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Abstract

Multimodal language models possess a remarkable ability to handle an open-
vocabulary worth of objects. Yet the best models still suffer from hallucinations
when reasoning about scenes in the real world, revealing a gap between their
seemingly strong performance on existing perception benchmarks that are saturat-
ing and their reasoning in the real world. To address this gap, we build a novel
benchmark of in-the-wild scenes that we call Common-0 Bench. With more than
10.5k examples using exclusively new images not found in web training data to
avoid contamination, Common-0 Bench goes beyond just perception, inspired by
cognitive tests for humans, to probe reasoning across scenes by asking “what’s in
common?”’. We evaluate leading multimodal language models, including models
specifically trained to reason. We find that perceiving objects in single images
is easy for most models, yet reasoning across scenes is very challenging even
for the best models, including reasoning models. Despite saturating many leader-
boards focusing on perception, the best performing model only achieves 35%
on Common-0 Bench—and on Common-0 Complex, consisting of more complex
scenes, the best model achieves only 1%. Curiously, we find models are more prone
to hallucinate when similar objects are present in the scene, suggesting models
may be relying on object co-occurrence seen during training. Among the models
we evaluated, we found scale can provide modest improvements while models
explicitly trained with multi-image inputs show bigger improvements, suggesting
scaled multi-image training may offer promise. We make our benchmark publicly
available to spur research into the challenge of hallucination when reasoning across
scenes at https://huggingface.co/datasets/facebook/Common- 0.

1 Introduction

Multimodal models today have begun saturating visual perception leaderboards. For example, on
benchmarks such as CLEVR (Johnson et al.,|2016), DocVQA (Mathew et al.} 2021, ChartQA (Masry
et al.,[2022)), TextVQA (Singh et al., 2019), MMBench (Liu et al., 2023)), and Seed-Bench (Li et al.,
2024b), top-performing models achieve an accuracy of 80%-90% (Zhang et al.| 2024). However,
despite these impressive results, there is a growing concern that these benchmarks may not accurately
reflect the performance of models in real-world scenarios. In fact, research has shown that models
often struggle to generalize to new, unseen data, and are prone to hallucinating objects that are not
present in the scene (Guan et al., [2023).
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Figure 1: Reasoning across scenes is an open challenge for today’s best multimodal models.
We show the best performance from the Open VLM leaderboard on MMBench and single image
evaluations from our benchmark illustrating saturation for perception tasks.

One of the main reasons for this gap between benchmark performance and real-world performance
is the contamination between benchmarks and training data 2024). Many benchmarks
are constructed from web data, which is also used to train models. This means that models are often
trained on data that is similar to the benchmark data, leading to an overestimate of their performance.
Another factor contributing to the gap is the lack of benchmarks that capture the complexity and
variability of real-world scenes. Many benchmarks use simplified geometric visuals or static scenes;
while useful for static tasks such as chart understanding, these do not reflect the dynamic and evolving
nature of real-world scenes.

The ability to reason across complex scenes containing multiple objects is a fundamental aspect of
human cognition. Research in cognitive science has shown object identification in scenes is a key
component of cognitive function—and that deficits in this ability are a hallmark of cognitive decline,
such as in Alzheimer’s disease (Takechi & Dodgel [2010). Furthermore, studies have demonstrated
that the brain’s ability to understand the relationships between objects in a scene is closely tied to its
ability to understand the scene as a whole (Frankland & Greenel [2015). These findings suggest that a
benchmark that requires models to reason about complex, dynamic scenes is crucial step towards
deploying reliable models in the real world.

To address these challenges, we introduce a new multi-image benchmark,Common-0 Bench, designed
to test models’ ability to reason across dynamic scenes in a way more similar to human reasoning. Our
benchmark includes scenes containing multiple objects with varying lighting conditions, and complex
backgrounds that requires models to reason about the relationships between objects across distinct
scenes. We choose scenes with up to 7 objects as our default setting, inspired by the 1956 classic,
putative heuristic constraint on human memory, colloquially described as the “Magical Number
Seven, Plus or Minus Two" (Miller|[1956; [Baddeley|[1994} [Cowan et al2007) i.a.). Common-0 Bench
comprises both real and synthetic data, allowing for more flexibility in our evaluation, as we can
sample a wide range of object-background combinations that are typical in real data. We also provide
a non-overlapping fully synthetic challenge set, Common-0 Complex that spans up to 16 objects per
scene, increasing scene complexity appreciably. In both Common-0 Bench and Common-0 Complex,
we intentionally provide multiple camera points of view of a given scene, reflecting the diversity
found in the real world.

We find that despite being able to recognize objects in individual scenes, state-of-the-art models
struggle to reason across scenes. The best performing model, GPT-40, achieves only 35% on
Common-0 Bench, highlighting reasoning across scenes as open challenge, in stark contrast to the
saturation observed for other multimodal benchmarks. For the more challenging set Common-0
Complex, the best performing model achieve <1%. Curiously, we find models hallucination is
pervasive, with at least one 1 object hallucinated 53% of the time and 2+ as often as 23% of the time.



Our findings have important implications for the development of multimodal models. We find models
trained with multi-image inputs achieve higher performance and scale can yield marginal benefits,
yet even the best multi-image large scale models struggle highlighting the need for models to be
designed with real-world scenes in mind. This requires a fundamental shift in the way models are
designed and trained, and underscores the need for more research in this area. We release Common-0
Bench and Common-0 Complex to mark a new challenge in multimodal models’ ability to reason
across scenes that we hope could unlock new frontiers in real world applications [H

2 Related Work

Many works have aimed to evaluate model performance on visual reasoning. We summarize our
contributions relative to existing benchmarks in terms of multi-image capability, scale, and saturation
in Table [T} Our dataset is larger in size, captures multi-image reasoning across scenes inspired
by human cognitive tests, and stands out in terms of not relying on existing web datasets, thereby
avoiding possible training data contamination or object resemblance. Together, these factors make our
benchmark much more challenging relative to existing benchmarks where performance has saturated.

