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Abstract

Data contamination poses a significant challenge to reliable LLM evaluation, where1

models may achieve high performance by memorizing training data rather than2

demonstrating genuine reasoning capabilities. We introduce RADAR (Recall vs.3

Reasoning Detection through Activation Representation), a novel framework that4

leverages mechanistic interpretability to detect contamination by distinguishing5

recall-based from reasoning-based model responses. RADAR extracts 37 features6

spanning surface-level confidence trajectories and deep mechanistic properties7

including attention specialization, circuit dynamics, and activation flow patterns.8

Using an ensemble of classifiers trained on these features, RADAR achieves 93%9

accuracy on a diverse evaluation set, with perfect performance on clear cases and10

76.7% accuracy on challenging ambiguous examples. This work demonstrates the11

potential of mechanistic interpretability for advancing LLM evaluation beyond12

traditional surface-level metrics. The code used in this work is publicly available1.13

1 Introduction14

Large Language Models (LLMs) show strong performance across tasks, but data contamination15

remains a major challenge in evaluation. Overlap between training and evaluation sets inflates metrics16

and obscures the distinction between genuine reasoning and memorization [Golchin and Surdeanu,17

2023, Deng et al., 2023, Feldman, 2020].18

Existing detection methods typically compare evaluation data to training corpora, check n-gram19

overlaps, or flag verbatim outputs [Carlini et al., 2021]. These approaches are limited: they require20

access to training data, fail with paraphrased contamination, and cannot reveal whether a model21

solved a task by recall or reasoning.22

We propose RADAR, which instead analyzes internal computation dynamics. Leveraging mechanistic23

interpretability, RADAR extracts features from attention, hidden states, and activation flows [Elhage24

et al., 2021, Olah et al., 2020]. Recall exhibits focused attention and rapid confidence convergence,25

while reasoning shows distributed activation and gradual stabilization.26

Our contributions are: (1) We demonstrate that mechanistic features can reliably distinguish recall27

from reasoning with 93% accuracy, (2) We provide interpretable insights into the internal signatures28

of these cognitive processes, and (3) We offer a practical tool for contamination detection that works29

without access to training data.30

1https://colab.research.google.com/drive/1Bio-yt2rdoo4ODX_xGUJqJm1iXNbF2Xy?usp=
sharing

Submitted to NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent
Abilities, and Scaling

https://colab.research.google.com/drive/1Bio-yt2rdoo4ODX_xGUJqJm1iXNbF2Xy?usp=sharing
https://colab.research.google.com/drive/1Bio-yt2rdoo4ODX_xGUJqJm1iXNbF2Xy?usp=sharing


2 Methodology31

2.1 Framework Architecture32

RADAR operates through three integrated components: (1) Mechanistic Analyzer that extracts33

internal model states, (2) Feature Extraction that computes surface and mechanistic features, and34

(3) Classifier that predicts recall vs. reasoning, , as illustrated in Figure 1..35

Figure 1: RADAR Framework Architecture: Input prompts are processed by the Mechanistic
Analyzer to extract internal states, which are converted to Surface and Mechanistic Features, then
classified by an ensemble to predict recall vs. reasoning with confidence scores.

The Mechanistic Analyzer interfaces with target LLMs (e.g., DialoGPT-medium) configured to36

output attention weights and hidden states. For each prompt, it analyzes attention patterns across all37

heads and layers, computing entropy and specialization metrics, and examines hidden state dynamics,38

including variance, norms, and effective rank.39

2.2 Feature Engineering40

We extract 37 features organized into two complementary categories:41

Surface Features (17): Derived from the model’s output trajectory across layers, these features42

capture prediction dynamics through confidence statistics (mean, std, max, min, range), convergence43

properties (layer, speed, slope), entropy measures (mean, change, information gain), and stability44

metrics.45

Mechanistic Features (20): Derived from attention weights and hidden states across all layers and46

heads, these features capture internal computational mechanisms, including attention specialization47

