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Abstract Pretrained models have become essential tools for machine learning practitioners across

various domains, including image classification, segmentation, and natural language process-

ing. However, the complexity of selecting the appropriate pretrained model and finetuning

strategy remains a significant challenge. In this paper, we present Quick-Tune-Tool, an
automated solution to guide practitioners in selecting and finetuning pretrained models.

Leveraging the Quick-Tune algorithm, Quick-Tune-Tool abstracts intricate research-level
code into a user-friendly tool. Our contributions include the release of Quick-Tune-Tool, a
detailed architectural overview, a user guide for image classification, and empirical evalua-

tions. In experiments on four vision datasets, our results underscore the effectiveness and

practicality of Quick-Tune-Tool for automating model selection and finetuning.

1 Introduction
Pretrained models are well-performing solutions for many machine learning practitioners for an

expanding amount of domains from image classification (Caron et al., 2021), image segmentation

(Kirillov et al., 2023), natural language processing (Qiu et al., 2020), time series (Liang et al., 2024), to

tabular data (Hollmann et al., 2023). As a result, pretrained models are constantly being published

on model hubs such as Hugging Face
1
or in the timm library (Wightman, 2019).

A challenge with this practice is that the multitude of pretrained models poses a substantial

complexity for machine learning practitioners; prompting hard-to-answer questions such as which
pretrained model to use and how. For instance, a practitioner in the domain of image classification

must choose between one of the more than 700 pretrained models in the timm library. Afterwards,

the practitioner must optimize the model for their application by also selecting a finetuning strategy
and its hyperparameters, such as the regularization technique or learning rate schedule.

Our overarching goal is to automate the process of which pretrained model to use and how
for practitioners in any domain. Therefore, in this paper, we present Quick-Tune-Tool, the first
step towards our goal. For this, we adopt the recently proposed Quick-Tune algorithm (Arango

et al., 2023) and both abstract and elevate it from research-level code to a practitioner’s tool with a

strong focus on usability. We intentionally abstracted and optimized Quick-Tune-Tool for future
adaptation to new domains. The first version, presented in this work, is already a user-friendly,

broadly accessible, and easy-to-install tool for practitioners in the domain of image classification.

Our contribution. As part of this paper, we: (A) publish the first version of Quick-Tune-Tool2, (B)
present its architecture and design principles, (C) provide a user-guide to do image classification

in 3 lines of code, and (D) perform experiments showing that Quick-Tune-Tool is easy to use and

outperforms random search on 4 image classification datasets.

1https://huggingface.co/posts
2https://github.com/automl/QTT
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2 Background and Related Work
Finetuning Tools. To leverage pretrained models, the research literature has proposed a large set

of methods such as Co-Tuning (You et al., 2020) or SP Regularization (Li et al., 2018) for finetuning.

Unfortunately, most of this work does not translate into maintained, easy-to-use code that can

be readily applicable in the industry. The development of finetuning tools allows us to close the

gap between researchers and practitioners, facilitating the application of the research findings

in production use cases. The Transfer Learning Library (Jiang et al., 2020) builds a collection of

finetuning strategies for computer vision, streamlining testing methods on new datasets. The PEFT
library (Mangrulkar et al., 2022) encapsulates different state-of-the-art approaches for parameter

efficient finetuning such as Adapters or LoRA (Hu et al., 2022), and integrates with Hugging Face

Hub. Finally, TorchTune (Pytorch, 2024) provides a command line interface for finetuning models

natively using the Torch backend while offering a tool that is easy to integrate. However, none of

these tools natively offer a way to select the model and hyperparameters to use, thus leaving it to

their users to determine which pretrained model to use and how.

AutoML Systems. The diversity of datasets and tasks requires the use of automated machine

learning (AutoML) systems to automatically select the best model with the best hyperparame-

ters for a given task without incurring manual trial-and-error. For deep learning, tools such as

AutoKeras (Jin et al., 2019), AutoPytorch (Zimmer et al., 2021), or NePS (Stoll et al., 2023) allow

users to automatically search for hyperparameter configurations of neural networks; typically

tailored to optimizing the architecture or (pre-)training but not finetuning of neural networks.

