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Abstract

Text classifiers are applied at scale in the form001
of one-size-fits-all solutions. Nevertheless,002
many studies show that many classifiers are bi-003
ased regarding different languages and dialects.004
Both language style and content change de-005
pending on the location that it is posted. For ex-006
ample, states that border Mexico may be more007
likely to discuss issues regarding immigration008
from Latin America. However, several ques-009
tions remain, such as “Do changes in the style010
and content of text across geographic regions011
impact model performance?”. We introduce a012
novel dataset called GeoOLID with more than013
13 thousand examples across 15 geographically014
and demographically diverse cites to address015
this question. Furthermore, we perform a com-016
prehensive analysis of geographical content017
and stylistic differences and their interaction018
in causing performance disparities of Offensive019
Language Detection models. Overall, we find020
that current models do not generalize across.021
Likewise, we show that understanding broad022
dialects (e.g., African American English) is not023
the only predictive factor of model performance024
when applied to cities with large minority popu-025
lations. Hence, community-specific evaluation026
is vital for real-world applications. Warning:027
This paper contains offensive language.028

1 Introduction029

Text classification, especially when applied to so-030

cial network data or online blogs, has been applied031

to wide array of tasks including, but not limited to032

tracking viruses (Lamb et al., 2013; Corley et al.,033

2009, 2010; Santillana et al., 2015; Ahmed et al.,034

2018; Lwowski and Najafirad, 2020), providing035

help for (natural) disasters (Neubig et al., 2011;036

Castillo, 2016; Reuter and Kaufhold, 2018), detect-037

ing misinformation (Oshikawa et al., 2020), and038

identifying cyber-bullying (Xu et al., 2012). Over-039

all, text classifiers have been shown to be “accurate”040

across a wide range of applications. As deep learn-041

ing models and packages have made substantial042
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Figure 1: Proportion of border-related tweets in the
GeoCOVID dataset (Qazi et al., 2020) for each state.

progress for the field of natural language process- 043

ing (NLP), NLP models have become more accessi- 044

ble to the general public. Hence, models are being 045

deployed in a production environment and ran at 046

scale at a growing pace. However, recent work has 047

shown that these models are biased and unfair, es- 048

pecially towards minority groups (Blodgett et al., 049

2016; Davidson et al., 2019). In this paper, we 050

expand on prior work by analyzing how model per- 051

formance can fluctuate due do geographical-caused 052

differences in language and content that may exist 053

in the context of offensive language detection. 054

Several lines of research have shown that topical 055

and stylistic attributes of text are used by speakers 056

on social media to implicitly mark their region-of- 057

origin (Shoemark et al., 2017; Hovy and Purschke, 058

2018; Hovy et al., 2020; Cheke et al., 2020; Gaman 059

et al., 2020). For instance, Hovy and Purschke 060

(2018) show that doc2vec embedding frameworks 061

which can be used to can help with the task of 062

geolocation prediction. Hovy et al. (2020) then in- 063

troduces visualization techniques for measuring re- 064

gional language change. Kellert and Matlis (2021) 065

shows that these differences exist at the city level 066

as well. Our data consists of geo-tagged COVID- 067

related tweets. In Figure 1, we measure the pro- 068

portion of border-related tweets in each state to 069

show case how topical content can be distributed 070

geographically, finding most of the border-related 071

tweets are in states near Mexico (e.g., Texas, Ari- 072

zona, New Mexico, and California). Overall, much 073

of the prior work has focused on better incorpo- 074
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rating or identifying regional aspects of language075

