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Abstract

360° monocular depth estimation plays a crucial role in scene understanding owing
to its 180° x 360° field-of-view (FoV). To mitigate the distortions brought by
equirectangular projection, existing methods typically divide 360° images into
distortion-less perspective patches. However, since these patches are processed
independently, depth inconsistencies are often introduced due to scale drift among
patches. Recently, video depth estimation (VDE) models have leveraged temporal
consistency for stable depth predictions across frames. Inspired by this, we propose
to represent a 360° image as a sequence of perspective frames, mimicking the
viewpoint adjustments users make when exploring a 360° scenario in virtual reality.
Thus, the spatial consistency among perspective depth patches can be enhanced
by exploiting the temporal consistency inherent in VDE models. To this end, we
introduce a training-free pipeline for 360° monocular depth estimation, called
ST2360D. Specifically, ST?360D transforms a 360° image into perspective video
frames, predicts video depth maps using VDE models, and seamlessly merges these
predictions into a complete 360° depth map. To generate sequenced perspective
frames that align with VDE models, we propose two tailored strategies. First,
a spherical-uniform sampling (SUS) strategy is proposed to facilitate uniform
sampling of perspective views across the sphere, avoiding oversampling in polar
regions typically with limited structural details. Second, a latitude-guided scanning
(LGS) strategy is introduced to organize the frames into a coherent sequence,
starting from the equator, prioritizing low-latitude slices, and progressively moving
toward higher latitudes. Extensive experiments demonstrate that ST2360D achieves
strong zero-shot capability on several datasets, supporting resolutions up to 4K.

1 Introduction

There has been growing interest in 360° cameras for capturing a 180° x 360° field-of-view (FoV).
360° monocular depth estimation is crucial for scene understanding [1} 2] with a wide range of
applications such as autonomous driving [3 4], virtual reality (VR) [S} 6L [7], and visual navigation [S]].
The most common representation of 360° images is the equirectangular projection (ERP), which maps
spherical data onto a 2D plane for storage and processing. However, ERP representation introduces
spherical distortions, particularly near the poles [9]], stretching visual content unevenly and degrading
the performance of perspective depth estimators when applied to 360° images.
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Figure 1: Left: Our proposed training-free pipeline. We represent a 360° image as video frames,
mimicking viewpoint adjustments in VR. The arrow — denotes the direction of the visual transition.
The video frames are processed with the VDE model to predict video depth maps, which are merged
into a 360° depth map. Right: ST2360D shows impressive zero-shot capability in outdoor scenario.

To mitigate distortions, existing methods mainly project 360° images onto distortion-less perspective
patches [10], [14]), which are more compatible with standard perspective models. However,
processing these perspective patches independently often leads to depth inconsistencies, causing
noticeable seams and degraded performance. To address this issue, both training-based and training-
free methods have been proposed. Training-based methods [10} [14] fuse global features from ERP
images with local features extracted from perspective patches. However, these methods heavily rely on
expensive 360° depth annotations [15} (16, [17], and have limited zero-shot capabilities. Furthermore,
due to limited computational resources, the input resolution for ERP images is constrained. In contrast,
training-free methods [[18 [19] convert high-resolution ERP images into perspective patches, and
estimate patch-wise depths in parallel using pre-trained perspective models 21]). Subsequently, the
perspective depth patches are re-projected to the ERP plane and merged into a high-resolution 360°
depth map. Nevertheless, these methods still face challenges, such as dependence on time-consuming
post-processing [18]] or requiring additional 360° depth estimation models as references [19]].

Recently, Video Depth Estimation (VDE) models [22] 23] 24]] have demonstrated significant advance-
ments, enabling stable and accurate depth predictions across video frames. Specifically, VDE models
ensure depth alignment within overlapping regions of consecutive frames by leveraging temporal
consistency, significantly mitigating depth flickering issues. This raises an interesting question: Can
the temporal consistency inherent in VDE models be leveraged to address the depth inconsistency
challenges encountered by current 360° methods? To explore this, we propose representing a single
360° image as a sequence of perspective frames, closely mimicking the continuous viewpoint adjust-
ments that occur in VR (See left of Fig.[T). Within VR environments, users experience smooth visual
transitions as their viewpoints gradually shift, producing coherent sequences of perspective images
akin to a continuous video stream. With this video representation, the spatial consistency among
perspective depth patches can be enhanced by the temporal consistency in VDE models. To this end,
we propose a novel training-free pipeline for 360° monocular depth estimation, named ST*360D.
Specifically, ST?360D represents a 360° image as a sequence of perspective frames, then predicts
video depth maps using VDE models, and finally seamlessly merges video depth maps back into the
ERP plane to yield a complete 360° depth map.