Benchmark Multi-image  Multi-scene Size Source SOTA
. NTSEBENCH X X 2.7k Web 88.9%
£ MathVista X X 6k Existing & new 80.9%
§ MMIU Objective Semantic 1.2k Existing 55.7%
ReMI 2.6k Synthetic 50.5%
2 POPE X X 9k Existing 91.0%
£  HallusionBench 591 Synthetic & cartoon  67.1%
MMBench X X 1784 Web 88.3%
_NLVR2 13.9k Web 80.3%
5 GQA 3.4k Existing 74.6%
SEED-Bench-2 660 Existing 73.1%
MUIRBench 536 Existing & new 68%
£ Common-0 Bench 10k New 35%
© Common-0 Complex 12k New 1%

Table 1: Existing benchmark datasets targeting abstract reasoning, hallucination (‘Hallu.”), and
real image reasoning) are insufficient due to saturation, and/or failure to target multi-image and/or
multi-scene reasoning. Existing datasets targeting multi-image and multi-scene reasoning exist but
have saturated (NLVR2, GQA). Those that have not saturated are relatively small (SEED-Bench-2,
MUIRBench, HallusionBench, ReMI). Abstract benchmarks mostly focus on abstract geometric
reasoning in puzzles/charts rather than real scenes or extract frames from videos.

Perception. Many benchmarks include composite measures that focus on single object-centric
perception such as object classification (Deng et al.,[2009; [Lin et al., 2014) and attributes or relations
of objects (Al-Tahan et al.,2024; Dumpala et al.|[2024)). As part of perception, researchers have also
focused on the issue of hallucination where models describe objects that are not present in scenes
(L1 et al.l [2023b; |Guan et al., |2023). Instruction following (Li et al., |2023a) for perception tasks
using single images is another area where diversity, quality, and creativity of answers is important.
Recent efforts to benchmark multimodal model have relied on larger composite suites of benchmarks
that span several tasks such as recognition, OCR, counting, visual question answering, and object
attributes etc. (Yu et al., 2023} [Liu et al.,|2023; |Li et al., 2024b)).

Abstract reasoning in charts, geometric sketches, and puzzles. Relative to the improved perfor-
mance on real world perception tasks, multimodal models exhibit degraded performance on abstract
visual puzzles that involve straight-forward reasoning. For example, Rahmanzadehgervi et al.[(2025)
show multimodal models lag considerably behind humans at identifying simple tasks such as whether
two circles overlap with|[Huang et al.| (2025) showing similar conclusions on visual arithmetic. Simi-
larly, Wiist et al.|(2025)); Jiang et al.; [Ullman| (2024)); Kraaijveld et al.|(2024) probe whether models

'Datasets are available at https://huggingface.co/datasets/facebook/Common-0
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can solve basic visual logical puzzles that involve outlines of geometric shapes, illusions, and lateral
thinking. [Pandya et al.|(2025) construct a dataset of 2.7k multiple choice questions from the national
exam in India that involve geometry and visual reasoning questions from graphs. |Hemmat et al.
evaluates whether multimodal models can perceive abstract shapes, a key aspect of human visual
perception. [Sampat et al.|(2024)) assess whether multimodal models can solve NLP and visual tasks
jointly. |Lin et al.| (2024) studies comparisons across pairs of synthetically generated CAD images.
Most similar to our work is the objective high-level semantic task from MMIU, which consist of
1.1k examples from existing datasets focused on semantic correspondence such as BLINK (Fu et al.,
2024) and MISC210K (Sun et al.;2023)), spotting the difference (Jhamtani & Berg-Kirkpatrickl[2018)
or abstract puzzles from datasets such as NLVR2 (Suhr et al.| 2019). We build on this setup to focus
on reasoning about object commonality across scenes at larger scales.

Measuring reasoning using single image benchmarks. The prior benchmarks reveal abstract
reasoning may be a challenge for multimodal models hinting at a possible reason for the observed
gap in real world performance multimodal models. Many works attempted to measure the gap
between real world capabilities and benchmark performance by focusing on robustness (Geirhos
et al.| 2022} |Gabbay et al.| 2021} [Hendrycks et al., 2021). For example, Richards et al.| (2023)
measures the in the wild robustness gap for household object classification across geographies.
Another approach to capture the real world versus standard benchmark gap is to explicitly mine
or generate challenging images (Tong et al., |2024allb; Wang et al.| 2025). A first step to reasoning
beyond perception is compositionality. Several works have studied whether multimodal models can
understand and compose attributes and objects (Johnson et al.|[2016; [Thrush et al.|[2022; |Yuksekgonul
et al., 2022} Krojer et al., 2022 Wu et al.| [2025)). Some have even explored single-image reasoning in
adversarial settings (Li et al., 2021; Sheng et al.,[2021)) and memes (Kiela et al.,2020; |Suryawanshi
& Chakravarthil [2021). Yet, real world scene understanding requires reasoning beyond basic single-
image settings.

Multi-image reasoning across natural scenes. To go beyond perception, generalization in the
real world requires reasoning across scenes. Aggregate benchmark such as VHELM contain multi-
image reasoning tasks (Lee et al., 2024b), many of which are derived from geometry style puzzles
akin to those described above. The real world image reasoning task in VHELM is based on GQA,
which is a dataset constructed from objects in the popular Visual Genome dataset available in web
training data (Agrawal et al.l|2022). The authors use 11k images from the GQA validation set in
their evaluations. There are also multi-image binary tasks with image selection (Hu et al., [2019),
predicting whether captions are true of images (Suhr et al.||2017}2019), and visual haystacks (Wu
et al.,[2024a)) that focuses on retrieval as well as visual question answering based on a large number of
images (up to 10k). Other benchmarks Meng et al.|(2024); [Fu et al.|(2024) also focus on multi-image
tasks, showing even models that excel at single image tasks struggle on multi-image tasks such as
visual correspondence, semantic correspondence, and multi-view reasoning of the same scene across
multiple images. Other tasks include visual similarity, relative depth, and functional correspondence
in the same image. However, as shown in Table[I] these multi-image real scene benchmarks rely
on mining image from the web or existing datasets, which both limits their size and introduces
possible training data contamination. We observe the best reported performance even on multi-image
benchmarks is quite high 68-88.3%.

