439

transformation from an example. In Proceedings of the 19th ACM SIGSOFT symposium and the440

13th European conference on Foundations of software engineering. 440–443.441

Na Meng, Miryung Kim, and Kathryn S McKinley. 2013. LASE: locating and applying systematic442

edits by learning from examples. In 2013 35th International Conference on Software Engineering443

(ICSE). IEEE, 502–511.444

Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo Soares, Ashish445

Tiwari, and Abhishek Udupa. 2019. On the fly synthesis of edit suggestions. Proceedings of the446

ACM on Programming Languages 3, OOPSLA (2019), 1–29.447

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,448

and Caiming Xiong. 2023. CodeGen: An Open Large Language Model for Code with Multi-449

Turn Program Synthesis. In The Eleventh International Conference on Learning Representations.450

https://openreview.net/forum?id=iaYcJKpY2B_451

OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]452

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a method for automatic453

evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association454

for Computational Linguistics. 311–318.455

Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, and Brendan Dolan-Gavitt. 2022.456

Examining Zero-Shot Vulnerability Repair with Large Language Models. In 2023 IEEE Symposium457

on Security and Privacy (SP). IEEE Computer Society, 1–18.458

Kexin Pei, David Bieber, Kensen Shi, Charles Sutton, and Pengcheng Yin. 2023. Can Large Language459

Models Reason about Program Invariants? (2023).460

Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. 2011. Directed incremental461

symbolic execution. Acm Sigplan Notices 46, 6 (2011), 504–515.462

S. Sundar Raman, Vanya Cohen, Eric Rosen, Ifrah Idrees, David Paulius, and Stefanie Tellex. 2022.463

Planning with Large Language Models via Corrective Re-prompting. ArXiv abs/2211.09935 (2022).464

https://api.semanticscholar.org/CorpusID:253707906465

Stuart J Russell. 2010. Artificial intelligence a modern approach. Pearson Education, Inc.466

12

https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
https://openreview.net/forum?id=iaYcJKpY2B_
https://api.semanticscholar.org/CorpusID:253707906


Barbara G Ryder. 1983. Incremental data flow analysis. In Proceedings of the 10th ACM SIGACT-467

SIGPLAN symposium on Principles of programming languages. 167–176.468

Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. Adaptive test generation using a large469

language model. arXiv preprint arXiv:2302.06527 (2023).470

Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques Klein, and471

Tegawendé F. Bissyandé. 2023. Is ChatGPT the Ultimate Programming Assistant – How far472

is it? arXiv:2304.11938 [cs.SE]473

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay474

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-475

tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,476

Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,477

Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel478

Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,479

Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,480

Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,481

Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh482

Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen483

Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,484

Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open Foundation and Fine-Tuned Chat485

Models. arXiv:2307.09288 [cs.CL]486

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. 2023. Large487

Language Models Still Can’t Plan (A Benchmark for LLMs on Planning and Reasoning about488

Change). arXiv:2206.10498 [cs.CL]489

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. 2021. CodeT5: Identifier-aware490

Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation. ArXiv491

abs/2109.00859 (2021).492

Jiayi Wei, Greg Durrett, and Isil Dillig. 2023. Coeditor: Leveraging Contextual Changes for Multi-493

round Code Auto-editing. arXiv:2305.18584 [cs.SE]494

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny495

Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. Advances496

in Neural Information Processing Systems 35 (2022), 24824–24837.497

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated program repair in the498

era of large pre-trained language models. In Proceedings of the 45th International Conference on499

Software Engineering (ICSE 2023). Association for Computing Machinery.500

Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: inference and application of API migration501

edits. In 2019 IEEE/ACM 27th International Conference on Program Comprehension (ICPC).502

IEEE, 335–346.503

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.504

2023. ReAct: Synergizing Reasoning and Acting in Language Models. arXiv:2210.03629 [cs.CL]505

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt.506

2019. Learning to Represent Edits. In ICLR 2019. https://www.microsoft.com/en-us/507

research/publication/learning-to-represent-edits/ arXiv:1810.13337 [cs.LG].508

Jyh-shiarn Yur, Barbara G Ryder, and William A Landi. 1999. An incremental flow-and context-509

sensitive pointer aliasing analysis. In Proceedings of the 21st International conference on Software510

Engineering. 442–451.511

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B. Tenenbaum, and Chuang Gan.512

2023. Planning with Large Language Models for Code Generation. arXiv:2303.05510 [cs.LG]513

Yuhao Zhang, Yasharth Bajpai, Priyanshu Gupta, Ameya Ketkar, Miltiadis Allamanis, Titus Barik,514

Sumit Gulwani, Arjun Radhakrishna, Mohammad Raza, Gustavo Soares, and Ashish Tiwari. 2022.515

Overwatch: Learning patterns in code edit sequences. Proc. ACM Program. Lang. 6, OOPSLA2516

(2022), 395–423. https://doi.org/10.1145/3563302517

13

https://www.microsoft.com/en-us/research/publication/learning-to-represent-edits/
https://www.microsoft.com/en-us/research/publication/learning-to-represent-edits/
https://www.microsoft.com/en-us/research/publication/learning-to-represent-edits/
https://doi.org/10.1145/3563302


