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ABSTRACT

Counterfactual reasoning is pivotal in human cognition and especially important
for providing explanations and making decisions. While Judea Pearl’s influential
approach is theoretically elegant, its generation of a counterfactual scenario often
requires interventions that are too detached from the real scenarios to be feasible.
In response, we propose a framework of natural counterfactuals and a method
for generating counterfactuals that are more grounded in empirical evidence. Our
methodology relaxes the non-backtracking requirement in standard counterfactual
reasoning and allows changes in variables that are causally prior to the variables
involved in a counterfactual supposition, when such changes are needed to satisfy
some “naturalness” criterion. On the other hand, we introduce an optimization
framework to encourage satisfying naturalness with as little backtracking as pos-
sible. As we show in experiments, our approach is better at generating desired
counterfactual instances than the standard Pearlian approach.

1 INTRODUCTION

Counterfactual reasoning, which aims to answer what would have been the case if certain features
of the actual situation had been different, is often used in human cognition, underpinning our abil-
ity to simulate actions, perform self-reflection, provide explanations, and inform decisions. For AI
systems to mirror such human-like decision-making processes, incorporating counterfactual reason-
ing is crucial. Judea Pearl’s structural approach to counterfactual modeling and reasoning stands
as a cornerstone in machine learning. Within this framework, counterfactuals are conceptualized
as being generated by surgical interventions on X that sever causal links while leaving its causally
upstream variables untouched (Pearl, 2009). Such non-backtracking counterfactual reasoning (i.e.,
directly performing an intervention on X and leaving X’s causal ancestors intact) can yield valuable
insights into the consequences of hypothetical actions. Consider a scenario: Tom on a high-speed
bus fell after a sudden break and as a result injured Jerry. The non-backtracking counterfactual rea-
soning would tell us that if Tom had stood still (despite the sudden braking), then Jerry would not
have been injured. Pearl’s approach supplies a principled machinery to reason about conditionals of
this sort, which are usually useful for explanation, planning, and responsibility allocation.

However, such surgical interventions may not be feasible in practice and then may not help too
much in self-reflection. In this example, preventing Tom’s fall in a sudden braking scenario con-
tradicts mechanisms that may be extremely hard or even impossible to disrupt, like the inertia laws
of physics. This incongruity poses challenges to the practical application of such counterfactual
reasoning. From a legal perspective, Tom’s fall to cause Jerry’s injury could be given a “necessity
defense”, noting that the sudden braking has left him with no alternatives (Conde, 1981). Thus, the
non-backtracking counterfactual about Tom standing still despite the sudden braking may be of very
limited relevance to practical concerns in such cases.

We consider the scenario where a primary goal of counterfactual reasoning is constructive — to
reflect upon and better situations. With this objective in mind, it is expected to provide actionable
insights. In view of this challenge to non-backtracking counterfactuals, we introduce “natural coun-
terfactuals” in this paper, which are counterfactuals derived from interventions that are natural, in the
sense of being sufficiently plausible within observed data contexts. In the above example, it is too
implausible for Tom not to fall given a sudden stop. A more plausible intervention might be one tar-
geting a prior event, such as making the bus slow down earlier, which amounts to some backtracking.
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Natural counterfactuals are therefore expected to align better with real-world scenarios and facilitate
more practical solutions or more realistic decisions. In machine learning, while non-backtracking
counterfactuals can sometimes produce unlikely or unrealistic scenarios, our methodology relies on
empirically supported interventions, and hence mitigate the risk of implausible outcomes and ensure
empirically grounded results.

In the standard Pearlian framework, counterfactual reasoning is concerned with inferences of the
consequences of a change that is due to an intervention that directly brings about the change. In
our approach, however, such direct interventions will be avoided if they are not sufficiently “natu-
ral”, and interventions on causally preceding variables will be invoked when necessary. Our natural
counterfactuals are intended to stay closer to reality than the standard Pearlian counterfactuals, by
locating changes that are feasible and effective at realizing the desired counterfactual supposition.
Our approach significantly enhances the real-world applicability of counterfactual reasoning, as evi-
denced by experiments showing an improved quality of counterfactual generation. More specifically,
this paper makes the following contributions:

• We develop a general framework of what we call natural counterfactuals, which are both
more flexible and more realistic than the standard framework.

• We propose a novel optimization framework for generating natural counterfactuals. By
combining a naturalness constraint with a principle of minimal change that discourages
unnecessary backtracking, we seek to strike a best balance between natural and non-
backtracking counterfactuals.

• We present a detailed method in the general framework and test it empirically. The empir-
ical results, on both simulated and real data, demonstrate the efficacy of our method.

2 RELATED WORK

Non-backtracking Counterfactual Generation. As will become clear, our theory is presented in
the form of counterfactual sampling or generation. (Pawlowski et al., 2020b; Kocaoglu et al.; Dash
et al., 2022; Sanchez & Tsaftaris) use the deep generative models to learn an SCM from data given
a causal graph; these works strictly follow Pearl’s theory of non-backtracking counterfactuals. Our
case studies will examine some of these models and demonstrate their difficulties in dealing with
unseen inputs.

Backtracking Counterfactuals. Backtracking in counterfactual reasoning has drawn plenty of
attention in philosophy (Hiddleston, 2005; Khoo, 2017), psychology(Dehghani et al., 2012), and
cognitive science (Gerstenberg et al., 2013). (Hiddleston, 2005) proposes a theory that is in spirit
similar to ours, in which backtracking is allowed but limited by some requirement of matching as
much causal upstream as possible. Gerstenberg et al. (2013) shows that people use both backtracking
and non-backtracking counterfactuals in practice and tend to use backtracking counterfactuals when
explicitly required to explain causes for the supposed change in a counterfactual. von Kügelgen
et al. (2022) is a most recent paper explicitly on backtracking counterfactuals. The main differences
between that work and ours are that von Kügelgen et al. (2022) requires backtracking all the way
back to exogenous noises and measures closeness on noise terms, which in our view are less reason-
able than limiting backtracking to what we call “necessary backtracking” and measuring closeness
directly on endogenous, observable variables. Moreover, their backtracking counterfactuals some-
times allow gratuitous changes, as we explain in the Appendix.

Algorithmic Recourse. Algorithmic recourse emphasizes providing individuals with actionable
recommendations to achieve a desired outcome from a predictive model (Karimi et al., 2020a; Upad-
hyay et al., 2021; Karimi et al., 2020b; Rawal et al., 2020; Pawelczyk et al., 2022). The concepts
of (non-)backtracking counterfactuals and algorithmic recourse both revolve around the idea of un-
derstanding and potentially altering decisions made by predictive models. However, they target
different aspects and objectives of the interpretability and fairness spectrum in AI. The primary fo-
cus here is on guiding individuals on what they can change to achieve a desired outcome from a
model. Though natural counterfactuals might offer suggestions to individuals on potential interven-
tions, they operate within a broader framework, focusing on the feasibility of these interventions
rather than their direct applicability to individual cases.
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Counterfactual Explanations. A prominent approach in explainable AI is counterfactual expla-
nation (Wachter et al., 2018; Dhurandhar et al., 2018; Mothilal et al., 2020; Barocas et al., 2020;
Pawlowski et al., 2020a; Verma et al., 2020; Schut et al., 2021; Karimi et al., 2020a), on which our
work is likely to have interesting bearings. Most works on this topic define some sense of minimal
changes of an input sample with a predicted class c such that adding the minimal changes into the
input would make it be classified into another (more desirable) class. Although this paper does not
discuss counterfactual explanations, our framework may well be used to define a novel notion of
counterfactual explanation by requiring the counterfactual instances to be “natural” in our sense.