3 Methods

3.1 Dataset Construction

Common-0 Bench is designed to test the ability of models to reason about complex, dynamic scenes in
a way that is similar to human reasoning. Common-0 Bench consists of 10.5k examples, representing
different scenes containing 3 or more objects with diverse background and viewpoints. configurations
of objects. Every example in the dataset consists two images, which can be either real (45%) or
synthetic (55%). The real images, we took images ourselves, to ensure that each image is completely
new and unique, with no issues of contamination in web or existing data used for training. Real
images were taken by four experts in machine learning with no particular photography training.
Image-takers followed a fairly simple data creation procedure where images were grouped in sets and
placed arbitrarily against backgrounds to generate test data. We do not include any images of people
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(a) Common-0 Bench: 10k examples of real and synthetic images, with scene complexity from 3 to 7 objects.

spoon; marker; remote; football; volleyball; vase; marker; cast iron; shampoo; mallard (fake
vase; airplane; basketball duck); airplane; candle holder; birdhouse

(b) Common-0 Complex: 12k containing synthetic images only, ranging in complexity from 8 to 16 objects.

Figure 2: Common-0 Bench contains real and synthetic images of objects in different orientations
and configurations. These are randomly selected examples from the dataset along with the human
ground truth labels for the common object(s) between them.

or proprietary content such as logos. See Appendix [A]for more details on our image-taking guidelines.
The synthetic images were generated using Unreal Engine 5.4 with assets from the Aria Digital
Twin Catalog(Dong et al.| [2025). We place the objects randomly in the scene and take pictures from
different angles. To avoid overlapping between objects we rescale each of them to a given maximum
size while keeping their aspect ratio (more detail can be found in Appendix [C). We also construct
Common-0 Complex consisting of 12k examples of more complex scenes, containing 8 — 16 objects,
and being wholly synthetically created using the same video game engine. This allows us to evaluate
the ability of models to reason about scenes with varying levels of complexity. We have 129 different
objects in Common-0 Bench and Common-0 Complex. Using Segment Anything
2023), we find the object in the images ranges from 2-22% of the overall image size. Following
Gebru et al| (2021)), we include a full dataset card in Appendix[E] See Figure 2] for examples from
Common-0 Bench and Common-0 Complex.

3.2 Evaluation

Task Definition. An input example is defined as (Iy, I1, Ochoicess Oin_common) Where:

— Iy, I are the two images Iy, I
— Ochoices 1 a set of candidate objects Ochoices
— Oin_common 18 the set of ground truth objects in common between the images.

Models are tasked with predicting the common objects Oiy common- We format the data
(Io, I1, Ochoices ) into model input.



To isolate perception from reasoning capabilities, we conduct a single-image evaluation as well.
Models receive one image and a binary question (“Is <object> in this image?”), testing basic object
recognition. Strong performance here suggests failures in multi-image setups stem from reasoning
limitations rather than perception deficits. This controlled comparison enables clearer analysis of
cross-image reasoning abilities. We also performed human annotations with 4 expert annotators who
are authors using 100 randomly sampled examples (each reviewed by at least two annotators). We
reach 84% annotation agreement.

Metrics. We assess performance through two complementary metrics. First, accuracy measures
strict correctness, requiring an exact match between predicted (Opreq) and ground truth (Ocommon)
object sets. Second, hallucination rate quantifies how often model respond with an object that is not

present. Speficially, hallucination measures the false positive predictions, calculated as the ratio of
1Oprea\ Ocommon|

(X This combination enables evaluation of
choices

incorrectly predicted objects to total choices:
both precision and recall in model predictions.

Models. We benchmark a diverse array of multimodal models spanning different architectural
families and scales. Openly available models include LLaVA-OneVision (7B, 72B) (Li et al.| 2024a)),
DeepSeek-VL2 (Small/Base) (Wu et al., [2024b), LLaMA-V-o1 (Thawakar et al.,|[2025), Qwen2.5-VL
(Bai et al.} 2025)), LLaMA-4 Scout Instruct (Meta), PerceptionLM (3B/8B) (Cho et al., |2025)) and
QVQ-72B-Preview (Teaml 2024). The closed-source GPT-40 is also evaluated”} Our implementation
uses HuggingFace Transformers (Wolf et al.| 2020) for LLaMA-V-o1, the Perception Models GitHub
repositoryE] for PerceptionLM, and vLLM (Kwon et al.| |2023)) for remaining models. We ran all
models locally, on single node with 8 A100s GPUs, except for GPT-40, which is only available
through the API. All use greedy decoding with default parameters (temperature=1, top-p=1) unless
specified otherwise. Images are resized, maintaining the aspect ratio, with the smallest size of 384px.
For models not explicitly trained for multi-image input—Llama 3.2, LlamaV-o1, PerceptionLM—we
first concatenate the two images before passing them to the model as input. E]

Model Input. The object choices are alphabetized (A, B, C...) to leverage models’ preference for
letter-based responses over other input formats (Long et al.,[2024). Outputs must conclude with a
comma-separated prediction list, allowing flexible generation formats, including chain-of-thought
reasoning (Wei et al., [2022). For models trained for multi-image input, text prompt is:

Which objects are present in both images? Select all choices

that are true: {}. You can think of your answer in any way (e.g.
step-by-step) but for the last line of your response, respond only
in this format ‘Answer: <letter 1> <letter 2> <letter 3>’, e.g.
‘Answer: A, B, C’.

