ST²360D: Spatial-to-Temporal Consistency for Training-free 360 Monocular Depth Estimation

Zidong Cao^{1*} Jinjing Zhu^{1*} Hao Ai^{2*} Lutao Jiang¹ Yuanhuiyi Lyu¹ Hui Xiong^{1,3†}

¹Thrust of Artificial Intelligence, HKUST (Guangzhou), China

²University of Birmingham, UK

³Department of Computer Science and Engineering, HKUST, Hong Kong SAR, China

caozidong1996@gmail.com; jinjingzhu.mail@gmail.com;

aihao199712@gmail.com; jianglutao98@gmail.com;

ryan.lyu.mail@gmail.com; xionghui@ust.hk

Abstract

360° monocular depth estimation plays a crucial role in scene understanding owing to its $180^{\circ} \times 360^{\circ}$ field-of-view (FoV). To mitigate the distortions brought by equirectangular projection, existing methods typically divide 360° images into distortion-less perspective patches. However, since these patches are processed independently, depth inconsistencies are often introduced due to scale drift among patches. Recently, video depth estimation (VDE) models have leveraged temporal consistency for stable depth predictions across frames. Inspired by this, we propose to represent a 360° image as a sequence of perspective frames, mimicking the viewpoint adjustments users make when exploring a 360° scenario in virtual reality. Thus, the spatial consistency among perspective depth patches can be enhanced by exploiting the temporal consistency inherent in VDE models. To this end, we introduce a training-free pipeline for 360° monocular depth estimation, called ST²360D. Specifically, ST²360D transforms a 360° image into perspective video frames, predicts video depth maps using VDE models, and seamlessly merges these predictions into a complete 360° depth map. To generate sequenced perspective frames that align with VDE models, we propose two tailored strategies. First, a spherical-uniform sampling (SUS) strategy is proposed to facilitate uniform sampling of perspective views across the sphere, avoiding oversampling in polar regions typically with limited structural details. Second, a latitude-guided scanning (LGS) strategy is introduced to organize the frames into a coherent sequence, starting from the equator, prioritizing low-latitude slices, and progressively moving toward higher latitudes. Extensive experiments demonstrate that ST²360D achieves strong zero-shot capability on several datasets, supporting resolutions up to 4K.

1 Introduction

There has been growing interest in 360° cameras for capturing a $180^{\circ} \times 360^{\circ}$ field-of-view (FoV). 360° monocular depth estimation is crucial for scene understanding [1, 2] with a wide range of applications such as autonomous driving [3, 4], virtual reality (VR) [5, 6, 7], and visual navigation [8]. The most common representation of 360° images is the equirectangular projection (ERP), which maps spherical data onto a 2D plane for storage and processing. However, ERP representation introduces spherical distortions, particularly near the poles [9], stretching visual content unevenly and degrading the performance of perspective depth estimators when applied to 360° images.

^{*}Equal contributions.

[†]Corresponding Author.

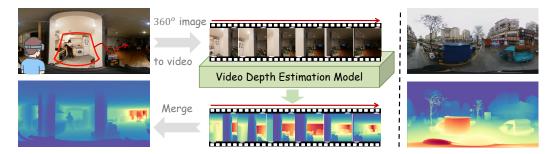


Figure 1: **Left:** Our proposed training-free pipeline. We represent a 360° image as video frames, mimicking viewpoint adjustments in VR. The arrow \rightarrow denotes the direction of the visual transition. The video frames are processed with the VDE model to predict video depth maps, which are merged into a 360° depth map. **Right:** ST²360D shows impressive zero-shot capability in outdoor scenario.

To mitigate distortions, existing methods mainly project 360° images onto distortion-less perspective patches [10, 11, 12, 13, 14], which are more compatible with standard perspective models. However, processing these perspective patches independently often leads to depth inconsistencies, causing noticeable seams and degraded performance. To address this issue, both training-based and training-free methods have been proposed. Training-based methods [10, 14] fuse global features from ERP images with local features extracted from perspective patches. However, these methods heavily rely on expensive 360° depth annotations [15, 16, 17], and have limited zero-shot capabilities. Furthermore, due to limited computational resources, the input resolution for ERP images is constrained. In contrast, training-free methods [18, 19] convert high-resolution ERP images into perspective patches, and estimate patch-wise depths in parallel using pre-trained perspective models [20, 21]. Subsequently, the perspective depth patches are re-projected to the ERP plane and merged into a high-resolution 360° depth map. Nevertheless, these methods still face challenges, such as dependence on time-consuming post-processing [18] or requiring additional 360° depth estimation models as references [19].

Recently, Video Depth Estimation (VDE) models [22, 23, 24] have demonstrated significant advancements, enabling stable and accurate depth predictions across video frames. Specifically, VDE models ensure depth alignment within overlapping regions of consecutive frames by leveraging temporal consistency, significantly mitigating depth flickering issues. This raises an interesting question: *Can the temporal consistency inherent in VDE models be leveraged to address the depth inconsistency challenges encountered by current* 360° *methods?* To explore this, we propose representing a single 360° image as a sequence of perspective frames, closely mimicking the continuous viewpoint adjustments that occur in VR (See left of Fig. 1). Within VR environments, users experience smooth visual transitions as their viewpoints gradually shift, producing coherent sequences of perspective images akin to a continuous video stream. With this video representation, the spatial consistency among perspective depth patches can be enhanced by the temporal consistency in VDE models. To this end, we propose a novel training-free pipeline for 360° monocular depth estimation, named ST²360D. Specifically, ST²360D represents a 360° image as a sequence of perspective frames, then predicts video depth maps using VDE models, and finally seamlessly merges video depth maps back into the ERP plane to yield a complete 360° depth map.

To better align sequenced perspective frames with VDE models in our pipeline, we introduce two key strategies. First, we propose a spherical-uniform sampling (SUS) strategy, distributing viewpoints evenly across the sphere based on the vertices of a subdivided icosahedron. Compared with conventional uniform sampling on the ERP plane, our strategy avoids oversampling polar regions with limited structural information. Second, we introduce a latitude-guided scanning (LGS) strategy that organizes the viewpoints to obtain perspective frames. Given that VDE models rely on initial frames for accurate subsequent predictions [22], we begin scanning at equatorial viewpoints with rich structural information and sequentially search subsequent viewpoints from their spherical neighborhoods. In addition, we partition the spherical surface into latitude slices. The scanning path originates from the lowest-latitude slice; after fully traversing viewpoints within one slice, the scanning path progressively shifts upward to higher latitudes. This ensures a smooth, coherent, and structurally informative sequence, enhancing the performance of VDE models (See right of Fig. 1). Experiments demonstrate that ST²360D predicts consistent 360° depth maps with impressive zeroshot performance. Project page: https://caozidong.github.io/ST2360D_Depth/.