data to improve performance in machine transla-076

tion (Östling and Tiedemann, 2017) or geolocation077

prediction (Hovy and Purschke, 2018).078

Recent work in understanding performance dis-079

parities has found differences across various lan-080

guages (Gerz et al., 2018) (e.g., Finish vs Korean)081

and dialects (Davidson et al., 2017; Sap et al.,082

2019)—such as African American English (AAE)—083

can have a substantial impact on model perfor-084

mance. For instance, Gerz et al. (2018) show that085

fine-grained typological features must be incorpo-086

rated into language modeling architectures for a087

single model to adequately perform across a wide088

array of languages. More specifcally, the absence089

of typological features is predictive of substantial090

performance disparities across languages. Like-091

wise, Davidson et al. (2019) and Sap et al. (2019)092

show that abusive and hate speech-related language093

classifiers are biased against AAE-like text. These094

results have been shown to extend into other text095

classifications tasks, for example, Lwowski and096

Rios (2021) show that influenza detection mod-097

els are also biased against AAE-like text. These098

findings show that models deployed at scale can099

adversely impact minority groups.100

Overall, while there has been a substantial101

amount of research understanding how to identify102

and use regional (geographical) features and iden-103

tify performance disparities across languages and104

dialects, to the best of our knowledge, there has105

been no prior work understanding geographical per-106

formance disparities across regional dialects. Do107

regional language differences, whether content or108

language style, impact offensive language model109

performance? While prior work has shown that110

dialect can impact, and dialect is correlated with111

social demographics of regional areas (Blodgett112

et al., 2016), . For instance, AAE is not spoken113

the same in every region of the United States (US).114

There are well-known sub-dialects such as Rural115

and Urban AAE. But, more importantly, certain fea-116

tures of AAE only appear within specific regions of117

the US (Jones, 2015). Does the interaction between118

AAE features and content spoken in one region ad-119

versely impact model performance more than other120

regions? There has been extensive research, un-121

derstanding geographical health disparities, which122

are thought to be due to limited physical access to123

health care, but also to differences in demography,124

attitudes, lifestyle factors, and cultural practices in125

regional and rural settings (Eberhardt and Pamuk, 126

2004; Smith et al., 2008; Dixon and Welch, 2000). 127

Prior work has shown that performance dispari- 128

ties can potentially increase health disparities for 129

minority communities (Lwowski and Rios, 2021). 130

Hence, depending on the applications in which text 131

classifiers are applied (e.g., offensive language), ge- 132

ographical algorithmic disparities can further harm 133

(e.g., the mental health) these regions. 134

To better understand the implications of geo- 135

graphical performance disparities, we make three 136

major contributions: (1.) We introduce a new 137

dataset called GeoOLID with more than 13 thou- 138

sand tweets across 15 geographically and demo- 139

graphically diverse cities in the United States. 140

(2.) We produce a comprehensive dataset analysis, 141

analysing both the content and stylistic variations 142

in each city. (3.) Finally, we perform a compre- 143

hensive analysis of performance disparities across 144

a wide array of popular text classification models 145

in each city, producing novel insights and discuss 146

important future avenues of research. 147

2 Language Variation 148

Langauge variation is an important area of research 149

for the NLP community. For example, understand- 150

ing how different languages vary (e.g., Finnish vs 151

Korean) typologically has been shown to be impor- 152

tant to reduce performance disparities of language 153

models (Gerz et al., 2018). While there has been 154

some disagreement about whether morphology mat- 155

ters, recent work by (Park et al., 2021) has shown 156

that incorporating information that can model mor- 157

phological differences is important in improving 158

model performance. Overall, much of the prior 159

work has focused on either developing methods to 160

identify language features within text or use various 161

language features to improve model performance. 162

For instance, VarDial Evaluation has been an an- 163

nual competition to identify various dialects of dif- 164

ferent languages (e.g., German and Romanian) as 165

well as geolocations (Gaman et al., 2020). For in- 166

stance, Cheke et al. (2020) use topic distributions 167

to show that different topics can provide signal to 168

determine where the text originated from. For the 169

same shared task, Scherrer et al. (2021) show that 170

combining modern NLP architectures like BERT 171

with a double regression model can also provide 172

success in determining the latitude and logitude 173

points of the location of the text. The results of this 174

shared task highlights the fact that semantic and 175
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lexical differences exist when locations of the text176

change. Other work around regional variation of177

language (Hovy and Purschke, 2018; Hovy et al.,178

2020; Kellert and Matlis, 2021) further prove that179

these differences in dialect and lexical patterns are180

significant across geographies.181

Overall, the major gap in prior work looking182

and language variation is that there has not been183

any studies evaluating the impact regional language184

variation has on the performance of downstream185

tasks. In this paper, we introduce a novel dataset186

called GeoCOVID. However, before addressing the187

research gap in understanding performance dispari-188

ties, it is important to measure language variation189

across each city within the dataset. If cities do190

not vary with regards to content and langauge style,191

then we should not expect models to perform differ-192

ent within each city. Hence, we test the following193

hypothesis:194

H1a. Text in the GeoOLID dataset is distributed195

differently (based on content and style) depending196

on the location it was posted.197
H1b. Text is representative of the sociodemo-198

graphic makeup of the area it was posted.199

By expanding the analysis of prior work looking200

at dialectal variation (Abdul-Mageed et al., 2020;201

Lulu and Elnagar, 2018; Blodgett et al., 2016), we202

are able show that the results generalize to our203

newly collected dataset.204

3 Performance Disparities205

Performance disparities across languages and di-206

alects recently have seen received much attention207

in NLP. For example, recent research shows that208

performance drops in text classification models209

across different sub-populations such as gender,210

race, and minority dialects (Dixon et al., 2018;211

Park et al., 2018; Badjatiya et al., 2019; Rios, 2020;212

Lwowski and Rios, 2021; Mozafari et al., 2020).213

Sap et al. (2019) measure the bias of offensive lan-214

guage detection models on AAE. Likewise, Park215

et al. (2018) measure gender bias of abusive lan-216

guage detection models and evaluate various meth-217

ods such as word embedding debiasing and data218

augmentation to improve biased methods. David-219

son et al. (2019) shows that there is racial and eth-220

nic bias when identifying hate speech online and221

show that tweets in the black-aligned corpus are222

more likely to get assigned as hate speech. Over-223

all, performance disparities have been observed224

across a wide array of NLP tasks such as detecting225

virus-related text (Lwowski and Rios, 2021), coref- 226

erence resolution (Zhao et al., 2018), named entity 227

recognition (Mehrabi et al., 2020), and machine 228

translation (Font and Costa-jussà, 2019). 229

Overall, the major research gap in prior work is 230

in the lack of fine-grained regional understanding 231

of performance disparities. Many groups that are 232

studied are broad, such as male vs. female (using an 233

unrealistic assumption of binary gender (Rios et al., 234

2020)), or AAE which is not universally spoken in 235

the same way within different cities in the US. For 236

example, Jones (2015) show that many well-known 237

AAE patterns (e.g., sholl, an nonstandard spelling 238

of “sure”) do not appear uniformly across the US. 239

Hence, if an Offensive language detection model 240

performs poorly on one set of AAE patterns, it can 241

impact one region much more than others. Unfor- 242

tunately, it is neither possible to measure model 243

performance for every minority sub-population nor 244

all potential syntactic pattern given the ever evolv- 245

ing nature of language. Furthermore, it is not pos- 246

sible to understand how a model will perform on 247

every “common” topic discussed within the US 248

given the large variation in discussions (e.g., Texas 249

may speak more about the Dallas Cowboys, while 250

Ohio focuses on the Bengals for the topic of Foot- 251

ball). Hence, we believe that community-driven 252

analysis is a better future avenue to understand the 253

real-world impact of NLP models. Instead of try- 254

ing to understand all potential sub-populations and 255

style variations to evaluate them all, we propose 256

measuring performance on small communities in- 257

stead. Overall, to begin addressing these gaps in 258

understanding, we make the following hypothesis: 259

H2a. Because data is distributed differently in dif- 260

ferent geographic regions, model performance is 261

not the same in each location. 262

H2b. Errors made by the models are caused by 263

geographic-specific content and language style. 264

H3. Model choice depends on the community it 265

will be deployed. 266

These hypotheses will provide a starting point to- 267

wards what we term “community-driven NLP”. By 268

showing that model performance can vary location- 269

to-location, we hope to bring awareness of adverse 270

harms that the broad application of NLP can cause 271

without carefully understanding the communities 272

in which the models are deployed. 273
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Non Offensive Offensive Total MDE

