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ABSTRACT

Large Language Models (LLMs) have been increasingly adopted for recommen-
dation tasks, yet their ability to leverage the sequential nature of user item inter-
action data remains underexplored. In this work, we conduct a comprehensive
investigation into how LLMs process item sequences and uncover a critical lim-
itation: LLMs often exhibit a set-like prediction behavior, focusing on the un-
ordered collection of items rather than their order. Through experiments where
item textual content is removed and only item IDs are provided, we demonstrate
that LLMs fail to fully exploit sequential dependencies, leading to degraded se-
quential recommendation. Motivated by the principle of entropy, we further pro-
vide a representation-space perspective: the region occupied by embeddings of
ordered item sequences is a compact subspace of that formed by unordered item
collections, as sequence information reduces entropy and enforces tighter struc-
ture. Building on this insight, we introduce a contrastive learning framework that
explicitly guides LLMs to capture sequential patterns by encouraging compact
representation of ordered item sequences. Extensive experiments across multiple
benchmarks show that our method achieves state-of-the-art performance, surpass-
ing prior LLM-based recommendation approaches.

1 INTRODUCTION

Since TALLRec (Bao et al., 2023) reformulated sequential recommendation as a language modeling
task, an increasing number of approaches have been devoted to pushing the performance boundary of
large language models for sequential recommendation (LLM4SR). During this stage, representative
works, such as LLaRA (Liao et al., 2024), A-LLMRec (Kim et al., 2024), and CoLLM (Zhang et al.,
2025) focused on augmenting LLMs with collaborative signals from traditional models to better ex-
ploit their reasoning ability. Recently, researchers(Hou et al., 2024b; Kim et al., 2025) have shifted
their attention to the fundamental question of sequential recommendation: whether LLMs can ef-
fectively understand the sequential knowledge inherent in the user interaction sequences? Based on
the marginal performance gap between LLMs trained on original versus shuffled sequences, Hou
et al. (2024b) conclude that LLMs are insensitive to the order of user interactions. Subsequently,
Kim et al. (2025) validate this conclusion through extensive experiments and further propose a dis-
tillation method that leverage representations from traditional sequential models. In contrast, Zhai
et al. (2025) proposes to improve the positional encoding of LLMs, which allows them to be better
adapted to sequential recommendation tasks. However, none of these works conducts an in-depth
analysis of the underlying reasons why LLMs exhibit insensitivity to sequential order.

In this study, we design a systematic experimental pipeline that encompasses both validation and
analysis. Based on our experiments, we draw a more profound conclusion: in sequential rec-
ommendation, the predictive behavior of LLMs is set-like, as they focus on unordered item
collections rather than ordered interaction sequences. Specifically, we begin by validating the
observed order-insensitivity of LLMs, with the results summarized in Table 1 and the experimental
setup detailed in Section 4.1. We can find that, unlike traditional sequential models, LLM-based
models do not rely on the order of user’s historical sequence when predicting the next interacted
item. Notably, although LLM-SRec (Kim et al., 2025) is designed to mitigate this issue, it continues
to exhibit similar behavior on the CDs dataset.
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Table 1: Performance of baseline methods trained on original vs. shuffled sequences, evaluated on
original sequences (NDCG@10).

Model Training Movies Scientific Electronics CDs

SASRec

original 0.3486 0.3042 0.2474 0.3373

shuffle 0.2747 0.2530 0.1828 0.3057

change ratio (-21.2%) (-16.8%) (-26.1%) (-9.4%)

TALLRec

original 0.1699 0.2913 0.3098 0.3110

shuffle 0.1644 0.2624 0.2394 0.3009

change ratio (-3.2%) (-9.9%) (-22.7%) (-3.8%)

LLaRA

original 0.3105 0.3343 0.3017 0.3764

shuffle 0.2987 0.3328 0.2936 0.3757

change ratio (-3.8%) (-0.4%) (-2.7%) (-0.2%)

A-LLMRec

original 0.3376 0.3081 0.3046 0.3622

shuffle 0.3208 0.3180 0.2610 0.3584

change ratio (-5.0%) (+3.2%) (-14.3%) (-1.0%)

LLM-SRec

original 0.3560 0.3388 0.3044 0.3746

shuffle 0.2862 0.3066 0.2639 0.3857

change ratio (-19.0%) (-9.5%) (-13.3%) (+3.0%)