In summary, our contributions are three-fold: (I) We propose to represent a 360° image as a sequence of perspective frames, unleashing the temporal consistency of VDE models to enhance spatial consistency across perspective depth patches. (II) We present ST²360D, a training-free pipeline for 360° monocular depth estimation, along with two key strategies—SUS and LGS—to better align with VDE models. (III) Extensive experiments demonstrate that ST²360D achieves impressive zero-shot performance across diverse scenarios, supporting resolutions up to 4K.

2 Related Work

2.1 360 Monocular Depth Estimation

To mitigate spherical distortions, existing 360° monocular depth estimation approaches typically divide 360° images into perspective patches, categorized into training-based and training-free methods.

Training-based methods. With publicly available 360° depth datasets [15, 16, 17], training-based methods have been developed and achieved promising performance. Besides ERP-based methods [25, 26, 27, 28, 29, 30], several methods adopt distortion-less perspective patches as input, including cubemaps (CP) [10, 11, 12] and tangent patches (TP) [13, 14]. However, these perspective patches sacrifice the global continuity in ERP, often leading to ambiguous depth scales and shifts among different patches. To address this, OmniFusion [13] introduces a geometry-aware fusion mechanism that integrates 3D geometric cues with patch features, while HRDFuse [14] collaboratively learns holistic contextual features from ERP images and regional structural details from TPs. Nevertheless, these methods heavily rely on labeled 360° depth datasets, which have a limited number of samples and are primarily composed of indoor scenes. Consequently, these training-based methods have limited zero-shot capabilities, particularly for outdoor scenarios. To address it, recent approaches, including PanDA [25] and Depth Anywhere [31], have leveraged the perspective depth foundation models [32, 33] to generate pseudo depth labels for unlabeled 360° images. However, taking ERP images as input constrains them for high-resolution 360° depth estimation due to limited GPU memory. *Instead, our ST*²360D is training-free and can be flexibly extended to 4K resolutions.

Training-free methods. Recently, several training-free pipelines [18, 19] have been proposed. The general pipeline is to project a single 360° image into multiple perspective patches, leverage pretrained models [20] to predict perspective depth patches in parallel, and subsequently re-project these patches onto the ERP plane to form a complete 360° depth map. 360MonoDepth [18] proposes a deformable multi-scale alignment to recombine the individual depth patches. However, such post-processing is computationally expensive, particularly at high resolutions. A subsequent method [19] introduces a pre-trained 360° depth estimator to generate an initial ERP depth map as reference, which is utilized for perspective depth patches to register to. Nevertheless, this referenced estimator still requires annotated 360° depth data for supervised training. *In contrast, our ST*²360D addresses the depth inconsistencies among patches by exploiting the temporal consistency in VDE models.

2.2 Video Depth Estimation

Unlike image-based depth estimation methods [32, 33, 34, 35, 36], VDE methods aim to maintain temporal consistency, specifically by minimizing flickering effects between consecutive frames. Current VDE methods fall into two main categories: test-time optimization and feed-forward prediction. Test-time optimization approaches [37, 23, 38] fine-tune a pre-trained image-based depth estimation model on testing videos, typically requiring auxiliary information like camera poses or optical flow during inference. And feed-forward prediction methods [39, 40, 41] are trained directly on video datasets, leveraging both spatial and temporal supervision. Recent advancements, including Chron-oDepth [42], DepthCrafter [43], and DepthAnyVideo [24], employ pre-trained video diffusion models (e.g., Stable Video Diffusion [44]) to improve both stability and accuracy in video depth predictions. Furthermore, methods such as Video Depth Anything (VDA) [22] and BufferAnytime [45] extend the capabilities of the vision foundation models [32] while ensuring temporal stability over long video sequences. To the best of our knowledge, ST²360D is the first to enhance the spatial consistency across perspective patches by leveraging the temporal consistency in VDE models.

3 Methodology

Our ST²360D is a training-free pipeline for effective 360° depth estimation, leveraging the inherent temporal consistency in VDE models. We first briefly introduce the concepts of perspective patch

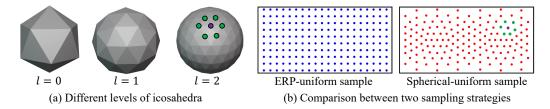


Figure 2: (a) Different levels of icosahedra, whose vertices are utilized for sampling viewpoints. (b) Compared with ERP plane sampling, the proposed spherical-uniform sampling strategy prevents oversampling near poles. • vertices are the spherical neighbors of the • vertice.

projection in Sec. 3.1. To compile these perspective patches into video frames that align with VDE models, we propose two tailored strategies: spherical-uniform sampling (SUS) in Sec. 3.2 and latitude-guided scanning (LGS) in Sec. 3.3. The SUS strategy distributes the perspective patches evenly on the spherical surface, preventing oversampling near the poles with limited structural details. Moreover, the LGS strategy prioritizes perspective patches in the low-latitude slices and gradually progresses toward high-latitude slices. Finally, in Sec. 3.4, we utilize VDE models to predict video depth maps from the video frames and merge the video depth maps into a complete 360° depth map.