OLID 9,460 4,640 14,100 .014

GeoOLID Dataset

Non Offensive Offensive Total MDE

Unlabeled Data — — 34,724 —
All Cities (labeled) 9,259 4,831 14,090

City Name Non Offensive Offensive Total MDE

Baltimore, MD 630 277 907 .054
Chicago, IL 676 326 1002 .052
Columbus, OH 616 301 917 .054
Detroit, MI 549 367 916 .053
El Paso, TX 502 404 906 .055
Houston, TX 635 297 932 .054
Indianapolis, IN 600 307 907 .055
Los Angeles, CA 660 298 958 .053
Memphis, TN 564 368 932 .054
Miami, FL 726 216 942 .054
New Orleans, LA 607 325 932 .054
New York, NY 717 265 982 .053
Philadelphia, PA 629 337 966 .054
Phoenix, AZ 577 355 932 .054
San Antonio, TX 572 387 959 .053

Table 1: Dataset Statistics.
4 Data274

In this section, we describe the two major datasets275

used in our experiments: the Offensive Language276

Identification Dataset (OLID) (Zampieri et al.,277

2019) and our newly constructed Geographical Di-278

verse Offensive Language Identification Dataset279

(GeoOLID). A complete summary of the datasets280

can be found in Table 1. The OLID datasets was281

split into 5 random 70/10/20 training, validation,282

and testing splits, respectively. The GeoOLID283

dataset is only used for testing.284

OLID. The OLID dataset introduced by Zampieri285

et al. (2019) contains 14,100 tweets labeled to iden-286

tify different levels of offensiveness including, but287

not limited to, Not Offensive, Offensive, Targeted288

Offense, and Not Targeted Offense. Furthermore,289

Targeted Offenses are sub-categorized as targeting290

an individual, group, or other. For this study, we291

use the first level: Not Offensive (9,460 Total)and292

Offensive (4,640 Total).293

GeoOLID. In addition to the OLID dataset, we294

introduce a new offensive language dataset using295

tweets collected since the start of the COVID-19296

pandemic. Qazi et al. (2020) and Lamsal (2021)297

originally collected more than 524 million multilin-298

gual tweets across 218 countries and 47,000 cities299

between the dates of February 1, 2020 and May 1,300

2020. Given the large amount of politically divi-301

sive discourse, racist remarks, and social impact of302

COVID-19, GeoCOVID provides a unique testbed303

to understand geographic model variation.304

Filtering: To filter down the 524 million tweets 305

into a manageable set for this study, we first se- 306

lected English Language tweets only. English Lan- 307

guage tweets are then filtered by city, only keeping 308

geocoded tweets with a coordinate point tied to a 309

city of origination. We then subset all cities, remov- 310

ing any tweet not posted from a small group of 15 311

manually chosen cities that differ geographically 312

and demographically. 313

With the goal of identifying offensive language, 314

we wanted to guarantee there was a mixture of 315

normal and offensive tweets present in each city. 316

Our last filter included a keyword filter using the 317

badword lexicon (von Ahn, 2009), hatebase lex- 318

icon (Davidson et al., 2017), offensive phrases 319

used for the original OLID dataset (Zampieri et al., 320

2019) (you are, she is, he is, conservatives, liber- 321

als, MAGA, and antifa), and additional COVID- 322

specific phrases that we deem relevant for potential 323

discrimination against a race (chinese, china, asia, 324

asian, wuhan). Along with the aforementioned fil- 325

ters we appended on a sub sample of tweet data for 326

each city and drop any replicated tweets. The final 327

counts of each city can be found in Table 1. 328

Cities: To measure the performance difference 329

across varying geolocations, we decided on 15 330

cities based on multiple facets, data availability, 331

annotation time, geographical diversity, and demo- 332

graphic diversity. When selecting the 15 cities we 333

strategically selected locations in the United States 334

that different dialects could be present, as well as 335

the topic distribution. For example, cities like Bal- 336

timore, Memphis, New Orleans, and Detroit were 337

chosen due to the high proportion of African Amer- 338

icans populations while, Indianapolis and Colum- 339

bus had high proportions of White Non-Hispanic 340

residents. El Paso, San Antonio and Phoenix have 341

a close proximity to the Mexico boarder and higher 342

percentage of Latino and Hispanic residents, which 343

is very different from Columbus and Chicago. In 344

addition we selected cities where we knew resi- 345

dents could use very distinct accents and phonics 346

like New York and New Orleans. By selecting the 347

15 cities in Table 1, we created a diverse dataset 348

with multiple ethnicities, language styles, and topi- 349

cal differences. 350

Annotation: In order to provide accurate labels for 351

this study, samples of 500 tweets were assigned to 352

3 different graduate students to be labeled as offen- 353

sive language using the logic provided by Zampieri 354

et al. (2019). A total of 20 students were recruited 355
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F1 Acc.