Unlike prior works (Hou et al., 2024b; Kim et al., 2025; Zhai et al., 2025), we further investigate the
underlying reasons behind this behavior. To examine whether LLMs rely primarily on textual infor-
mation or on the sequential relationships among items, we replace the item textual descriptions with
their corresponding IDs in the inputs of the LLMs. For this purpose, we focus on TALLRec (Bao
et al., 2023) and LLaRA (Liao et al., 2024), as both are finetuned with LoRA (Hu et al., 2022), which
facilitates better adaptation to downstream sequential recommendation tasks and strengthens the va-
lidity of the observation. As shown in Table 2, once the textual information is removed, LLMs can
easily distinguish between the original and shuffled sequences in 75% of the cases. This indicates
that, in sequential recommendation, LLMs tend to ignore the order information of user interactions
and instead focus on the complete textual content of the entire input sequence. We further analyze
the top tokens attended to by LLMs trained separately on the original and shuffled sequences, as
shown in Figure 1. In can be observed that the primary attention patterns remain largely unchanged,
indicating that as long as the textual information of the input is complete, LLMs can leverage their
strong modeling capacity to reconstruct the representation of the interaction sequence.

Based on the above analysis, we can conclude that the representations learned by LLMs for user in-
teraction sequences contain a substantial amount of unordered information. Inspired by the concept
of entropy, we tackle this problem from the perspective of the representation space: the representa-
tions of ordered item sequences should be a compact subspace formed by unordered item collections.
Motivated by this insight, we propose Sequence-Teacher-Anchored LLM Recommender with Adap-
tive Regularization, i.e., LLM-STAR, which adaptively helps LLMs to learn sequential information
through contrastive learning based on the positive and negative anchors in the representation space.

Our contributions can be summarized as follows:

• We reveal the predictive behavior of LLMs in sequential recommendation tasks, demonstrating
that they operate in a set-like manner by focusing on collections of items rather than ordered
sequences.

• Inspired by the theory of entropy, we interpret the set-like behavior of LLMs from the perspec-
tive of the representation space, viewing the representation space of ordered user sequences as a
subspace within the representation space of unordered item collections.
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Table 2: Results of TALLRec and LLaRA regarding order sensitivity when trained separately with
item descriptions and item IDs (NDCG@10).

Model Training Movies Scientific Electronics CDs

TALLRec

original 0.1699 0.2913 0.3098 0.3110

shuffle 0.1644 0.2624 0.2394 0.3009

change ratio (-3.2%) (-9.9%) (-22.7%) (-3.8%)

TaLLRec w/o text

original 0.1611 0.1496 0.1912 0.0950

shuffle 0.1582 0.1114 0.1377 0.0859

change ratio (-4.8%) (-25.5%) (-28.0%) (-9.6%)

LLaRA

original 0.3105 0.3343 0.3017 0.3764

shuffle 0.2987 0.3328 0.2936 0.3757

change ratio (-3.8%) (-0.4%) (-2.7%) (-0.2%)

LLaRA w/o text

original 0.2553 0.2074 0.2722 0.1448

shuffle 0.2542 0.2094 0.2295 0.1348

change ratio (-0.4%) (+1.0%) (-15.7%) (-6.9%)

Sequence of Items
[1] "Aretha's Best" [2] "Simply Red - The Greatest Hits" [3] "The Later Years" [4] "Ultimate Grammy Collection: Classic R&B" [5] "Greatest Hits Collection" [6]
"Greatest" [7] "Weather" [8] "Greatest Hits" [9] "50 Year Trip: Live at Red Rocks" [10] "Definitive Collection"

Layer = 0
Original Shuffle

Hits: Hits Grammy Hits Later Collection Greatest Years Classic Collection The
Year: Hits Grammy Hits Hits Later Greatest Collection Collection Years Classic
Trip: Year Hits Grammy Hits Hits Later Collection Classic Greatest Collection
Live: Trip Year Hits Grammy Hits Hits Later Classic Greatest Collection
at: Live Trip Year Hits Grammy Hits Hits Later Classic Collection
Red: at Live Trip Year Hits Grammy Hits Hits Classic Later
Rocks: Red at Live Trip Year Hits Grammy Hits Hits Later
Collection: at Hits Trip Live Rocks Year Hits Grammy Hits Red