In contrast, AutoGluon MultiModal (Tang et al., 2024) offers support for finetuning foundation

models for different multimodal tasks, such as Classification, Regression, or Image Segmentation,

by evaluating a pre-defined portfolio of hyperparameters and models. Lastly, the AutoML sys-

tem ZAP (Öztürk et al., 2022), addresses the finetuning and hyperparameter search problem by

leveraging an algorithm selection perspective to find appropriate finetuning hyperparameters and

pretrained models through the abstraction of deep learning pipelines.

QuickTune Method. QuickTune (Arango et al., 2023) uses a probabilistic performance predictor

ℓ̂𝜃 and a cost predictor 𝑐𝑤 to select the pipeline 𝑥 ∈ X to finetune for Δ𝑡 epochs after resuming

from the checkpoint at epoch 𝑡 (Equation 1). Thus, it balances the Multi-fidelity Expected Im-

provement (Wistuba et al., 2022) with the actual cost of finetuning. Information from auxiliary

tasks is included by meta-learning the parameters 𝜃 and𝑤 . QuickTune selects the pipeline 𝑥 from

a search space X containing different combinations of hyperparameters and pretrained models.

These combinations are fed into the predictors using MLP encoders (Pineda Arango and Grabocka,

2023). Specifically, the authors applied the method on Computer vision tasks from the Meta-Album
collection (Ullah et al., 2022) using the model Hub contained in Timm library (Wightman, 2019).

In the search space design, they included different finetuning strategies. However, the method is

task-agnostic and can be easily adapted to other data modalities or search spaces.

𝑥 ∈ argmax𝑥∈X
EIMF(𝑥, 𝑡 + Δ𝑡, ℓ̂𝜃 )
𝑐𝑤 (𝑥, 𝑡 + Δ𝑡) (1)

Overview. We summarize the position of Quick-Tune-Tool in the area of ML in Appendix A.

3 Quick-Tune-Tool: A Practical Tool For Finetuning Pretrained Models
The architecture of our tool is composed of four main components: QuickTuner, ConfigManager,
Optimizer, and the Objective Function. These components work together to provide a compre-

hensive solution for selecting a finetuning pipeline, i.e. a pretrained model from a Model hub and

its finetuning hyperparameters from a search space. We provide an overview of the architecture in

Figure 1 and describe each component in detail in the remainder of this section.
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Figure 1: Quick-Tune-Tool Architecture.

In summary, using Quick-Tune-Tool starts
by defining the search space and having the

ConfigManager generate initial configurations.
QuickTuner then employs the Optimizer to

suggest configurations based on previous eval-

uations, e.g. History. Next, the Objective
Function evaluates these configurations and

returns results of performance metrics. Finally,

QuickTuner saves these results, updates the

Optimizer, and repeats the cycle until the time

budget is exhausted.

QuickTuner. The tuner is the core component

that organizes the optimization process by inte-

grating all components, managing environment

setup, interacting with the optimizer, invoking

the objective function, saving intermediate re-

sults, and ensuring experiment continuity.

def objective_function(

config: dict,

task_info: dict | None,

) -> dict | list[dict]:

# 1. setup

# 2. run objective

# 3. evaluate model

# 4. collect results

return result

Figure 2: Objective Function.

ConfigManager. The ConfigManager, as the name suggests, man-

ages the configurations and processes them to be input to the op-

timizer. It takes a configuration space as input, i.e., the pipeline

search space over which the optimization is performed. We use

ConfigSpace (Lindauer et al., 2019) to define the search space.

Optimizer. The optimizer component can implement various op-

timization methods. Its main task is to interact with the tuner to

suggest the next configuration to evaluate. Currently, we provide

the QuickTune optimizer (Arango et al., 2023) and additionally, a ba-

sic random-search optimizer. To ensure flexibility and extensibility,

any optimization method can be easily added, as long as it adheres

to the interface requirements of the QuickTuner, e.g. a Bayesian
optimization method like BOHB (Falkner et al., 2018), DPL (Kadra

et al., 2024) or ifBO (Rakotoarison et al., 2024), or evolutionary

based like DEHB (Awad et al., 2021).