A Appendix A518

A.1 Implementation519

In our implementation of CodePlan, we construct the Dependency Graph, by parsing code files using520

the "tree-sitter" library Brunsfeld et al . (2023), which provides identification of code blocks such521

as classes, methods, import statements etc... as well as the AST. In C#, for relationships such as522

caller-callee, overrides-overridden, and more, we establish edges within the Dependency Graph by523

implementing custom logic that traces relationships within the AST. For Python, we utilize Jedi Jed524

([n. d.]), a static analysis tool, to identify relationships. Our implementation integrates the gpt-4-32k525

LLM for code edits, providing it with structured input for enhanced quality and accuracy. We use526

temperature = 0 and, top_p = 1 and sample a single response for every call to the LLM. While527

our current implementation handles C# and Python repositories, it is extensible to other programming528

languages due to the various abstractions and layered architecture of CodePlan529

A.2 Data530

At present, there is no benchmark to evaluate repository-level coding tasks. We therefore construct a531

benchmark by selecting code repositories of varying complexities and sizes. This includes internal532

C# Repositories (I1, I2) that are large proprietary codebases requiring non-trivial migrations from533

legacy to modern logging frameworks. We also include External Repositories from Public GitHub,534

focusing on Migration and Temporal Edits Wei et al. (2023) tasks. For Migration, we selected C#535

repositories (E1 rep (2020), E2 rep (2022)) having API or framework migrations, while for Temporal536

Edits, which involves series of code changes following initial edits, we selected Python repositories537

(T1 whi (2023), T2 aud (2023), T3 JAR (2023)). We identified the GitHub repositories by searching538

for migration and multi-step temporal edit scenarios, and selected corresponding pull requests. As539

reported in Table 3, these repositories have between 4–168 files and 1.8K–20.4K lines of code while540

the number of files changed range from 2–97. Seed changes are the number of initial edits (1–63541

changes), considered as the starting point, and derived changes (3–375 changes) are the subsequent542

edits that follow the initial seed changes, which CodePlan is expected to automate. Diff size b/w543

source and target (lines) is the total number of lines (15–4.9K) in the file-wise diff between the544

Source and Target versions of the repositories. This tells us the size of the required code changes. We545

used the same prompt template for C# migration across internal and public repositories (81 lines, as546

reported in Prompt template size (lines)) and another one (75 lines) for Python temporal edits.547

A.3 Data Pre-Processing548

For each repository, we collected the before (Source) and after (Target) snapshots of the code from549

the pull requests. The pull requests contained code changes unrelated to the task. We either 1) applied550

them to both Source and Target, or 2) removed them from the Target. From the remaining changes,551

seed changes were identified through manual inspection. To prepare the Source for evaluation552

with both CodePlan and the baselines, we patched in the seed changes or prepared instructions for553

the LLM to carry them out. We observed that in contrast to the internal repositories, the external554

repositories did not have uniformity in the coding styles. Our initial experimentation revealed that this555

resulted in even the correct edits being flagged as differing from the ground truth edits. To mitigate556

this, we pre-process the Target repositories to ensure uniform coding practices. This may involve557

formatting changes such as standardising whitespace, adding commas to lists or ordering imports558

as well as minor code changes such as enforcing common coding practices or removing code-edits559

unrelated to the task. Note that all methods are evaluated on the same Source repositories (after the560

pre-processing).561

A.4 Benchmark Statistics562

We now discuss statistics of our benchmark to understand its scale and complexity (Table 3). The563

number of files changed range from 2–97. Seed changes are the number of initial edits (1–63 changes),564

considered as the starting point, and derived changes (3–375 changes) are the subsequent edits that565

follow the initial seed changes, which CodePlan is expected to automate. Diff size b/w source and566

target (lines) is the total number of lines (15–4.9K) in the file-wise diff between the Source and567

Target versions of the repositories. This tells us the size of the required code changes. Similarly, we568

14



Migration Temporal EditsRepositories I1 I2 E1 E2 T1 T2 T3
Number of files 91 168 55 341 21 137 4
Lines of code 8853 16476 8868 1978 3883 20413 1874
Number of files changed 47 97 21 23 2 2 3
Number of seed changes 41 63 42 50 2 1 1
Number of derived changes 110 375 22 68 8 3 10
Diff size b/w Source & Target (lines) 1744 4902 1024 154 104 15 39
Size of seed edits (lines) 242 242 379 340 76 4 1
Prompt template size (lines) 81 81 81 110 75 75 75

Table 3: Benchmark statistics.

report the size of seed edits. We used the same prompt template for C# migration across internal and569

public repositories (81 lines, as reported in Prompt template size (lines)) and another one (75 lines)570

for Python temporal edits.571

A.5 Limitations and Threats to Validity572

CodePlan relies on high-quality dependency analysis, which works well in statically typed languages573

like C# and Java but can be challenging in dynamically typed languages like Python or JavaScript574

without type hints due to their dynamic nature.575

Our current CodePlan implementation mainly deals with code block relations through static anal-576

ysis. However, real-world software systems have dynamic dependencies, like data flows, complex577

dispatching, and execution dependencies, and include various artifacts beyond code files. Addressing578

these dynamic dependencies and software artifacts is a priority for our future work.579