(specialized heads, specialization scores, entropy), circuit dynamics (depth, complexity, activation48

flow), intervention sensitivity (ablation robustness, critical components), working memory (hidden49

state variance, norm trajectories), and causal effects (logit attribution, mediation scores).50

2.3 Classification System51

The classification module employs an ensemble of four supervised learning models: Random52

ForestBreiman [2001], Gradient BoostingFriedman [2001], Support Vector Machine (SVM)Cortes53

and Vapnik [1995], and Logistic RegressionHosmer et al. [2013]. Each model is trained on the54

extracted feature vectors after normalization with StandardScaler. The scaling ensures zero mean55

and unit variance across features:56

x′
i =

xi − µi

σi
,

where µi and σi denote the mean and standard deviation of feature i.57
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For prediction, each base classifier j ∈ {1, . . . ,M} (with M = 4) outputs a hard label ŷj and a58

probability estimate pj = P (y = 1 | x′), where y = 1 corresponds to recall and y = 0 to reasoning.59

The ensemble aggregates these outputs as:60

ŷ = 1

 1

M

M∑
j=1

ŷj >
1

2

 , p̄ =
1

M

M∑
j=1

pj

The final confidence score is defined consistently with the predicted label:61

conf = p̄, ŷ = 1 (recall), 1− p̄, ŷ = 0 (reasoning)

3 Experiments and Results62

3.1 Experimental Setup and Results63

We curated two datasets: a balanced training set (30 examples: 15 recall, 15 reasoning) and a64

diverse test set (100 examples: 20 clear recall, 20 clear reasoning, 30 challenging cases, 30 complex65

reasoning). The classifier achieved 96.7% cross-validation accuracy during training.66

RADAR achieved an overall accuracy of 93.0% on the test set, with task-specific performance of67

97.7% on recall tasks and 89.3% on reasoning tasks. A detailed breakdown of performance across68

different categories is shown in Table 1.69

Table 1: RADAR Performance Results

Overall Performance

Overall Accuracy 93.0%
Recall Tasks 97.7%
Reasoning Tasks 89.3%

Category-wise Performance

Clear Recall 100% (20/20)
Clear Reasoning 100% (20/20)
Challenging Cases 76.7% (23/30)
Complex Reasoning 100% (30/30)

3.2 Feature Analysis70

Key discriminative features include specialized attention heads (higher for recall), circuit complexity71

(higher for reasoning), and confidence convergence patterns (faster for recall). Recall tasks showed a72

mean Recall Detection Score (RDS) of 0.933 compared to 0.375 for reasoning, demonstrating clear73

separability, as shown in Figure 2.74

Surface features revealed that recall tasks exhibit higher early confidence and faster convergence,75

whereas reasoning tasks show gradual confidence build-up and later stabilization. Mechanistic76

features highlighted that recall relies on focused attention patterns and specialized heads, while77

reasoning engages broader network resources with higher activation flow variance. The scatter plot78

visualization confirms clear separation between recall and reasoning tasks in the RDS–RCI score79

space.80

4 Discussion and Implications81

4.1 Contamination Detection Applications82

RADAR’s ability to distinguish recall from reasoning has direct implications for contamination83

detection. When reasoning-type prompts elicit recall-like internal signatures (high confidence, fast84

convergence, specialized attention), this indicates potential contamination where the model "knows"85

rather than "computes" the answer.86

Our approach offers several benefits: (1) Works without access to training data, (2) Analyzes87

computational processes rather than just outputs, (3) Provides interpretable features explaining88

classifications, (4) Complements existing external detection methods, and (5) Scales to different89

model architectures.90
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Figure 2: RADAR Feature Analysis: Comparison of surface and mechanistic features for recall and
reasoning tasks, highlighting top discriminative features and RDS–RCI score distribution. The results
show recall tasks characterized by early confidence and specialized heads, while reasoning tasks rely
on broader circuit complexity and higher activation flow variance. The scatter plot demonstrates
strong clustering, with recall tasks in the high-RDS region and reasoning tasks distributed in lower-
RDS regions.