{

"config_id": 42,

"score": 0.99,

"cost": 123.45,

"fidelity": 1,

"status": True,

}

Figure 3: Result Dict.

Objective Function. The Objective Function is invoked by the tuner during

optimization. It can be any function that accepts configuration, budget, and

optional task-related information. It returns results as a dictionary or a list of

dictionaries. For efficiency, it should manage interrupted training by saving

and loading models. Existing training scripts can be adapted to work with

Quick-Tune-Tool if they adhere to the interface in Figure 2 and return results

as shown in Figure 3.

Quick-Tune-Tool Already Supports Image Classification OOTB. We de-

signed Quick-Tune-Tool to be abstract and provide an interface for fine-

tuning in any domain or application. To test this interface in its first version,

we implemented support for using Quick-Tune-Tool for image classification.

Moreover, we plan to extend it to other domains in the future. In detail,

for image classification, Quick-Tune-Tool provides three pretrained optimizers, meta-learned on

learning curves from different Meta-Album versions: micro, mini, and extended. Moreover, we
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provide a search space (see Table 3 in Appendix) and a connection to a model hub (Table 4). Thus,

Quick-Tune-Tool can be applied to solve new image classification problems out-of-the-box.

4 A User Guide for Quick-Tune-Tool

from qtt import QuickTuner, get_pretrained_optimizer

from qtt.finetune.cv.classification import finetune_script

task_info, metafeat = extract_task_info_metafeat("path/to/dataset")

optimizer = get_pretrained_optimizer("mtlbm/micro")

optimizer.setup(128, metafeat) # number of configs

qt = QuickTuner(optimizer, finetune_script)

qt.run(task_info, time_budget=3600)

Figure 4: A simple example of using the Quick-Tune-Tool.

To showcase the proposed

Quick-Tune-Tool, we now

present its exemplary usage

for image classification. Fig-

ure 4 shows a basic use of

Quick-Tune-Tool with the pre-

trained optimizer in the micro
benchmark. The user only has

to adapt the path to the custom

dataset where the images have

to be in PyTorch’s ImageFolder

format (Figure 7 in Appendix).

1. Get the Optimizer. The get_pretrained_optimizer method is designed to retrieve an optimizer

based on specified parameters. Currently, QuickTuneTool includes three pretrained optimiz-

ers, which can be accessed using "mtlbm/micro", "mtlbm/mini" and "mtlbm/extended". This
command will load the optimizer along with its associated search space and ConfigManager,
constructing it for use with QuickTuner.

2. Create QuickTuner Object With the Finetuning Script. The finetune script serves as the

objective function for QuickTuner. We provide a script for image classification, which takes

a configuration as input and manages all aspects of running evaluations, like downloading

pretrained weights, saving and loading models, and returning results.

3. Fit the QuickTuner The tuner handles the setup and correct flow of the optimization process.

We only have to pass the optimizer and an objective function. Optionally, one can specify

an output path and the logger verbosity. We start the optimization with QuickTuner.run(),
we can additionally pass a dictionary with parameters that deviate from default. Depending

on the size of the dataset, the fitting can take a few hours. Optionally, we can speed up the

training by specifying a time limit and / or fixing the number ofevaluations. For example,

qt.fit(..., time_limit=3600) will stop training after 3600 seconds. Higher limits will gener-

ally result in better performance.

We present additional information about the tuning and post-tuning steps in the Appendix.

5 Experiments and Results: Quick-Tune-Tool in Action
We evaluated the performance of our finetuning tool on four widely-used vision datasets: Oxford

Flowers 102 (Nilsback and Zisserman, 2008), Stanford Cars (Krause et al., 2013), Imagenette (Howard,

2020), and FGVC-Aircraft (Maji et al., 2013). An in-depth evaluation of the underlying Quick-Tune

algorithm can be found in the prior work by Arango et al. (2023).