3 NOTATIONS AND BACKGROUND

We use a structural causal model (SCM) to represent the data generating process of a causal
system. A SCM is a mathematical structure consisting of a triplet M :=< U,V,F >, with two
disjoint variable sets U = {U1, ...,UN} (exogenous or noise variables whose values or probability
distributions are given as inputs) and V = {V1, ...,VN} (endogenous or observed variables whose
values are determined by other variables in the model), and a function set F = {f1, ..., fN}, one
for each endogenous variable. Note that we assume there is an equal number of exogenous and
endogenous variables, or in other words, there is exactly one distinct noise variable affecting each
endogenous variable. This assumption can be relaxed but we will adopt it in this paper for simplicity.
Each function, fi ∈ F, specifies how an endogenous variable Vi is determined by its direct causes,
PAi ⊆ V:

Vi := fi(PAi,Ui), i = 1, ..., N (1)

We assume the SCM is recursive, meaning that the transitive closure of the direct causal relations
will not relate any variable to itself. A probabilistic SCM is a pair, < M, p(U) >, consisting of
a (recursive) SCM and a probability distribution p(U) for the noise variables. Since the SCM is
recursive, p(U) induces a joint distribution over U and V. A causal world is a pair < M,u >,
with u a specific value setting of U.

A counterfactual ponders what would happen in a scenario that differs from the actual one in a
certain way. Following a standard notation, terms with with a ∗ superscript refer to a counterfactual
world. For example, u∗

k denotes Uk’s value in a counterfactual world. Let A,B,E be sets or vectors
of endogenous variables. Here is a general counterfactual question: given the observation of E = e,
what would the value B have been if the value of A were a∗ (instead of the actual value a)? The
Pearlian, non-backtracking reading of this question takes the counterfactual supposition of A = a∗

to be realized by an intervention on A (which will leave every causal ancestor of A in the model
invariant). Given this understanding, counterfactual inference includes three steps. (1) Abduction:
The noise distribution is updated based on the given evidence E = e. (2) Action: The causal model
is modified, in which A is fixed to a∗ while keeping other components the same as before. (3)
Prediction: The counterfactual outcome of B, denoted as B∗, is inferred using the modified model
and the updated noise distribution. In this setting, the counterfactual world is stipulated to share the
same values of the noise variables with the actual world, and breaks by intervention some causal
links that are present in the actual world. However, some interventions, e.g., having Tom stand still
while keeping the sudden brake, might be infeasible in reality.

4 A FRAMEWORK OF NATURAL COUNTERFACTUALS

4.1 OVERVIEW

We aim to address this issue by relaxing the stipulation of no backtracking on the one hand and min-
imizing the extent of backtracking on the other. The general idea is to use a “naturalness” criterion
to detect the need of backtracking and use a novel conception of minimal change to determine a
minimal extent of backtracking that is needed. Multiple criteria of naturalness may be explored in
this context, and we will consider some in Sec. 4.2. This discussion will be followed by a theoretical
discussion of minimal change in Sec. 4.3. Sec. 4.4 will unfold a unified optimization framework to
realize natural counterfactuals by integrating naturalness and minimal change.
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4.2 NATURALNESS CRITERIA

We will refer to p(Vi|PAi), i = 1, ..., N , as local (observed) mechanisms, for it is in principle
estimable from the observed data and the given causal structure. Note that a local mechanism also
implicitly encodes the properties of noise variables; given a fixed value for PAi, noise Ui entirely
dictates the probability of Vi. Throughout this paper, the term “local mechanism” will be used to
encompass both the conditional distribution of an endogenous variable given its causal parents and
the distribution of its corresponding noise variable.

In our conception of natural counterfactuals, to say that A = a∗ is a feasible counterfactual suppo-
sition is to say that it could have occurred in a way that conforms to the local mechanisms in the
actual world. In other ways, we need to assess whether any local mechanism that contributes to the
realization of A = a∗ has seen a significant departure from that in the actual world. Let G(A)
denote the A-realization set, which includes A and all its endogenous ancestors in the given SEM.
Our task is to monitor the plausibility of each local mechanism within G(A).

A minimal standard in this vein is to require that each local mechanism p(N|PA(N)) taking a
specific value N = n be greater than 0, where ∀N,N ∈ G(A). However, this standard still
allows counterfactual scenarios that are too far-fetched, even though not outright impossible, which
might still be problematic in practical applications. For instance, in normal distributions, nearly
all observed data fall within three standard deviations from the mean. Data points outside this
range (beyond the 3-sigma area) are deemed as improbable or outlier events. To steer clear of
these improbable data points, we advocate more stringent naturalness criteria, with a user-adjustable
threshold that can be tailored to suit specific problems at hand. 1

4.2.1 NATURALNESS MEASUREMENT

Many criteria may be proposed to capture our intention in one way or another. Below are some
examples that strike us as sensible:

Definition 1 (Measurements of Naturalness) Given a data point X = x, Ux = uX , its parents
taking a value, i.e., PA(X) = paX , and its local mechanism p(X|PA(X)), four candidate mea-
surements of naturalness are:

(1) p(x|paX)eH(X|paX), where H(X|paX) = E[p(X|paX)]: Here, the average naturalness of
variable X is normalized to be 1 relative to p(X|paX). Specifically, when log(p(x|paX)) =
[−H(X|paX)], the naturalness of such a point x is 1.

(2) p(x|paX))
E[p(X|paX)] : This metric aligns with (1) in setting the average naturalness to 1. Interestingly,
the metric servers the low bound of (1).

(3) P (uX): This represents the the cumulative distribution function (CDF) of the noise value uX

associated with X: when the value of X’s parents are fixed, P (uX) serves as an indicator of
naturalness, where P is CDF of UX , i.e., P (ux) =

∫ ux

−∞ p(UX)dUX . The closer P (uX) is
to 0.5 (meaning it is farther from the distribution tails), the higher the naturalness of the local
mechanism.

(4) P (x|paX): the CDF value of x given paX : This definition is similar to (4), but it uses the
cumulative distribution function P (X) instead. Again, the further it is away from tails, the
greater the naturalness of the local mechanism is.

Definition (1) provides a measure of naturalness based on the concept of entropy. It quantifies the
log density of a data point within the distribution, which can be interpreted as a measure of its natu-
ralness. The relative naturalness of a data point is determined by comparing its expectation w.r.t. its
distribution. Definition (2) serves as a lower bound to Definition (1) by comparing the probability
of a data point with the average probability of the distribution. Specifically, (1) can be rewritten as
elog(p(x|paX))−[−H(X|paX)]. The term − log(p(x|paX)) represents the measure of surprise in the
information theory or say log(p(x)) can indicate possibility that x happens given paX and thus nat-
uralness of a data point (Ash, 2012). The term [−H(X|paX)] represents the average naturalness of

1The term “naturalness” can be defined in various ways. In our current context, our definition of naturalness
is exclusively determined by the information contained within Structural Causal Models (SCMs), rather than
being influenced by the particular methods employed to carry out interventions. However, we are interested in
investigating alternative definitions of naturalness in our future research.
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the distribution. Therefore, log(p(x))− [−H(X|paX)] is the relative naturalness of a value x given
its parents compared to the average naturalness of the entire distribution p(X|paX). To normalize
the average naturalness to 1, the final naturalness indicator is defined as p(x|paX)eH(X|paX), which
is invariant to scaling transformations. For example, for a root endogenous variable following Gaus-

sian distribution N ∼ (X;µ, σ2), when X = x, its naturalness is e
σ2−(x−µ)2

2σ2 . Whatever the σ is,
the mean’s naturalness is always e

1
2 and naturalness is reduces as data point is away from the mean.