To better align sequenced perspective frames with VDE models in our pipeline, we introduce
two key strategies. First, we propose a spherical-uniform sampling (SUS) strategy, distributing
viewpoints evenly across the sphere based on the vertices of a subdivided icosahedron. Compared
with conventional uniform sampling on the ERP plane, our strategy avoids oversampling polar
regions with limited structural information. Second, we introduce a latitude-guided scanning (LGS)
strategy that organizes the viewpoints to obtain perspective frames. Given that VDE models rely on
initial frames for accurate subsequent predictions [22]], we begin scanning at equatorial viewpoints
with rich structural information and sequentially search subsequent viewpoints from their spherical
neighborhoods. In addition, we partition the spherical surface into latitude slices. The scanning
path originates from the lowest-latitude slice; after fully traversing viewpoints within one slice, the
scanning path progressively shifts upward to higher latitudes. This ensures a smooth, coherent, and
structurally informative sequence, enhancing the performance of VDE models (See right of Fig.[T).
Experiments demonstrate that ST?360D predicts consistent 360° depth maps with impressive zero-
shot performance. Project page: https://caozidong.github.i0/ST2360D_Depth/,


https://caozidong.github.io/ST2360D_Depth/

In summary, our contributions are three-fold: (I) We propose to represent a 360° image as a sequence
of perspective frames, unleashing the temporal consistency of VDE models to enhance spatial
consistency across perspective depth patches. (IT) We present ST2360D, a training-free pipeline for
360° monocular depth estimation, along with two key strategies—SUS and LGS—to better align with
VDE models. (IIT) Extensive experiments demonstrate that ST?360D achieves impressive zero-shot
performance across diverse scenarios, supporting resolutions up to 4K.

2 Related Work
2.1 360 Monocular Depth Estimation

To mitigate spherical distortions, existing 360° monocular depth estimation approaches typically di-
vide 360° images into perspective patches, categorized into training-based and training-free methods.

Training-based methods. With publicly available 360° depth datasets [15} 16} 17]], training-based
methods have been developed and achieved promising performance. Besides ERP-based methods [25]
20, 127,128, 129, 30], several methods adopt distortion-less perspective patches as input, including
cubemaps (CP) [10} 11} [12] and tangent patches (TP) [13}[14]. However, these perspective patches
sacrifice the global continuity in ERP, often leading to ambiguous depth scales and shifts among
different patches. To address this, OmniFusion [13]] introduces a geometry-aware fusion mechanism
that integrates 3D geometric cues with patch features, while HRDFuse [[14] collaboratively learns
holistic contextual features from ERP images and regional structural details from TPs. Nevertheless,
these methods heavily rely on labeled 360° depth datasets, which have a limited number of samples
and are primarily composed of indoor scenes. Consequently, these training-based methods have
limited zero-shot capabilities, particularly for outdoor scenarios. To address it, recent approaches,
including PanDA [25]] and Depth Anywhere [31]], have leveraged the perspective depth foundation
models [32] [33]] to generate pseudo depth labels for unlabeled 360° images. However, taking ERP
images as input constrains them for high-resolution 360° depth estimation due to limited GPU
memory. Instead, our ST>360D is training-free and can be flexibly extended to 4K resolutions.

Training-free methods. Recently, several training-free pipelines 18 [19] have been proposed. The
general pipeline is to project a single 360° image into multiple perspective patches, leverage pre-
trained models [20] to predict perspective depth patches in parallel, and subsequently re-project these
patches onto the ERP plane to form a complete 360° depth map. 360MonoDepth [18] proposes a
deformable multi-scale alignment to recombine the individual depth patches. However, such post-
processing is computationally expensive, particularly at high resolutions. A subsequent method [19]
introduces a pre-trained 360° depth estimator to generate an initial ERP depth map as reference,
which is utilized for perspective depth patches to register to. Nevertheless, this referenced estimator
still requires annotated 360° depth data for supervised training. In contrast, our ST>360D addresses
the depth inconsistencies among patches by exploiting the temporal consistency in VDE models.