CodePlan edits one code block at a time, which might not be the most efficient approach in all580

cases. Also, LLMs can make errors while editing code. Our ablations show that CodePlan’s spatial581

and temporal context helps avoid such errors considerably. Besides, instead of blindly trusting the582

changes made by the LLM, CodePlan employs an oracle to validate the changes and initiates further583

iterations if the changes are found unsatisfactory. This oracle-in-the-loop strategy helped us get to the584

desired, error-free edits in multiple C# migration cases. We want to explore techniques to exploit585

feedback from oracles to improve reliability of repository-wide changes.586

We chose multiple repositories for two challenging tasks (migration and temporal edits) in two587

languages (C# and Python) to assess CodePlan’s generality. These tasks and repositories represent588

real-world scenarios. However, due to limited access to the LLM, our evaluation is confined to the589

current experiments. There is a potential concern that our selected repositories might have been part590

of the LLM’s training set. To address this, we conducted experiments on two proprietary internal591

C# repositories that the LLM didn’t encounter during training. Moreover, except for E1, our tasks592

use GitHub pull requests created after September 2021, the LLM’s training data cutoff date. We593

intentionally included E1 before this date to test if the model could perform better, but our baseline594

and ablation results indicate that it couldn’t make the desired edits without appropriate context. We595

aim to expand our experimental results to include more repositories in the future.596

Although our current methodology employs zero-shot prompting, there exists potential to include few-597

shot examples Brown et al. (2020), Chain of Thought (CoT) Wei et al. (2022), and other techniques,598

which can improve the performance of CodePlan further.599

A.6 Design Details600

The design section 3 and algorithm 2 provide a highly abstracted picture of CodePlan. Some terms601

have been renamed or combined to make the description less verbose. Complete details details of602

the CodePlan algorithm (Section A.6.1) and its core components: static analysis (Section A.6.2),603

adaptive planning and plan execution (Section A.6.3) are provided in this section.604

A.6.1 The CodePlan Algorithm605

The CodePlan algorithm (Algorithm 2) takes four inputs:606

1. the source code of a repository, R607

15



Algorithm 2: The CodePlan algorithm to automate repository-level coding tasks. The data
structures and functions in Cyan and Orchid are explained in Section A.6.2– A.6.3 respectively.

1 /* Inputs: R is the source code of a repository, Delta_seeds is a set of seed edit
specifications, Theta is an oracle and L is an LLM. */

3 CodePlan(R, Delta_seeds, Theta, L):
4 let mutable G: PlanGraph = null in
5 let mutable D: DependencyGraph = ConstructDependencyGraph(R) in
6 while Delta_seeds is not empty
7 IntializePlanGraph(G, Delta_seeds)
8 AdaptivePlanAndExecute(R, D, G)
9 Delta_seeds := Theta(R)

11 InitializePlanGraph(G, Delta_seeds):
12 for each ⟨B, I⟩ in Delta_seeds
13 AddRoot(G, ⟨B, I, Pending⟩)

15 AdaptivePlanAndExecute(R, D, G):
16 while G has Nodes with Pending status
17 let ⟨B, I, Pending⟩ = GetNextPending(G) in
18 // First step: extract fragment of code
19 let Fragmemt = ExtractCodeFragment(B, R) in
20 // Second step: gather context of the edit
21 let Context = GatherContext(B, R, D) in
22 // Third step: use the LLM to get edited code fragment
23 let Prompt = MakePrompt(Fragment, I, Context) in
24 let NewFragment = InvokeLLM(L, Prompt) in
25 // Fourth step: merge the updated code fragment into R
26 let R := Merge(NewFragment, B, R) in
27 let Labels = ClassifyChanges(Fragment, NewFragment) in
28 let D’ = UpdateDependencyGraph(D, Labels, Fragment, NewFragment, B) in
29 // Fifth step: adaptively plan and propogate the effect of the edit on dependant code
30 let BlockRelationPairs= GetAffectedBlocks(Labels, B, D, D’) in
31 MarkCompleted(B, G)
32 for each ⟨B’, rel⟩ in BlockRelationPairs
33 let N = GetNode(B) in
34 let M = SelectOrAddNode(B’, Nil, Pending) in
35 AddEdge(G, M, N, rel)
36 D := D’

38 GatherContext(B, R, D):
39 let SC = GetSpatialContext(B, R) in
40 let TC = GetTemporalContext(G, B) in
41 (SC, TC)

2. a set of seed edit specifications for the task in hand, ∆seeds608

3. an oracle, Θ609

4. an LLM, L610

The core data structure maintained by the algorithm is a plan graph G, a directed acyclic graph with611

multiple root nodes (line 4). Each node in the plan graph is a tuple ⟨B, I, Status⟩, where B is a612

block of code (that is, a sequence of code locations) in the repository R, I is an edit instruction (along613

the lines of the example shown in Figure 1), and Status is either pending or completed.614

The CodePlan algorithm also maintains a dependency graph D (line 5). Figure 6 illustrates the615

dependency graph structure. We will discuss it in details in Section A.6.2. For now, it suffices to know616

that the dependency graph D represents the syntactic and semantic dependency relations between617

code blocks in the repository R.618

The loop at lines 6–9 is executed until ∆seeds is non-empty. Line 7 calls the InitializePlanGraph619

function (lines 11–13) that adds all the changes in ∆seeds as root nodes of the plan graph. Each edit620

specification comprises of a code block B and an edit instruction I . The status is set to pending for621

the root nodes (line 13). The function AdaptivePlanAndExecute is called at line 8 which executes622

the plan, updates the dependency graph with each code change and extends the plan as necessary.623

Once the plan graph is completely executed, the oracle Θ is run on the repository. It returns error624

locations and diagnostic messages which form ∆seeds for the next iteration. If the repository passes625

the oracle’s checks then it returns an empty set and the CodePlan algorithm terminates.626

We now discuss AdaptivePlanAndExecute, which is the main work horse. It iteratively picks each627

pending node and processes it. Processing a pending node for a block B with edit instruction I628

involves the following five steps:629

16



Figure 6: Illustration of the dependency graph annotated with relations as the edge labels.