4.2 Interpretability Insights91

The feature analysis confirms that recall and reasoning leave distinct mechanistic signatures. Recall92

processes exhibit focused attention patterns with rapid confidence convergence, suggesting direct93

retrieval pathways. Reasoning processes show distributed attention, gradual confidence build-up,94

and higher circuit complexity, indicating multi-step computational processes engaging broader95

network resources. Top discriminative features (Specialized Heads, Circuit Complexity, Hidden96

State Variance) capture fundamental differences in how the model processes information, providing97

interpretable insights into the underlying cognitive mechanisms.98

5 Conclusion99

RADAR demonstrates that mechanistic interpretability can effectively detect data contamination by100

analyzing internal LLM processing signatures. Our framework achieves 93% accuracy in distinguish-101

ing recall from reasoning, providing interpretable insights into the cognitive processes underlying102

model responses. This work opens new directions for LLM evaluation that move beyond surface-level103

metrics to examine computational mechanisms. The ability to detect contamination without training104

data access, combined with interpretable mechanistic features, makes RADAR a valuable tool for105

improving LLM evaluation reliability.106

Future work will explore scaling to larger models, developing unsupervised detection methods,107

and extending to other contamination types. The integration of mechanistic interpretability with108

traditional evaluation methods promises more robust and trustworthy LLM assessment frameworks.109
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A Implementation Details131

A.1 Model Configuration132

The target model (microsoft/DialoGPT-medium) was configured with output_attentions=True133

and output_hidden_states=True. Analysis focused on input prompt tokens to capture reasoning134

during comprehension.135

A.2 Feature Computation136

Surface features tracked confidence and entropy trajectories across layers. Mechanistic features137

analyzed attention weight distributions using entropy measures and computed hidden state statistics138

including effective rank via SVD decomposition.139

A.3 Training Procedure140

Features were preprocessed and standardized using StandardScaler. Each ensemble model was trained141

with k-fold cross-validation for robust performance estimation.142

B Training and Test Datasets143

This appendix provides details on the datasets used for training and evaluating the Enhanced RADAR144

Framework’s Recall–Reasoning Classifier.145
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Table 2: Composition of the training dataset.

Category Count
Total Examples 30
Recall Examples 15
Reasoning Examples 15

B.1 Training Dataset146

The training dataset was used exclusively for training the classifier. It consists of 30 examples, each147

containing a prompt and a corresponding label indicating whether the expected response is based on148

“recall” or “reasoning.” The composition is as follows:149

This dataset provides the classifier with a basic representation of the internal features and patterns150

that distinguish factual retrieval from logical inference. Representative examples are shown below:151

Table 3: Sample training dataset prompts and labels.

Prompt Label
“The capital of France is” recall
“If X is the capital of France, then X is” reasoning
“2 + 2 equals” recall
“If a triangle has angles 60, 60, and X degrees, then X equals” reasoning

B.2 Test Dataset152

The test dataset was used only for evaluating the trained classifier on unseen data. It comprises 100153

examples, with broader coverage to assess generalization across different levels of difficulty and154

ambiguity:155

Table 4: Composition of the test dataset.

Category Count
Total Examples 100
Clear Recall Examples 20
Clear Reasoning Examples 20
Challenging/Ambiguous Cases 30
Complex Reasoning Cases 30

The inclusion of challenging and complex reasoning cases is important for evaluating robustness,156

especially in detecting possible data contamination where a reasoning task could be solved by recall.157

Examples from each category are shown below:158

Table 5: Sample test dataset prompts by category.