3.1 Preliminary of Perspective Patch Projection

Given a 360° image in ERP format $\mathbf{I} \in \mathbb{R}^{H \times W \times 3}$, we extract N perspective patches $\mathbf{P} = \{\mathbf{P}_1, \dots, \mathbf{P}_N\}$ based on N viewpoints $\mathbf{v} = \{\mathbf{v}_1, \dots, \mathbf{v}_N\}$ on the spherical surface, each with spatial resolution $S \times S$. The perspective projection from \mathbf{I} to \mathbf{P} involves three primary steps. Firstly, we determine parameters for N virtual cameras, including intrinsic and extrinsic matrices. The intrinsic matrix \mathbf{K} is defined by the focal length f which is derived from the FoV α : $f = \frac{1}{2\tan(\alpha/2)}$, with the center point set to $c_x = c_y = \frac{S-1}{2}$. Note that all virtual cameras share this intrinsic matrix. For the extrinsic matrix of the i-th virtual camera, denoted $\mathbf{E}_i = [\mathbf{R}_i, \mathbf{t}_i]$, the rotation matrix \mathbf{R}_i transforms coordinates from the world coordinate system to camera coordinate system, determined primarily by the viewpoint \mathbf{v}_i . The translation matrix \mathbf{t}_i is zero. Secondly, we construct a pixel coordinate map $\mathbf{X} \in \mathbb{R}^{H \times W \times 2}$ containing normalized image coordinates $(u,v) \in (0,1)$. We project \mathbf{X} from the image coordinates to the world coordinate system based on \mathbf{K} . The world coordinate system is then transformed to the virtual camera coordinate system based on \mathbf{K} . The world coordinate system is then transformed to the virtual camera coordinate system based on \mathbf{K} . The world coordinates system is then transformed to the virtual camera coordinate system based on \mathbf{E}_i : $[x,y,z]^T = \mathbf{E}_i\mathbf{K}[u,v,1]^T$. Finally, these virtual camera coordinates are projected onto spherical coordinates (θ,ϕ) using the following formula: $[\theta,\phi]^T = [\arcsin(z)$, $\arctan(y/x)]^T$. Using the calculated spherical coordinates as indices, pixels from the original ERP image \mathbf{I} are sampled to generate the perspective patches. The entire process for generating patches \mathbf{P} can be formulated as: $\mathbf{P}_i = \mathcal{P}(\mathbf{I}, \mathbf{v}_i, S, \alpha)$, i = 1, 2, ..., N.

3.2 Spherical-Uniform Sampling (SUS) Strategy

To obtain viewpoints **v** for perspective patch projection, a straightforward method is to uniformly sample viewpoints on the ERP plane, as illustrated in Fig. 2(b). These sampled viewpoints are arranged from top to bottom to form a video sequence. However, this planar sampling strategy leads to suboptimal results (See Fig. 6), primarily due to redundant sampling in polar regions, which typically contain limited structural details (*e.g.*, ceilings, floors, or sky), as depicted in Fig. 3. Furthermore, since VDE models process fixed-length video frame segments, the initial segments may be dominated by less informative polar regions. As a result, although denser sampling potentially enhances video stability, excessive sampling near the poles can degrade the overall performance.

To address this, we propose a novel spherical-uniform sampling (SUS) strategy by leveraging icosahedron projection (ICOSAP) to evenly distribute viewpoints across the sphere (See Fig. 2(a)). An icosahedron approximates a spherical surface with significantly reduced distortion, especially as the subdivision level increases [46, 47]. At subdivision level l, the underlying icosahedral grid comprises 20×4^l triangular faces and $10 \times 4^l + 2$ vertices. Practically, we utilize these vertices as candidate viewpoints for generating perspective patches. To prevent redundant sampling in regions of limited structural detail, vertices located excessively close to the poles (with absolute latitude exceeding 89°) are excluded. The SUS strategy provides two specific benefits in our pipeline: (1) it reduces redundant sampling in polar regions, reallocating viewpoints towards low-latitude regions that

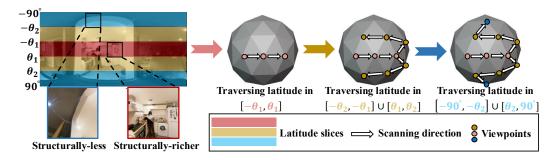


Figure 3: Illustration of the proposed latitude-aware traversing strategy, with K set to 2 as an example.

contain richer structural details; and (2) it captures spherical neighborhood relationships, facilitating the generation of more continuous video sequences, as discussed in Sec. 3.3.

3.3 Latitude-Guided Scanning (LGS) Strategy

After obtaining N viewpoints using the SUS strategy, our objective is to organize these viewpoints to obtain video frames $\{\mathbf{F}_1, \dots, \mathbf{F}_N\}$ that can be effectively compatible with VDE models.

Effect of starting latitude. The conventional scanning path of viewpoints starts from the north pole and progresses toward the south pole. Consequently, the initial viewpoints predominantly cover polar regions with less structural details. However, VDE models rely heavily on initial frames to ensure accurate predictions in subsequent frames [22]. Therefore, as depicted in Fig. 4, we investigate how the starting latitude of the scanning path influences performance. As demonstrated at the bottom of Fig. 4, performance improves significantly as the absolute value of the starting latitude decreases. This finding underscores the importance of prioritizing viewpoints from low-latitude regions early in the video sequence. Notably, for a given absolute latitude, initiating the scan in the upper hemisphere

(negative latitudes) generally yields superior performance compared to starting in the lower hemisphere (positive latitudes). This phenomenon may be attributed to the earlier placement of information-rich equator regions in the sequence when starting from the upper hemisphere. These insights motivate our subsequent designs.

Latitude-aware traversing. To organize information-rich regions early in the video sequence, we propose the latitude-aware traversing strategy to fully utilize the structural information in ERP images. Specifically, we define K key latitudes $0 < \theta_1 < \cdots < \theta_K \leq 90^\circ$. As illustrated in Fig. 3, the scanning proceeds multiple traversals: First, viewpoints whose latitude satisfies $|\theta| \leq \theta_1$ are arranged at the beginning of the video sequence. This ensures that viewpoints near the equator are prioritized and placed early. After traversing the low-latitude slice, we move to higher-latitude slices. Viewpoints whose latitude falls within the range $\theta_1 < |\theta| \leq \theta_2$ are then added to the sequence. The traversal continues progressively, from θ_1 to θ_K , until all viewpoints are incorporated into the sequence. In this way,

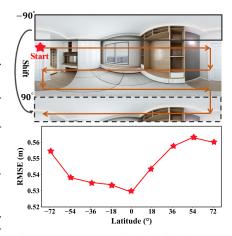


Figure 4: **Top:** Vertically shift the ERP image. **Bottom:** The influence of performance by varying starting latitude.

we provide the VDE model with a sequence of frames that more accurately reflect the geometric structure of a 360° image.

Spherical neighbor viewpoint searching. Based on the SUS strategy, directly searching for the next viewpoint along the horizontal or vertical directions on the ERP plane does not guarantee that the next viewpoint is a spherical neighbor of the current one, as depicted in Fig. 2(b). To ensure a coherent video sequence, we propose searching for the next viewpoint among the spherical neighbors of the current viewpoint. From these neighbors, we select the viewpoint with the lowest absolute latitude, in accordance with the latitude-aware traversing strategy. The spherical neighbor relationships are constructed using ICOSAP, where neighbors are defined as vertices within the same triangular face (See Fig. 2(a)). In practice, the searching process may encounter dead ends. In such cases, we

Table 1: Zero-shot comparison on Matterport3D and Stanford2D3D datasets with 504×1008 input resolution, following [25]. Numbers are excerpted from [25]. Highlighting: **best**, **second-best**.