1. The first step (line 19) is to extract the fragment of code to edit. Simply extracting code of630

the block B loses information about relationship of B with the surrounding code. Keeping631

the entire file on the other hand takes up prompt space and is often unnecessary. We found632

the surrounding context is most helpful when a block belongs to a class. For such blocks,633

we sketch the enclosing class. That is, in addition to the code of block B, we also keep634

declarations of the enclosing class and its members. As we discuss later, this sketched635

representation also helps us merge the LLM’s output into a source code file more easily.636

2. The second step (line 21) is to gather the context of the edit. The context of the edit637

(line 38–41) consists of (a) spatial context, which contains related code such as methods638

called from the block B, and (b) temporal context, which contains the previous edits that639

caused the need to edit the block B. The temporal context is formed by edits along the paths640

from the root nodes of the plan graph to B.641

3. The third step (lines 23–24) constructs a prompt using the fragment extracted in the first642

step, the instruction I from the edit specification and the context extracted in the second643

step, and invokes the LLM using the prompt to get the edited code fragment.644

4. The fourth step (lines 26–28) merges the edited code back into the repository. Since the645

code is updated, many dependency relationships such as caller-callee, class hierarchy, etc.646

may need to change, and hence, this step also updates the dependency graph D.647

5. The fifth and final step (lines 30–35) does adaptive planning to propagate the effects of648

the current edit on dependant code blocks. This involves classifying the change in the649

edited block, and depending on the type of change, picking the right dependencies in the650

dependency graph to traverse and locate affected blocks. For instance, if the edit of a method651

m in the current block B involves update to the signature of the method, then all callers of652

m get affected (the scenario in Figure 3). For each affected block B′ and the dependency653

relation rel connecting B to B′ in the dependency graph, we get a pair ⟨B′, rel⟩. If a node654

exists for B′ in the plan graph and it is pending, then we add an edge from B to B′ labeled655

with rel to the plan graph. Otherwise, the edge is added to a newly created node for B′656

(line 34). The block B is marked as completed (line 31).657

A.6.2 Static Analysis Components658

We now turn our attention to the static analysis components used in CodePlan. We will cover all the659

data structures and functions in Cyan background from Algorithm 2.660

Incremental Dependency Analysis:661

An LLM can be provided a code fragment and an instruction to edit it in a prompt. While the LLM662

may perform the desired edit accurately, analyzing the impact of the edit on the rest of the repository663

is outside the scope of the LLM call. We believe static analysis is well-suited to do this and propose664

an incremental dependency analysis for the same.665

DependencyGraph. Dependency analysis Aho et al. (2007) is used for tracking syntactic and666

semantic relations between code elements. In our case, we are interested in relations between667

import statements, methods, classes, field declarations and statements (excluding those that operate668

only on variables defined locally within the enclosing method). Formally, a dependency graph D669

17



= (N,E) where N is a set of nodes representing the code blocks mentioned above and E is a670

set of labeled edges where the edge label gives the relation between the source and target nodes671

of the edge. Figure 6 illustrates all the relations we track. The relations include (1) syntactic672

relations (ParentOf and ChildOf, Construct and ConstructedBy) between a block c and the block673

p that encloses c syntactically; a special case being a constructor and its enclosing class related by674

Construct and ConstructedBy, (2) import relations (Imports and ImportedBy) between an import675

statement and statements that use the imported modules, (3) inheritance relations (BaseClassOf676

and DerivedClassOf) between a class and its superclass, (4) method override relations (Overrides677

and OverridenBy) between an overriding method and the overriden method, (5) method invocation678

relations (Calls and CalledBy) between a statement and the method it calls, (6) object instantiation679

relations (Instantiates and InstantiatedBy) between a statement and the constructor of the object it680

creates, and (7) field use relations (Uses and UsedBy) between a statement and the declaration of a681

field it uses.682

ConstructDependencyGraph. The dependency relations are derived across the source code spread683

over the repository through static analysis. We represent the source code of a repository as a forest684

of abstract syntax trees (ASTs) and add the dependency edges between AST sub-trees. A file-685

local analysis derives the syntactic and import relations. All other relations require an inter-class,686

inter-procedural analysis that can span file boundaries. In particular, we use the class hierarchy687

analysis Dean et al. (1995) for deriving the semantic relations.688

ClassifyChanges. As discussed in Section A.6.1, in the fourth step, CodePlan merges the code689

generated by the LLM into the repository. By pattern-matching the code before and after, we classify690

the code changes. Table 4 (the first column) gives the type of atomic change. Broadly, the changes are691

organized as modification, addition and deletion changes, and further by which construct is changed.692

We distinguish between method body and method signature changes. Similarly, we distinguish693

between changes to a class declaration, to its constructor or to its fields. The changes to import694

statements or the statements that use imports are also identified. These are atomic changes. An695