Following the same logic as (1), p(x) could also indicate naturalness and thus, (2)’s rationality is
justified.

(1) and (2)’s ideas directly depend on endogenous conditional distribution, while (3) and (4) go back
to exogenous level. (3) and (4) is useful in practical implementations. For (3), to achieve SCMs in
machine learning system, a common assumption is that the support of the distribution p(X) does
not contain disjoint sets, and a nonlinear, nonparametric generative model X = f(paX , UX) is
implemented, where f is monotonically increasing w.r.t. UX , which is usually assumed to be a
standard Gaussian (Lu et al., 2020). In this case, under each local mechanism, noise distribution
follows a standard Gaussian. Data points from tails can be thought of less impossible events. Similar
to (4), following the same assumption, the CDF P (x|paX) and the CDF P (UX) is one-to-one
mapping, i.e., specifically, P (x|paX) = P (uX), where x = f(paX , uX). For example, if f is
a linear SEM, assuming UX follows standard Gaussian distribution, p(X|paX) = N(X;paX , 1)
and thus P (X = x|paX) = P (uX), where x = f(paX , uX). Hence, P (X) can also represent
naturalness.

These four definitions of naturalness provide different perspectives on measuring the naturalness of
a data point based on its generative model. They capture various aspects such as the probability,
entropy, relative naturalness, and the distribution of exogenous or endogenous variables.

4.2.2 NATURAL GENERATION

Accordingly, we define local ϵ-natural generation as follows and introduces an epsilon threshold to
determine whether a local mechanism is considered natural.

Definition 2 (Local ϵ-Natural Generation) Given a data point X = x, its parents taking a value,
i.e., PA(X) = paX , and its local mechansim p(X|PA(X)), according to Definition 2, the local
mechanism p(x|pax) satisfies local ϵ-natural generation, where ϵ is a small constant, if one of the
following conditions is satisfied:

(1) p(x|paX)eH(X|paX) > ϵ: The naturalness of the data point, measured by p(x) multiplied
by the exponential of the entropy of the distribution, is greater than ϵ.

(2) p(x|paX))
E[p(X|paX)] > ϵ: The naturalness of the data point, measured by the ratio of its probability
to the average probability of the distribution, is greater than ϵ.

(3) ϵ
2 < P (uX) < 1− ϵ

2 : The CDF of the exogenous variable UX ’s value ux of x falls within
the range ( ϵ2 , 1−

ϵ
2 ).

(4) ϵ
2 < P (x|paX) < 1− ϵ

2 : The CDF of x given its parents’ value paX falls within the range
( ϵ2 , 1−

ϵ
2 ).

These criteria provide different perspectives on naturalness and allow for flexibility in assessing the
naturalness of the generative process. The first two standards focus on the relative naturalness of the
data point within the distribution, while the last two standards consider the positioning of the data
point within the cumulative distribution function.

Note that definitions (3) and (4) focus on the tails of the distribution and aim to identify data points
that deviate from the expected or typical values. In the case of a standard Gaussian distribution,
the tails are considered less natural. These definitions provide a practical approach for detecting
unnatural data points by leveraging the properties of the Gaussian distribution. Definition (3) is the
most feasible and practical way to implement naturalness assessment, where we only need to deal
with standard Gaussian distributions. It allows for the identification of data points in the tails, which
are often considered less natural.
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Finally, we define ϵ-Natural Generation for A-realization set G(A) to judge whether all local mech-
anisms are natural. Here is the general definition:

Definition 3 (ϵ-Natural Generation) Given a SCM containing a set X taking value x and a set
G(X) containing X and its all endogenous ancestors, taking value g(X), mechanisms of G(X)
satisfy ϵ-natural generation, if ∀N ∈ G(X), each local mechanism p(N = n|paN) satisfies local
ϵ-natural generation, where n and paN are values of N and its parents respectively, and ϵ is a small
constant.

4.3 MINIMAL CHANGE

Minimal Change in Local Causal Mechanisms. Recall that what we call local mechanisms are
closely related to the distributions of the noise variables. Hence, we use the differences of the noise
variable’s CDFs in two worlds as the distance measures. Here we propose two distance measures in
terms of a single local causal mechanism, called local mechanism distance, as follows :

Theorem 4.1 (Distances Invariant to Distributions) For any two values x1, x2 associated with
continous distribution p(x), suppose the distance between the two points is given by d(x1, x2) =

||P (x1) − P (x2)||0 or d(x1, x2) = ||P (x1) − P (x2)||1, where P (x∗) =
∫ x∗

−∞ p(x)dx. The two
local mechanism distances are invariant to distribution, meaning that, when p(x) is transformed
to another continuous distribution p(y) by reversible transformation, the distance of transformed
points x1, x2 of y1, y2 is the same as that of y1, y2 before transformed.

For example, for one endogenous node Vk ∈ G(A), its local mechanism distance is d(uk,u
∗
k),

where uk is the value of Uk, the noise variable of Vk. since two proposed distances are invariant
to different distributions, the distances of different noise variables are transformed into one space to
be compared. If directly using the values of noise variables, the differences are hard to compared.
For example, in linear SEMs, assuming V1 and V2 follows Gaussian distribution and uniform
distribution respectively. The same value differences on V1 and V2 respectively is not comparable.

It is worth noting that when the d takes L0 or L1 norm, it expresses different preferences on changes
of mechanisms. Using L0 norm tends to change the fewer number of nodes. Using L0 norm prefers
smaller total changes of mechanisms.

Necessary Backtracking. Causally prior variables should be changed as little as possible, in order
to minimize the extent of backtracking. Moreover, some nodes may have more downstream nodes
than others and should be changed less, as they will propagate changes to their descendants. Hence,
we propose a notion of necessary backtracking. In the global mechanism distance, changes of each
noise variables are independent and the distance on each single node has the same weight, which
may sometimes lead to the bigger changes of causal earlier nodes. Hence, different weights should
be set for different variables. Take global mechanism distance as an example. The modified distance
is as follows:

DM (g(A), g(A)∗) =
∑

uk∈ug(A),u
∗
k∈ug(A)∗

wkd(uk,u
∗
k) (2)

wk is the weight of the node Uk, defined as the number of decedents of Vk denoted as ND(Vk).
The number of variables influenced by a variable can be used as a weight in the distance measure.
For example, in a causal graph where where A cause B and C is the confounder of A and B. If
A = a∗, A’s and B’s weight is 1 and 2 respectively.

4.4 A GENERAL FRAMEWORK FOR NATURAL COUNTERFACTUAL OPTIMIZATION

We can now formulate the problem of generating natural counterfactuals as an optimization problem.
The objective is to minimize the distance of actual world and counterfactual world, i.e., the distance
between G(A)∗ and G(A), while satisfying the constraint of A = a∗ and ϵ-natural generation of
G(A)∗, where A∗ is the counterfactual counterpart of A. The optimization framework denoted as
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Natural Counterfactual Optimization is defined as follows:
min
g(A)∗

D(g(A), g(A)∗)

s.t. A = a∗

s.t. g(A)∗ satisfying ϵ-natural generation

(3)

Where g(A) is value of set G(A) in the actual world, g(A)∗ is the counterfactual value to be
optimized, ϵ is a small constant, and D(·) is a distance measure discussed above.

g(A)∗ may admit multiple optimal solutions and its solution set is denoted as Sg(A). The distribution
over Sg(A) can be stipulated as:

pn(G(A) = g(A)∗|g(A), change(A = a∗)) =
p(g(A)∗)∫

Sg(A)
p(G(A))d(G(A))

(4)

The counterfactual world can be expressed as < M, pn(G(A)∗|g(A), change(A =
a∗))p(ŪG(A)|E = e) >, where G(A) is sampled from pn(g(A)∗|g(A), change(A = a∗)) and
values of noise variables ŪG(A), which are the rest of noise nodes except noise variables of G(A),
is sampled from p(ŪG(A)|E = e).