2.2 Video Depth Estimation

Unlike image-based depth estimation methods [32} (33} 134, [35136]], VDE methods aim to maintain
temporal consistency, specifically by minimizing flickering effects between consecutive frames. Cur-
rent VDE methods fall into two main categories: test-time optimization and feed-forward prediction.
Test-time optimization approaches [37, 23| 38]] fine-tune a pre-trained image-based depth estimation
model on testing videos, typically requiring auxiliary information like camera poses or optical flow
during inference. And feed-forward prediction methods [39} 40, |41]] are trained directly on video
datasets, leveraging both spatial and temporal supervision. Recent advancements, including Chron-
oDepth [42], DepthCrafter [43]], and DepthAny Video [24], employ pre-trained video diffusion models
(e.g., Stable Video Diffusion [44])) to improve both stability and accuracy in video depth predictions.
Furthermore, methods such as Video Depth Anything (VDA) [22] and BufferAnytime [45]] extend the
capabilities of the vision foundation models [32] while ensuring temporal stability over long video
sequences. To the best of our knowledge, ST>360D is the first to enhance the spatial consistency
across perspective patches by leveraging the temporal consistency in VDE models.

3 Methodology

Our ST?360D is a training-free pipeline for effective 360° depth estimation, leveraging the inherent
temporal consistency in VDE models. We first briefly introduce the concepts of perspective patch
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Figure 2: (a) Different levels of icosahedra, whose vertices are utilized for sampling viewpoints. (b)
Compared with ERP plane sampling, the proposed spherical-uniform sampling strategy prevents
oversampling near poles. e vertices are the spherical neighbors of the e vertice.

projection in Sec.[3.1} To compile these perspective patches into video frames that align with VDE
models, we propose two tailored strategies: spherical-uniform sampling (SUS) in Sec. [3.2] and
latitude-guided scanning (LGS) in Sec.[3.3] The SUS strategy distributes the perspective patches
evenly on the spherical surface, preventing oversampling near the poles with limited structural details.
Moreover, the LGS strategy prioritizes perspective patches in the low-latitude slices and gradually
progresses toward high-latitude slices. Finally, in Sec.[3.4] we utilize VDE models to predict video
depth maps from the video frames and merge the video depth maps into a complete 360° depth map.

3.1 Preliminary of Perspective Patch Projection

Given a 360° image in ERP format I € RF*WX3 we extract N perspective patches P =
{P1,...,Py} based on N viewpoints v.= {vy,..., vy} on the spherical surface, each with
spatial resolution S x .S. The perspective projection from I to P involves three primary steps. Firstly,
we determine parameters for N virtual cameras, including intrinsic and extrinsic matrices. The

intrinsic matrix K is defined by the focal length f which is derived from the FoV «: f = m,

with the center point set to ¢, = ¢, = % Note that all virtual cameras share this intrinsic matrix.
For the extrinsic matrix of the i-th virtual camera, denoted E; = [R;, t;], the rotation matrix R;
transforms coordinates from the world coordinate system to camera coordinate system, determined
primarily by the viewpoint v;. The translation matrix t; is zero. Secondly, we construct a pixel coor-
dinate map X € R¥*Wx2 containing normalized image coordinates (u,v) € (0,1). We project X
from the image coordinates to the world coordinate system based on K. The world coordinate system
is then transformed to the virtual camera coordinate system based on E;: [z, v, 2]7 = E;K|u,v,1]7.
Finally, these virtual camera coordinates are projected onto spherical coordinates (6, ¢) using the
following formula: [0, #|T = [arcsin(z), arctan2(y/z)]T. Using the calculated spherical coordinates
as indices, pixels from the original ERP image I are sampled to generate the perspective patches. The
entire process for generating patches P can be formulated as: P; = P(I,v;, S,a),i =1,2,...,N.

3.2 Spherical-Uniform Sampling (SUS) Strategy

To obtain viewpoints v for perspective patch projection, a straightforward method is to uniformly
sample viewpoints on the ERP plane, as illustrated in Fig. 2(b). These sampled viewpoints are
arranged from top to bottom to form a video sequence. However, this planar sampling strategy
leads to suboptimal results (See Fig. [f), primarily due to redundant sampling in polar regions,
which typically contain limited structural details (e.g., ceilings, floors, or sky), as depicted in Fig.[3]
Furthermore, since VDE models process fixed-length video frame segments, the initial segments may
be dominated by less informative polar regions. As a result, although denser sampling potentially
enhances video stability, excessive sampling near the poles can degrade the overall performance.