LLM can make multiple simultaneous edits in the given code fragment, resulting in multiple atomic696

changes, all of which are identified by the ClassifyChanges function.697

UpdateDependencyGraph. As code generated by the LLM is merged, the dependency relations698

associated with the code at the change site are re-analyzed. Table 4 (the second column) gives the699

rules to update the dependency graph D to D′ based on the labels inferred by ClassifyChanges. For700

modification changes, we recompute the relations of the changed code except for constructors. A con-701

structor is related to its enclosing class by a syntactic relation which does not have to be recomputed.702

For addition changes, new nodes and edges are created for the added code. Edges corresponding703

to syntactic relations are created in a straightforward manner. If a change simultaneously adds an704

element (an import, a method, a field or a class) and its uses, we create a node for the added element705

before analyzing the statements that use it. Addition of a method needs special handling as shown706

in the table: if an overriding method C.M is added then the Calls/CalledBy edges incident on the707

matching overriden method B.M are redirected to C.M if the call is issued on a receiver object of708

type C. The deletion of an overriding method requires an analogous treatment as stated in Table 4.709

All other deletions require removing nodes and edges as stated in the table.710

Change May-Impact Analysis:711

In the fifth step, CodePlan identifies the code blocks that may have been impacted by the code change712

by the LLM. Let Rel(D, B, rel) be the set of blocks that are connected to a block B via relation rel713

in the dependency graph D. Let D and D′ be the dependency graph before and after the updates in714

Table 4.715

GetAffectedBlocks. The last column in Table 4 tells us how to identify blocks affected by a code716

change. When the body of a method M is edited, we perform escape analysis Choi et al. (1999);717

Blanchet (2003) to identify if any object accessible in the callers of M (an escaping object) has718

been affected by the change. If yes, the callers of M (identified through Rel(D, M, CalledBy))719

are identified as affected blocks. Otherwise, the change is localized to the method and no blocks720

are affected. If the signature of a method is edited, the callers and methods related to it through721

method-override relations in the inheritance hierarchy are affected. The signature change can affect722

the Overrides and OverridenBy relations themselves, e.g., addition or deletion of the @Override723

access modifier. Therefore, the blocks related by these relations in the updated dependency graph724

D′ are also considered as affected as shown in Table 4. When a field F of a class C is modified, the725

18



Atomic Change Dependency Graph Update Change May-Impact Analysis
Modification Changes

Body of method M Recompute the edges incident on the
statements in the method body.

If an escaping object is modified then Rel(D, M,
CalledBy) else Nil.

Signature of method
M

Recompute the edges incident on the
method.

Rel(D, M, CalledBy), Rel(D, M, Overrides),
Rel(D, M, OverriddenBy), Rel(D′, M, Overrides),
Rel(D′, M, OverriddenBy)

Field F in class C Recompute the edges incident on the
field.

Rel(D, F, UsedBy), Rel(D, C, ConstructedBy),
Rel(D, C, BaseClassOf), Rel(D, C, DerivedClas-
sOf)

Declaration of class
C

Recompute the edges incident on the
class.

Rel(D, C, InstantiatedBy), Rel(D, C, BaseClassOf),
Rel(D, C, DerivedClassOf), Rel(D′, C, BaseClas-
sOf), Rel(D′, C, DerivedClassOf)

Signature of con-
structor of class C

No change. Rel(D, C, InstantiatedBy), Rel(D, C, BaseClassOf),
Rel(D, C, DerivedClassOf)

Import/Using state-
ment I

Recompute the edges incident on the im-
port statement.

Rel(D, I, ImportedBy)

Addition Changes
Method M in class
C

Add new node and edges by analyzing
the method. If C.M overrides a base
class method B.M then redirect the Call-
s/CalledBy edges from B.M to C.M if
the receiver object is of type C.

Rel(D, C, BaseClassOf), Rel(D, C, DerivedClas-
sOf), Rel(D′, M, CalledBy)

Field F in class C Add new node and edges by analyzing
the field declaration.

Rel(D, C, ConstructedBy), Rel(D, C, BaseClas-
sOf), Rel(D, C, DerivedClassOf)

Declaration of class
C

Add new node and edges by analyzing
the class declaration.

Nil

Constructor of class
C

Add new node and edges by analyzing
the constructor.

Rel(D, C, InstantiatedBy), Rel(D, C, BaseClassOf),
Rel(D, C, DerivedClassOf)

Import/Using state-
ment I

Add new node and edges by analyzing
the import statement.

Nil

Deletion Changes
Method M in class
C

Remove the node for M and edges in-
cident on M. If C.M overrides a base
class method B.M then redirect the Call-
s/CalledBy edges from C.M to B.M if
the receiver object is of type C.

Rel(D, M, CalledBy), Rel(D, M, Overrides),
Rel(D, M, OverriddenBy)

Field F in class C Remove the node of the field and edges
incident on it.

Rel(D, F, UsedBy), Rel(D, C, ConstructedBy),
Rel(D, C, BaseClassOf), Rel(D, C, DerivedClas-
sOf)

Declaration of class
C

Remove the node of the class and edges
incident on it.

Rel(D, C, InstantiatedBy), Rel(D, C, BaseClassOf),
Rel(D, C, DerivedClassOf)

Constructor of class
C

Remove edges to the class due to object
instatiations using the constructor.

Rel(D, C, InstantiatedBy), Rel(D, C, BaseClassOf),
Rel(D, C, DerivedClassOf)

Import/Using state-
ment I

Remove the node of the import statement
and edges incident on it.