Hits: Hits Grammy Hits Later Collection Greatest Years Classic Collection The
Year: Hits Grammy Hits Hits Later Greatest Collection Collection Years Classic
Trip: Year Hits Grammy Hits Hits Later Collection Classic Greatest Collection
Live: Trip Year Hits Grammy Hits Hits Later Classic Greatest Collection
at: Live Trip Year Hits Grammy Hits Hits Later Classic Collection
Red: at Live Trip Year Hits Grammy Hits Hits Classic Later
Rocks: Red at Live Trip Year Hits Grammy Hits Hits Later
Collection: at Hits Trip Live Rocks Year Hits Grammy Hits Red

Laeyr = -1
Original Shuffle

Hits: Collection Red Years Classic Grammy Hits The Later Best Greatest
Collection: Hits Collection Red Classic Years Grammy The Hits Later Best
Hits: Collection Collection Hits Red Hits Grammy Classic The Years Best
Year: Grammy Collection Hits Collection Hits Later Years Hits Best Classic
Trip: Year Collection Collection Grammy Years Hits Hits Later Classic Hits
Live: Trip Year Grammy Collection Years Collection Hits Hits Classic Red
at: Live Trip Year Grammy Later Classic Years Hits The Best
Red: at Live Trip Year Grammy Later Years Hits Collection Red
Rocks: Live Trip at Red Year Collection Collection Hits Years Hits
Collection: Trip Collection Collection Live Grammy Hits Hits Hits Classic Year

Hits: Collection Red Grammy Classic Years Best Hits The Later Greatest
Collection: Hits Red Collection Classic The Grammy Years Later Best Hits
Hits: Collection Collection Red Hits Grammy The Classic Hits Best Years
Year: Grammy Collection Later Years Red Hits Best Collection Hits The
Trip: Year Grammy Collection Collection Years Red Later Classic Hits Hits
Live: Trip Year Grammy Years Collection Red Later Classic The Best
at: Live Trip Year Grammy Later Classic Years The Collection Red
Red: at Live Trip Year Grammy Later Years Collection Hits Red
Rocks: Live Trip at Red Year Collection Hits Collection Grammy Years
Collection: Trip Grammy Collection Live Collection Red Classic Best Hits Hits

Figure 1: Case study: top tokens attended to by TALLRec trained separately on the original and
shuffled sequences for each token in a sample from the CDs dataset. For clarity, only tokens in later
positions and those corresponding to complete words are shown.

• To mitigate the order-insensitivity issue of LLMs, we introduce a contrastive learning approach
that guides the model to form a compact representation space using positive and negative anchors.

2 RELATED WORK

2.1 SEQUENTIAL RECOMMENDATION SYSTEMS

Sequential recommendation is a type of personalized recommendation system that captures user
interests based on their historical interaction sequences (Ren et al., 2024). In the early stage, Ma-
trix Factorization-based approach (Mnih & Salakhutdinov, 2007; Chaney et al., 2015; He et al.,
2017) emerged as the mainstream technology by capturing collaborative signals in the user-item
interactions. However, these methods fail to adequately model the evolution of the user interests.
Fortunately, the advancement of deep neural networks has effectively mitigated this problem. Repre-
sentative works include the GRU4Rec (Hidasi et al., 2015) and Caser (Tang & Wang, 2018), which
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Figure 2: Overall model architecture of LLM-STAR.

leverage the powerful representation ability of the neural networks (Krizhevsky et al., 2012; Cho
et al., 2014) to model the user interests. Recent works such as SASRec (Kang & McAuley, 2018)
and BERT4Rec (Sun et al., 2019) have further pushed the performance boundaries by introducing
attention mechanisms

2.2 LLM-BASED SEQUENTIAL RECOMMENDATION SYSTEMS

LLMs are widely applied in sequential recommendation due to their robust real-world knowledge
and powerful ability in modeling text sequences (Li et al., 2024; Hou et al., 2024b; Zhang et al.,
2025). The pioneering work of TALLRec (Bao et al., 2023) establishes a general paradigm for
LLM4SR by formulating interaction sequences as textual prompts fed into LLMs. Building upon
this template, subsequent research (Wu et al., 2024; Kong et al., 2024) focuses on incorporating
collaborative signals as an independent modality into LLMs to enhance their performance. For in-
stance, LLaRA (Liao et al., 2024) first inserts extra tokens into LLM’s prompts, which are converted
from item embeddings generated by pre-trained traditional sequential recommenders. Then, the
training of LLMs shift from text-only prompts to such hybrid prompts via a curriculum learning
approach, which achieves more stable learning. Recent works (Kim et al., 2025; Zhai et al., 2025)
start to focus on how to enable LLMs to fully learn the sequential information in the user interac-
tions. LLM-SRec (Kim et al., 2025) validates the insensitivity of LLM-based methods to sequential
order, and alleviates this issue by distilling representations from conventional models to guide LLMs
in learning sequential knowledge. In contrast, Zhai et al. (2025) recognize that token-level posi-
tional encoding in LLMs is not well aligned with sequential recommendation, and establish a new
paradigm, which involves introducing an item-order-based positional embedding and an ID genera-
tion task.