Stratified .059 .056
Uniform .062 .062
Prior .008 .068

BoW .430 .380
POS .410 .356
Dialect .374 .366

POS + Dialect .419 .357
BoW + Dialect .436 .381
BoW + POS + Dialect .431 .370

Table 2: Location prediction. Accuracy, Macro Preci-
sion, Macro Recall, and Macro F1.

and given a stipend of $100 for their time and ef-356

fort. Several meetings were set up before labeling357

started to answer questions and address implica-358

tions. The definition of an Offensive tweet was359

provided as Tweets containing any form of non-360

acceptable language (profanity) or a targeted of-361

fense, which can be veiled or direct. This includes362

insults, threats, and posts containing profane lan-363

guage or swear words.364

Following general annotation recommendations365

for NLP (Pustejovsky and Stubbs, 2012), the anno-366

tation process was completed in three stages. First,367

the graduate students annotated the tweets, provid-368

ing us with 3 separate independent labels of each369

tweet. We then calculated the agreement between370

annotators, resulting in a Fleiss Kappa of 0.47. This371

agreement score was not sufficient enough for us372

to feel comfortable running experiments on. Sec-373

ond, we (the authors) of the paper manually—and374

independently—adjudicated the annotation of each375

user, correcting miss-annotated tweets that were376

not agreed on by all three annotators. Common377

issues found during the process were labels of “Not378

Offensive” for tweets with ad-hoc mentions of the379

“Wuhan Virus” and offensive content found in the380

hashtag. Third, one of the authors went through381

the tweets once again correcting any final disagree-382

ments among the authors adjudications, forming383

the final dataset described in Table 1. After collect-384

ing and adjudicating the responses, the total num-385

ber of Offensive tweets were 4,831 compared to386

9,259 Not Offensive and the final agreement score387

increased to 0.83. Finally, we report Minimum388

Detectable Effect (MDE) (Card et al., 2020) for389

Accuracy in Table 1. Specifically, use the Binomial390

Power Test, which assumes that samples are un-391

paired, i.e., the new model and baseline evaluation392

samples are drawn from the same data distribution393

but are not necessarily the same samples. The MDE394

numbers assume an accuracy of .75, which results 395

in a significant difference between two models be- 396

ing around .05. We plot more potential MDE scores 397

for different baseline numbers in the Appendix. 398

Unlabeled GeoOLID Data. We also make use of 399

unlabeled GeoCOVID data to addresses Hypothe- 400

ses H1a and H1b. The basic stats of this dataset 401

are available in Table 1 in the row titled “Unla- 402

beled Data”. The data is the same as the labeled 403

GeoCOVID, except it was not labeled because of 404

resource constraints. 405

5 Experiments 406

In order to address and test whether the hypothesis 407

are supported, we ran multiple experiments and 408

analyzed performance across the 15 cities in the 409

GeoOLID dataset. In the next two subsections, we 410

restate each hypothesis, provide the evidence to 411

support it, and finally provide a discussion around 412

the results, summarizing major implications. 413

5.1 Understanding Data Variation 414

In this section, we address hypotheses H1a and 415

H1b. More specifically, we analyze how different 416

the stylistic and content differs across each of the 417

15 cities in the GeoOLID dataset. Moreover, we 418

look at the correlation between language style and 419

the demographic makeup of each city. 420

Methods. To address these hypotheses we make 421

use of two distinct methods. First, to answer H1a, 422

we train a geolocation prediction model. Given a 423

tweet, the goal of the geolocation model is to pre- 424

dict the city in which the text was posted. To train 425

the model we use two sets of features: Content Fea- 426

tures and Stylistics Features. The content features 427

are made up of the top 5000 unigrams in the unla- 428

beled GeoOLID dataset. The goal is to ensure that 429

common content information is used, while avoid 430

highly location-specific terminology. We also ex- 431

plore two sets of style Features: Part-of-Speech 432

and Dialect Features. Specifically, we use unigram, 433

bigram, trigram POS features. Moreover, the di- 434

alect features are the probabilities returned from the 435

dialect inference tool from Blodgett et al. (2016). 436

Given a tweet, the tool outputs the proportion of 437

African-American, Hispanic, Asian, and White top- 438

ics. The paper shows that the African-American 439

proportions correlate with AAE language features. 440

Finally, we train a Random Forest classifier on the 441

unlabeled GeoOLID dataset and the results are re- 442

ported using the labeled GeoOLID dataset as the 443
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test set. Hyperparameters are optimized using 10-444