Rel(D, I, ImportedBy)

Table 4: Rules for updating the dependency graph and for change may-impact analysis for atomic
changes. We refer to the dependency graphs before and after the updates by D and D′ respectively.

19



statements that use F, the constructors of C and sub/super-classes of C are affected. When a class726

is modified, the methods that instantiate it and its sub/super-classes as per D and D′ are affected. A727

modification to a constructor has a similar rule except that such a change does not change inheritance728

relations and hence, only D is required. When an import statement I is modified, the statements that729

use the imported module are affected.730

The addition and deletion changes are less complex than the modification changes, and their rules are731

designed along the same lines as discussed above. In the interest of space, we do not explain each of732

them step-by-step. We assume that there is no use of a newly added class or an import in the code.733

Therefore, adding them does not result in any affected blocks. In our experiments, we have found734

the rules in Table 4 to be adequate. However, CodePlan can be easily configured to accommodate735

extensions of the rules in Table 4 if necessary.736

A.6.3 Adaptive Planning and Plan Execution737

We now discuss the data structures and functions from Algorithm 2 in the Orchid background.738

Adaptive Planning: Having identified the affected blocks (using GetAffectedBlocks), CodePlan739

creates change obligations that need to be discharged using an LLM to make the dependent code740

consistent with the change. As discussed in Section A.6.1, this is an iterative process.741

PlanGraph. A plan graph P = (O,C) is a directed acyclic graph with a set of obligations O, each742

of which is a triple ⟨B, I, status⟩ where B is a block, I is an instruction and status is either pending743

or completed. An edge in C records the cause, the dependency relation between the blocks in the744

source and target obligations. In other words, the edge label identifies which Rel clause in a change745

may-impact rule in Table 4 results in creation of the target obligation.746

ExtractCodeFragment. As discussed in the first step in Section A.6.1, simply extracting code747

for a block B is sub-optimal as it loses context. The ExtractCodeFragment function takes the whole748

class the code block belongs to, keeps the complete code for B and retains only declarations of the749

class and other class members. We found this to be useful because the names and types of the class750

and other members provide additional context to the LLM. Often times the LLM needs to make751

multiple simultaneous changes. For example, in some of our case studies, the LLM has to add a field752

declaration, take an argument to a constructor and use it within the constructor to initialize the field.753

Providing the sketch of the surrounding code as a code fragment to the LLM allows the LLM to make754

these changes at the right places. The code fragment extraction logic is implemented by traversing755

the AST and "folding" away the subtrees (e.g., method bodies) that are sketched. This reduces the756

code size without sacrificing naturalness of code Hindle et al. (2016). As stated in Section 2, this757

sketched representation also allows us to place the LLM generated code back into the AST without758

ambiguity, even when there are multiple simultaneous changes.759

GetSpatialContext. Spatial context in CodePlan refers to the arrangement and relationships of760

code blocks within a codebase, helping understand how classes, functions, variables, and modules761

are structured and interact. It’s crucial for making accurate code changes. CodePlan utilizes the762

dependency graph to extract spatial context. This enables CodePlan to make context-aware code763

modifications that are consistent with the code’s spatial organization, enhancing the accuracy and764

reliability of its code editing capabilities. In particular, when generating an edit to a method, CodePlan765

fetches all the methods called in the body of the method to be edited, class members accessed, along766

with methods that override or are overridden by the method to be edited. For constructors, we fetch767

the constructor of super-class if present.768

GetTemporalContext. The plan graph records all change obligations and their inter-dependences.769

Extracting temporal context is accomplished by linearizing all paths from the root nodes of the plan770

graph to the target node. Each change is a pair of the code fragments before and after the change.771

The temporal context also states the "causes" (recorded as edge labels) that connect the target node772

with its predecessor nodes. For example, if a node A is connected to B with a CalledBy edge, then773

the temporal context for B is the before/after fragments for A and a statement that says that "B calls774

A", which helps the LLM understand the cause-effect relation between the latest temporal change775

(change to A) and the current obligation (to make a change to B).776

Plan Execution: CodePlan iteratively selects a pending node in the plan graph and invokes an LLM777

to discharge the change obligation.778

20



Figure 7: Illustration of importance of temporal context. Failure to update LogacyLogger to Modern-
Logger in Initialize() method is the results of missing missing temporal context.

MakePrompt. Having extracted the code fragment to be edited along with the relevant spatial and779

temporal context, we construct a prompt to pass to the LLM with the structure given below. We open780

with the task specific instructions p1 followed by listing the edits made in the repository so far p2781

that are relevant to the fragment being edited (temporal context). The next section p3 notes how782

each of the fragments present in p2 are related to the fragment to be edited. This is followed by the783

spatial context p4 and the fragment to the edited p5 .784

p1 Task Instructions: Your task is to . . .

p2 Earlier Code Changes: These are edits that have been made in the code-base previously -
p3 Causes for Change: The change is required due to -
p4 Related Code: The following code maybe related -
p5 Code to be Changed Next: The existing code is given below -

Edit the "Code to be Changed Next" and produce "Changed Code" below. Edit the "Code to
be Changed Next" according to the "Task Instructions" to make it consistent with the "Earlier
Code Changes", "Causes for Change" and "Related Code". If no changes are needed, output "No
changes."