3 METHOD

In this section, we propose LLM-STAR, a simple but effective LLM4SR framework designed to
facilitate LLMs to fully recognize sequential information within the interaction sequences. We first
present the general LLM4SR loss in Section 3.1, which is also employed in our LLM-STAR, and
then introduce the two core modules proposed in our work in the following subsections. Figure 2
illustrates the overall framework of LLM-STAR.
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Item Prompt Template 

The item title and item embedding are as follows: <Title, [SeqItemEmb]>, then generate 
item representation token: [ItemOut] 
 

User Prompt Template 

The user has made a series of purchases in the following order:  
<Rank, Time, Title, [SeqItemEmb]>, <Rank, Time, Title, [SeqItemEmb]>, .... 
Based on this sequence of purchases, generate user representation token: [UserOut] 
 
 

Figure 3: The prompt templates of the candidate item and the user interaction sequence.

3.1 LARGE LANGUAGE MODEL FOR SEQUENTIAL RECOMMENDATION

Given the user set U = {u1, u2, ..., um} and the item set I = {i1, i2, ..., in}, we define the interac-
tion sequence of user u ∈ U as Su = {iu1 , iu2 , ..., iunu

}, where the items are ordered chronologically
by interaction time. In this work, we set nu = 10, since longer sequences do not provide further
benefits(Hou et al., 2024b).

As illustrated in Figure 3, the user’s interaction sequence and a candidate item are formulated into a
user prompt and an item prompt, respectively. Collaborative information is incorporated via an item
adapter fitem, which maps item embeddings from a pre-trained sequential recommender (Kang &
McAuley, 2018) into the semantic space of LLMs. Following the Next Item Retrieval approach (Kim
et al., 2025), two learnable tokens, [ItemOut] and [UserOut], are inserted into the prompts to obtain
the user representation ullm ∈ Rdllm and item embedding illm ∈ Rdllm .

These representations are then projected into the recommendation space using two projection layers
fI and fU , yielding u ∈ Rd and i ∈ Rd. Based on the user historical sequence Su, the interaction
intention of user u for the candidate item i can be quantified as s(u, i), where s(·) denotes the
similarity function

For training efficiency, we only consider the last item t ∈ Su for each user to construct the sequential
recommendation loss, which can be defined as follow:

Lrec = −Eu∈U [log
es(u,t)

es(u,t) +
∑

k∈Cu
es(u,k)

], (1)

where Cu is the candidate item set of user u.

3.2 SEQUENCE-TEACHER-ANCHORED LOSS

To capture sequential dependencies in LLM-based models, we design a sequence-anchored con-
trastive learning framework, where each sample is paired with a positive instance and multi-scale
negative instances in the recommendation space to enforce a compact representation of ordered
sequences.

For a given user representation u, we aim to identify an anchor in the representation space that en-
codes rich sequential information. Shifting u toward this anchor enable the LLM-based model to
better recognize sequential patterns. To this end, we adopt a pre-trained sequential recommender
(SASRec) as a teacher, which effectively captures the sequential information in the user interac-
tions (Klenitskiy et al., 2024). For each user interaction sequence Su, the teacher model first pro-
duces a user representation ucf in its own space. A learnable user adapter fuser is then employed
to transform ucf into the LLM’s recommendation space, yielding the positive anchor representation
upos = fuser(u

cf ). However, relying solely on the sequential signals provided by the teacher model
is insufficient, as LLM-SRec’s performance on the CDs dataset demonstrates limited sensitivity to
the sequence order, highlighting the necessity of learning from both positive and negative samples.