Category Example Prompt Label
Clear Recall “The capital of Germany is” recall
Clear Reasoning “If a rectangle has length 5 and width 3, its area is” reasoning
Challenging/Ambiguous“What is the sum of 10 and 15?” reasoning
Complex Reasoning “If a store has 100 items and sells 30% of them, how many

items remain?”
reasoning
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B.3 Why Challenging or Ambiguous Prompts Are Difficult159

Challenging or ambiguous prompts are difficult because they blur the line between recall and160

reasoning.161

• Some prompts may appear to require reasoning (e.g., arithmetic) but can be solved by162

memorized recall if the model has seen similar examples during training.163

• Conversely, some factual prompts may trigger reasoning-like processing if the information164

is incomplete or framed indirectly.165

• Ambiguity arises when the surface form of the task does not clearly signal whether the166

solution requires stored knowledge or active inference.167

These cases are crucial for evaluation because they reveal whether the classifier is robust to subtle168

shifts in task framing and whether it can correctly separate recall-driven answers from reasoning-based169

ones.170

C Scoring171

In addition to the binary classification, the RADAR Framework computes several continuous scores172

that provide a more nuanced perspective:173

• Recall Detection Score (RDS): Indicates how strongly the analysis suggests a recall-based174

process, combining specific surface and mechanistic features.175

• Reasoning Complexity Index (RCI): Reflects the complexity and depth of processing, sug-176

gesting a reasoning-based process. Derived from a combination of surface and mechanistic177

features.178

• Mechanistic Score: Focuses on features related to causal effects and intervention sensitivity.179

• Circuit Complexity Score: Based on features describing the depth and complexity of the180

activated computational graph.181

These scores are calculated using predefined formulas that weigh different features according to182

their relevance to recall and reasoning processes. They provide complementary information to the183

classifier’s binary output.184

D Feature Documentation185

The RADAR (Recall And Deliberative Analysis of Reasoning) Framework extracts 37 features from186

language model behavior to distinguish between recall-based and reasoning-based tasks. These187

features are organized into two categories: Surface Features (16 features) that capture observable188

trajectory patterns, and Mechanistic Features (21 features) that analyze internal model dynamics189

through attention patterns and activation analysis.190

D.1 Surface Features (16 Features)191

Surface features analyze the confidence and entropy trajectories across all model layers to capture192

behavioral patterns without requiring deep mechanistic analysis.193

D.1.1 Confidence-Based Features (8 Features)194

Feature Type Definition & Computation

mean_confidence float Mean confidence across all layers: c̄ = 1
L

∑L
l=1 cl

where cl is the maximum softmax probability at layer l,
and L is the total number of layers.
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std_confidence float Standard deviation of confidence trajectory: σc =√
1

L−1

∑L
l=1(cl − c̄)2. Higher values indicate more

variable confidence across layers.
max_confidence float Maximum confidence achieved: cmax = maxl∈[1,L] cl.

Indicates peak certainty reached by the model.
min_confidence float Minimum confidence observed: cmin = minl∈[1,L] cl.

Represents lowest certainty point in processing.
confidence_range float Range of confidence values: ∆c = cmax − cmin. Mea-

sures the span of confidence variation across layers.
convergence_layer int Layer index where maximum confidence is achieved:

l∗ = argmaxl cl. Earlier convergence may indicate
simpler recall tasks.

convergence_speed float Inverse of convergence layer: vconv = 1
l∗+1 . Higher

values indicate faster convergence to high confidence.
confidence_slope float Linear regression slope of confidence trajectory: β =∑L

l=1(l−l̄)(cl−c̄)∑L
l=1(l−l̄)2

where l̄ = L+1
2 . Positive slopes indi-

cate increasing confidence.