Quick-Tune-Tool finetuned models on the training sets while top-1 accuracy was measured

on the validation sets. We show results using 1 step (Δ𝑡 = 1) and 2 step (Δ𝑡 = 2), which is the

number of epochs evaluated per finetuning step. We select time budgets following prior work

(Arango et al., 2023), with 1 and 4 hours for the different optimizers to account for the number of

samples in the datasets. Table 1 presents the final top-1 accuracy per dataset, and Figure 5 visualizes

the performance over time for all the compared methods. We observe that Quick-Tune-Tool
consistently outperforms the RandomOptimizer, with top-1 accuracy improvements ranging from

13% to 23%. In general, Quick-Tune-Tool converges faster to a better solution than random search.
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Dataset Quick-Tune Random Time Budget (Hours) Optimizer
Imagenette 99.6[99.3−99.9] 82.1[60.4−99.9] 1 micro

Oxford Flowers 89.1[84.0−94.2] 74.7[56.0−93.1] 1 micro

Stanford Cars 53.5[34.4−72.7] 40.4[22.2−58.6] 4 mini

FGVC-Aircraft 48.0[35.2−60.8] 25.0[16.2−33.9] 4 mini

Table 1: Top-1 Accuracy Results. Mean over ten seeds with confidence intervals (Δ𝑡 = 1).
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Figure 5: Evaluations on common vision datasets using Quick-Tune-Tool (QT) and Random Search as

optimizers. We present results for Δ𝑡 ∈ {1, 2}

6 Conclusion and Outlook

In this paper, we introduced Quick-Tune-Tool, a tool that simplifies the automated selection and

finetuning of pretrained models. Our tool leverages the Quick-Tune algorithm to offer a user-

friendly yet powerful solution for practitioners in image classification. Empirical evaluations on

four datasets demonstrate that Quick-Tune-Tool offers a substantial performance improvement in

finetuning pretrained models for image classification tasks.

Quick-Tune-Tool is designed with extensibility in mind, allowing for future adaptations to

new domains and tasks. Our future work will focus on expanding the tool’s capabilities to support

additional data modalities and tasks, incorporating more advanced optimization techniques, and

continuous integration of user feedback for further enhancement. By making advanced finetuning

accessible and efficient, Quick-Tune-Tool stands to facilitate the wider adoption of pretrained

models across diverse application areas.

Broader Impact Statement. We believe that our work does not present notable or new negative

broader impacts. Yet, our work initially requires resource-intensive, environmentally costly compu-

tation. However, it has the potential for resource savings over time through optimized evaluations.

In contrast, we believe that Quick-Tune-Tool provides a positive societal impact by enabling easier

access to enhanced image classification tailored to, for example, medical diagnostics or disease de-

tection applications. Furthermore, Quick-Tune-Tool democratizes using and finetuning pretrained

models.
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Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We present the first version of Quick-Tune-Tool and its

out-of-the-box support for image classification.

(b) Did you describe the limitations of your work? [Yes] See Section 6.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 6.

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes] We believe our work conforms

to the guidelines.

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] See Section 5.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] See Section 4 and Section 5

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [Yes] We run our experiments

across 10 seeds, see Section 5

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [Yes] See Figure 5.

(e) Did you report the statistical significance of your results? [No] Due to the restricted number

of samples (four) in our experiment’s results, no meaningful statistical test is applicable.

We point to the confidence intervals in Figure 5 as a proxy for significance.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] We are not

aware of any tabular or surrogate benchmarks for fine-tuning pretrained models.

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes] See Figure 5. We picked the maximum duration appropriate to the dataset

size and following prior work (Pineda Arango et al., 2024).

(h) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] See Section A

(i) Did you run ablation studies to assess the impact of different components of your approach?

[N/A] Quick-Tune-Tool has not components that would make ablation studies necessary.

Prior work ablates components of the QuickTune algorithm itself, see (Pineda Arango et al.,

2024).

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] See https://github.com/automl/QTT

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [Yes] See Section 4.
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(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes] See our repository.

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [Yes] We provide performance results over time in our repository.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] See our repository.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes] See Section 5

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A] Our experiments were conducted on publicly

available datasets.

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] We are using free, common, publicly available

datasets.

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

We provide a license in our code repository.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes] See our code repository.