Methods		Matterp	ort3D [[15]			Stanford	d2D3D	[16]	
	$AbsRel \downarrow$	$RMSE \downarrow$	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$	$ AbsRel\downarrow$	RMSE ↓	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$
Marigold [34]	0.2103	0.5745	65.46	91.36	98.19	0.2533	0.5069	58.78	87.60	96.57
DAv2-Small [33] PanDA-Small [25] Ours (VDA-Small)	0.2113 0.1206 0.1408	0.6063 0.4915 0.4670		91.58 96.57 96.08	98.00 98.60 98.66	0.1250	0.5041 0.3462 0.3529	62.25 83.60 86.76	89.37 97.05 96.60	96.90 99.46 98.89
DAv2-Large [33] PanDA-Large [25] Ours (VDA-Large)	0.1962 0.1122 0.1153	0.5522 0.4690 0.4284	68.37 88.65 89.23	93.03 97.00 96.38	98.28 98.77 98.49	0.2363 0.1026 0.1005	0.4884 0.3260 0.2986	60.57 88.98 91.16	88.77 96.84 97.99	96.89 99.36 99.29

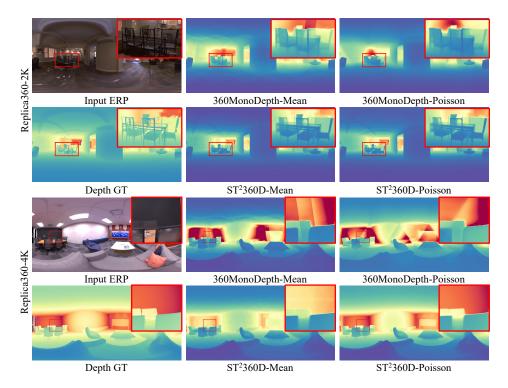


Figure 5: Qualitative results on Replica360-2K (top) and Replica360-4K (bottom) datasets.

manually include all unexplored viewpoints as neighbors of the current viewpoint. This spherical searching ensures the construction of a coherent video sequence.

3.4 Video Depth Estimation and Blending

Video depth map estimation. We consider VDA [22] as a representative example of VDE models. During the pre-processing phase, VDA divides the input video frames into overlapping segments. The final frame of the last segment is optionally repeated to make it compatible with the temporal dimension. Each segment of video frames is processed by VDA to generate the corresponding disparity maps. In the post-processing stage, adjacent segments are aligned based on a shared scale and shift, determined by two common key frames. The segments are then seamlessly integrated to maintain the original length of the video sequence. In our implementation, the disparity maps are converted into depth maps before being re-projected to the ERP plane. Our empirical findings indicate that merging perspective video predictions in depth space yields better quantitative results.

Video depth map blending. After re-projecting video depth maps onto the ERP plane, we use mean blending to efficiently recombine them. For each pixel on the ERP plane, its depth value is calculated

Table 2: Quantitative comparison on high-resolution datasets. ^M is "Mean Blending"; ^P is "Poisson Blending". Numbers are excerpted from [19]. Highlighting: **best**, **second-best**.

Dataset	Method	<i>RMSE</i> ↓	$MAE \downarrow$	$AbsRel \downarrow$	<i>RMSE-log</i> ↓	$\delta_1 \uparrow$	$\delta_2 \uparrow$	$\delta_3 \uparrow$
Matterport3D-2K	HoHoNet [49]	0.4707	0.2620	0.0967	0.0629	90.50	97.27	97.09
	SliceNet [50]	0.4463	0.2153	0.0665	0.0513	95.17	98.07	99.54
	UniFuse [12]	0.6040	0.3309	0.1110	0.0728	87.79	95.70	98.38
	PanDA-Small [25]	0.4868	0.2770	0.1311	0.0771	85.03	96.18	98.47
	PanDA-Base [25]	0.4813	0.2747	0.1288	0.0755	85.34	96.13	98.54
	PanDA-Large [25]	0.4658	0.2584	0.1190	0.0713	87.27	96.55	98.59
	360MonoDepth [18]	0.7729	0.5106	0.2653	0.1253	60.38	85.55	94.70
	360MonoDepth (DAv2)	0.7968	0.4401	0.1822	0.1076	71.99	91.86	96.78
	Peng et al. [19]	0.4791	0.2655	0.1004	0.0662	90.23	97.09	98.93
	Ours (VDA-Small) ^M	0.6055	0.4033	0.2138	0.1069	71.07	90.86	96.75
	Ours (VDA-Large) ^M	0.5110	0.3317	0.1718	0.0907	79.60	94.10	97.59
	Ours (VDA-Small) ^P	0.4964	0.3044	0.1624	0.0870	81.30	93.93	97.65
	Ours (VDA-Large) ^P	0.4460	0.2568	0.1264	0.0732	87.41	95.01	97.80
	HoHoNet [49]	0.0300	0.0193	0.1116	0.0671	90.31	95.90	98.11
	SliceNet [50]	0.0403	0.0279	0.1590	0.0896	85.15	93.88	96.44
	UniFuse [12]	0.0362	0.0248	0.1336	0.0774	86.87	95.94	97.72
	PanDA-Small [25]	0.0215	0.0140	0.0751	0.0447	95.20	99.25	99.74
	PanDA-Base [25]	0.0195	0.0127	0.0692	0.0415	96.26	99.38	99.79
	PanDA-Large [25]	0.0187	0.0119	0.0648	0.0393	96.80	99.41	99.83
Replica360-2K	360MonoDepth [18]	0.0706	0.0456	0.1813	0.0865	78.48	93.56	98.34
	360MonoDepth (DAv2)	0.0497	0.0317	0.1407	0.0763	81.68	96.59	99.35
	Peng et al. [19]	0.0272	0.0182	0.1074	0.0643	90.98	96.07	98.28
	Ours (VDA-Small) ^M	0.0241	0.0181	0.1099	0.0581	90.17	98.47	99.79
	Ours (VDA-Large) ^M	0.0201	0.0153	0.0882	0.0472	94.41	99.55	99.96
	Ours (VDA-Small) ^P	0.0163	0.0116	0.0669	0.0385	96.60	99.57	99.90
	Ours (VDA-Large) ^P	0.0144	0.0097	0.0503	0.0296	99.07	99.84	99.97
	HoHoNet [49]	0.0357	0.0249	0.1359	0.0744	85.17	94.63	96.61
	SliceNet [50]	0.0473	0.0341	0.1891	0.0994	78.31	93.17	96.77
	UniFuse [12]	0.0394	0.0289	0.1480	0.0818	82.20	96.26	98.54
	PanDA-Small [25]	0.0213	0.0141	0.0739	0.0429	96.16	99.52	99.85
	PanDA-Base [25]	0.0194	0.0128	0.0676	0.0402	96.77	99.51	99.86
	PanDA-Large [25]	0.0183	0.0118	0.0612	0.0365	97.52	99.71	99.92
Replica360-4K	360MonoDepth [18]	0.0611	0.0400	0.1667	0.0815	80.04	95.25	98.47
	360MonoDepth (DAv2)	0.0448	0.0288	0.1264	0.0689	84.98	97.54	99.69
	Peng et al. [19]	0.0332	0.0239	0.1309	0.0709	86.07	94.98	96.76
	Ours (VDA-Small) ^M	0.0231	0.0167	0.0954	0.0510	92.20	99.15	99.96
	Ours (VDA-Large) ^M	0.0190	0.0140	0.0774	0.0422	96.61	99.81	99.96
	Ours (VDA-Small) ^P	0.0157	0.0110	0.0602	0.0341	98.19	99.83	99.97
	Ours (VDA-Large) ^P	0.0144	0.0096	0.0492	0.0292	99.16	99.84	99.96