As shown in Figure 2, we construct three types of negative samples with varying scales and diffi-
culties: (1) random shuffle: the entire sequence is randomly permuted to encourage the LLMs to
capture global sequential information; (2) window shuffle: subsequences within windows of varying
lengths are shuffled to help the LLMs recognize local sequential patterns; (3) last-N shuffle: the last
N items, which are most indicative of the user’s immediate next interest (Kang & McAuley, 2018;
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Table 3: Statistics of datasets after preprocesing. |U|, |I|, and |E| denote the number of users, items,
and interactions, respectively.

Dataset Movies Scientific Electronics CDs

|U| 12,029 23,627 27,526 18,550

|I| 17,672 25,764 31,778 31,202

|E| 131,342 218,910 260,201 259,947

Qu et al., 2024), are shuffled to strengthen the LLMs’ sensitivity to recent behaviors. Finally, these
negative samples Ŝu are then fed into the LLMs to generate the multi-scale negative anchors uneg.

Through contrastive learning, pulling the user representation closer to its positive anchor while push-
ing it away from negative anchors suppresses unordered information, thereby improving the model’s
capacity to recognize sequential dependencies. The optimization objective can be defined as follows:

Lseq = −Eu∈U [log
es(u,u

pos)

es(u,upos) +
∑

i∈{1,...,|Ŝu|} e
s(u,uneg

i )
]. (2)

3.3 ADAPTIVE REGULARIZATION

Although the contrastive learning mechanism proposed in Section 3.2 can theoretically help the
model learn a compact representation subspace, there still exist some potential issues. In particular,
the teacher model provides strong sequential knowledge, yet its reliability is not always guaran-
teed (Cui et al., 2024). Besides, some samples inherently exhibit weak sequential patterns (Kang &
McAuley, 2018; Klenitskiy et al., 2024), forcing the model to learn sequential knowledge from the
original and shuffled samples in such cases may lead to overfitting to noisy orders. Then, the simi-
larity between them, denoted as the confidence cu = s(ucf , tcf ), quantifies the teacher’s certainty
about the sequential knowledge in u’s interaction sequence. The higher the confidence, the stronger
the sequential information of the sample. We utilize this confidence as the adaptive weight for each
sample and rewrite Eq.2 as follows:

Lseq = −Eu∈U [s(u
cf , tcf ) log

es(u,u
pos)

es(u,upos) +
∑

i∈{1,...,|Ŝu|} e
s(u,uneg

i )
]. (3)

The final optimization objective of LLM-STAR can be described as follows:

Lrec + βLseq, (4)

where β denotes the hyper-parameter used to scale the auxiliary loss.

4 EXPERIMENT

In this section, we conduct comprehensive experiments to answer the following research questions
(RQs) and thus demonstrate the effectiveness of LLM-STAR.

• RQ1: How does LLM-STAR perform compared to existing LLM-based sequential recommenda-
tion models on real-world industrial datasets?

• RQ2: Whether the proposed Sequence-Teacher-Anchored loss and the Adaptive Regularization
modules work?

• RQ3: How does the hyper-parameter β affect the performance of LLM-STAR?
• RQ4: Whether the sequential knowledge learned by LLM-STAR can generalize to other domains?

4.1 EXPERIMENT SETUP

Datasets. All baselines and our LLM-STAR are evaluated on four Amazon benchmarks (Hou et al.,
2024a): Movies, Scientific, Electronics, and CDs. Following the same preprocessing as Kim et al.

6
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Table 4: Overall performances of the baseline models and LLM-STAR. The best performances are
denoted in bold.

Dataset Metric SASRec TALLRec LLaRA A-LLMRec LLM-SRec LLM-STAR

Moveis
NDCG@10 0.3486 0.1699 0.3105 0.3376 0.3560 0.3630

HR@10 0.5268 0.3256 0.5038 0.5313 0.5569 0.5596

Scientific
NDCG@10 0.3042 0.2913 0.3343 0.3081 0.3388 0.3511

HR@10 0.4957 0.4926 0.5464 0.5143 0.5532 0.5708

Electronics
NDCG@10 0.2474 0.3098 0.3017 0.3046 0.3044 0.3040

HR@10 0.4121 0.4933 0.4878 0.4965 0.4885 0.4905

CDs
NDCG@10 0.3373 0.3111 0.3764 0.3622 0.3746 0.3852

HR@10 0.5041 0.5092 0.6054 0.5981 0.5986 0.6060

(2025), we also filter out users and items with fewer than five interactions, as cold start is beyond
the scope of our work. The specific statistics of each dataset are summarized in Table 3.