5 CASE STUDIES

In this section, we put our theoretical framework into practice, examining its validity, utility, and
performance through a series of empirical experiments on four simulated datasets and two publicly
available datasets, MorphoMNIST and 3DIdentBOX. Please refer to the more detailed discussions
in Sec. A.

On each experiment, we computed the average error between generated outcomes and ground-truth
outcomes, which revealed a significant reduction in error when using our natural counterfactuals.
This improvement stems from our approach’s ability to perform necessary backtracking to deter-
mine plausible interventions when direct interventions are infeasible, while non-backtracking coun-
terfactuals consistently employ direct interventions, even when they are implausible.

5.1 SIMULATION EXPERIMENTS
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Figure 1: The Visualization Results on Toy 1.

We start with a simulation
dataset called Toy 1. We use
the SCMs (shown in Sec. A.1)
to generate 10000 data points
as a training dataset and an-
other 10000 data points as a test
set. There are three endogenous
variables (n1, n2, n3). n1 is the
confounder of n2 and n3 and n1,
and n2 cause n3.

Experimental Settings. As-
sume on Toy 1, only data and qualitative causal graph are known, but not the ground-truth
SCMs. We employ normalizing flows to capture the causal mechanisms of variables (n1, n2, n3)
through training on the provided training set, following Pawlowski et al. (2020b); Maaløe et al.
(2019). Given the learned SCMs and a data point from the test set as evidence, we do inter-
ventionswith random values in non-backtracking counterfactuals or do changes in our natural
counterfactuals either on n1 or on n2 within their support. For our natural counterfactuals, given
a small constant ϵ = 10−4, we use Eqn. 7 (refer to the concrete method in D of the Appendix) to
learn feasible interventions, with wϵ = 104 and the setting of other weights following Eqn. 7. We
report the Mean Absolute Error (MAE) between our learned counterfactual outcomes and ground-
truth outcomes on n2 or/and n3 on the test dataset repeated multiple times with multiple random
seeds. Notice there may be no feasible interventions for some changes, as we have claimed, and
thus we only report outcomes with feasible interventions, which is within the scope of our natural
counterfactuals.
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Findings on Toy 1. We first do changes or interventions on n2. (1) Prediction error compari-
son illustration on a single data point. In Fig. 1, we evaluate the performance of counterfactual
outcome estimation on a particular sample as an illustration. The green point represents the value
of (n1, n2) after doing change on n2 in natural counterfactuals, the purple point indicates the value
of (n1, n2) after doing hard intervention on n2 in non-backtracking counterfactuals, and the blue
scatter plot shows the ground-truth support of (n1, n2). We calculate the absolute error of n3’s
outcome given the value of the green point and the purple point, respectively, and find the error of
the green point (with natural counterfactuals) is much smaller than that of the purple point (with
non-backtracking counterfactuals), since the green point is a more feasible intervention compared
with the purple one. In Fig. 1 (a), we also observe that the two points have the same value of n2,
while our natural counterfactuals use necessary backtracking to backtrack to n1 and allow interven-
tions on n1. (2) Prediction error comparison on whole Test Set. As shown in Fig. 1 (b), a larger
number of points with non-backtracking counterfactuals deviated from the line y = x, meaning that
n3’s prediction outcome is very different the ground-truth value. On the contrary, our outcomes are
mainly located around the line y = x (a small number of points may be far away from the line y = x
since the learned SCM is not perfect even within support). Quantitative Results. In Table 1, when
putting change or do on n2, Our MAE error is better than the non-backtracking by 61.6%, verifying
the effectiveness of our approach.

We also do changes or interventions on n1, where our natural counterfactuals will not do backtrack-
ing since n1 is the root cause. Even in this setting, our result outperforms the non-backtracking,
since our approach exclusive the points not satisfying -natural generation.

Considering More Casual Graph Structures. We also consider other causal graph structures and
hence generate three more simulation datasets, i.e., Toy 2− 4. Toy 2− 4 contains 2, 4, and 3 nodes
respectively, The results are reported in Table 1. More details are in Sec. A.1.

5.2 MORPHOMNIST
Table 2: Ablation Study on ϵ

Model ϵ CFs do(t) do(i)
t i t i

V-SCM

- NB 0.336 4.532 0.283 6.556
10−4

Ours
0.314 4.506 0.171 4.424

10−3 0.298 4.486 0.161 4.121
10−2 0.139 4.367 0.145 3.959

H-SCM

- NB 0.280 2.562 0.202 3.345
10−4

Ours
0.260 2.495 0.105 2.211

10−3 0.245 2.442 0.096 2.091
10−2 0.093 2.338 0.083 2.063

In this section, we investigate two types of counter-
factuals using the MorphoMNIST dataset, compris-
ing three variables: (t, i, x). The causal graph, as
presented in Fig. 2 (a) of the Appendix, indicates
that t (the thickness of the digit stroke) influences
both i (intensity of the digit stroke) and x (images).
Additionally, i serves as the direct cause for x. A
sample from this dataset is illustrated in Fig. 2 (b).
The dataset encompasses 60,000 images in the train-
ing set and 10,000 in the test set.

Our approach aligns with the experimental settings
of the simulation experiments detailed in Sec. 5.1,
with two notable exceptions. Firstly, for learning counterfactuals, we deploy two state-of-the-art
deep learning models, specifically V-SCM (Pawlowski et al., 2020b) and H-SCM (Ribeiro et al.,
2023). These models employ normalizing flows to discern causal relationships among the parent
nodes of x, for instance, (t, i) in the context of MorphoMNIST. Moreover, in determining p(x|t, i),
it’s noteworthy that V-SCM incorporates VAE (Kingma & Welling, 2014) and HVAE (Maaløe et al.,
2019). The second deviation pertains to our evaluation metric. Rather than utilizing MAE for
outcome estimation, we adopt the counterfactual effectiveness metric as proposed by Ribeiro et al.
(2023) and developed further by Monteiro et al. (2023). Once trained on the dataset, predictors
for parent variables, given an x value, can ascertain parent values such as (t, i). Subsequently, we

Table 1: MAE Results on Toy 1− 4.

Dataset Toy 1 Toy 2 Toy 3 Toy 4

do or change do(n1) do(n2) do(n2) do(n1) do(n2) do(n3) do(n1) do(n2)

Outcome n2 n3 n3 n3 n2 n3 n4 n3 n4 n4 n2 n3 n3

Non-backtracking 0.477 0.382 0.297 0.315 0.488 0.472 0.436 0.488 0.230 0.179 0.166 0.446 0.429
Ours 0.434 0.354 0.114 0.303 0.443 0.451 0.423 0.127 0.136 0.137 0.158 0.443 0.327
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Table 3: Results on Weak-3DIdent and Stong-3DIdent

Dataset Counterfactuals d h v γ α β b

Weak-3DIdent Non-backtracking 0.025 0.019 0.035 0.364 0.27 0.077 0.0042
Ours 0.024 0.018 0.034 0.349 0.221 0.036 0.0041

Stong-3DIdent Non-backtracking 0.100 0.083 0.075 0.387 0.495 0.338 0.0048
Ours 0.058 0.047 0.050 0.298 0.316 0.139 0.0047

compute the absolute error between the parent values post either hard or feasible intervention and
their predicted equivalents. This calculation is based on the images that the learned SCM produces
when provided with (t, i) inputs.