For models where we first concatenate the input images, the text prompt is:

There are two images provided, one on the left and the other on

the right. Which objects are present in both images? Select all
choices that are true: {}. You can think of your answer in any way
(e.g. step-by-step) but for the last line of your response, respond
only in this format ‘Answer: <letter 1> <letter 2> <letter 3>7,
e.g. ‘Answer: A, B, C’.

We also tested two additional input prompt formulations, shown in Appendix B} We did not observe a
significant performance difference across prompts.

Note that we use a slightly different prompt setup for GPT-40, where the model predicts object values
instead of letters. We provide the full comparison in the appendix.

*https://github.com/facebookresearch/perception_models

“For the best performing open source model, we additionally tested different temperatures and did not
observe a significant performance difference. Results are shown in Appendix


https://github.com/facebookresearch/perception_models

4 Results

4.1 Multimodal models can perceive, but struggle to discern what’s in common across scenes.

To evaluate the performance of various state-of-the-art models on Common-0 Bench, we first validate
the difficulty of perception using a single image scene setup as shown in Figure [3a] We find all
models exhibit strong performance on single-image perception, yet struggle to reason across the
same scenes in Common-0 Bench. The best performing model, GPT-40, achieves only 35% accuracy
with reasoning models performing even worse, highlighting the challenge of reasoning across scenes.
Underlying many incorrect answer is a tendency for models to hallucinate objects. We also report
standard errors, which we find to < 0.02%, for all models across both single image perception and
multi-image reasoning in Appendix [B]

4.2 Models often hallucinate objects when reasoning across scenes.

Models are also very likely to hallucinate objects that are not present, which impacts their multi-
scene reasoning abilities. One perspective could be that, because of models’ yes-bias, they’re likely
to hallucinate objects that are not present when asked about them directly (Zhang et al., 2016}
* 2018} [Ross et al., [2024). While models do hallucinate in this single image setting,
Figure [3b| shows that hallucinate rates are significantly higher during the multi-image reasoning
setting (excluding Llama 4, which does not follow this trend). We show an example hallucination
in Figure[d] Similarly, hallucinating multiple objects rarely occurs in single image perception, but
occurs more often when reasoning across scenes.
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(a) Accuracy (1): Models can perform well in perceiving objects in the single image setting, but struggle to
reason across scenes in our multi-image setting. The dashed lines show performance averaged across models.
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(b) Rates of hallucination (]): Models often hallucinate objects that are not present in the image. Models by
and large hallucinate objects significantly more often in the multi-image case; Llama 4 was the only exception.
Single image multiple object hallucination rates are not plotted as they were negligible for all models.

Figure 3: Performance for single image object perception in yellow and multi-image reasoning in
red for (a) accuracy and (b) hallucination rates. We observe models with higher accuracy tend to also
have lower rates of hallucination. We include a table of these results, along with statistical analyses,

in Appendix|D]



Choices: ©) orange @) spoon

N) Which objects are present in bothimages? ~ A) popcorn D) keys H) No . . . . . .
(;_' Select a\IJcho'\ces tr,at IS 8 kernZl P B g,ayss objects arein To solve the problem, | will compare the objects present in both images and identify

B) lime F) fork common which ones are common to both. | will then match these common objects with the
n given options to determine the correct answer.

The image on the left shows a wooden surface with a lime, an orange, a set of keys, a
glass, and a spoon. The image on the right shows a marble surface with an orange, a
set of keys, a glass, a fork, and a spoon.

First, | will list the objects visible in each image. In the left image, the objects are a
lime, an orange, a set of keys, a glass, and a spoon. In the right image, the objects are
an orange, a set of keys, a glass, a fork, and a spoon. Next, | will identify the objects
that appear in both images. The common objects are the orange, the set of keys, the
glass, and the spoon.

Finally, I will match these common objects with the provided options: A) popcorn
kernel, B) lime, C) orange, D) keys, E) glass, F) fork, G) spoon, and H) No objects are
in common. The common objects correspond to options C, D, E, and G.

3

W—’Answerz C,D,E,G

Figure 4: These are two examples of model failures, with the specific failures shown in red.

Model performance severely degrades for more complex scenes. We use the challenge set,
Common-0 Complex, to explore how models perform with more complex scenes. Common-0
Complex follows the same design described in Section[3.I] we just extended the scene complexity to
N=8to N=16 objects (see examples in Figure[2b). Across every model, performance severely drops.
None of the models that we evaluated gets above ~1% accuracy. We also see very high hallucination
rates, with 76% for 1+ objects and 55% for 2+ objects on average across all models. This bolsters
our decision to use a default setting of 7 objects as a good primary focus for models.

Qwen Llava Chat DeepSeek Llama PLM QvaQ
7B 32B 72B 7B 72B  Small Base V-0l 32 4 3B 8B 72B
Acc. (%) [ 0.1 0 001 005 0 0.07 004 01 01 O O 0 0.03
PLM = PerceptionLM
Table 2: On Common-0 Complex, with the complexity ranging from 8 to 16 objects per scene, model
performance severely degrades. The best performing models reach <1% accuracy.

When objects are similar, it’s harder for models. Next, we test the effects of the similarity of the
common objects within a set. If objects in images are similar, it may pose a unique challenge for
models. For a given set of common objects, O ommon, We compute an embedding for each object
in the set and take the maximum pairwise similarity as a proxy for object similarity. We use the
NV-Embed2 embedding model 20244), as it was optimized for embedding similarity. We
observe that accuracy generally decreases as object similarity increases, meaning similarity among
objects perhaps makes the task of reasoning about commonality more challenging. We validate
this statistically by computing the Pearson correlation between similarity of common objects and
accuracy, and find 10 or our 13 tested models have statistically significant, negative correlations of
small effect size with |r| >= 0.3 (see Appendix, Table|[6] for full results).