Baselines. We compare LLM-STAR with the traditional sequential recommendation method SAS-
Rec (Kang & McAuley, 2018) and four LLM-based methods, i.e., TALLRec (Bao et al., 2023),
LLaRA (Liao et al., 2024), A-LLMRec (Kim et al., 2024), and LLM-SRec (Kim et al., 2025). Con-
sidering that larger LLM sizes do not necessarily yield better performance while incurring higher
inference latency and resource overhead (Qu et al., 2024; Xu et al., 2024), we adopt LLaMA 3.2
(3B-Instruct) as the backbone for all LLM4SR baselines.

Evaluation Protocol. We adopt the widely used leave-last-out evaluation protocol (Liu et al., 2024;
Sun et al., 2025; Liu et al., 2025). Concretely, for each interaction sequence, the last two items are
held out for validation and test, respectively, while the remaining items are used for training. During
evaluation, we pair the positive item with 99 negative samples to form a candidate set, and report the
results of Hit Ratio (HR@10) and Normalized Discounted Cumulative Gain (NDCG@10). When
verifying the order-insensitivity of LLMs, we adopt the same shuffling strategy as Kim et al. (2025).
The item descriptions together with their embeddings in the user interaction sequences are shuffled
only once before training, while preserving timestamps unchanged to prevent information leakage.

Implement Details. The output dimension of the teacher model is set to 64. The MLP layers, i.e.,
fI , fU , fitem, and fuser are configured with a hidden size of 2048 and an output dimension of 128.
We use Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.0001. The batch size is set
to 20 for all datasets, except for Electronics, where it is 16. The hyper-parameter β is set to 0.4 for
Movies, Scientific, and Electronics, and 0.7 for CDs. Models are trained for 10 epochs, with 10%
of each epoch reserved for validation and an eartly stopping patience of 10. All experiments are
conducted on a single NVIDIA L40 GPU (45GB) and a single NVIDIA A800 GPU (80GB).

4.2 PERFORMANCE COMPARISONS (RQ1)

Table 4 presents the performance comparison between LLM-STAR and the baseline methods on
four industrial datasets, from which we have the following observations.

❶ Except on Electronics, SASRec achieves comparable and even better performance than several
LLM-based baselines. Although LLaRA and A-LLMRec leverage the item embeddings or user
representations from the pre-trained SASRec, they still fail to surpass SASRec in the overall perfor-
mance. Moreover, both these LLM-based methods are substantially more complex, indicating that
their capacity to capture sequential information is not yet fully exploited.

❷ LLM-STAR significantly outperforms the teacher model and achieves the best overall perfor-
mance. Through the adaptive weighting strategy to the sequence-teacher-anchored loss, LLM-STAR
effectively balances the knowledge distilled from the teacher, achieving superior performance over
it. Moreover, the design of positive and negative anchors enables LLMs to capture sequential infor-
mation that was previously overlooked, thereby fully leveraging their powerful reasoning capability.
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Table 5: NDCG@10 scores for the ablation study.
Version Ablation Movies Scientific Electronics CDs

(a) w.o. STA & AR 0.3204 0.3088 0.2659 0.3619

(b) w.o. AR 0.3491 0.3405 0.2855 0.3785

(c) LLM-STAR 0.3630 0.3506 0.3040 0.3852

❸ LLM-STAR outperforms LLM-SRec, another state-of-the-art approach that aims to enhance the
ability of LLM-based models to capture sequential information. By roughly distilling SASRec’s user
representations as teacher signals, LLM-SRec fails to recognize the intrinsic prediction patterns of
LLM-based models. This leads to excessive dependence on the teacher’s sequential knowledge
and compromises the model’s capacity to distinguish negative samples. In contrast, guided by the
representation-space perspective, we naturally introduce multi-scale negative anchors, achieving
superior performance.

❹ LLM-STAR achieves the suboptimal performance on Electronics. As shown in Table 1, the base-
line methods experience the largest performance drop on the shuffled Electronics dataset, indicating
that it contains the richest sequential information among the four benchmarks. This allows the mod-
els to directly capture sufficient sequential information, which also explains why LLM-based models
exhibit comparable performance on this dataset.