Quantitative Results of change(i) or do(i) and Ablation Study on Naturalness Threshold ϵ.
We employ two models, V-SCM and H-SCM, to execute counterfactuals with varying values of ϵ
using change(i) or do(i). As depicted in Table 2, our error diminishes as ϵ increases when using
the same inference model, because a higher ϵ opts for more feasible interventions. For instance,
when considering H-SCM alongside change(i) and do(i), our method reduces errors from 48% at
ϵ = 10−4 to 59% at ϵ = 10−2, compared to backtracking.

5.3 3DIDENTBOX

In this task, we utilize the 3DIdentBOX dataset from the collection cited in (Bizeul et al., 2023).
Specifically, we focus on Weak-3DIdent and Strong-3DIdent. Both share the causal graph displayed
in Fig. 4 (a) in Sec. A.3, with an image variable x and its 7 parent variables. Variables (d, h, v)
determine the depth, horizontal, and vertical position of the teapot in image x. The angles of the
teapot are controlled by (γ, α, β). Variable b indicates the image’s background color. Notably, Fig. 4
(a) reveals causal relationships among three parent variable pairs of x: (h, d), (v, β), and (α, γ). The
distinction between Weak-3DIdent and Strong-3DIdent lies in the strength of these relationships.
Weak-3DIdent presents milder associations as seen in Fig. 4 (b), whereas Strong-3DIdent shows
stronger ones in Fig. 4 (c).

We adopt the exact same setting as in the MorphoMNIST experiments. Here, with ϵ = 10−3, we
employ H-SCM as the inference model. We intervene or alter (d, β, γ). The results are presented
in Table 3. In both datasets, our approach outperforms the non-backtracking method. However,
in Strong-3DIdent, our method has a larger margin over the non-backtracking approach since non-
backtracking faces more unfeasible interventions when executing hard interventions using Strong-
3DIdent. We also visualize results on Strong-3DIdent, and these are displayed in Fig. 5, confirming
the effectiveness of our approach.

6 CONCLUSION AND DISCUSSION

This study presents novel concepts of naturalness criteria and minimal changes for generating prac-
tical natural counterfactuals. These prioritize feasible, data-backed interventions. By devising an
optimization problem that minimizes world scenario distances while ensuring ϵ-natural generation,
we offer a structured approach to natural counterfactual reasoning. Our method’s efficacy is under-
scored by diverse deep learning-based case studies. In the case of arbitrary machine learning systems
that do not incorporate our causal graph, users have the option to rely on established background
causal knowledge acquired through experiments, expert insights, or other authoritative sources. Al-
ternatively, users can choose to employ data-driven methods to discover causal relationships, as long
as these methods are implemented with appropriate assumptions and considerations taken into ac-
count. It is important to note that our approach significantly diverges from prior-based backtracking
counterfactuals (von Kügelgen et al., 2022). In prior-based backtracking counterfactuals, interven-
tions are limited to noise variables, potentially resulting in unnecessary alterations. Conversely, our
approach selectively employs backtracking only when essential, aiming to minimize changes when
direct intervention is unviable. For a more comprehensive understanding of these distinctions, please
refer to Sec. C and Sec. B.
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Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. Biva: A very deep hierarchy of
latent variables for generative modeling. Advances in neural information processing systems, 32,
2019.

Miguel Monteiro, Fabio De Sousa Ribeiro, Nick Pawlowski, Daniel C Castro, and Ben
Glocker. Measuring axiomatic soundness of counterfactual image models. arXiv preprint
arXiv:2303.01274, 2023.

Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
through diverse counterfactual explanations. In FAccT, 2020.

Martin Pawelczyk, Teresa Datta, Johannes van-den Heuvel, Gjergji Kasneci, and Himabindu
Lakkaraju. Algorithmic recourse in the face of noisy human responses. arXiv preprint
arXiv:2203.06768, 2022.

10



Under review as a conference paper at ICLR 2024

Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. Deep structural causal models for
tractable counterfactual inference. In NeurIPS, 2020a.

Nick Pawlowski, Daniel Coelho de Castro, and Ben Glocker. Deep structural causal models for
tractable counterfactual inference. Advances in Neural Information Processing Systems, 33:857–
869, 2020b.

Judea Pearl. Causality. Cambridge university press, 2009.

Kaivalya Rawal, Ece Kamar, and Himabindu Lakkaraju. Algorithmic recourse in the wild: Under-
standing the impact of data and model shifts. arXiv preprint arXiv:2012.11788, 2020.

Fabio De Sousa Ribeiro, Tian Xia, Miguel Monteiro, Nick Pawlowski, and Ben Glocker. High
fidelity image counterfactuals with probabilistic causal models. 2023.

Pedro Sanchez and Sotirios A Tsaftaris. Diffusion causal models for counterfactual estimation. In
First Conference on Causal Learning and Reasoning.

Lisa Schut, Oscar Key, Rory McGrath, Luca Costabello, Bogdan Sacaleanu, Medb Corcoran, and
Yarin Gal. Generating interpretable counterfactual explanations by implicit minimisation of epis-
temic and aleatoric uncertainties. In AISTATS, 2021.

Sohini Upadhyay, Shalmali Joshi, and Himabindu Lakkaraju. Towards robust and reliable algorith-
mic recourse. Advances in Neural Information Processing Systems, 34:16926–16937, 2021.

Sahil Verma, John P. Dickerson, and Keegan Hines. Counterfactual explanations for machine learn-
ing: A review. arXiv preprint, arXiv:2010.10596, 2020.
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A MORE DETAILED DISCUSSION ON CASE STUDIES

In this section, we put our theoretical framework into practice, examining its validity, utility, and
performance through a series of empirical experiments on four simulated datasets and two publicly
available datasets, MorphoMNIST and 3DIdentBOX.

A.1 SIMULATION EXPERIMENTS

We start with a simulation dataset called Toy 1. We use the following SCMs to generate 10000 data
points as a training dataset and another 10000 data points as a test set:

n1 = u1 , u1 ∼ N (0, 1) ,

n2 = −n1 +
1

3
u2 , u2 ∼ N (0, 1) ,

n3 = sin 0.25π(0.5n2 + n1) + 0.2u3 , u3 ∼ N (0, 1) ,

where there are three endogenous variables (n1, n2, n3) and three noise variables (u1, u2, u3). n1 is
the confounder of n2 and n3 and n1 and n2 causes n3.

Experimental Settings. Assume on Toy 1, only data and qualitative causal graph are known,
but not the ground-truth SCMs. We employ normalizing flows to capture the causal mechanisms
of variables (n1, n2, n3) through training on the provided training set. Given the learned SCMs
and a data point from the test set as evidence, we do interventions with random values in non-
backtracking counterfactuals or do changes in our natural counterfactuals either on n1 or on
n2 within their support. For our natural counterfactuals, given a small constant ϵ = 10−4, we use
Eqn. 7 to learn feasible interventions, with wϵ = 104 and the setting of other weights following
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Eqn. 7. We report the Mean Absolute Error (MAE) between our learned counterfactual out-
comes and ground-truth outcomes on n2 or/and n3 on the test dataset repeated multiple times
with multiple random seeds. Notice there may be no feasible interventions for some changes, as
we have claimed, and thus we only report outcomes with feasible interventions, which is within the
scope of our natural counterfactuals.