785

Oracle and Plan Iterations. Once all the nodes in the plan graph are marked as completed, an786

iteration of CodePlan is completed. As shown in Figure 2, the oracle is invoked on the repository. If787

it flags any errors, the error locations and messages are used for seed changes for the next iteration788

and the planning resumes once again. If the oracle does not flag any errors, CodePlan terminates.789

B Appendix B790

B.1 Results Discussion791

B.1.1 RQ2: How important are the temporal and spatial contexts for CodePlan’s792

performance?793

The results regarding the importance of temporal and spatial contexts for CodePlan’s planning (RQ2)794

reveal critical insights. As observed in Table 2, when temporal contexts are not considered, there is a795

noticeable increase in missed blocks during the code modification process. This increase is attributed796

to the Large Language Model (LLM) not making necessary changes to certain code blocks due to its797

inability to comprehend the need for those modifications in the absence of temporal context.798

An illustrative example in Figure 7 exemplifies this issue. In this scenario, a correction is required799

in the base class’s virtual method based on changes to the overridden method’s signature in the800

derived class. However, the LLM, lacking temporal context, does not possess information about the801

derived class’s method, leading it to believe that no changes are necessary to the base class method.802

This highlights the critical role that temporal context plays in understanding code dependencies and803

ensuring accurate updates.804

21



Figure 8: Illustration of importance of temporal context. Failed update to Startup() method is the
results of missing missing temporal context.

Figure 9: Illustration of importance of spatial context. Spurious blocks, highlighted in yellow are the
results of missing missing spatial context.

Furthermore, Figure 8 provides another instance where the absence of temporal context impacts the805

code modification process. In this case, a "Context" parameter needs to be added to the "Create-806

Service()" call within the "Startup()" method. However, since the LLM lacks temporal context, it807

is unaware of the signature change to "CreateService()" and, consequently, fails to recognize the808

need for updates to all the callers. This omission results in numerous missed updates throughout the809

codebase.810

It’s crucial to highlight another significant observation: the increase in the count of spurious blocks811

when spatial context is insufficient. This phenomenon occurs because, in the absence of adequate812

spatial context, the Large Language Model (LLM) may incorrectly perceive missing code elements813

and attempt to create them, leading to the generation of spurious code blocks.814

An illustrative example in Figure 9 demonstrates this issue. In this scenario, the task is to modify815

the "AuthorizeUser()" method by migrating the logging calls from an old logging framework to816

a new one. However, due to the lack of spatial context that would specify the existence of the817

"GetUserSubscription()" method and the "CurrentUser" property, the LLM attempts to create these818

elements as well. Consequently, not only is the logging migration addressed, but the LLM also819

introduces unnecessary code blocks, such as the creation of the "GetUserSubscription()" method and820

the addition of "CurrentUser" as a class-level object.821

This observation underscores the critical role of spatial context in guiding the LLM’s understanding822

of code structure and relationships. Providing comprehensive spatial context can help prevent the823

generation of superfluous code blocks and ensure that code modifications are precise and aligned824

with the intended changes.825

22



Figure 10: Illustration of the CodePlan’s plan execution.

In summary, the experimental results emphasize the essential nature of temporal and spatial contexts826

in CodePlan’s planning. The increase in missed and spurious updates due to the absence of temporal827

and spatial contexts underscores the significance of providing the LLM with a comprehensive828

understanding of code evolution and dependencies through these contexts to ensure accurate and829

effective code modifications.830

B.1.2 RQ3: What are the key differentiators that allow CodePlan to outperform baselines in831

solving complex coding tasks?832

CodePlan’s Strategic Planning and Context Awareness:.833

CodePlan’s performance in handling complex coding tasks can be attributed to its its incremental834

analysis and change-may-impact analysis. These capabilities set it apart from baseline methods835

like Build-Repair, which primarily focus on maintaining syntactic correctness while overlooking836

critical contextual details. To illustrate this, let’s delve into an example from repository E1 illus-837

trated in Figure 10, where CodePlan is tasked with migrating the Console.WriteLine method to838

ITestOutputHelper.WriteLine. This migration involves a series of changes 1 to 4 as described839

in the Figure 10. These cascading changes start from introducing ITestOutputHelper _output840

as a class-level member, accomplished via LLM updates.841

CodePlan’s change-may-impact analysis proves useful in this scenario. It recognizes that the addition842

of a new field necessitates modifications to the constructor to ensure proper initialization. As a843

result, CodePlan schedules the necessary constructor modification. Consequently, the constructor844

Subscriber(...) is correctly updated to accept ITestOutputHelper as a parameter and initialize845

the class member _output. This in turn results in a series of changes through the repository as846

explained in steps 1 to 4 in the Figure 10.847

This example demonstrates how CodePlan makes methodical and contextually-aware changes to848

the repository, thanks to its ability to do change impact analysis and incorporate temporal contexts.849

In contrast, Build-Repair, reliant solely on syntactic correctness, fails to even detect the need for850

modification in the Subscriber’s constructor. Given that all syntactic rules are adhered to, it does not851

prompt a build error and consequently fails to implement changes in steps 2 to 4, as illustrated in852

Figure 4. Instead, it solely executes the modification outlined in step 1, resulting in incomplete code853

updates.854

CodePlan’s advantage lies in its holistic understanding of code relationships and its planning, which855

ensures the integrity and functionality of the codebase are maintained throughout complex coding856