fold cross-validation on the training data.445

Second, to answer H1b, we we use the dialect446

information from the dialect inference tool from447

Blodgett et al. (2016) and correlate it with the de-448

mographic information of each city. Specifically,449

using the 2020 US Census data, we calculate the450

proportion of “Black or African American alone”451

(AA) and “Hispanic or Latino” (H/L) residents for452

each city. We also calculate the average African-453

American (AAS) and Hispanic (HS) topic propor-454

tion for each city using the tool from Blodgett et al.455

(2016). Finally, we calculate the Pearson Correla-456

tion Coefficient (PCC) between the proportion of457

AA and H/L residents in each city.458

H1a: Text in GeoOLID is distributed differently459

depending on the location it was posted. The460

results for the experiments addressing H1a are re-461

ported in Table 2. Using content and style features,462

we were able to predict the location of a tweet463

more than 38% of the time, an increase of almost464

140% in accuracy than the best random baseline,465

suggesting that both content and style features are466

predictive of the location a tweet is made. Like-467

wise, using the POS and dialect features alone, the468

model achieves an accuracy of more than .35, sub-469

stantially higher than the random baselines. Given470

that there are only four dialect features, this is in-471

dicative that the group information detected by the472

Blodgett et al. (2016) is informative. Similarly,473

the POS results are also high, indicating that there474

are unique combinations of POS patterns that ap-475

pear in each location. Overall, the findings point to476

the fact that there are unique stylistic and content-477

related differences in each location which is impor-478

tant for supporting Hypothesis H2 about variations479

in model performance across different locations.480

H1b: Text made in certain geographic regions is481

representative of the sociodemographic makeup482

of the area. In addition to the classification of a483

tweets location, we present a strong correlation be-484

tween the sociodemographic makeup of each city485

and the dialect style of the tweets within the dataset.486

If a cities population of residents has a higher per-487

centage of African Americans, then prior work has488

shown that there is an increase in the number of oc-489

currences of AAE-related language patterns (Blod-490

gett et al., 2016). Specifically, using the average491

AAE (AAS) and Hispanic (HLS) scores from the492

Blodgett et al. (2016) tool over all tweets in each493

city, we correlate it with the proportion of AA and494

AAS HLS Tot. AA H/L

Bal .168 .193 585,708 338,478 45,927
Chi .147 .204 2,450,143 801,195 819,518
Col .146 .201 905,748 259,483 70,179
Det .196 .214 639,111 496,534 51,269
ElP .158 .227 678,815 25,077 551,513
Hou .161 .205 2,304,580 520,389 1,013,423
Ind .151 .194 887,642 248,067 116,221
LA .144 .204 3,898,747 336,096 1,829,991
Mem .209 .220 633,104 389,779 62,167
Mia .140 .175 442,241 57,254 310,472
NO .182 .197 383,997 208,273 31,017
NY .126 .182 8,804,190 1,943,645 2,490,350
Phi .157 .204 887,642 248,067 116,221
Pho .144 .208 1,608,139 125,260 661,574
SA .175 .222 1,434,625 102,816 916,010

AA PCC .565 (p value: .028)
H/L PCC .167 (p value: .55)

Table 3: Pearson Correlation Coefficient (PCC) between
the AAS and HLS. The abbreviations for the 15 cities
in the GeoOLID dataset are as follows: Chicago (Chi),
Detroit (Det), Baltimore (Bal), El Paso (ElP), Los Ange-
les (LA), Houston (Hou), Columbus( Col), Indianapo-
lis (Ind), Miami (Mia), Memphis (Mem), New York
City (NYC), New Orleans (NO), San Antonio (SA),
Philadelphia (Phi), and Phoinex (Pho).

Hispanic population within each city based on the 495

2020 US census data. This correlation can be seen 496

in Table 3. Overall we find that there is significant 497

correlation .565 (p value: 0.028) between the two 498

variables. We find that cities like Baltimore, New 499

Orleans and Detroit are more likely to have more 500

AAE tweets then cities like Miami, Columbus, and 501

New York. For the Hispanic group we also find a 502

positive correlation but the finding is not significant. 503

We also manually analyzed the dataset and found 504

other features indicative of a relationship between 505

demographics of the city and language use. For 506

example, we found Spanish curse words appearing 507

in text in cities with higher Hispanic populations 508

in our dataset, e.g., “Nationwide shutdown! pinché 509

Cabron” is an slightly modified tweet that appeared 510

was tagged in Phoenix, AZ. 511

5.2 Data Variation and Model Performance 512

In this subsection, we explore the central hypothe- 513

ses of this paper looking at performance disparities 514

between various locations within the US. 515

Methods. We train six different machine learn- 516

ing algorithms: Naive Bayes (NB), Linear Support 517

Vector Machine (Linear SVM), Long Short Term 518

Memory (LSTM), Bidirectional LSTM (BiLSTM), 519

Convolutional Nueral Networks (CNN), and a Bidi- 520

rectional Encoder Representations from Transform- 521

ers (BERT). Each model is trained to classify Of- 522

fensive and Non Offensive tweets using the OLID 523

dataset.Each model is trained independently on 524
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Bal Chi Col Det ElP Hou Ind LA Mem Mia NO NY Phi Pho SA AVG

Stratified .555 .555 .550 .536 .536 .570 .577 .567 .521 .592 .553 .588 .567 .544 .564 .558
Uniform .484 .533 .500 .510 .465 .504 .479 .477 .487 .484 .495 .509 .503 .503 .513 .496
Prior .695 .675 .672 .599 .554 .681 .662 .689 .605 .771 .651 .730 .651 .618 .596 .657

NB .820 .765 .779 .764 .695 .781 .773 .794 .769 .863 .787 .797 .782 .710 .743 .775
Linear SVM .779 .745 .751 .761 .694 .724 .748 .776 .752 .822 .787 .794 .771 .704 .740 .757

BiLSTM .834 .809 .799 .803 .757 .774 .809 .824 .818 .861 .835 .842 .833 .768 .783 .809
CNN .843 .820 .792 .823 .747 .773 .819 .805 .814 .851 .842 .849 .849 .760 .788 .811
LSTM .832 .814 .790 .834 .758 .790 .817 .829 .810 .873 .837 .834 .850 .772 .783 .815
BERT .786 .800 .788 .785 .755 .791 .790 .809 .761 .848 .785 .816 .803 .747 .771 .739

AVG .816 (0) .792 (1) .782 (1) .795 (1) .734 (8) .772 (1) .793 (1) .806 (1) .787 (1) .853 (0) .812 (2) .822 (0) .815 (0) .744 (6) .768 (2)

Table 4: Accuracy. In the bottom row, we mark the number of other cities that have a score greater than or equal to
the MDE for that city given its score as a baseline.