D.1.2 Trajectory Dynamics Features (4 Features)195

Feature Type Definition & Computation
oscillation_count int Number of sign changes in the discrete confidence

derivative. Let ∆cl = cl+1 − cl for l = 1, . . . , L− 1.
Then

oscillation_count = #{ l ∈ {1, . . . , L−2} : (∆cl)(∆cl+1) < 0 },

i.e., consecutive derivatives with opposite sign. Zeros
in ∆cl are ignored for sign changes.

early_confidence float Mean confidence in the first half of layers:

cearly =
1

⌊L/2⌋

⌊L/2⌋∑
l=1

cl.

Captures initial model certainty.
late_confidence float Mean confidence in the second half of layers:

clate =
1

⌈L/2⌉

L∑
l=⌊L/2⌋+1

cl.

Captures final model certainty.
prediction_stability float Inverse of confidence standard deviation:

spred = 1−σc, σc =

√√√√ 1

L− 1

L∑
l=1

(
cl − c̄

)2
, c̄ =

1

L

L∑
l=1

cl.

Higher values indicate more stable predictions across
layers.

D.1.3 Information-Theoretic Features (4 Features)196
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Feature Type Definition & Computation
mean_entropy float Average entropy across layers:

H̄ =
1

L

L∑
l=1

Hl, Hl = −
∑
i

pl,i log pl,i,

where pl,i is the probability of token i at layer l and log
is the natural logarithm.

entropy_change float Change from first to last layer:

∆H = HL −H1.

Negative values indicate uncertainty reduction.
information_gain float Negative entropy change:

IG = −∆H = H1 −HL.

Positive values indicate successful uncertainty
reduction.

layer_consistency float Inverse of entropy standard deviation:

consistency = 1−

√√√√ 1

L− 1

L∑
l=1

(
Hl − H̄

)2
.

Higher values indicate more consistent information
processing across layers.

D.2 Mechanistic Features (21 Features)197

Mechanistic features analyze internal model dynamics through attention patterns, activation flows,198

and causal intervention proxies to understand the computational mechanisms underlying different199

task types.200

D.2.1 Attention Specialization Features (5 Features)201

Feature Type Definition & Computation
num_specialized_heads int Total count of attention heads with entropy below

a specialization threshold (typically τ = 1.5):

Nspec =

L∑
l=1

H∑
h=1

1[Hl,h < τ ],

where Hl,h is the entropy of head h in layer l.
head_specialization_scorefloat Normalized specialization measure:

Shead = 1− H̄attn

3.0
,

where H̄attn is the mean attention entropy across
all heads. Higher values indicate more specialized
attention patterns.

factual_head_activation float Inverse relationship with attention entropy:

Afact =
1

H̄attn + ϵ
, ϵ = 10−8.

Higher values suggest factual recall patterns (low
entropy, focused attention).
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reasoning_head_activationfloat Proportional to attention entropy:

Areason =
H̄attn

3.0
.

Higher values suggest reasoning patterns (high en-
tropy, distributed attention).

attention_entropy float Mean entropy across all attention heads:

H̄attn =
1

LH

L∑
l=1

H∑
h=1

Hl,h, Hl,h = −
∑
i,j

A
(i,j)
l,h logA

(i,j)
l,h ,

where A
(i,j)
l,h is the attention weight from position

i to j.

D.2.2 Circuit Dynamics Features (4 Features)202

Feature Type Definition & Computation
effective_circuit_depth float Number of layers with significant causal effects.

Equal to the number of attention layers analyzed.
Represents the depth of the computational circuit.

circuit_complexity float Product of variance and norm growth:

Ccircuit = σ2
var · γnorm,

where σ2
var is activation variance growth and

γnorm is the norm growth trajectory.
activation_flow_variance float Variance in activation magnitudes across layers.

Measures how much activation patterns change be-
tween layers, indicating computational complexity.

causal_path_length float Length of the causal computation path. Currently
equal to circuit depth, representing the number of
processing steps in the causal chain.

D.2.3 Intervention Sensitivity Features (4 Features)203

Feature Type Definition & Computation
ablation_robustness float Robustness to component removal:

Rablation = 1− H̄attn

5.0
.