To address this, we propose a novel spherical-uniform sampling (SUS) strategy by leveraging
icosahedron projection (ICOSAP) to evenly distribute viewpoints across the sphere (See Fig. 2{a)).
An icosahedron approximates a spherical surface with significantly reduced distortion, especially
as the subdivision level increases [46, 47]]. At subdivision level [, the underlying icosahedral grid
comprises 20 x 4! triangular faces and 10 x 4! + 2 vertices. Practically, we utilize these vertices as
candidate viewpoints for generating perspective patches. To prevent redundant sampling in regions
of limited structural detail, vertices located excessively close to the poles (with absolute latitude
exceeding 89°) are excluded. The SUS strategy provides two specific benefits in our pipeline: (1) it
reduces redundant sampling in polar regions, reallocating viewpoints towards low-latitude regions that
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Figure 3: Illustration of the proposed latitude-aware traversing strategy, with K set to 2 as an example.

contain richer structural details; and (2) it captures spherical neighborhood relationships, facilitating
the generation of more continuous video sequences, as discussed in Sec. [3.3]

3.3 Latitude-Guided Scanning (LGS) Strategy

After obtaining IV viewpoints using the SUS strategy, our objective is to organize these viewpoints to
obtain video frames {F, ..., F v} that can be effectively compatible with VDE models.

Effect of starting latitude. The conventional scanning path of viewpoints starts from the north pole
and progresses toward the south pole. Consequently, the initial viewpoints predominantly cover polar
regions with less structural details. However, VDE models rely heavily on initial frames to ensure
accurate predictions in subsequent frames [22]]. Therefore, as depicted in Fig.[d] we investigate how
the starting latitude of the scanning path influences performance. As demonstrated at the bottom of
Fig.[] performance improves significantly as the absolute value of the starting latitude decreases.
This finding underscores the importance of prioritizing viewpoints from low-latitude regions early in
the video sequence. Notably, for a given absolute latitude, initiating the scan in the upper hemisphere
(negative latitudes) generally yields superior performance
compared to starting in the lower hemisphere (positive
latitudes). This phenomenon may be attributed to the
earlier placement of information-rich equator regions in
the sequence when starting from the upper hemisphere.
These insights motivate our subsequent designs.

Latitude-aware traversing. To organize information-
rich regions early in the video sequence, we propose the
latitude-aware traversing strategy to fully utilize the struc-
tural information in ERP images. Specifically, we define 056
K key latitudes 0 < 07 < --- < 0 < 90°. As illustrated
in Fig. [3] the scanning proceeds multiple traversals: First,
viewpoints whose latitude satisfies || < 6; are arranged
at the beginning of the video sequence. This ensures that
viewpoints near the equator are prioritized and placed early. T e (0;8 B s
After traversing the low-latitude slice, we move to higher-

latitude slices. Viewpoints whose latitude falls within the Figure 4: Top: Vertically shift the ERP
range 61 < |0| < 05 are then added to the sequence. The image. Bottom: The influence of perfor-
traversal continues progressively, from 6; to 6, until all mance by varying starting latitude.
viewpoints are incorporated into the sequence. In this way,

we provide the VDE model with a sequence of frames that more accurately reflect the geometric
structure of a 360° image.
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Spherical neighbor viewpoint searching. Based on the SUS strategy, directly searching for the next
viewpoint along the horizontal or vertical directions on the ERP plane does not guarantee that the next
viewpoint is a spherical neighbor of the current one, as depicted in Fig. 2{b). To ensure a coherent
video sequence, we propose searching for the next viewpoint among the spherical neighbors of the
current viewpoint. From these neighbors, we select the viewpoint with the lowest absolute latitude,
in accordance with the latitude-aware traversing strategy. The spherical neighbor relationships are
constructed using ICOSAP, where neighbors are defined as vertices within the same triangular face
(See Fig. [2(a)). In practice, the searching process may encounter dead ends. In such cases, we



Table 1: Zero-shot comparison on Matterport3D and Stanford2D3D datasets with 504 x 1008 input
resolution, following [25]. Numbers are excerpted from [23]. Highlighting: best, second-best.

Methods | Matterport3D [13]] | Stanford2D3D [[16]
|AbSRel L RMSE| 611 621 637 |AbSRel JRMSE| 611 621 6371
Marigold [34] | 0.2103 0.5745 65.46 91.36 98.19 | 0.2533 0.5069 58.78 87.60 96.57

DAv2-Small [33]]
PanDA-Small [23]]
Ours (VDA-Small)

DAv2-Large
PanDA-Large [23]
Ours (VDA-Large)

0.2113 0.6063 65.44 91.58 98.00
0.1206 0.4915 86.89 96.57 98.60
0.1408 0.4670 84.17 96.08 98.66

0.1962 0.5522 68.37 93.03 98.28
0.1122  0.4690 88.65 97.00 98.77
0.1153 0.4284 89.23 96.38 98.49

0.2343 0.5041 62.25 89.37 96.90
0.1250 0.3462 83.60 97.05 99.46
0.1288 0.3529 86.76 96.60 98.89

0.2363 0.4884 60.57 88.77 96.89
0.1026 0.3260 88.98 96.84 99.36
0.1005 0.2986 91.16 97.99 99.29
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Figure 5: Qualitative results on Replica360-2K (top) and Replica360-4K (bottom) datasets.

manually include all unexplored viewpoints as neighbors of the current viewpoint. This spherical
searching ensures the construction of a coherent video sequence.