PCC

AA Hispanic

NB .186 -.216
Linear SVM .142 -.272
LSTM .279 -.362
CNN .283 -.398
BiLSTM .290 -.358
BERT -.061 .056
AVG .187 -.258

AAE vs SAE Results

SAE Accuracy .831 (3392)

AAE Accuracy .854 (5789)

Table 5: PCC between AA and H/L population propor-
tions of each city and Accuracy. This table also reports
the SAE vs AAE Accuracy on the GeoOLID dataset—
the total number in each group is in parenthesis.

each of the five different OLID training splits. The525

performance metrics are then averaged across the526

five different seeds as a way of measuring the ro-527

bustness of the model and guaranteeing a high ac-528

curacy is not a coincidence when predicting on the529

same validation set. One thing to note is for the530

BiLSTM, CNN and LSTM, we also measure the531

performance of the model across multiple word em-532

beddings. Specifically, each deep learning model is533

trained using different variations of Glove, Google534

Word2Vec and Fasttext word embedding (See the535

Appendix for a complete listing of the evaluated536

embeddings). We also perform a comprehensive537

manual error analysis for H2b to better understand538

model performance differences beyond aggregate539

quantitative metrics.540

H2a: Because data is distributed differently541

in different geographic regions, model perfor-542

mance is not the same in each location. In Ta-543

ble 4, we report the OLID model accuracy for each544

city. Overall, we find substantial variation in model545

accuracy across the 15 cities. The Naive Bayes546

(NB) classifier ranges from .695 to .863, resulting547

in around a 17% difference in accuracy between548

El Paso and Miami. Similar findings can be seen549

with the other models like CNN and BERT having550

a up to a 10% difference. Furthermore, given the 551

MDE of around 5% for each city depending on the 552

baseline score, we find that many of the differences 553

are significant. Note that there are even larger dif- 554

ferences in F1 score, please find the results in the 555

Appendix. 556

The question remains, if the text in each city is 557

correlated with demographic information, then why 558

do we need location-specific performance analy- 559

sis? The issue is that while demographic analysis 560

provides broad insights, location-specific language 561

is substantially more varied. Thus, unfortunately, 562

demographic factors alone are not predictive of 563

model performance for a given city. In Table 5, we 564

use the Blodgett et al. (2016) tool to identify AAE 565

and SAE (White-aligned) tweets in our GeoOLID 566

dataset across all cities. When we calculate the ac- 567

curacy across these two aggregate groups, we find 568

similar conclusions to prior work (Sap et al., 2019) 569

suggesting that offensive language models are bi- 570

ased towards AAE text. However, when we corre- 571

late (using PCC) model performance (Accuracy) 572

with the proportion of Black or African American 573

residents using US Census data, we find that the 574

model is positively correlated (though not signif- 575

icant) with higher accuracy, which is contrary to 576

the general demographic findings. We also corre- 577

late the performance of each model with Latino or 578

Hispanic populations finding negative correlations. 579

After manual analysis, we find that the models suf- 580

fer for common topics in these areas (e.g., border- 581

related topics). In summary, the major finding of 582

this paper is listed below: 583

Major Finding: Broad dialectal analysis of
model performance alone is not predictive of
model performance for a specific community.

584

H2b: Errors made by the models are caused by 585

geographic-specific content and language style. 586

We perform a comprehensive manual analysis on 587

the False Negatives made by the best model on the 588

OLID dataset. The results are summarized in Fig- 589
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Figure 2: Category Percentages of False Negative Pre-
dictions per City.
ure 2. Specifically, we categorized false negatives590

into four major categories: Racist, contained pro-591

fanity, was a target attack on an individual, or was592

inappropriate (sexual references, insensitive jokes).593

A few important observations can be made from594

this graph. For instance, we find a large proportion595

of false negatives in the racist category in border596

cities, or cities in close proximity to Mexico (e.g.,597

El Paso, Phoenix, San Antonio, and Houston). We598

found many issues where the model did not de-599

tect language that refers to migrants being part of600

a “horde,” meant to cause violence or destruction601

(this is common racist rhetoric at the time (Finley602

and Esposito, 2020)), as being offensive. Given603

the increase in border-related topics, this type of604

error is highly location-specific. Furthermore, non-605

location-specific errors include compound curse606

words and morphological variants of curse words607

that were a major cause for false negatives in multi-608

ple regions. For example, in New Orleans, Philadel-609

phia, and Memphis there were many false negative610

tweets contain high percentages of Profanity due to611

multiple spellings of different swear words such as612

fucked, shits, damnit, fucks, phucking, effing, hoes,613

mothafucka, biatches.614

5.3 Geographic Similarities615

In this subsection, we analyze the correlation be-616

tween the best performing models in each city.617

Methods. To answer this question, we analyze the618

performance of the models trained and described619

in Section 5.2. Specifically, we compare the PCC620

between the Accuracy of each applied for every621

pair of cities. Intuitively, if the rank of each model622

for New York based on Accuracy is the same as the623

rank of each model applied to Phoenix, then the624

correlation would be one. The more differences in625

rankings the lower the performance. In this experi-626

ment, we rank every model along with the variants627

of models (i.e., each model trained with different628
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Figure 3: Model accuracy correlation between each pair
of cities in GeoCOVID.

word embeddings listed in the Appendix are treated 629

as independent models). 630

H3: The best model for each location is not the 631

same. The results of the correlation analysis are 632

shown in Figure 3. Overall, similar to variations 633

in model performance across cities, we find that 634

the similarity in model performance correlations 635

can vary substantially city-to-city. For instance, the 636

best models for Houston are substantially differ- 637

ent than other cities with the exception of a few 638

(e.g., Los Angeles). However, on further inspec- 639

tion, general architecture performance seems to 640

be relatively similar across cities, e.g., the LSTM 641

model is the best on OLID dataset and for most 642

cities. Much of the variation comes from hyper- 643

parameter choice , or more specifically pretrained 644

embedding choice(with more than 10% in Accu- 645

racy between the best and worst embeddings). This 646

suggests that choosing the best hyperparameters 647

based on a small subset of data is not optimal for 648

each community. An interesting future research 649

question would be if we train a model with many 650

hyperparameter options on a dataset, is it possible 651

to predict which model to deploy in a given region? 652

6 Conclusion 653

We provide a comprehensive analysis of perfor- 654

mance disparities of offensive language detection 655

models. Furthermore, we introduce a novel dataset 656

that provides more than 14 thousand examples 657

for further analysis of geographical differences in 658

model performance. The study points to the impor- 659

tance of community-driven NLP, where the impact 660

and performance of NLP models are analyzed for 661

specific communities, or even micro communities 662

within a city. Moreover, finding communities that 663

models perform poorly on can also provide unique 664

testbeds as “hard test cases” similar to recent work 665

on adversarial examples (Zhang et al., 2019). 666
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A Appendix906