by averaging the values from all re-projected video depth maps covering that pixel. Although ST²360D significantly improves spatial consistency in overlapping regions, minor visible seams may still persist in texture-less areas (See Fig. 5). To mitigate this, we further incorporate Poisson blending [48], which utilizes both first-order (gradient) and second-order (Laplacian) derivatives from the re-projected depth maps, ensuring smoothness of the final 360° depth map.

4 Experiment

4.1 Experiment Setup

Datasets. We evaluate on five 360° depth datasets with varying resolutions. We use Matterport3D [15] and Stanford2D3D [16] at 512×1024 resolution (504×1008 in Tab. 1); Matterport3D-2K [15] and Replica360-2K [51] at 1024×2048 ; and Replica360-4K [51] at the highest resolution of 2048×4096 .

Table 3: Ablation on the effectiveness of temporal consistency in VDE models.

Methods	M	atterport3I)	Rej	plica360-2	:K	Re	plica360-4	·K
1110011000	$AbsRel \downarrow$	$RMSE\downarrow$	$\delta_1 \uparrow$	$ AbsRel\downarrow$	$RMSE\downarrow$	$\delta_1 \uparrow$	$ AbsRel\downarrow$	$RMSE\downarrow$	$\delta_1 \uparrow$
Per frame input	0.1634	0.5003	79.42	0.0985	0.0208	91.42	0.0909	0.0202	92.47
Video frames input	0.1403	0.4664	84.31	0.0669	0.0163	96.60	0.0602	0.0157	98.19
Δ	14.14%	6.78%	4.89%	32.08%	21.63%	5.18%	33.77%	22.28%	5.72%

Implementation details. By default, we use VDA [22] with ViT-Small as the backbone, which is of feed-forward architecture. Since our pipeline is training-free, the parameters of VDE models are kept frozen during inference. All experiments are conducted on a single NVIDIA A40 GPU.

Evaluation metrics. Following [18, 12], we utilize standard metrics for depth estimation: Absolute Relative Error (*AbsRel*), Root Mean Squared Error (*RMSE*), Mean Absolute Error (*MAE*), Root Mean Squared Logarithmic Error (RMSE-log), and three threshold percentage metrics δ_t for $t \in \{1.25^1, 1.25^2, 1.25^3\}$. Similar to [18, 25], we apply scale-and-shift alignment in the depth space.

4.2 Qualitative and Quantitative Evaluation

Matterport3D and Stanford2D3D. As shown in Tab. 1, ST²360D consistently outperforms the perspective methods DAv2 [33] and Marigold [34], highlighting its strong zero-shot capability on 360° images. Notably, without any 360° depth annotations for training, ST²360D achieves results comparable to PanDA [25], which fine-tunes DAv2 [33] using synthetic 360° depth datasets [17, 52].

Matterport3D-2K. In Tab. 2, our ST^2360D performs slightly worse than previous data-specific methods [49, 50]. This is mainly due to that these methods are specifically trained on the Matterport3D dataset at a resolution of 512×1024 , allowing them to leverage dataset-specific characteristics. Additionally, Peng *et al.* [19] outperform our ST^2360D by employing a pre-trained 360° depth estimation model [49]. However, when compared with 360MonoDepth [18], which requires no 360° depth annotation, our ST^2360D achieves superior performance. Furthermore, we have also replaced the perspective depth estimator used in 360MonoDepth with the recent DAv2. In this case, our ST^2360D still surpasses 360MonoDepth. We ascribe it to the temporal consistency in VDE models, which reduces depth inconsistency during inference and benefits the overall performance. To compare with the recent method PanDA [25], we first downsample input 360° images to a resolution of 504×1008 . The resulting depth predictions are then upsampled to the original image resolution using bilinear interpolation, following a similar pre-processing strategy of 360MonoDepth [18]. Our ST^2360D outperforms PanDA in most metrics.

Replica360-2K and Replica360-4K. In Tab. 2, the results demonstrate that our ST²360D, employing ViT-Small as the backbone with mean blending, already outperforms existing methods across most metrics (12 out of 14) on the Replica360-2K and Replica360-4K datasets. These findings underscore the effectiveness of our method for high-resolution 360° depth estimation, particularly highlighting its robust zero-shot capability. Furthermore, as illustrated in Fig. 5, our ST²360D exhibits more precise structural details compared to 360MonoDepth [18], such as the chairs. Moreover, even when employing only mean blending, our ST²360D significantly reduces visible seams in depth predictions. Our ST²360D outperforms PanDA, which is specifically fine-tuned on synthetic 360° depth datasets.

4.3 Ablation Studies

By default, we employ VDA with ViT-Small as the backbone, with 252×252 patch resolution.

Effectiveness of temporal consistency. We conduct an ablation study as presented in Tab. 3, examining the influence of temporal consistency. Specifically, we feed each frame individually into the VDE model, degrading it into a single-image depth estimation model. The results on three datasets consistently demonstrate that temporal consistency significantly enhances overall performance.

Effectiveness of SUS strategy. In Fig. 6, using similar number of video frames, the SUS strategy obtains better results than ERP-plane uniform sampling. It is because SUS strategy distributes viewpoints evenly on the spherical surface, avoiding oversampling at the polar regions.

Table 4: Ablation on **the scanning directions** on the Matterport3D dataset.

Methods	$ AbsRel\downarrow$	RMSE ↓
Horizontal	0.1776	0.5603
Vertical	0.1945	0.6128
Ours	0.1530	0.5216

Table 5: Ablation on the components of LGS strategy on the Matterport3D dataset.