3.4 Video Depth Estimation and Blending

Video depth map estimation. We consider VDA [22] as a representative example of VDE models.
During the pre-processing phase, VDA divides the input video frames into overlapping segments.
The final frame of the last segment is optionally repeated to make it compatible with the temporal
dimension. Each segment of video frames is processed by VDA to generate the corresponding
disparity maps. In the post-processing stage, adjacent segments are aligned based on a shared scale
and shift, determined by two common key frames. The segments are then seamlessly integrated
to maintain the original length of the video sequence. In our implementation, the disparity maps
are converted into depth maps before being re-projected to the ERP plane. Our empirical findings
indicate that merging perspective video predictions in depth space yields better quantitative results.

Video depth map blending. After re-projecting video depth maps onto the ERP plane, we use mean
blending to efficiently recombine them. For each pixel on the ERP plane, its depth value is calculated



Table 2: Quantitative comparison on high-resolution datasets. M is "Mean Blending"; ¥ is "Poisson
Blending". Numbers are excerpted from [[19]. Highlighting: best, second-best.

Dataset |Method | RMSE| MAE| AbsRel| RMSE-log|| 611 627 431
HoHoNet [49] 0.4707 0.2620 0.0967  0.0629 |90.50 97.27 97.09
SliceNet [50] 0.4463 0.2153 0.0665 0.0513 |95.17 98.07 99.54
UniFuse [12] 0.6040 03309 0.1110  0.0728 |[87.79 95.70 98.38
PanDA-Small [25] 0.4868 0.2770 0.1311  0.0771 |85.03 96.18 98.47
PanDA-Base [25] 04813 02747 0.1288  0.0755 |85.34 96.13 98.54
PanDA-Large [25] 0.4658 0.2584 0.1190 0.0713 |87.27 96.55 98.59

Matterport3D-2K 3 6on fonoDepth (18] | 0.7729 0.5106 02653  0.1253 | 60.38 85.55 94.70

360MonoDepth (DAv2)| 0.7968 0.4401 0.1822  0.1076 |71.99 91.86 96.78
Peng et al. [19] 0.4791 0.2655 0.1004  0.0662 |90.23 97.09 98.93
Ours (VDA-Small)™ 0.6055 0.4033 0.2138  0.1069 |71.07 90.86 96.75
Ours (VDA-Large)™ 0.5110 0.3317 0.1718  0.0907 |79.60 94.10 97.59
Ours (VDA-Small)” 0.4964 03044 0.1624  0.0870 |81.30 93.93 97.65
Ours (VDA-Large)” 0.4460 0.2568 0.1264  0.0732 | 87.41 95.01 97.80

HoHoNet [49] 0.0300 0.0193 0.1116  0.0671 |90.31 9590 98.11
SliceNet [50] 0.0403 0.0279 0.1590  0.0896 |85.15 93.88 96.44
UniFuse [12] 0.0362 0.0248 0.1336  0.0774 |86.87 95.94 97.72
PanDA-Small [25] 0.0215 0.0140 0.0751  0.0447 |95.20 99.25 99.74
PanDA-Base [25] 0.0195 0.0127 0.0692  0.0415 |96.26 99.38 99.79
PanDA-Large [25]] 0.0187 0.0119 0.0648  0.0393 |96.80 99.41 99.83

Replica360-2K 360N onoDepth [18] | 0.0706 0.0456 0.1813  0.0865 |78.48 93.56 98.34

360MonoDepth (DAv2)| 0.0497 0.0317 0.1407  0.0763 |81.68 96.59 99.35
Peng et al. [19] 0.0272 0.0182 0.1074  0.0643 |90.98 96.07 98.28
Ours (VDA-Small)™ 0.0241 0.0181 0.1099  0.0581 |90.17 98.47 99.79
Ours (VDA-Large)™ 0.0201 0.0153 0.0882  0.0472 |94.41 99.55 99.96
Ours (VDA-Small)” 0.0163 0.0116 0.0669  0.0385 |96.60 99.57 99.90
Ours (VDA-Large)” 0.0144 0.0097 0.0503  0.0296 |99.07 99.84 99.97