A.1 Word Embeddings907

In Table 6, we link to the publicly available word908

embeddings we use in our experiments. We test909

three models: SkipGram, GLOVE, and FastText.910

We also explore different embeddings sizes, rang-911

ing for 25 dimensions to 300. Moreover, we912

explore embeddings trained on different corpora,913

ranging from biomedical text (PubMed) to social914

media data (Twitter). The best embeddings are cho-915

sen based on the OLID validation dataset for all916

reported results in the main manuscript.917

A.2 Model Hyper-parameters918

In this Section, we report the best hyperparmeters919

for each model. For the linear models we also920

report the best TF-IDF settings from the scikit-921

learn package.922

TF-IDF:923

• sublinear tf: True924

• min df: 5925

• norm: l2926

• encoding: latin-1927

• ngram range: (1,2)928

• stop words: english929

Naive Bayes:930

• alpha : 1.0931

• fit prior: False932

Linear SVM:933

• penalty: l2934

• C: 1.0 935

CNN: 936

• max words: 10000 937

• max sequence length: 125 938

• drop: 0.2 939

• batch size: 512 940

• epochs: 30 941

• filter sizes: 3,4,5 942

• num filters: 512 943

• early stopping: 5 iterations 944

LSTM: 945

• max words: 10000 946

• max sequence length: 125 947

• drop: 0.2 948

• batch size: 128 949

• epochs: 30 950

• num filters: 512 951

• hidden layers: 1 952

• early stopping: 5 iterations 953

BiLSTM: 954

• max words: 10000 955

• max sequence length: 125 956

• drop: 0.2 957

• batch size: 128 958

• epochs: 30 959

• num filters: 512 960

• hidden layers: 1 961

• early stopping: 5 iterations 962

BERT: 963

• tokenizer : bert-base-cased 964

• model : bert-base-cased 965

• dropout : 0.2 966

• max length : 128 967

• epochs : 50 968

• batch size : 64 969

• fine tuned : after 5 epochs 970

• early stopping : 5 iterations 971

A.3 OLID Results 972

We report the OLID results for each model (NB, 973

Linear SVM, CNN, LSTM, BiLSTM, and BERT) 974

in Table 8. Interestingly, we find that the CNN 975

model outperforms other methods, including the 976

LSTM-based models and BERT. For instance, the 977

CNN’s F1 is more than 2% higher than the LSTM 978

and BiLSTM models. Moreover, it is more than 6% 979

higher than BERT. We also find that all methods 980

outperform the traditional machine learning models 981

(NB and Linear SVM), with the CNN outperform- 982

ing the Linear SVM by nearly 9% F1 and nearly 983

5% in Accuracy. The results support the results of 984

the main paper with the CNN model generalizing 985

better than other techniques. 986
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Figure 4: MDE given different baseline accuracy as-
sumptions and a power of 80%.

Next, in Table 7 we report the performance of987

the CNN, LSTM, and BiLSTM models trained us-988

ing different embeddings. Overall, we see variation989

across which embeddings result in teh best F1 score990

for each model, with wiki_42B_300d resulting in991

the highest F1 for the BiLSTM, wiki_840B_300d992

resulting in the best results for the LSTM, and993

GLOVE_twitter_27B_100d. This finding is simi-994

lar to the results for H3 in the main paper, where995

embedding choice can vary city-to-city. We also996

find that it can vary model-to-model, which is also997

supported in Rios and Lwowski (2020).998

A.4 Accuracy Power Analysis999

In Figure 4, we report the MDE (Card et al., 2020)1000

for Accuracy assuming different baseline scores1001

and a power of 80%. For instance, if the baseline1002

achieves an accuracy of .95, then we would need1003

to see any improvement/difference of around .0251004

for it to be significant. Likewise, if the accuracy is1005

around .65, then we need an improvement of nearly1006

.06 for it to be significant. Intuitively, the more1007

accurate the results, the smaller the improvement1008

can be for it be significant.1009

A.5 F1 Scores per City1010

In Table 9, we reproduce Table 4 from the main1011

component of our paper, but for F1 scores instead1012

of Accuracy. Note that power analysis is possible1013

for F1 score (Card et al., 2020), but many more1014

assumptions are required. Based on our prelimi-1015

nary analysis, we found that significant differences1016

can range between 2% and 5% depending on the1017

assumptions. Overall, we we find that the CNN1018

results in the best performance on average. Like-1019

wise, we find the best results on text in Baltimore,1020

Detroit, and Philadelphia. The worst results are1021

found in Houston, Phoenix, and New York.1022

12



Model Data Source Dimension Link

SkipGram Google News 300 https://docs.google.com/file/d/
0B7XkCwpI5KDYaDBDQm1tZGNDRHc/edit?
usp=sharing

SkipGram PubMed 200 http://evexdb.org/pmresources/
vec-space-models/PubMed-w2v.bin

SkipGram PubMed Central 200 http://evexdb.org/pmresources/
vec-space-models/PMC-w2v.bin