Neigh.	Traverse	$ AbsRel\downarrow$	RMSE ↓
		0.1776	0.5603
✓		0.1586	0.5603 0.5307
	✓	0.1580	0.5291
✓	✓	0.1530	0.5216

Table 6: Ablation on the choice of key latitudes in the LGS strategy on the Matterport3D dataset.

_	Choice	$ AbsRel\downarrow$	<i>RMSE</i> ↓
	{18}	0.1544	0.5246
	{36}	0.1542	0.5236
{	18, 36}	0.1530	0.5216

Table 7: Ablation on **the FoV** of perspective patches on the Matterport3D dataset.

	41 D 1	DMCE
FoV	$ AbsRel\downarrow$	$RMSE \downarrow$
60	0.1687	0.5276
90	0.1530	0.5216
120	0.1796	0.6028

Table 8: Ablation on **the spatial resolution** of perspective patches on various datasets. We report the *RMSE* metric.

Datasets	$\big 252 \times 252$	378×378	518×518	756×756
Matterport3D	0.5216	0.4664	0.4661	0.4746
Matterport3D-2K	0.5497	0.5044	0.4964	0.5016
Replica360-2K	0.0245	0.0170	0.0163	0.0188
Replica360-4K	0.0240	0.0167	0.0157	0.0175

Scanning directions. Tab. 4 presents an ablation study on scanning directions. Horizontal scanning arranges viewpoints horizontally, while vertical scanning arranges viewpoints vertically. Results show horizontal scanning performs better due to smoother transitions. Furthermore, our LGS strategy outperforms both horizontal and vertical strategies, showing the importance of prioritizing structurally-rich regions early in the sequence.

The LGS strategy. From Tab. 5, incorporating spherical neighbor viewpoint search improves performance by ensuring continuous scanning on the spherical surface. Employing latitude-aware traversing also enhances performance by prioritizing low-latitude regions. Crucially, integrating both components achieves optimal results. Furthermore, as shown in Fig. 6, the LGS strategy consistently improves overall performance on various frame counts. With both the SUS and LGS strategies, a notable performance gain is observed when increasing the number of video frames from 40 to 160.

Key latitude in LGS. We check the effectiveness of key latitude settings within the LGS strategy in Tab. 6. Using a larger key latitude slightly enhances performance by prioritizing more low-latitude slices earlier in the sequence. Moreover, incorporating two key latitudes further improves performance by gradually arranging structurally rich perspective patches into the sequence.

Impact of FoV. As shown in Tab. 7, the FoV significantly influences the overall performance. Setting the FoV to 90° achieves optimal performance, whereas increasing it to 120° degrades the performance, likely due to redundant structural information from excessively large views.

Impact of spatial resolution of patches. Tab. 8 shows that an intermediate patch resolution of 518×518 , aligned

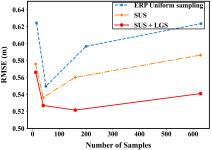


Figure 6: Results using SUS and LGS with varying numbers of frames.

with the training resolution of VDA [22], consistently yields the best performance. Increasing patch resolution from 252×252 to 378×378 notably improves performance, but further increases yield minimal benefits and even degrade the performance at a resolution of 756×756 .

4.4 Discussion

Different VDE models. Our training-free pipeline is agnostic to specific VDE models. To illustrate this, we evaluate our ST²360D using several VDE models: ChronoDepth [42], DepthCrafter [43], and Depth Any Video [24]. As presented in Tab. 9, our ST²360D consistently outperforms 360MonoDepth [18] with DAv2 as the depth estimator on both Replica360-2K and Replica360-4K datasets.

Table 9: Discussion about employing **different VDE models** in ST²360D. We take 360MonoDepth with DAv2 as the reference and report *RMSE* metric.

Methods	2K [51]	4K [51]
360MonoDepth (DAv2)	0.0497	0.0488
ChronoDepth [42] DepthCrafter [43] Depth Any Video [24]	0.0278 0.0260 0.0399	0.0279 0.0247 0.0413

Table 10: Discussion about **time consumption** (seconds). ^M is "Mean Blending"; ^P is "Poisson Blending".

Methods	Input Num.	Pre proc.	Inf.	Post proc.	Total
[18] ^M	20	0.6	5.4	7.8	13.8
ST^2360D^M	12	0.3	0.7	0.1	1.1
ST^2360D^M	40	0.7	1.0	0.1	1.8
ST^2360D^M	160	2.4	3.0	0.5	5.9
[18] ^P	20	0.6	5.4	27.7	33.7
ST^2360D^P	160	2.4	3.0	21.5	26.9

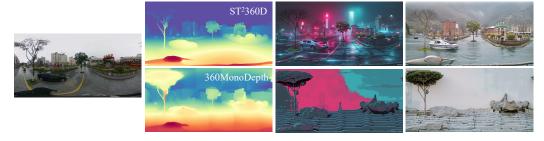


Figure 7: Depth-controlled generation results. First prompt: "cyberpunk style". The second is empty.

Inference time. Tab. 10 compares the inference time of our method against 360MonoDepth on the Replica360-2K dataset. Our ST²360D significantly reduces inference time compared to 360MonoDepth. Although adding more video frames increases inference time, our method remains more efficient than 360MonoDepth, which requires additional alignment during post-processing.

Depth-controlled generation. In Fig. 7, we showcase depth-controlled generation using 360° depth predictions from our ST²360D and 360MonoDepth. We utilize the ControlNet [53] branch of the FLUX model [54], which takes a depth map to guide the synthesis process. Specifically, we adopt the black-forest-labs/FLUX.1-Depth-dev variant, which supports the use of a referenced depth map as input for conditioning. Due to the stronger zero-shot capability of ST²360D, our generated results consistently surpass those obtained using 360MonoDepth on various prompts.

5 Conclusion and Limitation

Conclusion. In this work, we propose to represent a 360° image as a sequence of video frames. Accordingly, we introduce ST^2360D , a novel training-free pipeline to leverage the inherent temporal consistency of VDE models to enhance spatial consistency across perspective depth patches. To align the perspective frames with VDE models, we further propose two strategies: the spherical-uniform sampling strategy and the latitude-guided scanning strategy. Comprehensive experimental evaluations demonstrate the impressive effectiveness and zero-shot capability of ST^2360D in diverse scenarios.

Broader impacts. Our ST²360D can provide effective structural priors to support various scene understanding tasks, such as 360° visual navigation, and has the potential to benefit embodied AI.