HoHoNet [49] 0.0357 0.0249 0.1359 0.0744 |85.17 94.63 96.61
SliceNet [S0] 0.0473 0.0341 0.1891 0.0994 | 78.31 93.17 96.77
UniFuse [12] 0.0394 0.0289 0.1480  0.0818 |82.20 96.26 98.54
PanDA-Small [25] 0.0213 0.0141 0.0739  0.0429 |96.16 99.52 99.85
PanDA-Base [25] 0.0194 0.0128 0.0676  0.0402 |96.77 99.51 99.86
PanDA-Large [25]] 0.0183 0.0118 0.0612  0.0365 |97.52 99.71 99.92

Replica360-4K 360N fonoDepth [18] | 0.0611  0.0400 0.1667  0.0815 |80.04 9525 98.47

360MonoDepth (DAv2)| 0.0448 0.0288 0.1264  0.0689 | 84.98 97.54 99.69
Peng et al. [19] 0.0332  0.0239 0.1309  0.0709 |86.07 94.98 96.76
Ours (VDA-Small)™ 0.0231 0.0167 0.0954  0.0510 |92.20 99.15 99.96
Ours (VDA-Large)™ 0.0190 0.0140 0.0774  0.0422 |96.61 99.81 99.96
Ours (VDA-Small)” 0.0157 0.0110 0.0602  0.0341 |98.19 99.83 99.97
Ours (VDA-Large)” 0.0144 0.0096 0.0492  0.0292 |99.16 99.84 99.96

by averaging the values from all re-projected video depth maps covering that pixel. Although
ST2360D significantly improves spatial consistency in overlapping regions, minor visible seams
may still persist in texture-less areas (See Fig.[5). To mitigate this, we further incorporate Poisson
blending [48]], which utilizes both first-order (gradient) and second-order (Laplacian) derivatives
from the re-projected depth maps, ensuring smoothness of the final 360° depth map.

4 Experiment

4.1 Experiment Setup

Datasets. We evaluate on five 360° depth datasets with varying resolutions. We use Matterport3D [15]
and Stanford2D3D [16] at 512 x 1024 resolution (504 x 1008 in Tab.m); Matterport3D-2K [15]] and
Replica360-2K [51] at 1024 x 2048; and Replica360-4K [51] at the highest resolution of 2048 x 4096.



Table 3: Ablation on the effectiveness of temporal consistency in VDE models.

\ Matterport3D \ Replica360-2K \ Replica360-4K
|AbsRel | RMSE | 611 |AbsRel | RMSE | 611 |AbsRel | RMSE | 61

Per frame input 0.1634 0.5003 79.42 | 0.0985 0.0208 91.42 | 0.0909 0.0202 92.47
Video frames input| 0.1403 0.4664 84.31 | 0.0669 0.0163 96.60 | 0.0602 0.0157 98.19
A 14.14% 6.718% 4.89% | 32.08% 21.63% 5.18% | 33.77% 22.28% 5.72%

Methods

Implementation details. By default, we use VDA [22] with ViT-Small as the backbone, which is of
feed-forward architecture. Since our pipeline is training-free, the parameters of VDE models are kept
frozen during inference. All experiments are conducted on a single NVIDIA A40 GPU.

Evaluation metrics. Following [18} [12]], we utilize standard metrics for depth estimation: Absolute
Relative Error (AbsRel), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Root
Mean Squared Logarithmic Error (RMSE-log), and three threshold percentage metrics ; for ¢ €
{1.25%,1.252,1.253}. Similar to [18} 23], we apply scale-and-shift alignment in the depth space.

4.2 Qualitative and Quantitative Evaluation

Matterport3D and Stanford2D3D. As shown in Tab. |1} ST2360D consistently outperforms the
perspective methods DAv?2 [33]] and Marigold [34], highlighting its strong zero-shot capability on
360° images. Notably, without any 360° depth annotations for training, ST?360D achieves results
comparable to PanDA [25]], which fine-tunes DAv2 [33]] using synthetic 360° depth datasets [17,152].