Findings on Toy 1. We first do changes or interventions on n2. (1) Prediction error compari-
son illustration on a single data point. In Fig. 1, we evaluate the performance of counterfactual
outcome estimation on a particular sample as an illustration. The green point represents the value
of (n1, n2) after doing change on n2 in natural counterfactuals, the purple point indicates the value
of (n1, n2) after doing hard intervention on n2 in non-backtracking counterfactuals, and the blue
scatter plot shows the ground-truth support of (n1, n2). We calculate the absolute error of n3’s
outcome given the value of the green point and the purple point, respectively, and find the error of
the green point (with natural counterfactuals) is much smaller than that of the purple point (with
non-backtracking counterfactuals), since the green point is a more feasible intervention compared
with the purple one. In Fig. 1 (a), we also observe that the two points have the same value of n2,
while our natural counterfactuals use necessary backtracking to backtrack to n1 and allow interven-
tions on n1. (2) Prediction error comparison on whole Test Set. As shown in Fig. 1 (b), a larger
number of points with non-backtracking counterfactuals deviated from the line y = x, meaning that
n3’s prediction outcome is very different the ground-truth value. On the contrary, our outcomes are
mainly located around the line y = x (a small number of points may be far away from the line y = x
since the learned SCM is not perfect even within support). Quantitative Results. In Table 5, when
putting change or do on n2, Our MAE error is better than the non-backtracking by 61.6%, verifying
the effectiveness of our approach.

We also do changes or interventions on n1, where our natural counterfactuals will not do backtrack-
ing since n1 is the root cause. Even in this setting, our result outperforms the non-backtracking,
since our approach exclusive the points not satisfying -natural generation.

Considering More Casual Graph Structures. We also consider othrt causal graph structures and
hence generate three more simulation datasets, i.e., Toy 2 − 4. In Toy 2, there are two variables
(n1, n2) and n1 causes n2. As shown in Table 5, even in such a simple case, our approach still
advances the non-backtracking when putting do or change on n1. Toy 3 contains four variables,
where n1 is the confounder of n2 and n4 and n2 causes n3 which is also the parent node of n4.
Three variables are in Toy 4 and they form a chain, i.e., n1 causes n2 and then n3. Similarly, in
these experiments, ours also performs better.

A.2 MORPHOMNIST

In this section, we study two types of counterfactuals on the dataset called MorphoMNIST, which
contains three variables (t, i, x). From the causal graph shown in Fig. 2 (a), t (the thickness of digit
stroke) is the cause of both i (intensity of digit stroke) and x (images) and i is the direct cause of x.
Fig. 2 (b) shows a sample from the dataset. The dataset contains 60000 images as the training set
and 10000 as the test set.

We follow the experimental settings of simulation experiments in Sec. 5.1, except for two differ-
ences. One is that we use two state-of-the-art deep learning models, namely V-SCM (Pawlowski

(a) Illustration of prediction error on a single
sample
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Table 4: The Visualization Results on Toy 1.
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Table 5: MAE Results on Toy 1− 4.

Dataset Toy 1 Toy 2 Toy 3 Toy 4

do or change do(n1) do(n2) do(n2) do(n1) do(n2) do(n3) do(n1) do(n2)

Outcome n2 n3 n3 n3 n2 n3 n4 n3 n4 n4 n2 n3 n3

Non-backtracking 0.477 0.382 0.297 0.315 0.488 0.472 0.436 0.488 0.230 0.179 0.166 0.446 0.429
Ours 0.434 0.354 0.114 0.303 0.443 0.451 0.423 0.127 0.136 0.137 0.158 0.443 0.327

Table 6: MorphoMNIST results of change(i) or do(i) using V-SCM

Intersection between Ours and NB (NCO=1, NB=1) (NCO=1, NB=0) (NCO=0, NB=1) (NCO=0, NB=0)
Number of Intersection 5866 3135 0 999

Non-backtracking t’s MAE 0.283 0.159 0.460 0 0.449
i’s MAE 6.560 3.970 8.930 0 14.26

Ours t’s MAE 0.161 0.150 0.181 0 0.461
i’s MAE 4.121 3.825 4.675 0 14.16

et al., 2020b) and H-SCM (Ribeiro et al., 2023), as the backbones to learn counterfactuals. They
use normalizing flows to learn causal relationships among x’s parent nodes, e.g., (t, i) in MorphoM-
NIST. Further, to learn p(x|t, i), notice that V-SCM uses VAE (Kingma & Welling, 2014) and HVAE
(Maaløe et al., 2019). Another difference is that, instead of estimating the outcome with MAE, we
follow the same metric called counterfactual effectiveness in Ribeiro et al. (2023) developed by
Monteiro et al. (2023), First, trained on the dataset, parent predictors given a value of x can predict
parent values, i.e., (t, i)’s, and then measure the absolute error between parent values after hard
intervention or feasible intervention and their predicted values, which is measured on image the
Learned SCM generates given the input of (t, i).

Table 7: Ablation Study on ϵ

Model ϵ CFs do(t) do(i)
t i t i

V-SCM

- NB 0.336 4.532 0.283 6.556
10−4

Ours
0.314 4.506 0.171 4.424

10−3 0.298 4.486 0.161 4.121
10−2 0.139 4.367 0.145 3.959

H-SCM

- NB 0.280 2.562 0.202 3.345
10−4

Ours
0.260 2.495 0.105 2.211

10−3 0.245 2.442 0.096 2.091
10−2 0.093 2.338 0.083 2.063

Quantitative Results of change(i) or do(i).
We use V-SCM to do counterfactual task of
change(i) (where ϵ = 10−3) or do(i) with
multiple random seeds on test set. In Table 6,
the first column shows the MAE of (t, i), in-
dicating our results outperform that of non-
backtracking. Next, we focus on the rest four-
column results. In both types of counterfac-
tuals, we use the same value i in do(i) and
change(i). Hence, after inference, we know
which image satisfying ϵ-natural generation in
the two types of counterfactuals. In ”NCO=1”
of the table, NCO indicates the set of counter-
factuals after natural counterfactual optimization. Notice that NCO set does not mean the results
of natural counterfactuals, since some results do still not satisfy ϵ-natural generation after natural
counterfactual optimization. “NCO=1” mean the set containing data points satisfying ϵ-natural gen-
eration and “NCO=0” contains data not satisfying ϵ-natural generation after natural counterfactual
optimization. Similarly, “NB=1” means the set containing data points satisfying naturalness crite-
ria. (NCO=1, NB=1) presents the intersection of “NCO=1” and “NB=1”. Similar logic is adopted
to the other three combinations. The number of counterfactual data points are 10000 in two types of
counterfactuals.