Limitation and future work: Currently, the pipeline of ST²360D is limited to the task of 360° depth estimation. Encouraged by the promising results, future research can extend our ST²360D by incorporating video foundation models in other tasks, such as semantic segmentation.

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Key R&D Program of China (Grant No.2023YFF0725001), in part by the National Natural Science Foundation of China (Grant No.92370204), in part by the guangdong Basic and Applied Basic Research Foundation (Grant No.2023B1515120057), in part by the Education Bureau of Guangzhou.

References

- [1] Lutao Jiang, Jiantao Lin, Kanghao Chen, Wenhang Ge, Xin Yang, Yifan Jiang, Yuanhuiyi Lyu, Xu Zheng, Yinchuan Li, and Yingcong Chen. Dimer: Disentangled mesh reconstruction model. *arXiv preprint arXiv:2504.17670*, 2025.
- [2] Lutao Jiang, Xu Zheng, Yuanhuiyi Lyu, Jiazhou Zhou, and Lin Wang. Brightdreamer: Generic 3d gaussian generative framework for fast text-to-3d synthesis. *arXiv preprint arXiv:2403.11273*, 2024.
- [3] Varun Ravi Kumar, Senthil Yogamani, Hazem Rashed, Ganesh Sitsu, Christian Witt, Isabelle Leang, Stefan Milz, and Patrick M\u00e4der. Omnidet: Surround view cameras based multi-task visual perception network for autonomous driving. IEEE Robotics and Automation Letters, 6(2):2830–2837, 2021.
- [4] Xu Zheng, Jinjing Zhu, Yexin Liu, Zidong Cao, Chong Fu, and Lin Wang. Both style and distortion matter: Dual-path unsupervised domain adaptation for panoramic semantic segmentation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1285–1295, 2023.
- [5] Bangbang Yang, Yinda Zhang, Yijin Li, Zhaopeng Cui, Sean Fanello, Hujun Bao, and Guofeng Zhang. Neural rendering in a room: amodal 3d understanding and free-viewpoint rendering for the closed scene composed of pre-captured objects. *ACM Transactions on Graphics (TOG)*, 41(4):1–10, 2022.
- [6] Bangbang Yang, Wenqi Dong, Lin Ma, Wenbo Hu, Xiao Liu, Zhaopeng Cui, and Yuewen Ma. Dreamspace: Dreaming your room space with text-driven panoramic texture propagation. In 2024 IEEE Conference Virtual Reality and 3D User Interfaces (VR), pages 650–660. IEEE, 2024.
- [7] Zidong Cao, Hao Ai, Yan-Pei Cao, Ying Shan, Xiaohu Qie, and Lin Wang. Omnizoomer: Learning to move and zoom in on sphere at high-resolution. In *Proceedings of the IEEE/CVF International Conference* on Computer Vision, pages 12897–12907, 2023.
- [8] Jialu Li and Mohit Bansal. Panogen: Text-conditioned panoramic environment generation for vision-and-language navigation. Advances in Neural Information Processing Systems, 36, 2024.
- [9] Hao Ai, Zidong Cao, and Lin Wang. A survey of representation learning, optimization strategies, and applications for omnidirectional vision. *International Journal of Computer Vision*, pages 1–40, 2025.
- [10] Fu-En Wang, Yu-Hsuan Yeh, Min Sun, Wei-Chen Chiu, and Yi-Hsuan Tsai. Bifuse: Monocular 360 depth estimation via bi-projection fusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 462–471, 2020.
- [11] Fu-En Wang, Yu-Hsuan Yeh, Yi-Hsuan Tsai, Wei-Chen Chiu, and Min Sun. Bifuse++: Self-supervised and efficient bi-projection fusion for 360 depth estimation. *IEEE transactions on pattern analysis and machine intelligence*, 45(5):5448–5460, 2022.
- [12] Hualie Jiang, Zhe Sheng, Siyu Zhu, Zilong Dong, and Rui Huang. Unifuse: Unidirectional fusion for 360° panorama depth estimation. *IEEE Robotics and Automation Letters*, 6:1519–1526, 2021.
- [13] Yuyan Li, Yuliang Guo, Zhixin Yan, Xinyu Huang, Ye Duan, and Liu Ren. Omnifusion: 360 monocular depth estimation via geometry-aware fusion. *CoRR*, abs/2203.00838, 2022.
- [14] Hao Ai, Zidong Cao, Yan-Pei Cao, Ying Shan, and Lin Wang. Hrdfuse: Monocular 360deg depth estimation by collaboratively learning holistic-with-regional depth distributions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13273–13282, 2023.
- [15] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva, Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor environments. arXiv preprint arXiv:1709.06158, 2017.
- [16] I Armeni. Joint 2d-3d semantic data for indoor scene understanding. arXiv preprint arXiv:1702.01105, 2017.
- [17] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao, and Zihan Zhou. Structured3d: A large photo-realistic dataset for structured 3d modeling. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16, pages 519–535. Springer, 2020.
- [18] Manuel Rey-Area, Mingze Yuan, and Christian Richardt. 360monodepth: High-resolution 360deg monocular depth estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 3762–3772, 2022.