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]
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A Supplementary Materials

Feature/Aspect HPO Tools Finetuning Tools AutoML Systems
Primary Focus Optimizing hyperparameters Adapting pretrained models to new

tasks

Automating the entire ML pipeline

User Input Required High

(defining model architecture, hyper-

params)

Moderate

(selecting pretrained model, data)

Low

(minimal input required, fully auto-

mated)

Automation Level Partial

(automates hyperparameter search)

Partial

(automates training on new data)

Full

(data processing, model selection, tun-

ing)

Use Case Improve model performance by tuning

hyperparameters

Adapt models to new tasks with small

datasets

End-to-end automation for buildingML

models

Tools & Libraries Optuna

Hyperopt

Ray Tune

SMAC3

NePS

Hugging Face (Transformers, PEFT)

torchtune

TensorFlow Hub

AutoGluon

Google AutoML

H2O.ai

AutoKeras

Microsoft Azure AutoML

Customization High Moderate Low

Expertise Required High Moderate Low to Moderate

Outcome Optimized hyperparameters for better

performance

Fine-tuned model specific to the new

task

Fully trained and optimized ML model

Target Audience Data Scientists, ML Engineers, Re-

searchers

Data Scientists, ML Engineers, Re-

searchers

Non-experts, Business Analysts, Data

Scientists

Table 2: Comparison of HPO Tools, Finetuning Tools, and AutoML Systems

Positioning Quick-Tune-Tool: Bridging Finetuning and AutoML. Hyperparameter optimization

(HPO) tools, finetuning tools, and AutoML systems are crucial in machine learning, each with

specific purposes but common objectives. They differ in focus, automation level, and user expertise

required, but all aim to improve model performance. We provide our interpretation of this com-

plex landscape in Table 2. Within this area, Quick-Tune-Tool represents a hybrid approach that

integrates finetuning principles with HPO techniques and aims to offer accessible usability.

Quick-Tune-Tool differs from conventional HPO tools, e.g., Optuna or Ray Tune, as it supports

and leverages meta-learning on top of traditional optimizes. Furthermore, Quick-Tune-Tool in-
tegrates libraries of pretrained models (such as the Timm library). Finally, Quick-Tune-Tool can
integrate conventional HPO tools into its pipeline to utilize different optimization methods, which

clearly differentiates Quick-Tune-Tool from HPO tools.

Quick-Tune-Tool is similar to AutoML systems as it offers a curated finetuning script and a

predefined search space. Thus, Quick-Tune-Tool also enables an easy-to-use interface for fine-

tuning which aims to be accessible for non-experts.

In summary, we believe that Quick-Tune-Tool is currently positioned on the transition of a

finetuning tool towards an AutoML system.

Additional QuickTuner Notes. The tuner supports basic logging and monitoring to track the

progress of the tuning process. After Quick-Tune-Tool terminated, the user will find the finetuned

models and the intermediate results in an experiment folder.

Post-Tuning Notes. Once the fitting is done, we can access the evaluation results by calling the

statistics() function. This provides an overview (see Figure 6) of the evaluated configurations,

their scores, and additional information. Subsequently, we can either fully finetune the best

configurations using the finetune() function or assess the performance of each trained model

on new data, e.g. that was not used during training, with the leaderboard(path_to_test_data)
function.

Resources used. Our experiments utilized an internal cluster equipped with NVIDIA GeForce

RTX 2080 Ti GPUs, requiring one GPU per experiment. We conducted four experiments with four

different settings and ten seeds each, totaling 400 GPU-hours.
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+----------+---------+----------+-------------------------------------------+

| config | score | fidelity | model | ... |

|----------+---------+----------+-------------------------------------------|

| 10 | 0.987 | 2 | beit_large_patch16_512 | ... |

| 0 | 0.948 | 4 | swinv2_base_window12to24_192to384 | ... |

| 9 | 0.803 | 36 | edgenext_x_small | ... |

| 114 | 0.673 | 19 | edgenext_xx_small | ... |

| 1 | 0.554 | 12 | mobilevit_xs | ... |

...

+----------+---------+----------+-------------------------------------------+

Figure 6: Evaluation results.

Search Space. A subset of the hyperparameters (see Figure 3 and 4) defined in the search space, that

was used for the image classification experiments. For a complete list, please refer to the original

Quick-Tune paper (Pineda Arango et al., 2024).