Higher entropy (distributed attention) leads to
lower robustness.

critical_component_count int Number of critical components:

Ncritical = max(1, Nspec).

Uses specialized head count as a proxy for critical
components.

performance_degradation_slopefloat Rate of performance degradation under interven-
tion:

βdegrad = |σcausal|,
where σcausal is the standard deviation of causal
effect estimates across layers.
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intervention_sensitivity float Sensitivity to interventions:

Sinterv = 1−Rablation.

Inverse of ablation robustness; higher values indi-
cate greater sensitivity.

D.2.4 Working Memory Features (4 Features)204

Feature Type Definition & Computation
hidden_state_variance float Variance in hidden state activations. Measures

variability in internal representations across layers,
indicating working memory usage.

norm_growth_trajectory float Growth pattern of activation norms. γnorm tracks
how activation magnitudes change across layers,
indicating information accumulation.

working_memory_complexityfloat Complexity of working memory usage. Currently
uses rank evolution as a proxy for working memory
complexity.

state_rank_evolution float Evolution of representation rank. Revolution mea-
sures how the effective dimensionality of represen-
tations changes across layers.

D.2.5 Causal Effect Features (4 Features)205

Feature Type Definition & Computation
direct_logit_attribution float Direct causal effect on output:

Edirect =
1

L

L∑
l=1

H̄attn,l

10
,

where H̄attn,l is mean attention entropy at layer l.
Proxy for direct causal contribution.

indirect_effect_strength float Strength of indirect causal effects:

Eindirect = σcausal,

where σcausal is the standard deviation of layer-
wise causal effect estimates.

causal_mediation_score float Mediation effect strength:

Mcausal = Edirect × Eindirect.

Product of direct and indirect effects, measuring
causal mediation.

activation_patching_effectfloat Proxy measure for activation patching:

Ppatch = Edirect.

Note: This is computed from attention entropy, not
from actual activation patching experiments.

E Feature Computation Pipeline206

E.1 Surface Feature Extraction207

1. Extract confidence trajectory:208

{cl}Ll=1, cl = max
i

pl,i
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2. Extract entropy trajectory:209

{Hl}Ll=1, Hl = −
∑
i

pl,i log pl,i

3. Compute statistical measures: mean, standard deviation, minimum, maximum, and range.210

4. Analyze trajectory dynamics: slope, oscillations, and convergence properties.211

5. Calculate information-theoretic measures.212

E.2 Mechanistic Feature Extraction213

1. Analyze attention patterns across all layers and heads.214

2. Compute attention entropy for each head:215

Hl,h = −
∑
i,j

A
(i,j)
l,h logA

(i,j)
l,h

3. Identify specialized heads:216

Nspec =
∑
l,h

1[Hl,h < 1.5]

4. Analyze activation patterns (variance, norms, and rank evolution).217

5. Compute proxy causal effects from attention entropy.218

6. Calculate intervention sensitivity measures.219

F Important Notes and Limitations220

F.1 Proxy Measures221

Several features rely on proxy measures rather than direct computation:222

• Causal effects: Derived from attention entropy instead of actual interventions.223

• Activation patching: Approximated via attention entropy proxy, not true patching experi-224

ments.225

• Critical components: Approximated using specialized head counts.226

• Working memory: Approximated using rank evolution as a complexity proxy.227

F.2 Computational Considerations228

• All features can be computed in a single forward pass.229

• No gradient computation is required for feature extraction.230

• Attention patterns are analyzed across all layers and heads.231

• Surface features require only the output probability distributions.232

G Usage in Classification233

The 37 features are concatenated into a single feature vector:234

f = [fsurface, fmechanistic] ∈ R37

This vector is then used to train classifiers (Random Forest, Gradient Boosting, SVM, Logistic235

Regression) to distinguish between recall and reasoning tasks.236
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