- [19] Chi-Han Peng and Jiayao Zhang. High-resolution depth estimation for 360deg panoramas through perspective and panoramic depth images registration. In *Proceedings of the IEEE/CVF Winter Conference* on Applications of Computer Vision, pages 3116–3125, 2023.
- [20] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun. Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer. *IEEE transactions on* pattern analysis and machine intelligence, 44(3):1623–1637, 2020.
- [21] Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus, Long Mai, Simon Chen, and Chunhua Shen. Learning to recover 3d scene shape from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 204–213, 2021.
- [22] Sili Chen, Hengkai Guo, Shengnan Zhu, Feihu Zhang, Zilong Huang, Jiashi Feng, and Bingyi Kang. Video depth anything: Consistent depth estimation for super-long videos. In *Proceedings of the Computer Vision* and Pattern Recognition Conference, pages 22831–22840, 2025.
- [23] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf. Consistent video depth estimation. *ACM Transactions on Graphics (ToG)*, 39(4):71–1, 2020.
- [24] Honghui Yang, Di Huang, Wei Yin, Chunhua Shen, Haifeng Liu, Xiaofei He, Binbin Lin, Wanli Ouyang, and Tong He. Depth any video with scalable synthetic data. arXiv preprint arXiv:2410.10815, 2024.
- [25] Zidong Cao, Jinjing Zhu, Weiming Zhang, Hao Ai, Haotian Bai, Hengshuang Zhao, and Lin Wang. Panda: Towards panoramic depth anything with unlabeled panoramas and mobius spatial augmentation. In Proceedings of the Computer Vision and Pattern Recognition Conference, pages 982–992, 2025.
- [26] Chuanqing Zhuang, Zhengda Lu, Yiqun Wang, Jun Xiao, and Ying Wang. Acdnet: Adaptively combined dilated convolution for monocular panorama depth estimation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pages 3653–3661, 2022.
- [27] Zhijie Shen, Chunyu Lin, Kang Liao, Lang Nie, Zishuo Zheng, and Yao Zhao. Panoformer: Panorama transformer for indoor 360° depth estimation. In *ECCV*, 2022.
- [28] Ilwi Yun, Chanyong Shin, Hyunku Lee, Hyuk-Jae Lee, and Chae Eun Rhee. Egformer: Equirectangular geometry-biased transformer for 360 depth estimation. *arXiv preprint arXiv:2304.07803*, 2023.
- [29] Zidong Cao and Lin Wang. Crf360d: Monocular 360 depth estimation via spherical fully-connected crfs. *arXiv preprint arXiv:2405.11564*, 2024.
- [30] Zidong Cao, Hao Ai, Athanasios V Vasilakos, and Lin Wang. 360 high-resolution depth estimation via uncertainty-aware structural knowledge transfer. IEEE Transactions on Artificial Intelligence, 2024.
- [31] Ning-Hsu Albert Wang and Yu-Lun Liu. Depth anywhere: Enhancing 360 monocular depth estimation via perspective distillation and unlabeled data augmentation. Advances in Neural Information Processing Systems, 37:127739–127764, 2024.
- [32] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything: Unleashing the power of large-scale unlabeled data. In *CVPR*, 2024.
- [33] Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth anything v2. *Advances in Neural Information Processing Systems*, 37:21875–21911, 2024.
- [34] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and Konrad Schindler. Repurposing diffusion-based image generators for monocular depth estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9492–9502, 2024.
- [35] Ruicheng Wang, Sicheng Xu, Cassie Dai, Jianfeng Xiang, Yu Deng, Xin Tong, and Jiaolong Yang. Moge: Unlocking accurate monocular geometry estimation for open-domain images with optimal training supervision. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 5261–5271, 2025.
- [36] Ruicheng Wang, Sicheng Xu, Yue Dong, Yu Deng, Jianfeng Xiang, Zelong Lv, Guangzhong Sun, Xin Tong, and Jiaolong Yang. Moge-2: Accurate monocular geometry with metric scale and sharp details. arXiv preprint arXiv:2507.02546, 2025.
- [37] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust consistent video depth estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1611–1621, 2021.

- [38] Zhoutong Zhang, Forrester Cole, Richard Tucker, William T Freeman, and Tali Dekel. Consistent depth of moving objects in video. ACM Transactions on Graphics (ToG), 40(4):1–12, 2021.
- [39] Haokui Zhang, Chunhua Shen, Ying Li, Yuanzhouhan Cao, Yu Liu, and Youliang Yan. Exploiting temporal consistency for real-time video depth estimation. In *Proceedings of the IEEE/CVF International Conference* on Computer Vision, pages 1725–1734, 2019.
- [40] Rajeev Yasarla, Hong Cai, Jisoo Jeong, Yunxiao Shi, Risheek Garrepalli, and Fatih Porikli. Mamo: Leveraging memory and attention for monocular video depth estimation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 8754–8764, 2023.
- [41] Yiran Wang, Min Shi, Jiaqi Li, Zihao Huang, Zhiguo Cao, Jianming Zhang, Ke Xian, and Guosheng Lin. Neural video depth stabilizer. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 9466–9476, 2023.
- [42] Jiahao Shao, Yuanbo Yang, Hongyu Zhou, Youmin Zhang, Yujun Shen, Vitor Guizilini, Yue Wang, Matteo Poggi, and Yiyi Liao. Learning temporally consistent video depth from video diffusion priors. arXiv preprint arXiv:2406.01493, 2024.
- [43] Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong Cun, Yong Zhang, Long Quan, and Ying Shan. Depthcrafter: Generating consistent long depth sequences for open-world videos. *arXiv preprint arXiv:2409.02095*, 2024.
- [44] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.
- [45] Zhengfei Kuang, Tianyuan Zhang, Kai Zhang, Hao Tan, Sai Bi, Yiwei Hu, Zexiang Xu, Milos Hasan, Gordon Wetzstein, and Fujun Luan. Buffer anytime: Zero-shot video depth and normal from image priors. arXiv preprint arXiv:2411.17249, 2024.
- [46] Yeonkun Lee, Jaeseok Jeong, Jongseob Yun, Wonjune Cho, and Kuk-Jin Yoon. Spherephd: Applying cnns on a spherical polyhedron representation of 360deg images. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 9181–9189, 2019.
- [47] Hao Ai and Lin Wang. Elite360d: Towards efficient 360 depth estimation via semantic-and distance-aware bi-projection fusion. In *CVPR*, 2024.
- [48] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In *Seminal Graphics Papers: Pushing the Boundaries, Volume 2*, pages 577–582. 2023.
- [49] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Hohonet: 360 indoor holistic understanding with latent horizontal features. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 2573–2582, 2020.
- [50] Giovanni Pintore, Marco Agus, Eva Almansa, Jens Schneider, and Enrico Gobbetti. Slicenet: deep dense depth estimation from a single indoor panorama using a slice-based representation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11536–11545, 2021.
- [51] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl Ren, Shobhit Verma, et al. The replica dataset: A digital replica of indoor spaces. arXiv preprint arXiv:1906.05797, 2019.
- [52] Ming Li, Xueqian Jin, Xuejiao Hu, Jingzhao Dai, Sidan Du, and Yang Li. Mode: Multi-view omnidirectional depth estimation with 360 cameras. In *European Conference on Computer Vision*, pages 197–213. Springer, 2022.
- [53] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 3836–3847, 2023.
- [54] Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We claim our contributions and scope in both the abstract and introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work at Sec. 5

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: Our paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We show the details of the experiments at Sec. 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All the code will be publicly available.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/ public/quides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https: //nips.cc/public/quides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We show all the details and the experimental settings at Sec.4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the exploratory nature of the initial experiments, we concentrated on direct performance outcomes rather than detailed statistical analysis.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We show all the information at Sec. 4 and supplemental material.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the NeurIPS Code of Ethics carefully.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impacts at Sec.5.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no such risks in our research.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in the paper, are properly credited. The license and terms of use are explicitly mentioned and properly respected.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our core method does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.