Matterport3D-2K. In Tab. 2| our ST?360D performs slightly worse than previous data-specific
methods [49,50]. This is mainly due to that these methods are specifically trained on the Matterport3D
dataset at a resolution of 512 x 1024, allowing them to leverage dataset-specific characteristics.
Additionally, Peng et al. [19] outperform our ST?360D by employing a pre-trained 360° depth
estimation model [49]]. However, when compared with 360MonoDepth [18]], which requires no
360° depth annotation, our ST?360D achieves superior performance. Furthermore, we have also
replaced the perspective depth estimator used in 360MonoDepth with the recent DAv2. In this case,
our ST?360D still surpasses 360MonoDepth. We ascribe it to the temporal consistency in VDE
models, which reduces depth inconsistency during inference and benefits the overall performance. To
compare with the recent method PanDA [235]], we first downsample input 360° images to a resolution
of 504 x1008. The resulting depth predictions are then upsampled to the original image resolution
using bilinear interpolation, following a similar pre-processing strategy of 360MonoDepth [[18]].
Our ST?360D outperforms PanDA in most metrics.

Replica360-2K and Replica360-4K. In Tab. 2| the results demonstrate that our ST?360D, employing
ViT-Small as the backbone with mean blending, already outperforms existing methods across most
metrics (12 out of 14) on the Replica360-2K and Replica360-4K datasets. These findings underscore
the effectiveness of our method for high-resolution 360° depth estimation, particularly highlighting
its robust zero-shot capability. Furthermore, as illustrated in Fig. [S| our ST?360D exhibits more
precise structural details compared to 360MonoDepth [18]], such as the chairs. Moreover, even when
employing only mean blending, our ST2360D significantly reduces visible seams in depth predictions.
Our ST?360D outperforms PanDA, which is specifically fine-tuned on synthetic 360° depth datasets.

4.3 Ablation Studies

By default, we employ VDA with ViT-Small as the backbone, with 252 x 252 patch resolution.

Effectiveness of temporal consistency. We conduct an ablation study as presented in Tab.
examining the influence of temporal consistency. Specifically, we feed each frame individually into
the VDE model, degrading it into a single-image depth estimation model. The results on three datasets
consistently demonstrate that temporal consistency significantly enhances overall performance.

Effectiveness of SUS strategy. In Fig.[6] using similar number of video frames, the SUS strategy
obtains better results than ERP-plane uniform sampling. It is because SUS strategy distributes
viewpoints evenly on the spherical surface, avoiding oversampling at the polar regions.



Table 5: Ablation on the com-  Table 6: Ablation on the
Table 4: Ablation on the ponents of LGS strategy on the choice of key latitudes in

scanning directions on the Matterport3D dataset. the LGS strategy on the

Matterport3D dataset. Matterport3D dataset.
Neigh. Traverse |AbsRel | RMSE |

Methods ‘AbsRel J RMSE | 01776 05603 Choice ‘AbsRel J RMSE |

Horizontal | 0.1776 0.5603 v 0.1586 0.5307 {18} 0.1544 0.5246

Vertical 0.1945 0.6128 v 0.1580 0.5291 {36} 0.1542 0.5236

Ours 0.1530 0.5216 v v 0.1530 0.5216 {18,36} | 0.1530 0.5216

Table 8: Ablation on the spatial resolution of perspective
Table 7: Ablation on the FoV of  patches on various datasets. We report the RMSE metric.
perspective patches on the Mat-

terport3D dataset. Datasets \252 x 252 378 x 378 518 x 518 756 x 756
Matterport3D | 05216 04664 04661 04746
FoV | AbsRel| RMSE |
Matterport3D-2K | 0.5497  0.5044  0.4964  0.5016
60 0.1687  0.5276 - =
90 01530 05216 Replica360-2K | 0.0245  0.0170  0.0163  0.0188
120 0.1796  0.6028 Replica360-4K | 0.0240  0.0167  0.0157  0.0175

Scanning directions. Tab. ] presents an ablation study on scanning directions. Horizontal scanning
arranges viewpoints horizontally, while vertical scanning arranges viewpoints vertically. Results
show horizontal scanning performs better due to smoother transitions. Furthermore, our LGS
strategy outperforms both horizontal and vertical strategies, showing the importance of prioritizing
structurally-rich regions early in the sequence.

The LGS strategy. From Tab. [5] incorporating spherical neighbor viewpoint search improves
performance by ensuring continuous scanning on the spherical surface. Employing latitude-aware
traversing also enhances performance by prioritizing low-latitude regions. Crucially, integrating both
components achieves optimal results. Furthermore, as shown in Fig. [f] the LGS strategy consistently
improves overall performance on various frame counts. With both the SUS and LGS strategies, a
notable performance gain is observed when increasing the number of video frames from 40 to 160.