4.3 How do real and synthetic images compare?

We compare model performance on the real images versus synthetic images. To do this, we focus
on Common-0 Bench results, and subset the dataset according to whether the examples were real
or synthetic. We find that synthetic images are generally more challenging for models than real
images, with less of a gap between the performances on the two data subtypes for models that were
less performant overall on Common-0 Bench (see Figure[5] for full results). Though the synthetic
images are similar to real images in several respects, having the same scene complexity and using
multiple camera orientations per configuration, the synthetic images have the potential to be more
diverse in backgrounds and object sizes. This increased difficulty may be due to a domain shift from
models’ training data. We used diverse backgrounds (e.g. green marble, concrete, aluminum) and
relative object sizes that are less common in the real world (e.g. a rubber duck being the same size
as a remote). Additionally, because data contamination is difficult to avoid once benchmarks are



openly available on the internet, our results show the benefit of leveraging synthetic data without
compromising on image difficulty or quality.
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Figure 5: Performance on Common-0 Bench subsetted according to whether example image pairs are
real or synthetic. The height of each bar represents the total accuracy on Common-0 Bench: the green
area of the bar represents the contribution of the real image accuracy, and the blue portion of the bar
represents the contribution of the the synthetic portion. Models tend to have higher performance on
real images (larger green area) than on synthetic ones (smaller blue area). However, the difference
in performance on the two subsets decreases as overall accuracy (bar height) decreases, with the
DeepSeek-VL2 family, the PerceptionL.M family, Llama 3.2 Instruct 11B, and Llava-OneVision 7B,
having only a small difference between the two subsets.

4.4 Models trained on multi-image inputs show improved ability to reason across scenes

Finally, we explore which levers offer promise for advancing multimodal models’ capacity to reason
across scenes. We analyze performance based on whether models are explicitly trained on multi-
image inputs, with CoT reasoning, and at large scale (many model parameters) in Figure [ We
find that CoT reasoning, which unlocks “thinking” tokens to parse scenes, has a mixed effect on
reasoning across scenes, despite boosting single image perception across both model families we
studied (78% for DeepSeek versus 70% for Qwen and 77% LlamaV-ol versus Llama 3.2 Instruct
73%). This suggests standard reward based reasoning requires further research to enable reasoning
across scenes. On the other hand, we see promise in models trained with multi-image inputs have
3% higher accuracy on Common-0 Bench compared to those trained with single image training. We
also, perhaps unsurprisingly found that larger models had stronger performance, which suggests that
scaling model size may help boost accuracy.
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(a) Reasoning Models (CoT) (b) Average Multi-image training (c) Average model scale

Figure 6: Accuracy on our benchmark in different settings: In (a), model families differ in whether
their reasoning models (with CoT) perform better or works on Common-0 Bench. In (b) and (c),
we see improved reasoning for models that utilized multi-image training and were larger overall,
suggesting using two approaches may enable better performance on Common-0 Bench. Note: We
average across several models when they have the same size or training-setup.



5 Discussion

Limitations. The real images in our benchmark were all taken by the authors, which understandably
may reflect some bias in terms of locations, backgrounds, and objects used. The usage of synthetic
image helps in some sense for more image diversity. Additionally, multiple choice setups are known
to be somewhat brittle (Zheng et al., [2023; [Long et al., 2024} |Gupta et al.| [2025)—simple changes to
prompts and the order of choices can impact performance. An ideal setting would be open-ended
generation, where models are able to use describe and reason about objects with their own labels. We
also only include English text. Multilingual evaluation settings could be interesting future work, as
models are increasingly trained in multiple languages.

Contributions With multimodal models saturating vision leaderboards focused on perception, we
introduce Common-0 Bench, a challenge for reasoning across scenes. We find while perceiving
objects in a single image is easy, reasoning across the same scenes is challenging: the best performing
model reaches just 35% accuracy on Common-0 Bench-and no model is above 1% on our challenging
subset Common-0 Complex. We discover models are prone to hallucination when similar objects
are present suggesting models may still be relying on object co-occurrence seen during training.
To advance the essential skill of reasoning across scenes, new training paradigms that explicitly
incorporate multi-image inputs with forms of reasoning beyond existing reward feedback are called
for to overcome the challenge of hallucinations when reasoning across scenes.

Acknowledgements We thank Olga Golovneva, Kamalika Chaudhuri and Christoph Feichtenhofer
for their thoughtful feedback on our paper and for suggesting exciting experiments based on our
findings.
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: We do not introduce or use any theoreoms, formulas or proofs.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the model families and sizes, the hyperparameters we used and
the inference libraries by model (e.g. vLLM, HuggingFace). All of the data is included with
a hyperlink, to enable others to trace its provenance.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all of the data (images and CSVs with specific model input) used
for our experiments in the recommended Croissant format.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We are an evaluation-only benchmark. We provide the hyperparameters we
used for evaluation.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We run statistical tests such as Pearson’s correlation to validate trends we
observe.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the compute resources we used, including specifying types of
GPU and number of nodes.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We read through and followed the Code of Ethics for every portion of our
research.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our dataset is an evaluation-only benchmark and does not include any newly
trained models. We do discuss that we were intentional in the data we chose to include (e.g.
no images of people).
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Our contribution is an evaluation-only benchmark. We do not include any
images of people. All images were manually gathered (either by the research team taking
them, or by synthetically generating them using a game engine).

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The data introduced by our benchmark was introduced by the authors, all of
whom provided consent for their images to be used for model evaluations and are credited
for their contributions in the paper. The data license is included in our data repository, which
is linked in the main paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: This is an evaluation benchmark, where we provide all images, examples as
CSVs, and a description of the dataset structure.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We did not perform any crowd sourcing or use any human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not use any study participants.
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not leverage LLMs for any portion of our dataset creation or research
design.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Model Accuracy | Bootstrap Mean | Standard Error
Qwen 7B 65.16 65.21 0.02
Qwen 32B 70.34 70.35 0.02
Qwen 72B 69.18 69.17 0.02
Llava OneVision Chat 7B 78.17 69.73 0.02
Llava OneVision Chat 72B 77.7 77.17 0.02
DeepSeek VL Small 78.3 78.3 0.02
DeepSeek VL 69.8 69.8 0.02
LlamaV-ol 11B 77.28 77.27 0.02
Llama 3.2 Instruct 11B 73.42 73.42 0.02
Llama 4 Instruct Scout 80.31 80.33 0.02
Perception LM 3B 79.55 79.56 0.02
Perception LM 8B 84.59 84.60 0.02
GPT-40 77.28 77.29 0.02

Table 3: Single image accuracy with standard error using bootstrapping with 1000 iterations.