In (NCO=1, NB=1) containing 4135 data points, our performance is similar to the non-backtracking,
showing natural counterfactual optimization tends to backtrack as less as possible when hard inter-
ventions have satisfied ϵ-natural generation. In (NCO=1, NB=0), there are 3135 data points, which
are “unnatural” points in non-backtracking counterfactuals. After natural counterfactual optima-
tion, this huge amount of data points become “natural”. In this set, our approach contributes to the
maximal improvement compared to the other three sets in Table 6, improving 60.7% and 47.6% on
thickness t and intensity i. The number of points in (NCO=0, NB=1) is zero, showing the stability
of our algorithm since our approach will not move the hard, feasible intervention into unfeasible in-
tervention. Two types of counterfactuals perform similarly in the set (NCO=0, NB=0), also showing
the stability of our approach.
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Figure 2: Causal Graph and samples of Morpho-MNIST.F : t = 1.2; i = 87
CF : t * = 1.2; i * = 224
MS : t * = 2.3; i * = 185

t = 1.1; i = 39

F : t = 4.7; i = 252
CF : t * = 4.7; i * = 82
MS : t * = 2.6; i * = 96

t = 2.1; i = 14

F : t = 1.1; i = 74
CF : t * = 1.1; i * = 179
MS : t * = 1.9; i * = 130

t = 0.7; i = 49

F : t = 4.8; i = 252
CF : t * = 4.8; i * = 110
MS : t * = 2.9; i * = 100

t = 2.0; i = 10

(a) Results of Non-backtracking Counterfactuals

F : t = 1.2; i = 87
CF : t * = 3.1; i * = 224
MS : t * = 3.2; i * = 218

t = 0.1; i = 6

F : t = 4.7; i = 252
CF : t * = 1.4; i * = 82
MS : t * = 1.8; i * = 76

t = 0.4; i = 6

F : t = 1.1; i = 74
CF : t * = 2.7; i * = 179
MS : t * = 2.7; i * = 174

t = 0.0; i = 5

F : t = 4.8; i = 252
CF : t * = 2.3; i * = 110
MS : t * = 2.4; i * = 106

t = 0.2; i = 4

(b) Results of Natural Counterfactuals

Figure 3: Visualization Results on MorphoMNIST.

Ablation Study on Naturalness Threshold ϵ. We use two models,V-SCM and H-SCM, to do
counterfactuals with different values of ϵ. As shown in Table 7, our error is reduced as the ϵ increases
using the same inference model, since the higher ϵ will select more feasible interventions.

A.3 3DIDENTBOX

In this task, we use more practical public datasets, 3DIdentBOX which contains multiple datasets
(Bizeul et al., 2023). We use one of them, Weak-3DIdent and Strong-3DIdent. Their share the same

14



Under review as a conference paper at ICLR 2024

𝛾

𝛼

𝛽

𝑏

𝑥

𝑣

ℎ

𝑑

(a) Causal Graph (b) Weak Causal Relationship (c) Strong Causal Relationship

Figure 4: Causal graph of 3DIdent and the causal relationships of variables (d, h) in Weak-3DIdent
and Strong-3DIdent respectively.

Table 8: Results on Weak-3DIdent and Stong-3DIdent

Dataset Counterfactuals d h v γ α β b

Weak-3DIdent Non-backtracking 0.025 0.019 0.035 0.364 0.27 0.077 0.0042
Ours 0.024 0.018 0.034 0.349 0.221 0.036 0.0041

Stong-3DIdent Non-backtracking 0.100 0.083 0.075 0.387 0.495 0.338 0.0048
Ours 0.058 0.047 0.050 0.298 0.316 0.139 0.0047

causal graph as shown in Fig. 4 (a), containing one image variable x and its 7 parent variables.
Variables (d, h, v) control the deepth, horizon position, and vertical position of the teapot of image
x respectively. Variables (γ, α, β) control three kinds angles of the teapot in an images. Variable
b represents background color of an image. As shown in Fig. 4 (a), there are causal relationship
existing in three-pair parent variables of x, i.e., (h, d), (v, β) and (α, γ). There is one difference
between Weak-3DIdent and Strong-3DIdent. In Weak-3DIdent, the variables of each pair exists
weak causal relationship (Fig. 4 (b)), compared with that of Strong-3DIdent (Fig. 4 (c)).

We follow the exactly same setting as in the MophoMNIST experiments. Here, with ϵ = 10−3,
we use H-SCM as inference model. We do intervention or change on (d, β, γ). The results are
shown in Table 8, in both dataset, our approach can perform better than the non-backtracking one
but , in Strong-3DIdent, ours exists bigger margins over the non-backtracking method, since non-
backtracking encounter more unfeasible interventions when doing hard interventions using Strong-
3DIdent. We also do visualization on Strong-3DIdent. In Fig. 5, we show counterfactual outcomes
in (a) and (b), where the text above each the first-row image (evidence) shows the error on the
counterfactual outcome (the second-row corresponding image). Fig. 5 (a) shows counterfactual
images (in the second row) which does not satisfy ϵ-natural generation in the non-backtracking. (b)
shows our results. Obviously, the images are even meaningless under the non-backtracking and they
are had to recognized with bigger error. However, ours shows better visual effectiveness, showing
that our solution could mitigate problems from hard interventions of the backtracking.

B OBSERVATIONS ABOUT THE PRIOR-BASED BACKTRACKING
COUNTERFACTUALS (VON KÜGELGEN ET AL., 2022)

B.1 POSSIBILITY OF GRATUITOUS CHANGES

A theory of backtracking counterfactuals was recently proposed by von Kügelgen et al. (2022),
which utilizes a prior distribution p(U,U∗) to establish a connection between the actual model and
the counterfactual model. This approach allows for the generation of counterfactual results under
any condition by considering paths that backtrack to exogenous noises and measuring closeness in
terms of noise terms. As a result, for any given values of E = e and A∗ = a∗, it is possible to find
a sampled value (U = u,U∗ = u∗) from p(U,U∗) such that EM(u) = e and A∗

M∗(u∗) = a∗,
as described in von Kügelgen et al. (2022). This holds true even in cases where V \ E = ∅ and
V∗ \ A∗ = ∅, implying that any combination of endogenous values E = e and A∗ = a∗ can co-
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(a) Results of Non-backtracking Counterfactuals
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(b) Results of Natural Counterfactuals

Figure 5: Visualization Results on Stong-3DIdent.

occur in the actual world and the counterfactual world, respectively. In essence, there always exists a
path (v −→ u −→ u∗ −→ v∗) that connects V = v and V∗ = v∗ through a value (U = u,U∗ = u∗),
where v and v∗ represent any values sampled from pM(V) and pM∗(V∗), respectively.

However, thanks to this feature, this understanding of counterfactuals may allow for what appears to
be gratuitous changes in realizing a counterfactual supposition. This occurs when there exists a value
assignment U∗ = u∗ that satisfies E∗

M∗(u∗) = e and A∗
M∗(u∗) = a∗ in the same world. In such a

case, intuitively we ought to expect that E∗ = e should be maintained in the counterfactual world
(as in the factual one). However, there is in general a positive probability for E∗ ̸= e. This is due to
the existence of at least one “path” from E = e to any value v∗ sampled from pM∗(V∗|A∗ = a∗)
by means of at least one value (U = u,U∗ = u∗), allowing E∗ to take any value in the support of
pM∗(E∗|A∗ = a∗).

In the case where A∗ = ∅, an interesting observation is that E can take any value within the
support of pM∗(E∗). Furthermore, when examining the updated exogenous distribution, we find
that in Pearl’s non-backtracking framework, it is given by pM∗(U∗|E∗ = e). However, in von
Kügelgen et al. (2022)’s backtracking framework, the updated exogenous distribution becomes
pB(U

∗|E = e) =
∫
p(U∗|U)pM(U|E = e)d(U) ̸= pM∗(U∗|E∗ = e), since using u∗ sam-

pled from p(U∗|U = u) (where u is any value of U) can result in any value of all endogenous
variables V∗. Therefore, von Kügelgen et al. (2022)’s backtracking counterfactual does not reduce
to Pearl’s counterfactual even when A∗ = ∅.