Hyperparameter
Group Name Options

Fine-Tuning
Strategies

Percentage to freeze 0, 0.2, 0.4, 0.6, 0.8, 1

Layer Decay None, 0.65, 0.75

Linear Probing True, False

Stochastic Norm True, False

Regularization
Techniques

MixUp 0, 0.2, 0.4, 1, 2, 4, 8
MixUp Probability 0, 0.25, 0.5, 0.75, 1

CutMix 0, 0.1, 0.25, 0.5, 1,2,4

DropOut 0, 0.1, 0.2, 0.3, 0.4

Data
Augmentation

Data Augmentation

None, Trivial-Augment,

Random-Augment,

Auto-Augment

Auto Augment None, v0, original

Optimizer Related
Type

SGD, SGD+Momentum,

Adam, AdamW,

Adamp

Learning Rate

0.1,0.01, 0.005, 0.001, 0.0005,

0.0001, 0.00005, 0.00001

Batch Size 2,4,8,16,32,64,128,256,512

Model Model See Table 4

Table 3: Search space for image classification.

Libraries Used. The Quick-Tune-Tool is built on top of the popular deep learning library PyTorch

(Paszke et al., 2019), benefiting from its large and active open-source community. This foundation

allows the use of GPyTorch (Gardner et al., 2018) for GPU-accelerated Gaussian Processes in the

optimization process and easy integration with Hugging Face’s model hub for pretrained models.

The framework employs Pandas (McKinney, 2010) and NumPy (Harris et al., 2020) for data handling

and loading, providing efficient data manipulation capabilities.

Datasets. In our experiments, we chose three datasets with a large dissimilarity concerning

Imagenet, the dataset used for pretraining the models. Following previous work (Li et al., 2019),

we select the datasets using Earth’s Moving Distance as similarity metric (Cui et al., 2018): FGVC-

Aircraft, Stanford Cars and Oxford 102 Flower. Additionally, we include Imagenette, a dataset more

similar to Imagenet. We report a brief description of the datasets in Table 5.
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Model Name No. of Param. (M) Top-1 Acc.

beit_large_patch16_512 305.67 90.691

volo_d5_512 296.09 90.610

volo_d5_448 295.91 90.584

volo_d4_448 193.41 90.507

swinv2_base_window12to24_192to384_22kft1k 87.92 90.401

beit_base_patch16_384 86.74 90.371

volo_d3_448 86.63 90.168

tf_efficientnet_b7_ns 66.35 90.093

convnext_small_384_in22ft1k 50.22 89.803

tf_efficientnet_b6_ns 43.04 89.784

volo_d1_384 26.78 89.698

xcit_small_12_p8_384_dist 26.21 89.515

deit3_small_patch16_384_in21ft1k 22.21 89.367

tf_efficientnet_b4_ns 19.34 89.303

xcit_tiny_24_p8_384_dist 12.11 88.778

xcit_tiny_12_p8_384_dist 6.71 88.101

edgenext_small 5.59 87.504

xcit_nano_12_p8_384_dist 3.05 85.025

mobilevitv2_075 2.87 82.806

edgenext_x_small 2.34 81.897

mobilevit_xs 2.32 81.574

edgenext_xx_small 1.33 78.698

mobilevit_xxs 1.27 76.602

dla46x_c 1.07 73.632

Table 4: Vision models in search space.

Dataset Name # Samples # Classes Image Resolution

Oxford 102 Flower 2040 102 500 - 1168

FGVC-Aircraft 10,200 102 430 - 1188

Stanford Cars 16,185 196 57 - 3744

Imagenette 13,394 10 320

Table 5: Vision Datasets used for Evaluation.

Image-Folder. The images of the custom datasets have to be arranged in a certain way to be

compatible with PyTorch ImageFolder-format, see Figure 7.

13



root/train/

|-- a

| |-- xyz.jpg

| |-- abc.jpg

| |-- ...

|-- ...

root/val/

|-- a

| |-- efg.jpg

| |-- opq.jpg

| |-- ...

|-- ...

Figure 7: ImageFolder format
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