Key latitude in LGS. We check the effectiveness of key
latitude settings within the LGS strategy in Tab. [§] Us- oot TR Uniorm sampTo
ing a larger key latitude slightly enhances performance ’ SUs

by prioritizing more low-latitude slices earlier in the se- % .,|

quence. Moreover, incorporating two key latitudes further 0601
improves performance by gradually arranging structurally

rich perspective patches into the sequence. oss] 117
'g

Impact of FoV. As shown in Tab.[7] the FoV significantly 054

influences the overall performance. Setting the FoV to 052

0.58

RMSE (m)

90° achieves optimal performance, whereas increasing it 0.50

o . 0 100 200 300 400 500 600
to 120° degrades the performance, likely due to redundant Number of Samples
structural information from excessively large views. Figure 6: Results using SUS and LGS

Impact of spatial resolution of patches. Tab. [§shows With varying numbers of frames.

that an intermediate patch resolution of 518 x 518, aligned

with the training resolution of VDA [22], consistently yields the best performance. Increasing patch
resolution from 252 x 252 to 378 x 378 notably improves performance, but further increases yield
minimal benefits and even degrade the performance at a resolution of 756 x 756.

4.4 Discussion

Different VDE models. Our training-free pipeline is agnostic to specific VDE models. To illustrate
this, we evaluate our ST2360D using several VDE models: ChronoDepth [42], DepthCrafter [43],
and Depth Any Video [24]. As presented in Tab. @ our ST?360D consistently outperforms 360Mon-
oDepth [18] with DAv2 as the depth estimator on both Replica360-2K and Replica360-4K datasets.



Table 9: Discussion about employing Table 10: Discussion about time consumption (sec-
different VDE models in ST2360D.  onds). M is "Mean Blending"; * is "Poisson Blending".
We take 360MonoDepth with DAv2 as

the reference and report RMSE metric. Methods ‘Input Num. ‘ Pre proc. Inf. Post proc. Total
s 20 0.6 54 7.8 13.8
Methods | 2K [51] | 4K ST2360DM | 12 03 07 01 Ll
360MonoDepth (DAV2)| 0.0497 | 0.0488 ST2360DE 40 07 10 0.1 1.8
T D 1 2.4 . . .
ChronoDepth 0.0278 | 0.0279 ST7360 60 30 05 59
DepthCrafter [43]] 0.0260 | 0.0247 [is® 20 0.6 54 27.7 33.7
Depth Any Video [24] | 0.0399 | 0.0413 ST2360D” 160 2.4 3.0 21.5 26.9

ST?360D

| e

- i
=

i - L/ =

Figure 7: Depth-controlled generation results. First prompt: "cyberpunk style". The second is empty.

.
360MonoDep
[

Inference time. Tab. [I0]compares the inference time of our method against 360MonoDepth on the
Replica360-2K dataset. Our ST?360D significantly reduces inference time compared to 360Mon-
oDepth. Although adding more video frames increases inference time, our method remains more
efficient than 360MonoDepth, which requires additional alignment during post-processing.

Depth-controlled generation. In Fig.[7} we showcase depth-controlled generation using 360° depth
predictions from our ST2360D and 360MonoDepth. We utilize the ControlNet [53]] branch of the
FLUX model [54]], which takes a depth map to guide the synthesis process. Specifically, we adopt
the black-forest-labs/FLUX.1-Depth-dev variant, which supports the use of a referenced depth map
as input for conditioning. Due to the stronger zero-shot capability of ST?360D, our generated results
consistently surpass those obtained using 360MonoDepth on various prompts.

5 Conclusion and Limitation

Conclusion. In this work, we propose to represent a 360° image as a sequence of video frames.
Accordingly, we introduce ST>360D, a novel training-free pipeline to leverage the inherent temporal
consistency of VDE models to enhance spatial consistency across perspective depth patches. To align
the perspective frames with VDE models, we further propose two strategies: the spherical-uniform
sampling strategy and the latitude-guided scanning strategy. Comprehensive experimental evaluations
demonstrate the impressive effectiveness and zero-shot capability of ST2360D in diverse scenarios.

Broader impacts. Our ST?360D can provide effective structural priors to support various scene
understanding tasks, such as 360° visual navigation, and has the potential to benefit embodied Al.

Limitation and future work: Currently, the pipeline of ST?360D is limited to the task of 360°
depth estimation. Encouraged by the promising results, future research can extend our ST>360D by
incorporating video foundation models in other tasks, such as semantic segmentation.
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We show all the details and the experimental settings at Sec[4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to the exploratory nature of the initial experiments, we concentrated on
direct performance outcomes rather than detailed statistical analysis.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We show all the information at Sec. 4] and supplemental material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics carefully.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the societal impacts at Sec[3}
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no such risks in our research.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in
the paper, are properly credited. The license and terms of use are explicitly mentioned and
properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has

curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our core method does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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