23



tasks. This qualitative analysis highlights how CodePlan’s approach outperforms baselines in857

handling intricate coding challenges.858

Incremental Analysis: Maintaining Relationships with Dependency Graph:.859

CodePlan’s performance in tackling complex coding tasks is attributed to its incremental analysis,860

which effectively links edits with the underlying dependency graph. Unlike a static snapshot of code,861

which may result in an incomplete representation of dependencies, our incremental analysis method862

ensures that relationships within the dependency graph are maintained until the affected blocks are863

modified.864

Consider a scenario where a caller function undergoes a renaming process. Traditional static snapshots865

would struggle to preserve the caller-callee relationship because, in their view, the caller has already866

been renamed. However, CodePlan’s incremental analysis steps in, preserving the caller-callee867

relation until the caller function itself undergoes an update. This dynamic approach ensures that868

critical relationships aren’t prematurely severed, allowing for more accurate and context-aware code869

modifications.870

Another instance of CodePlan’s lies in handling modifications to import statements. Suppose an871

import statement originally reads as import numpy, and it’s modified to import numpy as np. In872

a static snapshot, this alteration could result in the loss of the "ImportedBy" relationship. However,873

CodePlan’s incremental analysis ensures that such vital relationships are maintained, facilitating874

precise and comprehensive code updates.875

Incremental Analysis: Enhanced Spatial and Temporal Context Extraction:.876

CodePlan’s success in complex coding tasks can be attributed to its abiltity to extract spatial context877

more accurately, thanks to incremental analysis. Attempting to extract spatial context without the878

support of incremental analysis often leads to a loss of accuracy and completeness.879

Consider a scenario where a method within the codebase constructs an object of a class, let’s say "A."880

However, at some point in the code’s history, "A" was renamed to "B." Traditional methods that lack881

incremental analysis may struggle with this situation. When attempting to extract the class definition,882

they may encounter a roadblock because, in the current static snapshot, "A" no longer exists.883

However, CodePlan’s incremental analysis comes to the rescue by establishing the crucial link884

between the historical context and the present state. It accurately extracts the class definition,885

recognizing that the object is now of class "B" due to the earlier temporal edit (the renaming of "A" to886

"B"). This holistic approach ensures that spatial context extraction is both precise and comprehensive,887

allowing CodePlan to make informed and context-aware code modifications.888

Change-may-impact analysis propagates subtle behavioral changes..889

One of the key factors differentiating CodePlan’s performance in complex coding tasks is its ability890

to detect subtle behavioral changes through extensive change-may-impact analysis. While certain891

code edits, like modifying method signatures, result in obvious breaking changes that can be detected892

by build tools, others induce more nuanced behavioral shifts without directly breaking the build.893

These subtle alterations, often overlooked, can significantly affect code correctness and functionality.894

For instance, a seemingly minor change in a method’s return value, from True to False, may invalidate895

assertions in unit tests.896

CodePlan is able to identify such behavioral transformations that may elude oracles such as build897

or static checking tools. Its thorough change-may-impact analysis delves beyond surface-level898

modifications, proactively recognizing these inconspicuous shifts. This capability sets CodePlan899

apart from baseline methods, which primarily focus on changes related to build success. Consequently,900

CodePlan emerges as a powerful solution for addressing complex coding tasks, ensuring that even901

the most subtle alterations are meticulously considered, ultimately enhancing code quality.902

Change may-impact analysis maintains cause-effect relationship.. One of CodePlan’s differen-903

tiators lies in its proficiency in preserving the cause-effect relationship when handling complex904

coding tasks. Traditional build tools are effective at pinpointing breaking changes but often fall905

short in identifying the underlying causes and their corresponding effects. For instance, if a method906

signature is altered within an overridden method, a typical build tool would flag the issue at the907

overridden method’s location, where the error is observed. However, this approach fails to recognize908

24



the underlying cause—the change in the method signature, which should ideally lead to an update in909

the corresponding virtual method in the base class.910

In contrast, CodePlan’s change-may-impact analysis excels in maintaining the causal link between911

code modifications. When a breaking change is introduced, CodePlan not only identifies the error912

but also traces it back to the root cause, establishing the need for subsequent changes. In the913

aforementioned example, CodePlan recognizes that the change in the overridden method’s signature914

necessitates an update to the corresponding virtual method in the base class. This meticulous915

preservation of cause and effect sets CodePlan apart from baseline methods, which often treat issues916

in isolation without considering the broader context.917

25


	Introduction
	Motivation
	Design
	Experimental Setup
	Tasks
	Oracles and Baselines
	Evaluation

	Results and Analysis
	RQ1: How well is CodePlan able to localize and make the required changes to automate repository-level coding tasks compared to baselines?
	RQ2: How important are temporal and spatial contexts to CodePlan's performance?
	RQ3: What are the key differentiators that allow CodePlan to outperform baselines in solving complex coding tasks?

	Related Work
	Conclusions and Future Work
	Appendix A
	Implementation
	Data
	Data Pre-Processing
	Benchmark Statistics
	Limitations and Threats to Validity
	Design Details
	The CodePlan Algorithm
	Static Analysis Components
	Adaptive Planning and Plan Execution


	Appendix B
	Results Discussion
	RQ2: How important are the temporal and spatial contexts for CodePlan's performance?
	RQ3: What are the key differentiators that allow CodePlan to outperform baselines in solving complex coding tasks?