A Image Taking Guidelines

We used the following procedure to guide our creation of images. First, each image taker selected a set
of up to 7 objects and identified a background (e.g. a blanket, counter, or on the floor). Second, they
take images iteratively, starting by placing a single object on the background and subsequently adding
others (N=1 to N=7). Images were framed with the objects in the center or slightly off center (e.g. in
Figure the plants in the third set of images from the left has leaves outside of the top part of the
frame), with the goal that the majority if not the entirety of the object be contained within the frame.
Across scenes, objects are often viewed from different viewpoints (e.g. top-down, versus side-view).
Objects also may be partially occluded by other objects in the scene (e.g. in the bottom left image in
Figure [2b|the eye-mask is slightly occluded by the pink ball), but occlusions should be minimal with
the restriction that all objects be easily human recognizable. For each scene (set of objects against a
background), the image-taker would also take images from multiple visual orientations freely (with
no restriction on the angle between the camera and the objects, so as to better capture real world
diversity). Third, the image-taker would repeat against a new background, and add the objects to
the scene in a different order and at a different orientation. Throughout this process, image-takers
refrained from including any sensitive objects which may have privacy or IP concerns (e.g. humans,
animals, brands, logos etc.) in images. Images were taken using smart phone cameras (Google Pixel,
iPhone 15 Pro), as smart phones are one of the predominant modes of image creation currently.

B Additional Analysis

Accuracy for Single Image Perception Versus Multi-Image Reasoning Standard error We
show in Table 3| the single image performance with standard error. We report the same performance
for the multi-image reasoning task in Table[d] To compute the standard error we run bootstrapping
with 1000 iterations on both the single image (baseline) and multi-image settings. Overall, we find a
very small standard error.

Prompt Variants and Temperature We report two additional prompt reformulations (along with
temperature ablations) for a total of 3 prompts on Qwen 7B. For a given temperature, we find the
overall performance differs by 1.5-2.6% across prompts suggesting our claims are robust to prompt
reformulations. We provide a full table of these results in Appendix [B]

Role of Object Similarity In Table[6] we show the correlation between accuracy and the average
similarity of objects in the scene. We observe a statistically significant negative correlation suggesting
as models are more likely to make mistakes when objects are similar.

Additional model examples and mistakes In Figure[7, we show additional randomly sampled
examples from Common-0 Bench. In Appendix[B] we show randomly selected mistakes in Common-0
Bench across all models. The examples show the high degree to which models hallucination objects
that are not in the ground truth.
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(a) answer: glass cup, twine (b) answer: basketball, spoon, (c) answer: pink pot, pail with
fakefruit, vase, shoes, cast iron handle

(e) answer: No objects are in com- (f) answer: bottle opener
mon

\' o V

) 4
(g) answer: fakefruit, airplane, (h) answer: shoes (i) answer: shaver, volleyball,
vase, orb, candle holder bowl

(k) answer: shoes
" =

(m) answer: No objects are in
common

(o) answer: bowl, shaver, volley-
ball

e i
(p) answer: kitchenware, basket- (q) answer: football, volleyball, (r) answer: Stapler
ball, football, cast iron keyboard, birdhouse, mouse

Figure 7: Randomly sampled examples from Common-0 Bench.
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Model Accuracy Bootstrap Mean Standard Error

Qwen 7B 13.26 13.27 0.01
Qwen 32B 24.16 24.14 0.01
Qwen 72B 18.53 18.55 0.01
Llava OneVision Chat 7B 2.61 2.61 0.005
Llava OneVision Chat 72B  14.84 14.85 0.01
DeepSeek VL Small 3.31 3.31 0.005
DeepSeek VL 3.06 3.07 0.005
LlamaV-ol 11B 8.9 8.9 0.009
Llama 3.2 Instruct 11B 5.07 5.08 0.006
Llama 4 Instruct Scout 35.12 35.14 0.01
Perception LM 3B 1.04 1.04 0.003
Perception LM 8B 1.86 1.86 0.004
GPT-40 35.11 35.11 0.01

Table 4: Multi-image reasoning accuracy with standard error using bootstrapping with 1000 iterations.

Temperature | Prompt #1 Acc. Prompt #2 Acc. Prompt #3 Acc.
0.0 13.6 11.3 12.5
0.2 13.2 11.0 11.3
0.4 134 11.5 11.7
0.6 13.5 11.2 114
0.8 13.1 11.6 11.9
1.0 13.3 11.2 12.0

Table 5: We report accuracy across prompt reformulations across six temperatures for Qwen 7B.

C Synthetic data

The synthetic data was generated using Unreal Engine (EpicGames) and assets from Aria
Digital Twins Catalog (Dong et al, 2025). We bought the following asset on fab
to get the floor texture with a professional license: https://www.fab.com/listings/
66985cch5-13c2-45eb-9bb5b-628ef4445a5c. We randomly placed the assets into one of 16
different positions and apply some slight random rotation over the assets. To ensure that assets are
not overlapping with each other, we constrained them to a given maximum size while keeping their
aspect ratio. For each scene, we took images coming from 4 different camera positions.