B.2 ISSUES WITH THE DISTANCE MEASURE

In Equation 3.16 of von Kügelgen et al. (2022), Mahalanobis distance is used for real-valued U ∈
Rm, defined as d(u∗,u) = 1

2 (u
∗−u)TΣ−1(u∗−u). However, it should be noted that the exogenous

variables are not identifiable. There are several issues with using the Mahalanobis distance in this
context.

Firstly, selecting different exogenous distributions would result in different distances. This lack of
identifiability makes the distance measure sensitive to the choice of exogenous distributions.
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Secondly, different noise variables may have different scales. By using the Mahalanobis distance,
the variables with larger scales would dominate the distribution changes, which may not accurately
reflect the changes in each variable fairly.

Thirdly, even if the Mahalanobis distance d(u∗,u) is very close to 0, it does not guarantee that the
values of the endogenous variables are similar. This means that the Mahalanobis distance alone may
not capture the similarity or dissimilarity of the endogenous variables adequately.

C DIFFERENCES BETWEEN NATURAL COUNTERFACTUALS AND
NON-BACKTRACKING COUNTERFACTUALS (PEARL, 2009) OR
PRIOR-BASED BACKTRACKING COUNTERFACTUALS (VON KÜGELGEN
ET AL., 2022)

C.1 DIFFERENCES BETWEEN NON-BACKTRACKING COUNTERFACTUALS AND OURS

Non-backtracking counterfactuals only do a direct intervention on target variable A, while our nat-
ural counterfactuals do backtracking when the direct intervention is implausible. Notice that when
the direct intervention on A is already plausible, our procedure of natural counterfactuals will be au-
tomatically distilled to the non-backtracking counterfactuals. In this sense, non-backtracking coun-
terfactual reasoning is our special case.

C.2 DIFFERENCES BETWEEN PRIOR-BASED BACKTRACKING COUNTERFACTUALS AND
OURS

(1) Intervention Approach and Resulting Changes:

Prior-based Backtracking Counterfactuals: These counterfactuals directly intervene on
noise/exogenous variables, which can lead to unnecessary changes in the counterfactual world. Con-
sequently, the similarity between the actual data point and its counterfactual counterpart tends to be
lower. In short, prior-based backtracking counterfactuals may introduce changes that are not needed.

Natural Counterfactuals: In contrast, our natural counterfactuals only engage in necessary back-
tracking when direct intervention is infeasible. This approach aims to ensure that the counterfactual
world results from minimal alterations, maintaining a higher degree of fidelity to the actual world.

(2) Counterfactual Worlds:

Prior-based Backtracking Counterfactuals: This approach assigns varying weights to the numerous
potential counterfactual worlds capable of effecting the desired change. The weight assigned to
each world is directly proportional to its similarity to the actual world. it is worth noting that among
this array of counterfactual worlds, some may exhibit minimal resemblance to the actual world,
even when equipped with complete evidence, including the values of all endogenous variables. This
divergence arises because by sampling from the posterior distribution of exogenous variables, even
highly dissimilar worlds may still be drawn.

Natural Counterfactuals: In contrast, our natural counterfactuals prioritize the construction of coun-
terfactual worlds that closely emulate the characteristics of the actual world through an optimization
process. As a result, in most instances, one actual world corresponds to a single counterfactual world
when employing natural counterfactuals with full evidence.

(3) Implementation Practicality:

Prior-based Backtracking Counterfactuals: The practical implementation of prior-based backtrack-
ing counterfactuals can be a daunting challenge. To date, we have been prevented from conducting
a comparative experiment with this approach due to uncertainty about its feasibility in practical ap-
plications. Among other tasks, the computation of the posterior distribution of exogenous variables
can be a computationally intensive endeavor. Furthermore, it is worth noting that the paper (von
Kügelgen et al., 2022) provides only rudimentary examples without presenting a comprehensive
algorithm or accompanying experimental results.
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Natural Counterfactuals: In stark contrast, our natural counterfactuals have been meticulously de-
signed with practicality at the forefront. We have developed a user-friendly algorithm that can be
applied in real-world scenarios. Rigorous experimentation, involving four simulation datasets and
two public datasets, has confirmed the efficacy and reliability of our approach. This extensive valida-
tion underscores the accessibility and utility of our algorithm for tackling specific problems, making
it a valuable tool for practical applications.

D A CONCRETE METHOD FOR COUNTERFACTUAL GENERATION

In Sec. 4, we propose various theories for natural counterfactuals, including ϵ-natural generation’s
definition, which A-realization set G(A) should follow when doing interventions on causally ear-
lier variables, and tools for minimal changes containing various distance definitions to measure the
difference between actual world and counterfactual world. We also provide how to do natural coun-
terfactuals by the Natural Counterfactual Optimization (NCO) framwork. Here, we specify one
method to apply to machine learning system, which can be as an example to help future researchers
or practicers apply these high-level theories.

Problem Setting. Given data collected from real world and known causal graph, one can learn a
SCM to model the data distribution. Given the full evidence E = e, we want to know, if there had
been A = a∗, what would have happened to B using the learned SCM?

A Specific Optimization Method. Below is the equation of optimization:

min
g(A)∗

∑
vk∈g(A),v∗

k∈g(A)∗

wkL
(1)(P (vk|pai), P (v∗

k|pa∗i ))

s.t. A = a∗

s.t. ϵ < P (v∗
k|pa∗k) < 1− ϵ,∀v∗

k ∈ g(A)∗

(5)

Where P (·) means CDF, wk = ND(Vk), g(A) and g(A)∗ are actual and counterfactual values of
G(A) respectively. (Please refer to other notions in Theorem 4). Here, we use the global mechanism
distance as the measure of change and Definition (4) of local ϵ-natural generation in Definition 2,
since the definition is easy for be implementation. The CDF of the noise uk has a one-to-one map-
ping with the conditional CDF ofvk given pak, i.e., P (vk|pak) = P (uk) with vk = fk(pak,uk).
Hence, the Eqn. 6 becomes as below:

min
u∗

G(A)

∑
uk∈uG(A),u

∗
k∈u∗

G(A)

wkL
(1)(P (uk), P (u∗

k))

s.t. u∗
A = f−1

A (a∗,pa∗A)

s.t. ϵ < P (u∗
k) < 1− ϵ,∀u∗

k ∈ u∗
k ∈ u∗

G(A)

(6)

Where the optimization parameter is changed from exogenous values into the values u∗
G(A) of noise

U∗
G(A), which is corresponding variables of G(A). For simplicity, we use A as subscript as indica-

tor of terms related to A, instead of number subscript. In practice, the Lagrangian method is used to
optimize our objective function and the corresonding loss is as below:

L(u∗
G(A) \ u

∗
A;uG(A)) =

∑
uk∈uG(A),u

∗
k∈u∗

G(A)

wkL
(1)(P (uk), P (u∗

k))

+ wϵ

∑
u∗

k∈u∗
G(A)

max((ϵ− P (u∗
k), 0) + max(ϵ+ P (u∗

k)− 1, 0))

s.t. u∗
A = f−1

A (a∗,pa∗A)

(7)

where the first term is the measure of distance between two world and the second term is the con-
straint of ϵ-natural generation. where wϵ is a constant hyperparameter to punish noise values in the
tails of noise distributions. Notice that u∗

A is not optimized explicitly, since the value pa∗A is fully
determined by other noise values u∗

G(A) \ u
∗
A and a∗ is an constant, with reversible function f−1

A ,
u∗
A is fully determined by u∗

G(A) \ u
∗
A and a∗.

In the next section, we use Eqn. 7 to do natural counterfactual optimization in multiple case studies
of machine learning.
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