SkipGram PubMed and PubMed Central 200 http://evexdb.org/
pmresources/vec-space-models/
PubMed-and-PMC-w2v.bin

SkipGram Wikipedia, PubMed, and PubMed Central 200 http://evexdb.org/
pmresources/vec-space-models/
wikipedia-pubmed-and-PMC-w2v.bin

GLOVE Twitter 25 http://nlp.stanford.edu/data/glove.
twitter.27B.zip

GLOVE Twitter 50 http://nlp.stanford.edu/data/glove.
twitter.27B.zip

GLOVE Twitter 100 http://nlp.stanford.edu/data/glove.
twitter.27B.zip

GLOVE Twitter 200 http://nlp.stanford.edu/data/glove.
twitter.27B.zip

GLOVE Wikipedia 2014 and Gigaword 5 50 http://nlp.stanford.edu/data/glove.
6B.zip

GLOVE Wikipedia 2014 and Gigaword 5 100 http://nlp.stanford.edu/data/glove.
6B.zip

GLOVE Wikipedia 2014 and Gigaword 5 200 http://nlp.stanford.edu/data/glove.
6B.zip

GLOVE Wikipedia 2014 and Gigaword 5 300 http://nlp.stanford.edu/data/glove.
6B.zip

GLOVE Common Crawl V1 300 http://nlp.stanford.edu/data/glove.
42B.300d.zip

GLOVE Common Crawl V2 300 http://nlp.stanford.edu/data/glove.
840B.300d.zip

FastText Wikipedia 2017, UMBC webbase corpus, and statmt.org news dataset 300 https://dl.fbaipublicfiles.
com/fasttext/vectors-english/
wiki-news-300d-1M.vec.zip

FastText Common Crawl 300 https://dl.fbaipublicfiles.
com/fasttext/vectors-english/
crawl-300d-2M.vec.zip

Table 6: List of word embeddings we use in our experiments.
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Word Embedding F1 Accuracy
BiLSTM

FASTTEXT_en_300 0.580 0.760
GLOVE_twitter_27B_100d 0.627 0.785
GLOVE_twitter_27B_50d 0.5834 0.764
GLOVE_wiki_42B_300d 0.645 0.793
GLOVE_wiki_6B_100d 0.600 0.771
GLOVE_wiki_6B_200d 0.605 0.778
GLOVE_wiki_6B_300d 0.631 0.783
GLOVE_wiki_6B_50d 0.586 0.768
GLOVE_wiki_840B_300d 0.631 0.787
W2V_GoogleNews 0.616 0.781
W2V_PMC 0.488 0.730
W2V_PubMed_PMC 0.514 0.738
W2V_PubMed 0.402 0.704

LSTM
FASTTEXT_en_300 0.524 0.749
GLOVE_twitter_27B_100d 0.618 0.782
GLOVE_twitter_27B_50d 0.591 0.770
GLOVE_wiki_42B_300d 0.619 0.790
GLOVE_wiki_6B_100d 0.607 0.774
GLOVE_wiki_6B_200d 0.616 0.781
GLOVE_wiki_6B_300d 0.609 0.782
GLOVE_wiki_6B_50d 0.577 0.762
GLOVE_wiki_840B_300d 0.624 0.788
W2V_GoogleNews 0.602 0.779
W2V_PMC 0.456 0.720
W2V_PubMed_PMC 0.495 0.730
W2V_PubMed 0.348 0.701

CNN
FASTTEXT_en_300 0.611 0.778
GLOVE_twitter_27B_100d 0.657 0.792
GLOVE_twitter_27B_50d 0.635 0.788
GLOVE_wiki_42B_300d 0.642 0.793
GLOVE_wiki_6B_100d 0.621 0.779
GLOVE_wiki_6B_200d 0.621 0.786
GLOVE_wiki_6B_300d 0.621 0.785
GLOVE_wiki_6B_50d 0.612 0.775
GLOVE_wiki_840B_300d 0.648 0.794
W2V_GoogleNews 0.638 0.789
W2V_PMC 0.520 0.738
W2V_PubMed_PMC 0.541 0.743
W2V_PubMed 0.461 0.718

Table 7: Word Embedding Performance for Deep Learn-
ing Models

Prec. Rec. F1 Acc.

Random Baselines

Stratified .324 .348 .336 .553
Uniform .321 .505 .392 .493
Prior .000 .000 .000 .676

Machine Learning Models

NB .722 .250 .371 .720
Linear SVM .643 .505 .566 .744

BiLSTM .754 .551 .631 .783
CNN .721 .603 .657 .792
LSTM .768 .527 .624 .788
BERT .652 .555 .592 .752

Table 8: OLID Results
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Bal Chi Col Det ElP Hou Ind LA Mem Mia NO NY Phi Pho SA AVG

NB .607 .481 .538 .624 .562 .512 .521 .528 .614 .650 .588 .420 .570 .438 .576 .548
Linear SVM .661 .615 .650 .714 .658 .568 .611 .643 .702 .660 .708 .625 .680 .613 .680 .653

BiLSTM .678 .623 .651 .725 .660 .591 .643 .642 .720 .666 .694 .624 .705 .637 .669 .662
CNN .720 .662 .684 .745 .688 .611 .674 .670 .745 .701 .736 .663 .743 .657 .703 .694
LSTM .653 .614 .633 .709 .638 .570 .624 .620 .701 .661 .680 .600 .686 .615 .650 .643
BERT . 601 .629 .641 .684 .661 .602 .621 .642 .651 .614 .635 .593 .668 .607 .665 . 634

AVG .653 .604 .633 .702 .644 .576 .616 .642 .689 .659 .673 .587 .675 .593 .657

Table 9: F1 score for each city.
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