D Statistical Analysis of Results

To get an approximation of the variance, we run bootstrapping with 1000 iterations on both the single
image (baseline) and multi-image settings. The results are included below in Table . Overall, we find
a very small standard error.
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Model Pearson Correlation
Qwen 7B -0.33*
Qwen 32B -0.38*
Qwen 72B -0.40*
Llava-OneVision Chat 7B -0.38*
Llava-OneVision Chat 72B -0.30*
DeepSeek-VL2 Small -0.12%
DeepSeek-VL2 -0.30*
LlamaV-ol 11B -0.29*
LlamaV 3.2 11B -0.33*
Llama 4 Instruct Scout -0.41*
PerceptionLM 3B -0.10
PerceptionLM 8B -0.35%

Table 6: Correlation between similarity among common objects and accuracy. The negative cor-
relation shows that, the more similar the common objects are lead to lower accuracy. * indicates
statistical significance with correlations of moderate strength or above in bold.
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Model Choices (Enumerated by Letter to Model) Ground Truth Prediction
[silver grater, No objects are in common, dark
GPT-40 chocolate bar wrapped in foil, silver straw, silver ~No objects are in common  Measuring cup

Llava-OneVision

Qwen

PerceptionLM

Qwen

Llama 4 Instruct

Llama 3.2 Instruct

Llama 3.2 Instruct

Llama 3.2 Instruct

Qwen

Llama 3.2 Instruct

PerceptionLM

GPT-40

Llama 4 Instruct

Qwen

Qwen

Llava-OneVision

Qwen

DeepSeek VL2

Llava-OneVision Chat

whisk, silver knife, tangerine, measuring cup]

[No objects are in common, mallard (fake duck),
vase, hammer, calculator, dish, basketball, fake-
foodcan]

[dumbbell, mouse, hammer, No objects are in com-
mon, football, birdhouse, keyboard, volleyball]

[spoon, No objects are in common, orange, glass,
keys, lime, fork, popcorn kernel]

[dino, candle holder, mallard (fake duck), bowl,
volleyball, No objects are in common, shaver, bird-
house]

[watermelon, plant, No objects are in common,
coffee mug, earbuds, candle snuffer, pen, ball]

[bottle opener, gold jigger, 2-prong serving fork,
strainer, paring knife with wooden handle, No ob-
jects are in common, gold paring knife, silver jig-
ger]

[fakefruit, airplane, bowl, No objects are in com-
mon, spoon, football, keyboard, mouse]

[fakefoodcan, vase, volleyball, spoon, kitchenware,
No objects are in common, fakefruit, shoes]

[remote, basketball, calculator, No objects are in
common, mouse, vase, marker, volleyball]

[fish bowl, white pill bottle, paint brush, candy
cane, No objects are in common, orange pill bottle,
lint roller, scissors]

[No objects are in common, candle, marker, fake-
fruit, keyboard, mallard (fake duck), bowl, remote]

[cup, mallard (fake duck), vase, No objects are in
common, football, candle, volleyball, shoes]

[spoon, No objects are in common, fakefruit, cast
iron, basketball, marker, vase, shoes]

[spoon, cast iron, basketball, vase, fakefruit, No
objects are in common, marker, shoes]

[No objects are in common, fakefoodcan, fakefruit,
shoes, spoon, vase, volleyball, kitchenware]

[bowl, keyboard, No objects are in common,
marker, remote, fakefruit, candle, mallard (fake
duck)]

[No objects are in common, pail with handle, burnt
orange pot, leaf, black pot, easel, pink pot, watering
can]

[No objects are in common, marker, basketball,
calculator, vase, mouse, volleyball, remote]

[black pot, burnt orange pot, pink pot, pail with
handle, No objects are in common, leaf, watering
can, easel]

A,B,D,G,H

C,EG

A,B.E,G

C,E,H

B.EH

B,C,E,G H

candle, shoes, vase,
volleyball

C,D,G,H

B,C,E,G

B,D,E,F G, H

A, C

B,D,F, G H

A,B,C

shoes, volleyball

C,D,H

E,H
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Model Multi Image Single Image (Baseline)
Accuracy  Bootstrap Mean  Std. Err | Accuracy  Bootstrap Mean  Std. Err

Qwen 7B 13.26 13.27 0.01 65.16 65.21 0.02
Qwen 32B 24.16 24.14 0.01 70.34 70.35 0.02
Qwen 72B 18.53 18.55 0.01 69.18 69.17 0.02
Llava OneVision Chat 7B 2.61 2.61 0.005 78.17 69.73 0.02
Llava OneVision Chat 72B 14.84 14.85 0.01 77.7 77.17 0.02
DeepSeek VL Small 3.31 3.31 0.005 78.3 78.3 0.03
DeepSeek VL 3.06 3.07 0.005 69.8 69.8 0.02
LlamaV-ol 11B 8.9 8.9 0.009 77.28 77.27 0.02
Llama 3.2 Instruct 11B 5.07 5.08 0.006 73.42 73.42 0.02
Llama 4 Instruct Scout 35.12 35.14 0.01 80.31 80.33 0.02
PerceptionLM 3B 1.04 1.04 0.003 79.55 79.56 0.02
PerceptionLM 8B 1.86 1.986 0.004 84.59 84.60 0.02
GPT-40 35.11 35.11 0.01 77.25 77.29 0.02

Table 8: Results of running bootstrapping with 1000 iterations. W

image baseline experiments.
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E Dataset Card

We include a datasheet for Common-0 Bench below, following the example from [Gebru et al.| (2021).

Motivation

For what purpose was the dataset created? The dataset was created the test the reasoning abilities of
multimodal LLMs in multi-image, multi-object settings.

Who created the dataset? This is redacted during the review process to maintain anonymity and will
be included in the camera-ready.

Who funded the dataset creation? This is redacted during the review process to maintain anonymity
and will be included in the camera-ready.

Any other comments? None.

Composition

What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)?
Are there multiple types of instances (e.g., movies, users, and ratings; people and interactions between
them; nodes and edges)? Please provide a description. Each instance is a tuple of 2 images, a set of
potential objects that are in both images and a set of the ground-truth, common objects between both
images.

How many instances are there in total (of each type, if appropriate)? There are 10586 instances in
Common-0 Bench and 12600 instances in Common-0 Complex.

Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances
from a larger set? If the dataset is a sample, then what is the larger set? Is the sample representative
of the larger set (e.g., geographic coverage)? These were manually created instances, either via the
authors taking the images or the authors using a game engine to synthetically create the images. We
created a large set of synthetic images (=400k). For Common-0 Bench (N=3 to N=7 objects) and
Common-0 Complex (N=3 to N=7 objects), we randomly sampled images with the target number
of objects.

Is there a label or target associated with each instance? The target associated with each instance is
the set of objects in common between both images (e.g. apple, keys).

Is any information missing from individual instances? All of the information is included for every
instance.

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social
network links)? If so, please describe how these relationships are made explicit. Each image
in a given contains a specific configuration of objects. This configuration is taken from multiple
orientations. These orientations are labeled in the data files. Additionally, each image is contained
with multiple instances. The instances in the data file are label with the image filenames so it’s clear
to see which instances have the same images.

Are there recommended data splits (e.g., training, development/validation, testing)? This is an
evaluation-only benchmark; we do not provide any training or validation splits.

Are there any errors, sources of noise, or redundancies in the dataset? The instances were manually
created. Potential sources of noise may come from ambiguitiy in idenitiying objects, which is
captured by our human baseline.

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites,
tweets, other datasets)? The dataset is entirely self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is protected by
legal privilege or by doctor—patient confidentiality, data that includes the content of individuals’
nonpublic communications)? The dataset does not contain any confidential or private information.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals
race or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships,
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or locations; financial or health data; biometric or genetic data; forms of government identification,
such as social security numbers; criminal history)? The dataset does not contain any sensitive
information.

Any other comments? None.

Collection Process

How was the data associated with each instance acquired? Every real photo was manually taken by
one of the authors on this paper specifically for this dataset. Every synthetic photo was generated by
the authors using a game engine. We manually wrote the set of objects found in each image.

What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors,
manual human curation, software, programs, software APIs)? We used manual human curation for
the real images and the Unreal engine for synthetic images. We validated the images by sampling a
subset to hand-annotate.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g., deterministic,
probabilistic with specific sampling probabilities)?

For the synthetic images, we manually downsampled via random sampling.

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)? The authors performed all
components of the data collection. We will include full details about the authors in the camera ready
to preserve anonymity.

Over what timeframe was the data collected? The data was collected over about 3 months.

Were any ethical review processes conducted (e.g., by an institutional review board)? The data
collection went through IRB. We did not include humans in the images.

Did you collect the data from the individuals in question directly, or obtain it via third parties or
other sources (e.g., websites)? The data was not collected from external individuals, third parties or
web sources. We manually collected all data.

Were the individuals in question notified about the data collection? N/A; see previous question.

Did the individuals in question consent to the collection and use of their data? N/A; see previous
question.

If consent was obtained, were the consenting individuals provided with a mechanism to revoke their
consent in the future or for certain uses? If so, please provide a description, as well as a link or other
access point to the mechanism (if appropriate). N/A.

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data
protection impact analysis) been conducted? If so, please provide a description of this analysis,
including the outcomes, as well as a link or other access point to any supporting documentation.
N/A.

Any other comments? None.

Preprocessing/Cleaning/Labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokeniza-
tion, part-of-speech tagging, SIFT feature extraction, removal of instances, processing of missing
values)? If so, please provide a description. If not, you may skip the remaining questions in this
section

We manually collected/generated all dataset instances and therefore did not perform any additional
data processing beyond image resizing. All images in their original size were saved.
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Uses

Has the dataset been used for any tasks already? The dataset has not been publicly released yet
(outside of the private repository for paper review) and therefore has not been used for any additional
tasks.

Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point. The dataset is assessible through Kaggle at|this Tink]

What (other) tasks could the dataset be used for? Common-0 Bench has been tested for multiple-
choice QA with multiple possible answers. The dataset could also be tested in open-ended question
answering.

Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? There is very minimal risk for harm. We did
not include any pictures of people, real or generated, and we also excluded any logos. Additionally,
this dataset is only for evaluation and therefore will not be used in model training.

Are there tasks for which the dataset should not be used? The dataset is exclusively for evaluation
and should not be used to train or finetune any models.

Any other comments? None.

Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? If so, please provide a description. Yes,
the dataset will be publicly available on HuggingFace.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset
have a digital object identifier (DOI)? We will host the dataset on HuggingFace. Because this paper
is the introduction of the dataset, we will use the paper DOL.

When will the dataset be distributed? The dataset will be distributed upon acceptance of the paper in
2025.

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)? The dataset is being distributed under the non-commercial CC
BY-NC 4.0 license.

Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? If so, please describe these restrictions, and provide a link or other access point to,
or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these
restrictions. No.

Do any export controls or other regulatory restrictions apply to the dataset or to individual instances?
If so, please describe these restrictions, and provide a link or other access point to, or otherwise
reproduce, any supporting documentation. No.

Any other comments? None.

Maintenance

Who will be supporting/hosting/maintaining the dataset? REDACTED AUTHORS will be maintaining
the dataset.

How can the owner/curator/manager of the dataset be contacted (e.g., email address)? REDACTED
AUTHORS can be contacted through the email addresses provided in the camera ready.

Is there an erratum? If so, please provide a link or other access point. There is currently not an
erratum.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If
so, please describe how often, by whom, and how updates will be communicated to dataset consumers
(e.g., mailing list, GitHub)? We will update the dataset for any errors. We will likely communicate
this via social media and perhaps a GitHub page.
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If the dataset relates to people, are there applicable limits on the retention of the data associated with
the instances (e.g., were the individuals in question told that their data would be retained for a fixed
period of time and then deleted)? If so, please describe these limits and explain how they will be
enforced. N/A.

Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe
how. If not, please describe how its obsolescence will be communicated to dataset consumers. N/A

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to
do so? If so, please provide a description. We encourage anyone interested in potential augmentations
and contributions to contact us using our email addresses, listed above.

Any other comments? None.
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