4.3 ABLATION STUDY (RQ2)

To examine the contribution of each module in LLM-STAR to the model’s performance, we per-
form the ablation study. As shown in Table 5, we gradually remove the two key modules, Adaptive
Regularization and Sequence-Teacher-Anchored loss, from LLM-STAR to investigate their effec-
tiveness. We can make the following observations.

❶ Compared with the vanilla version (a), incorporating sequence-teacher-anchored loss signifi-
cantly enhances the model’s performance. Across the four datasets, version (b) achieves an average
7.6% improvement over version (a). This demonstrates that setting anchors in the representation
space effectively helps LLMs learn sequential information and providing empirical support for our
proposed perspective.

❷ The introduction of adaptive regularization further pushes the model beyond its performance
bottleneck. By weighting the sequence-teacher-anchored loss according to the teacher model’s con-
fidence in the sequential information of each sample, the model learns more cautiously when the
teacher signals are unreliable or the sample contains limited sequential patterns, thereby achieving
the enhanced performance.

4.4 HYPER-PARAMETER ANALYSIS (RQ3)

We analyze the impact of the hyper-parameter β on the model performance, since it determines the
contribution of our proposed loss item. In particular, we set β in the range of 0.3 to 0.9 and present
the results of LLM-STAR on CDs, as shown in Figure 4. We can draw the following conclusions.

❶ Introducing a suitable level of sequential information can enhance model’s performance. A non-
monotonic trend in both NDCG@10 and HT@10 with respect to β is observed, with values initially
increasing and then declining. This indicates that moderately increasing β can effectively enhance
LLM’s ability to learn sequential information, whereas an excessively large β will cause the model
to overlook fitting the recommendation task, resulting in degraded performance.

❷ LLM-STAR is insensitive to the hyper-parameter β. LLM-STAR maintains consistently strong
performance for β between 0.5 and 0.7, demonstrating the robustness of our approach.

4.5 PERFORMANCE UNDER CROSS DOMAIN SCENARIO(RQ4)

We conduct cross-domain experiments to assess whether sequential knowledge learned by LLM-
STAR can be transfer from the source domain to an unseen target domain. The model is pre-trained
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Figure 4: Experimental results of LLM-STAR regarding the hyper-parameter β on CDs.

Table 6: Performance of the cross domain experiments. To better compare the performance differ-
ences between traditional LLM-based methods and those focus on sequential information, we only
consider TALLRec, LLaRA, LLM-SRec, and LLM-STAR.

Cross Domain Metric TALLRec LLaRA LLM-SRec LLM-STAR

Scientific → CDs
HT@10 0.1276 0.0946 0.1619 0.1659

NDCG@10 0.0606 0.0422 0.0763 0.0782

Scientific → Movies
HT@10 0.1108 0.0887 0.2617 0.3025

NDCG@10 0.0478 0.0382 0.1340 0.1495

CDs → Scientific
HT@10 0.0970 0.1749 0.1168 0.1666

NDCG@10 0.0436 0.0837 0.0529 0.0945

Moviess → Scientific
HT@10 0.1164 0.1561 0.2006 0.2185

NDCG@10 0.0524 0.0751 0.0929 0.0988

on Scientific as it provides sufficient data and contains more implicit sequential information com-
pared to Electronics, and evaluated on CDs and Movies. Reverse transfer experiments are also
performed for comprehensive validation. As shown in Table 6, we can make the following conclu-
sion.

❶ LLM-STAR can effectively transfer the learned sequential knowledge. In both transfer direc-
tions, LLM-STAR achieves the best performance, indicating that our model can effectively capture
sequential information and retain its advantages when transferred to unseen domains.

❷ Enabling the model to learn sequential knowledge from multi-scale negative samples is beneficial.
LLM-SRec’s performance advantage decreases when transferring from Movies and CDs to Scien-
tific, as the source datasets exhibit less pronounced sequential patterns. This indicates that relying
solely on positive samples from the teacher model is insufficient.

5 CONCLUSION

In this work, we reveal the set-like prediction behavior of LLMs in sequential recommendation,
where the next-item prediction depends on the collection of items rather than their orders. Inspired
by the concept of entropy, we provide a representation-space perspective, the space occupied by the
representations of ordered item sequence is a subspace of that formed by the unordered item col-
lections. Based on this insight, we propose LLM-STAR, a contrastive learning framework that en-
courages LLM-based models to learn compact representation spaces by generating the positive and
multi-scale negative anchors. Experiments on four industrial datasets demonstrate that our method
achieves state-of-the-art performance.
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